JP6205775B2 - Water quality measurement method - Google Patents

Water quality measurement method Download PDF

Info

Publication number
JP6205775B2
JP6205775B2 JP2013060055A JP2013060055A JP6205775B2 JP 6205775 B2 JP6205775 B2 JP 6205775B2 JP 2013060055 A JP2013060055 A JP 2013060055A JP 2013060055 A JP2013060055 A JP 2013060055A JP 6205775 B2 JP6205775 B2 JP 6205775B2
Authority
JP
Japan
Prior art keywords
water
line
water quality
blow
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013060055A
Other languages
Japanese (ja)
Other versions
JP2014185904A (en
Inventor
裕人 床嶋
裕人 床嶋
耕太郎 菊地
耕太郎 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013060055A priority Critical patent/JP6205775B2/en
Publication of JP2014185904A publication Critical patent/JP2014185904A/en
Application granted granted Critical
Publication of JP6205775B2 publication Critical patent/JP6205775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、純水、超純水などの試料水の水質を測定する方法に係り、特に複数の主ラインからそれぞれ採水した水の水質を共通の水質測定装置で測定する方法に関する。本発明は特に純水又は超純水中の微粒子数を測定する場合に好適な方法に関する。   The present invention relates to a method for measuring the quality of sample water such as pure water and ultrapure water, and more particularly to a method for measuring the quality of water sampled from a plurality of main lines with a common water quality measuring device. The present invention relates to a method particularly suitable for measuring the number of fine particles in pure water or ultrapure water.

電子部品となるシリコンウェハ基板の洗浄には、RCA洗浄に類する洗浄が行われ、高濃度の薬液や洗剤と、それを濯ぐ純水・超純水が用いられている。   For cleaning the silicon wafer substrate as an electronic component, cleaning similar to RCA cleaning is performed, and high-concentration chemicals and detergents and pure water and ultrapure water for rinsing them are used.

近年、半導体デバイスの微細化がすすみ、超純水中の微粒子数の管理値も微細化が進んでいる。本来であれば、洗浄機へ供給する配管の1つ1つを微粒子計で管理することが理想であるが、微細な粒子をオンラインでモニタリングする微粒子計は高価であるため、計器の台数を増やすことは、コスト増大の要因となり好ましくない。そのため大元の集中配管の監視のみに微粒子計を用いているのが一般的である。そのため、低コストでなるべく多くの配管について、微粒子数をオンラインモニタリングすることが求められている。   In recent years, miniaturization of semiconductor devices has progressed, and the management value of the number of fine particles in ultrapure water has also been miniaturized. Originally, it would be ideal to manage each of the pipes supplied to the washing machine with a particle meter, but since the particle meter that monitors fine particles online is expensive, increase the number of instruments. This is not preferable because it causes an increase in cost. For this reason, it is common to use a particle meter only for monitoring the central pipe. Therefore, it is required to monitor the number of fine particles online for as many pipes as possible at low cost.

複数のラインを流れる水を分取用のバルブを介して共通の測定装置に導入して水質を測定することは従来より行われている。例えば、特許文献1では、超純水ラインからの超純水と、この超純水を逆浸透膜分離装置で濃縮した濃縮水とを、バルブで切り替えて共通の測定装置に導入して分析することが行われている。分析項目としては、金属イオン濃度、抵抗率、微粒子数、TOC濃度、シリカ濃度、溶存酸素濃度が例示されている(0049段落)。   It has been conventionally performed to measure water quality by introducing water flowing through a plurality of lines into a common measuring device through a preparative valve. For example, in Patent Document 1, ultrapure water from an ultrapure water line and concentrated water obtained by concentrating this ultrapure water using a reverse osmosis membrane separator are switched by a valve and introduced into a common measuring device for analysis. Things have been done. Examples of analysis items include metal ion concentration, resistivity, fine particle count, TOC concentration, silica concentration, and dissolved oxygen concentration (paragraph 0049).

