JP4449135B2 - Semiconductor substrate holding container - Google Patents

Semiconductor substrate holding container Download PDF

Info

Publication number
JP4449135B2
JP4449135B2 JP2000015515A JP2000015515A JP4449135B2 JP 4449135 B2 JP4449135 B2 JP 4449135B2 JP 2000015515 A JP2000015515 A JP 2000015515A JP 2000015515 A JP2000015515 A JP 2000015515A JP 4449135 B2 JP4449135 B2 JP 4449135B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
water
container
holding
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000015515A
Other languages
Japanese (ja)
Other versions
JP2001208748A (en
Inventor
哲夫 水庭
光和 益戸
勝信 北見
寿雄 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000015515A priority Critical patent/JP4449135B2/en
Publication of JP2001208748A publication Critical patent/JP2001208748A/en
Application granted granted Critical
Publication of JP4449135B2 publication Critical patent/JP4449135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、LSI製造工程などで、大量に使用される洗浄用の超純水(被評価水)中に存在する微量不純物のうち、半導体基板(ウエハとも称す。)の表面に付着し、ウエハの特性に悪影響を及ぼす可能性がある物質のみを対象にしてその超純水の水質評価を高感度で行う際に使用する半導体基板の保持容器に関する。
【0002】
【従来の技術】
LSIの製造工程において、多量に使用されている超純水は、洗浄工程の最後にウエハに接触する物質であるために、超純水に含まれる不純物の濃度がシリコン等ウエハの表面の洗浄度に影響する。このため、これまでのLSI集積度の増加と共に、その製造工程で使用される超純水中の不純物濃度を低下させることが必要とされ、従来は、超純水中に含まれる不純物のすべてを低減する努力がなされてきた。このために水中不純物を、高感度の分析装置を使用して超微量まで分析できるような技術の開発が行われてきた。
【0003】
しかし、超純水中の不純物の基板に対する悪影響を考えると、先ず悪影響を及ぼす物質が水中からウエハの表面に付着し、その後、加熱などの処理を行った際に拡散や化学反応などを起こして悪影響を発現させると考えることができる。すなわち超純水中の悪影響を及ぼす物質はすべて水中からウエハの表面に付着する物質に含まれることになる。従って、水中のあらゆる不純物を分析して水質を評価しなくても、洗浄対象と同じ材質の基板を、使用する超純水に接触して対象とする不純物をその基板の表面に付着させ、基板の表面の不純物を分析する手法を用いて、基板に付着した不純物を分析すれば、超純水から基板の表面に付着する性質がある、言い換えれば悪影響を及ぼす可能性がある不純物だけを検出して超純水の水質を評価することができる。この目的でシリコンウエハを密閉容器に保持し、容器内に超純水を導入してウエハに超純水を一定時間接触させた後、ウエハを取出して適当な方法で表面の不純物を分析することが行われている。このための接触方法としては、通常、ウエハを洗浄する際に使用する容器に超純水を満たし、ウエハをその超純水中に浸漬して超純水と接触させるか、又は容器に超純水を連続的に供給しながら容器内のカセットに収納したウエハを器内の超純水に浸漬して接触させる方法がある。
【0004】
【発明が解決しようとする課題】
しかしこの方法は、ウエハを収納したカセットを超純水に浸漬する前後に、ウエハが環境空気に接触することになるため、LSIを製造する環境のような極めて洗浄度の高い環境でしか操作できない。又、不純物は、ウエハの表面のごく近傍の水中からウエハの表面に移行すると考えられ、ウエハの近傍を通過する水の量が多いほど、より低濃度の不純物が検出できると考えられる。ウエハを水に浸漬する方法では、ウエハの近傍を流れる水の流速は小さいから、ウエハと接触する水の量は少ない。これを増加させるために長い時間浸漬すると、使用する水量は極めて大きくなってしまい、実用上問題がある。又、複数枚のウエハを収納したカセットを容器内の水に浸漬し、試験水を供給したときには、ウエハの表面近傍を流れる水の流速をどの基板でも一定にすることは不可能であり、不純物の付着量も不均一になる。
【0005】
【課題を解決するための手段】