特許文献2には、並列に2系列設置されたガス溶解モジュールからのガス溶解水の溶存ガス濃度を共通の溶存ガス濃度計で測定することが記載されている。各ガス溶解モジュールからのガス溶解水は、弁によって切り替えられて溶存ガス濃度計に導入される。   Patent Document 2 describes that a dissolved gas concentration of gas dissolved water from gas dissolving modules installed in two series in parallel is measured with a common dissolved gas concentration meter. Gas dissolved water from each gas dissolution module is switched by a valve and introduced into a dissolved gas concentration meter.

特許文献3には、超純水中のアミン濃度を分析する水質評価方法として、並列に3系列設けられたシリコン粒子充填カラムからの流出水を、弁によって切り替えて共通の水素濃度計に導入し、溶存水素濃度を測定することが記載されている。   In Patent Document 3, as a water quality evaluation method for analyzing the amine concentration in ultrapure water, the effluent water from the silicon particle packed columns provided in parallel in three series is switched by a valve and introduced into a common hydrogen concentration meter. It describes the measurement of dissolved hydrogen concentration.

特開2010−44022JP2010-44022 特開2009−95778JP 2009-95778 A 特開2011−214879JP2011-214879A

複数のライン内の水を、弁によって切り替えて共通の水質測定装置に導入し、水質測定を行う場合、採水流路に滞留していた水の一部が試料水に混入すると、測定精度が低下する。   When water in multiple lines is switched by a valve and introduced into a common water quality measurement device for water quality measurement, if part of the water remaining in the water sampling channel is mixed into the sample water, the measurement accuracy decreases. To do.

本発明は、複数の主ラインを流れる水の水質を共通の測定装置によって測定する場合の測定精度を高くすることを目的とする。   An object of this invention is to raise the measurement precision in the case of measuring the quality of the water which flows through several main lines with a common measuring apparatus.

本発明の水質測定方法は、複数の主ラインからそれぞれ水を採取して共通の水質測定器に導入して水質を測定する水質測定方法において、該主ラインから水を採取ラインに採取し、次いで導入ラインとブローラインとに分流させ、該導入ラインからの水を切替弁を介して前記水質測定器に導入することを特徴とする。   The water quality measurement method of the present invention is a water quality measurement method in which water is collected from each of a plurality of main lines and introduced into a common water quality measuring instrument to measure the water quality. It is divided into an introduction line and a blow line, and water from the introduction line is introduced into the water quality measuring device via a switching valve.

本発明では、前記ブローラインの流量Fを前記採取ラインの流量Fの10〜60%とすることが好ましい。 In the present invention, it is preferable to set the flow rate F 3 of the blow line 10 to 60% of the flow rate F 1 of the collection line.

本発明では、水質測定時期となっていない主ラインから常時、水を採取ライン及びブローラインに流してブローすることが好ましい。   In the present invention, it is preferable that water is always blown from the main line that has not reached the water quality measurement timing, flowing through the sampling line and the blow line.

水質測定時期となっていない主ラインからのブロー水流量Fと、水質測定している主ラインからの採水流量Fとの比F/Fを0.2〜2とすることが好ましい。 The ratio F 4 / F 1 of the blow water flow rate F 4 from the main line that is not at the time of water quality measurement and the water sampling flow rate F 1 from the main line that is measuring the water quality may be 0.2-2. preferable.

本発明では、前記切替弁の切り替え後、所定時間の間は、前記水質測定器のデータを棄却することが好ましい。   In the present invention, it is preferable to discard the data of the water quality measuring device for a predetermined time after the switching of the switching valve.

本発明の水質測定方法では、複数の主ラインから採取した水を共通の水質測定器に導入して水質測定するので、水質測定器が1台で足り、機器コストが低くなる。   In the water quality measurement method of the present invention, water sampled from a plurality of main lines is introduced into a common water quality measurement device, and the water quality is measured. Therefore, one water quality measurement device is sufficient, and the equipment cost is reduced.

本発明では、主ラインから採取した水をブローラインと導入ラインとに分流させ、導入ラインの水を切替弁を介して水質測定器に導入する。また、このブローラインから水を常時ブローする。このため、ブローラインに水が滞留せず、水質測定値の精度が高くなる。なお、ブロー水流量Fを主ラインからの採水流量Fの10%以上特に20%以上とすることにより、測定精度が十分に高くなる。また、FをFの60%以下特に50%以下とすることにより、無駄となるブロー水量を少なくすることができる。 In the present invention, the water collected from the main line is divided into the blow line and the introduction line, and the water in the introduction line is introduced into the water quality measuring device via the switching valve. Moreover, water is always blown from this blow line. For this reason, water does not stay in the blow line, and the accuracy of the water quality measurement value increases. Note that the measurement accuracy is sufficiently high by setting the blow water flow rate F 3 to 10% or more, particularly 20% or more, of the sampling flow rate F 1 from the main line. Also, the F 3 by the following in particular 50% to 60% of the F 1, it is possible to reduce the blow quantity of water wasted.

本発明では、水質測定時期になっていない主ラインからも、常時採水して採水ライン及びブローラインに水を流すことが好ましい。これにより、水質測定対象となる主ラインを切り替えたときに採水ラインの水量、水圧が急激に変動することが防止され、振動などによる発塵が防止される。この非測定時のブロー水流量Fを前記測定時の採水流量Fの0.2倍以上特に0.8倍とすることにより、上記効果が顕著となる。また、このFをFの2倍以下、特に1.2倍以下とすることにより、無駄となるブロー水量を少なくすることができる。 In the present invention, it is preferable to always collect water from the main line that has not reached the water quality measurement time and to flow water through the water collection line and the blow line. Thereby, when the main line used as a water quality measurement object is switched, the amount of water and water pressure of a water sampling line are prevented from changing rapidly, and dust generation by vibration etc. is prevented. With particular 0.8 times 0.2 times or more of the non-measurement adopted water flow rate at the time of the measurement of blow water flow rate F 4 at F 1, the effect is remarkable. Also, the F 4 2 times the F 1 or less, particularly by 1.2 times or less, it is possible to reduce the blow quantity of water wasted.

本発明では、測定対象主ラインを切り替えるように切替弁を動作させた場合、その後所定期間は水質測定データを棄却することが好ましい。これは、切替弁の弁体の摺動に伴って発塵が生じるおそれがあるためである。   In the present invention, when the switching valve is operated so as to switch the measurement target main line, it is preferable to reject the water quality measurement data for a predetermined period thereafter. This is because there is a possibility that dust generation may occur as the valve body of the switching valve slides.

実施の形態に係る水質測定方法を示すライン構成図である。It is a line lineblock diagram showing the water quality measuring method concerning an embodiment. 実施の形態における水の流れの説明図である。It is explanatory drawing of the flow of the water in embodiment.

以下、図1,2を参照して実施の形態について説明する。この実施の形態では、主ラインとしての主配管1,2を流れる水(この実施の形態では超純水)A,Bの微粒子数を共通の1台の微粒子計16によって測定する。なお、この実施の形態において、微粒子計16としてはレーザー光散乱式のものが用いられている。この微粒子計の計測対象微粒子径は約50〜200nmである。ただし、微粒子計はこれに限定されず、光遮断方式やオフライン分析なども用いることができる。   Hereinafter, embodiments will be described with reference to FIGS. In this embodiment, the number of fine particles of water (ultra pure water in this embodiment) A and B flowing through the main pipes 1 and 2 as the main line is measured by one common fine particle meter 16. In this embodiment, a laser light scattering type is used as the particle counter 16. The particle size to be measured by this particle meter is about 50 to 200 nm. However, the particle counter is not limited to this, and a light blocking method, off-line analysis, or the like can also be used.

主配管1を流れる水Aは、採水ライン3によって分取され、ブローライン4、流量計5、弁6を介して系外に排出可能とされている。主配管2を流れる水Bは、採水ライン10によって分取され、ブローライン11、流量計12、弁13を介して系外に排出可能とされている。   The water A flowing through the main pipe 1 is separated by the water sampling line 3 and can be discharged out of the system through the blow line 4, the flow meter 5, and the valve 6. The water B flowing through the main pipe 2 is separated by the water collection line 10 and can be discharged out of the system through the blow line 11, the flow meter 12, and the valve 13.