本発明は上述した問題点を解消するために開発されたもので、請求項1の半導体基板の保持容器は、半導体基板に被評価水を接触させた後、該半導体基板の表面の分析によって被評価水中の不純物を検出又は測定する被評価水の水質評価方法で使用され、内部に1枚の半導体基板を収容して水平に保持する保持手段を備え、且つ被評価水を半導体基板の表面の中央部に供給し、その外周に向かって表面を半径方向外向きに流すための被評価水の給水口と、上記基板の外周からその裏面を通って被評価水を排出する排水口とを有するものであって、中心に前記給水口が開設されている上蓋と、窪みの底の中心に前記排水口の上端が開口している円形の窪みを上面に有し前記円形の窪みを上蓋によって塞がれる底盤とを有し、前記底盤は、前記窪みの底面上において、円周方向に等間隔に複数の放射状畝が設けられるとともに、前記各畝は、内端が前記排水口の回りに位置し、外端が前記窪みの内周面から内側に間隔を保って離れており、前記半導体基板の周縁部を載せて水平に保持する段を有する階段形の支持台が設けられていることを特徴とし、請求項2の半導体基板の保持容器は、請求項1に記載の半導体基板の保持容器において、半導体基板の表面と、この表面に対向する容器の内面との距離が、半導体基板の中心部から外周に向かって半径方向に移行するに従って短くしたことを特徴とし、請求項3の半導体基板の保持容器は、請求項1、請求項2のどちらか1項に記載の半導体基板の保持容器において、上記容器の接液部の材質が、アクリル樹脂、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、4弗化エチレン、パーフロロアルコキシ樹脂、ポリ2弗化ビニリデン樹脂、ポリエーテル、エーテルケトン、ポリフェニレンサルファイドなどの熱可塑性合成樹脂であることを特徴とし、請求項4の半導体基板の保持容器は、請求項1、請求項2のどちらか1項に記載の半導体基板の保持容器において、上記容器の接液部の材質が、ステンレス、アルミニウム、石英であることを特徴とする。
【0006】
【発明の実施の形態】
図1は本発明による半導体の保持容器の一実施形態を示す。この容器は、上蓋10と、上面に有する円形の窪み21を上記上蓋によって塞がれる底盤20とからなる。上蓋10と底盤20の外形は例えば円形で、上蓋の中心には給水口11、底盤20の中心は排水口22が開設されている。底盤20の上面の周縁部には円周方向に等間隔に位置決め突起23が設けてあり、これに対応して上蓋の下面の周縁部には上記位置決め突起を受入れる凹部が設けてある。従って、底盤の上面上に上蓋を載せ、上蓋の凹部を前記位置決め突起23に嵌めると、上蓋は正しく底盤の上に重なり、底盤の円形の窪み21の上面を塞ぐ。
【0007】
底盤の円形の窪み21の内径は保持すべきウエハWの直径よりも充分に大であり、その窪みの底の中心に前記排水口22の上端が開口している。窪み21の底面上には円周方向に等間隔に複数の、図では3つの放射状畝24が隆設してある。この放射状畝24の内端は排水口22の回りに位置し、外端は窪み21の内周面から内側に間隔を保って離れている。
【0008】
そして、ウエハWは上記複数の放射状畝24の上に水平に保持する。そのため、各畝の外端部上にはウエハの周縁部を載せる段26を有する階段形の支持台25が設けてある。段26の段差はウエハの厚さ(約0.6mm)に対応している。又、必要に応じ、各畝24の中間部上にウエハの半径方向の途中の下面を支持する支持部27を突設する。
【0009】
上蓋10の下面には、給水口11の下端に連なった富士山形の通水用凹部12が設けてある。この通水用凹部12の内径は、底盤の円形の窪み21の内径に等しい。通水用凹部12を富士山形と称したのは、断面形状において、凹部12の下面が半径方向外向きに、前記階段形の支持台25に水平に支持されたウエハWの上面に次第に近付くようにしてある。
【0010】
例えば、ウエハの半径が75mmの場合、水平に支持されたウエハの上面からの通水用凹部12の距離は、ウエハの中心から半径方向外向きに5mmの位置で15mm、同じく10mmの位置で7.5mm、同じく15mmの位置で5mm、20mmの位置で3.75mm、30mmの位置で2.5mm、40mmの位置で1.875mm、60mmの位置で1.25mm、外周の75mmの位置で1mmである。これは、給水口11から内部に供給された超純水を、ウエハWの上面上を半径方向外向きに均一な流量、流速で流れ、窪みの内周面と放射状畝の外端との間の間隔を含む窪みの底の周縁部21′に達するようにしてある。これにより、
▲1▼繰り返し試験するときにも接触水量を制御でき再現性の高い評価ができる。そして、供給された水が効率よくウエハに接触するため、短時間でも多量の水をウエハと接触させることができ、感度が高い。
▲2▼基板表面を流れる水流の流速が均一のため、不純物のウエハへの付着も均一となり、表面分析による付着物評価の信頼度が高い。
▲3▼又、水がウエハと接触する際に、ウエハからの不純物溶出が極めて少ないため、供給する水中からのウエハへの汚染量が感度良く検出できる。
との効果がある。
【0011】
上記窪みの底の周縁部21′に達した水は窪み21の底と放射状の畝によって持ち上げられたウエハの下面との間の隙間を通って中心の排水口22に向かって流れ、排出口から外に流出する。
【0012】
上蓋の給水口11と、底盤の排水口22には外気と容器の内部を遮断するために弁をねじ込んで設け、クリーンルーム以外への容器持ち運び時は、前記弁を閉とし、水との接触を実施する際にのみ開にする。給水口11に設ける弁は3方弁(原水→容器内、原水→排出を切り換える)13を用いることが好ましい。本容器を水に接触させる前に、該弁13を「原水→排出」を切り換えておいて容器内に水を入れないで水を流すことができるようにしておけば、サンプリング用の流路の洗浄ができるという効果がある。又、排水口22に設ける弁28は開閉用の2方弁でよい。
【0013】