採水ライン3は、前記ブローライン4と導入ライン7とに分岐している。導入ライン7は三方弁8の第1導入口に接続されている。採水ライン10は、前記ライン11と導入ライン14とに分岐している。導入ライン14は三方弁8の第2導入口に接続されている。   The water sampling line 3 branches into the blow line 4 and the introduction line 7. The introduction line 7 is connected to the first introduction port of the three-way valve 8. The water sampling line 10 branches into the line 11 and the introduction line 14. The introduction line 14 is connected to the second introduction port of the three-way valve 8.

三方弁8の流出口からの水は、ライン15によって微粒子計16に導入され、次いで流量計17によって流量が測定された後、弁18を介して系外に排出される。   Water from the outlet of the three-way valve 8 is introduced into the fine particle meter 16 through the line 15, and then the flow rate is measured by the flow meter 17, and then discharged out of the system through the valve 18.

主配管1を流れる水Aの微粒子数を測定するときには、図2(a)のように、三方弁8はライン7,15を連通し、採水ライン3からの水をライン7,15を介して微粒子計16及び流量計17に通水し、微粒子数及び流量を測定する。この際、採水ライン3からの水の多くをライン7に送水するが、一部についてはブローライン4に流して系外に排出する。また、主配管2からもライン10,11に常時水を流して系外に排出する。   When measuring the number of fine particles of water A flowing through the main pipe 1, as shown in FIG. 2A, the three-way valve 8 communicates with the lines 7 and 15, and the water from the water sampling line 3 passes through the lines 7 and 15. Then, water is passed through the fine particle meter 16 and the flow meter 17 to measure the number of fine particles and the flow rate. At this time, most of the water from the water sampling line 3 is sent to the line 7, but a part of the water flows to the blow line 4 and is discharged out of the system. Further, water is always supplied from the main pipe 2 to the lines 10 and 11 and discharged out of the system.

水Aの水質測定を行う場合、ライン3による採水流量をFとし、ライン7から流量計15への試料水流量をFとし、ライン4からのブロー流量をFとした場合、FをFの10〜60%特に20〜50%程度とすることが好ましい。 When performing quality measurements of water A, if the water flow rate adopted by the line 3 and F 1, a sample water flow from the line 7 to the flow meter 15 and F 2, the blow flow from line 4 was F 3, F it is preferred to 3 with 10% to 60%, especially 20 to 50% of the F 1.

このように採水ライン3からの水の一部をライン4へブローすることにより、ライン4に水が滞留しないので、この滞留水がライン7への試料水に混入(拡散)してしまうことが防止される。このようにライン4からの滞留水の混入を防ぐことにより、高精度にて水質測定(微粒子濃度計測)を行うことができる。   By blowing a part of the water from the water collection line 3 to the line 4 in this way, the water does not stay in the line 4, so that the staying water is mixed (diffused) into the sample water to the line 7. Is prevented. In this way, water quality measurement (fine particle concentration measurement) can be performed with high accuracy by preventing mixing of stagnant water from the line 4.

また、前述のように、主配管1から水Aを採水して測定している間、測定時期となっていない主配管2から水Bをライン10,11に常時流してブローする。このときのライン10,11によるブロー水流量Fを、Fと略々同程度とすること、具体的にはF/Fを0.2〜2特に0.8〜1.2とすることが好ましい。これは、図2(a)の状態から三方弁8を図2(b)のように切り替えて主配管2から水Bを微粒子計16に導入するようにしたときに、採水ライン10内の流量、水圧が急激に変動することを防止し、振動などによる微粒子発塵を防止するためである。 Further, as described above, while the water A is sampled from the main pipe 1 and measured, the water B is always supplied to the lines 10 and 11 from the main pipe 2 that is not in the measurement timing and blown. At this time, the blow water flow rate F 4 through the lines 10 and 11 is set to be substantially the same as F 1 , specifically, F 4 / F 1 is set to 0.2 to 2, particularly 0.8 to 1.2. It is preferable to do. This is because when the three-way valve 8 is switched from the state of FIG. 2A as shown in FIG. 2B to introduce water B from the main pipe 2 into the particle meter 16, This is to prevent the flow rate and water pressure from fluctuating rapidly and to prevent particulate generation due to vibration.