上蓋10、底盤20の材質としては、供試水中の金属成分やイオンを評価しようとする場合には、金属やイオンなどの不純物含有量が少なく、加工が比較的容易で耐久性のある合成樹脂又は石英を使用する。又、容器の表面に付着している不純物を除去するために、容器使用前に加温超純水による洗浄や、超音波を使った洗浄を行う。一方、供試水中の有機性不純物を評価しようとするときには、有機物の溶出がないステンレスやアルミニウムなどの金属又は石英を、上蓋や底盤の接液部に使用する。
【0014】
実施例1
直径6インチのn型シリコンウエハを6枚用意し、石英製の槽を用いて、通常のRCA洗浄を行い、ウエハの表面を洗浄化した。この内の2枚は洗浄後乾燥して表面の金属元素濃度(Fe)の濃度を全反射蛍光X線分析装置を用いて測定した。その結果洗浄後のウエハの表面のFe濃度は2×109atom/cm2以下であった。
この内の2枚について、図示の構造のポリプロピレン製の保持容器にシリコンウエハを装着し、超純水を1立/minの流速で1時間、即ち60立を通水した。その後、ウエハを汚染させないように容器から取出して乾燥させ、表面の金属元素(鉄)の濃度を全反射蛍光X線分析装置を用いて測定し、平均値を求めた。その結果、ウエハの表面には5×109atom/cm2の鉄が検出された。即ち、60立の水から平均で5×109atom/cm2だけの汚染を起こさせる水であると評価できる。
洗浄したウエハの残り2枚は、別のウエハキャリヤ及び別の洗浄した石英槽に移し、これに超純水を10立/minの流速で1時間注いで計600立の超純水を石英槽に注いだ。その後ウエハを汚染させないように乾燥し、上記と同じ方法で表面のFeの濃度を測定した。その結果、ウエハの表面には平均して3×109atom/cm2 のFeが検出された。即ち、この水は600立で3×109atom/cm2 の汚染を起こさせる水であると評価できる。
この結果から、本発明による保持容器を使用して水をウエハに接触することによってより少量の水で、水からの汚染を評価できることがわかる。
【0015】
実施例2
直径6インチn型シリコンウエハを6枚用意し、石英製の槽を用いて、通常のRCA洗浄を行い、ウエハの表面を洗浄化した。この内の2枚は洗浄後乾燥して表面の金属元素濃度(Fe)の濃度を全反射蛍光X線分析装置を用いて測定した。その結果洗浄後のウエハの表面のFe濃度は2×109atom/cm2以下であった。
この内の2枚について、図1に示す構造のポリプロピレン製の保持容器にシリコンウエハを装着し、クリーンルーム外にある超純水製造装置の近傍に移送し、超純水装置出口の水を分岐して保持容器に超純水を1立/minの流速で1時間、即ち60立を通水した。その後、容器をクリーンルーム内に移送し、容器から取出して乾燥させ、表面の金属元素(鉄)の濃度を全反射蛍光X線分析装置を用いて測定し、平均値を求めた。その結果、ウエハの表面には5×109atom/cm2 の鉄が検出された。即ち、60立の水から平均で5×109atom/cm2 だけの汚染を起こさせる水であると評価できる。
洗浄したウエハの残り2枚は、別のウエハキャリヤ及び別の洗浄した石英槽に移し、石英槽ごとクリーンルーム外にある超純水製造装置の近傍に移送し、上と同じ水を10立/minの流量で1時間、計600立の超純水を石英槽に注いだ。その後ウエハを容器ごとクリーンルーム内に移送して乾燥し、上記と同じ方法で表面のFeの濃度を測定した。その結果、ウエハの表面には平均して6×109atom/cm2 のFeが検出された。これはクリーンルーム外の空気中の汚れが混入してウエハを汚染させたものであり、この方法では超純水の水質を評価することはできない。
この結果から、本発明による半導体基板の保持容器を使用することによって、クリーンルーム外の通常の空気中においても、評価したい水をこれに通水してウエハに接触することによって水からの汚染を評価できることがわかる。
【0016】
【発明の効果】
本発明の保持容器を使用することによって、クリーンルーム外にある超純水製造装置内の純水製造工程中の水質を、ウエハと接触させて分析する方法を用いて評価でき、超純水の水質の向上や、コストの低減などの超純水製造技術の向上に役立てることできる。
【図面の簡単な説明】
【図1】(A)は本発明の保持容器の一実施形態の断面図、(B)は同上の底盤の斜視図。
【符号の説明】
10 保持容器の上蓋
11 上蓋の給水口
12 上蓋の通水用凹部
20 保持容器の底盤
21 底盤の円形の窪み
22 底盤の排水口
24 底盤の放射状畝
25 放射状畝の階段形支持部
W 半導体基板(ウエハ)
[0001]
BACKGROUND OF THE INVENTION
This invention adheres to the surface of a semiconductor substrate (also referred to as a wafer) out of trace impurities present in cleaning ultrapure water (evaluated water) used in large quantities in LSI manufacturing processes, etc. The present invention relates to a holding substrate for a semiconductor substrate used for evaluating the quality of ultrapure water with high sensitivity only for substances that may adversely affect the characteristics of the semiconductor.