図2(a)では、主配管1から水Aを微粒子計16に導入して水質測定しているが、図2(b)のように、主配管2から水Bを微粒子計16に導入して水質測定するときも上記と同様の条件にて行うことが好ましい。図2(b)では、水Bはライン10,14,15を介して微粒子計16に導入される。水Aはライン3,4を介してブローされる。流量F〜Fは図2の場合と同様である。 In FIG. 2 (a), water A is introduced from the main pipe 1 into the particle counter 16 and the water quality is measured. However, as shown in FIG. 2 (b), water B is introduced into the particle analyzer 16 from the main pipe 2. The water quality is preferably measured under the same conditions as described above. In FIG. 2 (b), water B is introduced into the particle counter 16 via lines 10, 14, 15. Water A is blown through lines 3 and 4. The flow rates F 1 to F 4 are the same as in the case of FIG.

主配管1からの採水を主配管2からの採水に切り替えたとき、及び主配管2からの採水を主配管1からの採水に切り替えたときには、切り替えから所定時間(例えば10〜20分、特に約15分程度)の間における微粒子測定データは棄却するのが好ましい。これは、切り替え直後は、三方弁8の切り替え時に弁体の摺動に伴って発塵が生じるおそれがあるからである。   When water sampling from the main pipe 1 is switched to water sampling from the main pipe 2, and when water sampling from the main pipe 2 is switched to water sampling from the main pipe 1, a predetermined time (for example, 10 to 20) from the switching. Minute, particularly about 15 minutes), it is preferable to reject the particulate measurement data. This is because immediately after switching, there is a possibility that dust generation may occur as the valve body slides when the three-way valve 8 is switched.

本発明は、純水又は超純水中の微粒子数を測定する場合に好適であるが、他の水質項目(例えば金属イオン濃度、抵抗率、TOC濃度、シリカ濃度、溶存酸素濃度)の測定にも適用できる。純水又は超純水中の微粒子数を測定する場合、微粒子計への通水量は0.5〜2L/min程度が好適である。   The present invention is suitable for measuring the number of fine particles in pure water or ultrapure water, but for measuring other water quality items (for example, metal ion concentration, resistivity, TOC concentration, silica concentration, dissolved oxygen concentration). Is also applicable. When measuring the number of fine particles in pure water or ultrapure water, the amount of water passing through the fine particle meter is preferably about 0.5 to 2 L / min.

本発明では、配管及び各機器の少なくとも接水面をフッ素樹脂製とすることが好ましい。   In the present invention, it is preferable that at least the water contact surfaces of the pipe and each device are made of a fluororesin.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

[実施例1]
図1において、配管及び弁として、内面がすべてフッ素樹脂コーティングされたものを用いた。主配管1,2にそれぞれ微粒子数0.5個/mLの超純水を20L/minで流通させた。
[Example 1]
In FIG. 1, pipes and valves whose inner surfaces were all coated with fluororesin were used. Ultrapure water having a fine particle count of 0.5 particles / mL was circulated through the main pipes 1 and 2 at 20 L / min.

まず、図2(a)のように主配管1から採水して微粒子計(栗田工業株式会社製K−LAMIC)16によって微粒子数を45min間にわたって測定した。このときF〜Fは次の通りとした。FはFの50%である。
=1.0L/min
=0.5L/min
=0.5L/min
=1.0L/min
First, water was collected from the main pipe 1 as shown in FIG. 2 (a), and the number of fine particles was measured for 45 minutes with a fine particle meter (K-LAMIC, manufactured by Kurita Kogyo Co., Ltd.) 16. At this time, F 1 to F 4 were as follows. F 3 is 50% of F 1 .
F 1 = 1.0 L / min
F 2 = 0.5 L / min
F 3 = 0.5 L / min
F 4 = 1.0 L / min

その後、図2(b)のように主配管2から超純水Bを上記と同一条件にて微粒子計16に通水し、微粒子数を45分間にわたって測定した。以下、これを繰り返した。微粒子計16の微粒子数測定結果を表1に示す。   Thereafter, as shown in FIG. 2 (b), ultrapure water B was passed from the main pipe 2 to the particle counter 16 under the same conditions as described above, and the number of particles was measured over 45 minutes. This was repeated below. Table 1 shows the measurement result of the number of particles of the particle counter 16.