[0002]
[Prior art]
Since ultrapure water used in large quantities in the LSI manufacturing process is a substance that comes into contact with the wafer at the end of the cleaning process, the concentration of impurities contained in the ultrapure water has a degree of cleaning of the surface of the wafer such as silicon. Affects. For this reason, it is necessary to reduce the impurity concentration in the ultrapure water used in the manufacturing process along with the increase in LSI integration so far, and conventionally, all impurities contained in the ultrapure water are reduced. Efforts to reduce have been made. For this reason, the development of a technique that can analyze impurities in water to ultra trace amounts using a highly sensitive analyzer has been performed.
[0003]
However, considering the adverse effects of impurities in the ultrapure water on the substrate, the substances that have an adverse effect first attach to the wafer surface from the water, and then cause diffusion and chemical reactions when processing such as heating. It can be considered to cause adverse effects. That is, all substances that have an adverse effect in ultrapure water are included in substances that adhere to the wafer surface from the water. Therefore, without analyzing every impurity in the water and evaluating the water quality, the substrate made of the same material as the object to be cleaned is brought into contact with the ultrapure water to be used, and the target impurity is adhered to the surface of the substrate. If the impurities attached to the substrate are analyzed using a technique for analyzing impurities on the surface of the substrate, only impurities that have the property of attaching to the substrate surface from ultrapure water, in other words, that may have an adverse effect, are detected. Thus, the quality of ultrapure water can be evaluated. For this purpose, hold a silicon wafer in a sealed container, introduce ultrapure water into the container, and contact the wafer with ultrapure water for a certain period of time, then take out the wafer and analyze the surface impurities by an appropriate method. Has been done. As a contact method for this purpose, the container used for cleaning the wafer is usually filled with ultrapure water, and the wafer is immersed in the ultrapure water and brought into contact with the ultrapure water, or the container is filled with ultrapure water. There is a method in which a wafer stored in a cassette in a container is immersed and contacted with ultrapure water in a container while water is continuously supplied.
[0004]
[Problems to be solved by the invention]
However, this method can be operated only in a highly clean environment such as an LSI manufacturing environment because the wafer contacts the ambient air before and after the cassette containing the wafer is immersed in ultrapure water. . Impurities are considered to move from the water in the vicinity of the wafer surface to the surface of the wafer, and it is considered that the lower the concentration of the water passing through the vicinity of the wafer, the lower the concentration of impurities can be detected. In the method of immersing the wafer in water, the flow rate of water flowing in the vicinity of the wafer is small, so that the amount of water in contact with the wafer is small. If it is immersed for a long time in order to increase this, the amount of water to be used becomes extremely large, which causes a practical problem. In addition, when a cassette containing a plurality of wafers is immersed in water in a container and test water is supplied, it is impossible to keep the flow rate of water flowing near the surface of the wafer constant for any substrate. The amount of adhering also becomes uneven.
[0005]
[Means for Solving the Problems]
The present invention has been developed to solve the above-described problems, and the container for holding a semiconductor substrate according to claim 1 is subjected to analysis by analyzing the surface of the semiconductor substrate after contacting the semiconductor substrate with water to be evaluated. It is used in a water quality evaluation method for detecting or measuring impurities in evaluation water , and has a holding means for holding and horizontally holding one semiconductor substrate inside, and the evaluation water is placed on the surface of the semiconductor substrate. A water supply port for water to be evaluated is supplied to the central portion and flows outward in the radial direction toward the outer periphery thereof, and a water discharge port for discharging the water to be evaluated from the outer periphery of the substrate through the back surface thereof. An upper lid having the water supply opening at the center and a circular depression having an upper end of the drain opening at the center of the bottom of the depression on the upper surface, and the circular depression is closed by the upper lid. A bottom plate that can be peeled off, and A plurality of radial ridges are provided at equal intervals in the circumferential direction on the bottom surface of each of the ridges, and each of the ridges has an inner end positioned around the drain outlet and an outer end inward from the inner peripheral surface of the recess. A holding substrate for a semiconductor substrate according to claim 2, wherein a stepped support base having a step that is spaced apart and is held horizontally by placing a peripheral portion of the semiconductor substrate horizontally is provided . 2. The holding substrate for a semiconductor substrate according to claim 1, wherein the distance between the surface of the semiconductor substrate and the inner surface of the container facing the surface is shortened as the distance from the central portion of the semiconductor substrate toward the outer periphery changes in the radial direction. According to a third aspect of the present invention, there is provided the semiconductor substrate holding container according to any one of the first and second aspects, wherein the material of the liquid contact portion of the container is an acrylic resin. , Polyvinyl chloride, polyp 5. Holding a semiconductor substrate according to claim 4, characterized in that it is a thermoplastic synthetic resin such as pyrene, polyethylene, tetrafluoroethylene, perfluoroalkoxy resin, poly (vinylidene fluoride) resin, polyether, ether ketone, polyphenylene sulfide. The container is a semiconductor substrate holding container according to any one of claims 1 and 2, wherein the material of the liquid contact portion of the container is stainless steel, aluminum, or quartz.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a semiconductor holding container according to the present invention. The container includes an upper lid 10 and a bottom plate 20 in which a circular recess 21 on the upper surface is closed by the upper lid. The outer shape of the upper lid 10 and the bottom board 20 is circular, for example, and a water supply port 11 is opened at the center of the upper lid, and a drain outlet 22 is opened at the center of the bottom board 20. Positioning projections 23 are provided at equal intervals in the circumferential direction on the peripheral portion of the upper surface of the bottom plate 20, and correspondingly, recesses for receiving the positioning projections are provided on the peripheral portion of the lower surface of the upper lid. Accordingly, when the upper lid is placed on the upper surface of the bottom plate and the concave portion of the upper lid is fitted into the positioning projection 23, the upper lid correctly overlaps the bottom plate and closes the upper surface of the circular recess 21 of the bottom plate.
[0007]
The inner diameter of the circular recess 21 in the bottom plate is sufficiently larger than the diameter of the wafer W to be held, and the upper end of the drain port 22 is opened at the center of the bottom of the recess. On the bottom surface of the recess 21, a plurality of, in the drawing, three radial rods 24 are provided at regular intervals in the circumferential direction. The inner end of the radial trough 24 is located around the drain port 22, and the outer end is spaced apart from the inner peripheral surface of the recess 21 inward.
[0008]
The wafer W is held horizontally on the plurality of radial ridges 24. Therefore, a step-shaped support base 25 having a step 26 on which the peripheral edge of the wafer is placed is provided on the outer end portion of each ridge. The level difference of the level 26 corresponds to the thickness of the wafer (about 0.6 mm). Further, if necessary, a support portion 27 for supporting the lower surface in the radial direction of the wafer is provided on the intermediate portion of each flange 24.
[0009]
On the lower surface of the upper lid 10, there is provided a Mt. Fuji water passage recess 12 that is continuous with the lower end of the water supply port 11. The inner diameter of the water recess 12 is equal to the inner diameter of the circular recess 21 in the bottom plate. The concave portion 12 for passing water is referred to as “Mount Fuji” so that in the cross-sectional shape, the lower surface of the concave portion 12 is outward in the radial direction and gradually approaches the upper surface of the wafer W supported horizontally on the stepped support base 25. It is.
[0010]
For example, when the radius of the wafer is 75 mm, the distance of the water recess 12 from the top surface of the horizontally supported wafer is 15 mm at a position 5 mm radially outward from the center of the wafer, and 7 at a position 10 mm. .5mm, 5mm at 15mm, 3.75mm at 20mm, 2.5mm at 30mm, 1.875mm at 40mm, 1.25mm at 60mm, 1mm at 75mm on the outer circumference is there. This is because ultrapure water supplied from the water supply port 11 flows on the upper surface of the wafer W radially outward at a uniform flow rate and flow velocity, and between the inner peripheral surface of the recess and the outer end of the radial ridge. It reaches the peripheral edge portion 21 'at the bottom of the recess including the interval. This
(1) The amount of contact water can be controlled even during repeated tests, and evaluation with high reproducibility can be performed. And since the supplied water contacts a wafer efficiently, a large amount of water can be contacted with a wafer even for a short time, and the sensitivity is high.
(2) Since the flow velocity of water flowing on the surface of the substrate is uniform, the adhesion of impurities to the wafer becomes uniform, and the reliability of deposit evaluation by surface analysis is high.