[実施例2]
実施例1において、ライン4からのブロー水量FをFの10%と少なくし、F〜F
=0.55L/min
=0.5L/min
=0.05L/min
=0.55L/min
としたこと以外は同様にして微粒子数の測定を行った。結果を表1に示す。
[Example 2]
In Example 1, the blow amount of water F 3 from the line 4 to reduce 10% of the F 1, the F 1 ~F 4 F 1 = 0.55L / min
F 2 = 0.5 L / min
F 3 = 0.05 L / min
F 4 = 0.55 L / min
The number of fine particles was measured in the same manner except that. The results are shown in Table 1.

[比較例1]
実施例1において、ライン4からのブローを行わず、F〜F
=0.5L/min
=0.5L/min
=0L/min
=0.5L/min
としたこと以外は同様にして微粒子数の測定を行った。結果を表1に示す。
[Comparative Example 1]
In Example 1, the blow from the line 4 is not performed, and F 1 to F 4 are set to F 1 = 0.5 L / min.
F 2 = 0.5 L / min
F 3 = 0 L / min
F 4 = 0.5 L / min
The number of fine particles was measured in the same manner except that. The results are shown in Table 1.

Figure 0006205775
Figure 0006205775

表1の通り、実施例1によると、切り替え後15分間は微粒子数が安定しないが、15分経過後は高精度にて微粒子数を測定できることが認められた。   As shown in Table 1, according to Example 1, the number of fine particles was not stable for 15 minutes after switching, but it was confirmed that the number of fine particles could be measured with high accuracy after 15 minutes.

実施例2では微粒子数が安定するまでの時間が実施例1に比べて長い。比較例1では安定するまでさらに時間がかかり、微粒子数を精度よく測定することはできなかった。   In Example 2, the time until the number of fine particles is stabilized is longer than that in Example 1. In Comparative Example 1, it took more time to stabilize, and the number of fine particles could not be accurately measured.

1,2 主配管(主ライン)
3,10 採水ライン
4,11 ブローライン
7,14 導入ライン
8 三方弁
16 微粒子計
1, 2 Main piping (main line)
3,10 Sampling line 4,11 Blow line 7,14 Introduction line 8 Three-way valve 16 Particle counter

Claims (5)

複数の主ラインからそれぞれ水を採取して共通の水質測定器に導入して水質を測定する水質測定方法において、
該主ラインから水を採取ラインに採取し、次いで導入ラインとブローラインとに分流させ、該導入ラインからの水を多方弁を介して前記水質測定器に導入し、
水質測定時期となっていない主ラインから、水を採取ライン及びブローラインに流してブローすることを特徴とするとともに、
各導入ラインがそれぞれ前記多方弁の導入口に接続され、該多方弁の流出口からの流出水が前記水質測定器に導入され、
各ブローラインに弁が設けられていることを特徴とする水質測定方法。
In a water quality measurement method that collects water from multiple main lines and introduces it into a common water quality measuring instrument to measure the water quality,
Water is collected from the main line to the collection line, then divided into the introduction line and the blow line, and water from the introduction line is introduced into the water quality measuring device via a multi-way valve,
It is characterized by flowing water from the main line that is not timed for water quality measurement to the sampling line and the blow line and blowing it,
Each introduction line is connected to the inlet of the multi-way valve, and effluent water from the outlet of the multi-way valve is introduced into the water quality measuring device,
A water quality measuring method, wherein each blow line is provided with a valve.
請求項1において、前記ブローラインの流量Fを前記採取ラインの流量Fの10〜60%とすることを特徴とする水質測定方法。 In claim 1, water quality measuring method characterized by the flow rate F 3 of the blow line 10 to 60% of the flow rate F 1 of the collection line. 請求項1又は2において、水質測定時期となっていない主ラインから常時、水を採取ライン及びブローラインに流してブローすることを特徴とする水質測定方法。   3. The water quality measuring method according to claim 1 or 2, wherein water is constantly flowed from a main line that is not in a water quality measurement period to a sampling line and a blow line and blown. 請求項3において、水質測定時期となっていない主ラインからのブロー水流量Fと、水質測定している主ラインからの採水流量Fとの比F/Fを0.2〜2とすることを特徴とする水質測定方法。 0.2 according to claim 3, blow water flow rate F 4 from the main line which is not a time water quality measurements, the ratio F 4 / F 1 of the adopted water flow rate F 1 from the main line that the water quality measurement 2. A method for measuring water quality, wherein 請求項1ないし4のいずれか1項において、前記多方弁の切り替え後、所定時間の間は、前記水質測定器のデータを棄却することを特徴とする水質測定方法。 In any one of claims 1 to 4, after switching of the multiway valve, for a predetermined time, the water quality measuring method characterized by rejecting data of the water quality measuring device.
JP2013060055A 2013-03-22 2013-03-22 Water quality measurement method Active JP6205775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013060055A JP6205775B2 (en) 2013-03-22 2013-03-22 Water quality measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013060055A JP6205775B2 (en) 2013-03-22 2013-03-22 Water quality measurement method