{Circle around (3)} Also, when water comes into contact with the wafer, the elution of impurities from the wafer is extremely small, so that the amount of contamination of the wafer from the supplied water can be detected with high sensitivity.
There is an effect.
[0011]
The water that has reached the peripheral edge 21 ′ of the bottom of the depression flows through the gap between the bottom of the depression 21 and the lower surface of the wafer lifted by the radial ridge toward the central drain 22, and from the outlet. It flows out.
[0012]
The water supply port 11 on the top lid and the drain port 22 on the bottom panel are provided with screws to shut off the outside air and the inside of the container, and when the container is carried outside the clean room, the valve is closed to prevent contact with water. Open only when implementing. It is preferable to use a three-way valve (switching between raw water → inside of the container and raw water → discharge) 13 as a valve provided in the water supply port 11. Before the container is brought into contact with water, the valve 13 can be switched from “raw water → discharge” so that water can flow without entering the container. There is an effect that it can be washed. The valve 28 provided at the drain port 22 may be a two-way valve for opening and closing.
[0013]
As the material of the upper lid 10 and the bottom board 20, when trying to evaluate metal components and ions in the test water, the synthetic resin has a low content of impurities such as metals and ions, is relatively easy to process, and is durable. Or quartz is used. In addition, in order to remove impurities adhering to the surface of the container, cleaning with heated ultrapure water or cleaning using ultrasonic waves is performed before using the container. On the other hand, when trying to evaluate the organic impurities in the test water, a metal such as stainless steel or aluminum that does not elute organic substances or quartz is used for the wetted part of the upper lid or the bottom plate.
[0014]
Example 1
Six n-type silicon wafers having a diameter of 6 inches were prepared, and the surface of the wafer was cleaned by performing normal RCA cleaning using a quartz tank. Two of them were washed and dried, and the concentration of metal element concentration (Fe) on the surface was measured using a total reflection X-ray fluorescence analyzer. As a result, the Fe concentration on the surface of the wafer after cleaning was 2 × 10 9 atoms / cm 2 or less.
For two of these, a silicon wafer was mounted on a polypropylene holding container having the structure shown in the drawing, and ultrapure water was passed through the water at a flow rate of 1 standing / min for 1 hour, that is, 60 standing. Thereafter, the wafer was taken out from the container so as not to be contaminated and dried, and the concentration of the metal element (iron) on the surface was measured using a total reflection fluorescent X-ray analyzer, and the average value was obtained. As a result, 5 × 10 9 atoms / cm 2 of iron was detected on the surface of the wafer. That is, it can be evaluated that the water causes contamination of only 5 × 10 9 atoms / cm 2 on average from 60 standing water.
The remaining two of the cleaned wafers are transferred to another wafer carrier and another cleaned quartz tank, and ultrapure water is poured into the quartz tank at a flow rate of 10 liters / min for 1 hour, and a total of 600 liters of ultrapure water is poured into the quartz tank. Poured into. Thereafter, the wafer was dried so as not to contaminate, and the Fe concentration on the surface was measured by the same method as described above. As a result, 3 × 10 9 atoms / cm 2 of Fe was detected on the wafer surface on average. That is, this water can be evaluated as water that causes contamination at 600 × 3 × 10 9 atoms / cm 2 .
This result shows that the contamination from water can be evaluated with a smaller amount of water by using the holding container according to the present invention to bring water into contact with the wafer.
[0015]
Example 2
Six 6-inch diameter n-type silicon wafers were prepared, and the surface of the wafer was cleaned by performing normal RCA cleaning using a quartz tank. Two of them were washed and dried, and the concentration of metal element concentration (Fe) on the surface was measured using a total reflection X-ray fluorescence analyzer. As a result, the Fe concentration on the surface of the wafer after cleaning was 2 × 10 9 atoms / cm 2 or less.
About two of them, a silicon wafer is mounted on a polypropylene holding container having the structure shown in FIG. 1 and transferred to the vicinity of the ultrapure water production apparatus outside the clean room, and the water at the outlet of the ultrapure water apparatus is branched. Then, ultrapure water was passed through the holding container at a flow rate of 1 standing / min for 1 hour, that is, 60 standing. Thereafter, the container was transferred into a clean room, taken out from the container and dried, and the concentration of the metal element (iron) on the surface was measured using a total reflection X-ray fluorescence analyzer to obtain an average value. As a result, 5 × 10 9 atoms / cm 2 of iron was detected on the surface of the wafer. That is, it can be evaluated that the water causes contamination of only 5 × 10 9 atoms / cm 2 on average from 60 standing water.
The remaining two of the cleaned wafers are transferred to another wafer carrier and another cleaned quartz tank, and are transferred to the vicinity of the ultrapure water production apparatus outside the clean room together with the quartz tank. A total of 600 ultrapure water was poured into the quartz tank at a flow rate of 1 hour. Thereafter, the wafer was transferred into a clean room together with the container and dried, and the Fe concentration on the surface was measured by the same method as described above. As a result, an average of 6 × 10 9 atoms / cm 2 Fe was detected on the surface of the wafer. This is a contamination of the wafer due to contamination in the air outside the clean room, and this method cannot evaluate the quality of ultrapure water.
From this result, by using the semiconductor substrate holding container according to the present invention, even in normal air outside the clean room, the water to be evaluated is passed through it and contacted with the wafer to evaluate contamination from water. I understand that I can do it.
[0016]
【The invention's effect】
By using the holding container of the present invention, the quality of the pure water in the ultrapure water production apparatus outside the clean room can be evaluated using a method of analyzing by contacting with the wafer, and the quality of the ultrapure water It can be used to improve ultrapure water production technology, such as improvement of cost and cost reduction.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view of an embodiment of a holding container of the present invention, and FIG. 1B is a perspective view of the same base plate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Upper lid 11 of holding container Water supply opening 12 of upper lid Water-receiving recessed part 20 of upper lid Bottom plate 21 of holding container Circular hollow 22 of bottom plate Drain port 24 of bottom plate Radial ridge 25 of bottom plate Stair-shaped support part W of radial ridge Semiconductor substrate ( Wafer)

Claims (4)

半導体基板に被評価水を接触させた後、該半導体基板の表面の分析によって被評価水中の不純物を検出又は測定する被評価水の水質評価方法で使用され、内部に1枚の半導体基板を収容して水平に保持する保持手段を備え、且つ被評価水を半導体基板の表面の中央部に供給し、その外周に向かって表面を半径方向外向きに流すための被評価水の給水口と、上記基板の外周からその裏面を通って被評価水を排出する排水口とを有する半導体基板の保持容器であって、
中心に前記給水口が開設されている上蓋と、窪みの底の中心に前記排水口の上端が開口している円形の窪みを上面に有し前記円形の窪みを上蓋によって塞がれる底盤とを有し、
前記底盤は、前記窪みの底面上において、円周方向に等間隔に複数の放射状畝が設けられるとともに、前記各畝は、内端が前記排水口の回りに位置し、外端が前記窪みの内周面から内側に間隔を保って離れており、前記半導体基板の周縁部を載せて水平に保持する段を有する階段形の支持台が設けられていることを特徴とする半導体基板の保持容器。
Used in a water quality evaluation method for evaluating water to detect or measure impurities in water to be evaluated by analyzing the surface of the semiconductor substrate after contacting the water to be evaluated with the semiconductor substrate, and contains one semiconductor substrate inside And holding means for holding horizontally, and supplying water to be evaluated to the central portion of the surface of the semiconductor substrate, and a water supply port for water to be evaluated for flowing the surface radially outward toward the outer periphery thereof, A semiconductor substrate holding container having a drain outlet for discharging water to be evaluated from the outer periphery of the substrate through the back surface thereof ,
An upper lid in which the water supply port is opened in the center, and a bottom plate in which a circular depression having an upper end of the drainage opening at the center of the bottom of the depression is formed on the upper surface and the circular depression is closed by the upper lid Have
The bottom plate is provided with a plurality of radial ridges at equal intervals in the circumferential direction on the bottom surface of the dent, and each ridge has an inner end located around the drain outlet and an outer end of the dent. A holding substrate for a semiconductor substrate, characterized in that it is provided with a stepped support base having a step that is spaced apart from the inner peripheral surface to the inside and that holds the peripheral portion of the semiconductor substrate and holds it horizontally. .
請求項1に記載の半導体基板の保持容器において、半導体基板の表面と、この表面に対向する容器の内面との距離が、半導体基板の中心部から外周に向かって半径方向に移行するに従って短くなっていることを特徴とする半導体基板の保持容器。  2. The holding substrate for a semiconductor substrate according to claim 1, wherein the distance between the surface of the semiconductor substrate and the inner surface of the container facing the surface decreases as the distance from the central portion of the semiconductor substrate toward the outer periphery changes in the radial direction. A holding container for a semiconductor substrate. 請求項1、請求項2のどちらか1項に記載の半導体基板の保持容器において、上記容器の接液部の材質が、アクリル樹脂、ポリ塩化ビニル、ポリプロピレン、ポリエチレン、4弗化エチレン、パーフロロアルコキシ樹脂、ポリ2弗化ビニリデン樹脂、ポリエーテル、エーテルケトン、ポリフェニレンサルファイドなどの熱可塑性合成樹脂であることを特徴とする半導体基板の保持容器。  3. The semiconductor substrate holding container according to claim 1, wherein the material of the liquid contact part of the container is acrylic resin, polyvinyl chloride, polypropylene, polyethylene, tetrafluoroethylene, perfluorocarbon. A container for holding a semiconductor substrate, which is a thermoplastic synthetic resin such as an alkoxy resin, a poly (vinylidene fluoride) resin, a polyether, an ether ketone, or polyphenylene sulfide. 請求項1、請求項2のどちらか1項に記載の半導体基板の保持容器において、上記容器の接液部の材質が、ステンレス、アルミニウム、石英であることを特徴とする半導体基板の保持容器。  3. The semiconductor substrate holding container according to claim 1, wherein a material of a liquid contact portion of the container is stainless steel, aluminum, or quartz. 4.