Publications (2)

Publication Number Publication Date
JP2014185904A JP2014185904A (en) 2014-10-02
JP6205775B2 true JP6205775B2 (en) 2017-10-04

Family

ID=51833620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060055A Active JP6205775B2 (en) 2013-03-22 2013-03-22 Water quality measurement method

Country Status (1)

Country Link
JP (1) JP6205775B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020960B2 (en) * 2018-02-22 2022-02-16 オルガノ株式会社 Hydrogen peroxide concentration measurement system and measurement method
JP7526656B2 (en) * 2020-12-15 2024-08-01 野村マイクロ・サイエンス株式会社 Water quality measurement system and water quality measurement method
JP7163991B1 (en) * 2021-06-18 2022-11-01 栗田工業株式会社 Water quality measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124692A (en) * 1999-10-26 2001-05-11 Kurita Water Ind Ltd Particulate measuring device
US6679988B2 (en) * 2002-01-09 2004-01-20 Mechanical Equipment Company, Inc. Apparatus for producing USP or WFI purified water
JP4905813B2 (en) * 2009-06-12 2012-03-28 株式会社東京科研 Physicochemical monitoring unit

Also Published As

Publication number Publication date
JP2014185904A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6205775B2 (en) Water quality measurement method
TWI625759B (en) Analysis system and analysis method for online-transferred analysis sample
WO2006006370A1 (en) Method of rating water quality, ultrapure water rating apparatus utilizing the method and system for ultrapure water production
KR101239394B1 (en) Method of estimating water quality, estimation apparatus and preparation system of ultra-pure water using the same
JP2024014871A (en) Ultrapure water production system and water quality control method therefor
TW202031597A (en) Water quality management method, ion adsorption device, information processing device, and information processing system
CN203379753U (en) System for filtering
JPH05118453A (en) Countercurrent valve
US20210370235A1 (en) Method for preparing water quality profile, method for inspecting separation membrane module, and water treatment apparatus
JP2001153854A (en) Monitoring method and system for impurity concentration
CN105699613A (en) Water quality monitoring system
JP2010044022A (en) Method and apparatus for continuously monitoring test water
JP2015108526A (en) Water quality inspection device
KR20220155173A (en) Contaminant analysis apparatus and water quality monitoring system
JP2001124692A (en) Particulate measuring device
JP7526656B2 (en) Water quality measurement system and water quality measurement method
JP7544210B1 (en) Hydrogen peroxide concentration measuring system and hydrogen peroxide concentration measuring method
JP7163991B1 (en) Water quality measuring device
US20230066472A1 (en) System and method for testing a filter
US20240101448A1 (en) Impurity acquisition system, water quality testing system, and liquid production and supply system
TWM630615U (en) Liquid particle counter and system thereof
US20240353295A1 (en) Quality management system, object management system, and object management method
JP2001083127A (en) Pure water analyzer, pure water manufacturing and managing system, and pure water analysis method
Park et al. Pilot-Scale Application of on-Line Monitoring System for Ultrapure Water
JP6152654B2 (en) Method for measuring the number of fine particles in water and hot pure water supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6205775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250