JP2000015515A 2000-01-25 2000-01-25 Semiconductor substrate holding container Expired - Fee Related JP4449135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000015515A JP4449135B2 (en) 2000-01-25 2000-01-25 Semiconductor substrate holding container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000015515A JP4449135B2 (en) 2000-01-25 2000-01-25 Semiconductor substrate holding container

Publications (2)

Publication Number Publication Date
JP2001208748A JP2001208748A (en) 2001-08-03
JP4449135B2 true JP4449135B2 (en) 2010-04-14

Family

ID=18542803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015515A Expired - Fee Related JP4449135B2 (en) 2000-01-25 2000-01-25 Semiconductor substrate holding container

Country Status (1)

Country Link
JP (1) JP4449135B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543799B2 (en) * 2004-07-14 2010-09-15 栗田工業株式会社 Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method
JP5087839B2 (en) 2005-12-19 2012-12-05 栗田工業株式会社 Water quality evaluation method, ultrapure water evaluation apparatus and ultrapure water production system using the method
JP4923654B2 (en) * 2006-03-22 2012-04-25 栗田工業株式会社 Inspection method of ion exchange resin or ultrafiltration membrane
JP5044956B2 (en) * 2006-03-24 2012-10-10 栗田工業株式会社 Water quality evaluation method and water quality evaluation member used therefor
JP4893156B2 (en) 2006-08-21 2012-03-07 栗田工業株式会社 Water quality evaluation method and substrate contact tool used therefor
JP5066887B2 (en) * 2006-10-18 2012-11-07 栗田工業株式会社 Water quality evaluation method and apparatus
JP5428483B2 (en) * 2009-04-15 2014-02-26 栗田工業株式会社 Water quality evaluation method and apparatus
JP7054995B2 (en) * 2017-07-12 2022-04-15 オルガノ株式会社 Evaluation method of ultrapure water, evaluation method of membrane module for ultrapure water production, and evaluation method of ion exchange resin for ultrapure water production

Also Published As

Publication number Publication date
JP2001208748A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP3603278B2 (en) X-ray fluorescence analysis system and program used therefor
JP4449135B2 (en) Semiconductor substrate holding container
KR100832107B1 (en) Contamination analysis unit and method, and reticle cleaning facility and method using the unit
JP3584262B2 (en) Sample pretreatment system for X-ray fluorescence analysis and X-ray fluorescence analysis system having the same
TW419769B (en) Process for monitoring the concentration of metallic impurities in a wafer cleaning solution
WO2006006370A1 (en) Method of rating water quality, ultrapure water rating apparatus utilizing the method and system for ultrapure water production
JP4487364B2 (en) Semiconductor substrate holding container and water quality evaluation method
US6210640B1 (en) Collector for an automated on-line bath analysis system
JPH03240254A (en) Semiconductor wafer specimen vessel and forming method of specimen
US20130133407A1 (en) Methods For Analysis Of Water And Substrates Rinsed In Water
JP4507336B2 (en) Water quality evaluation method and water quality evaluation semiconductor substrate holding container
JP2023037588A (en) Bubble measurement unit, substrate processing apparatus including the same, and bubble measurement method
JP2004251797A (en) Automatic analyzer
CN102301240B (en) Autoanalyzer
JP4505918B2 (en) Water quality evaluation board holding container
JPH11233478A (en) Cleaning treatment
JP2005274400A (en) Ultrapure water evaluating apparatus and ultrapure water manufacturing system
JPH0845888A (en) Pure water cleaning apparatus
JPH11233477A (en) Cleaning processor
CN113539937B (en) Wafer bearing device
US6037182A (en) Method for detecting a location of contaminant entry in a processing fluid production and distribution system
JPH09145616A (en) Method and device for air impurity monitor
JPH04134843A (en) Inspection method of wafer carrier
JP2008102054A (en) Semiconductor substrate holding container
JP2002057093A (en) Method for evaluating development, method for forming resist pattern and system for forming resist pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Ref document number: 4449135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees