JP2007169726A - Low iron loss grain oriented silicon steel sheet and method for manufacturing the same - Google Patents

Low iron loss grain oriented silicon steel sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2007169726A
JP2007169726A JP2005369822A JP2005369822A JP2007169726A JP 2007169726 A JP2007169726 A JP 2007169726A JP 2005369822 A JP2005369822 A JP 2005369822A JP 2005369822 A JP2005369822 A JP 2005369822A JP 2007169726 A JP2007169726 A JP 2007169726A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
holes
electrical steel
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005369822A
Other languages
Japanese (ja)
Other versions
JP4807064B2 (en
Inventor
Hiroshi Yamaguchi
山口  広
Minoru Takashima
高島  稔
Tatsuhiko Hiratani
多津彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005369822A priority Critical patent/JP4807064B2/en
Publication of JP2007169726A publication Critical patent/JP2007169726A/en
Application granted granted Critical
Publication of JP4807064B2 publication Critical patent/JP4807064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To propose a low iron loss grain oriented silicon steel sheet having stress relieving annealing resistance characteristics free from iron loss deterioration due to stress relieving annealing and an inexpensive method for manufacturing the same. <P>SOLUTION: The method for manufacturing the low iron loss grain oriented silicon steel sheet having the excellent stress relieving annealing resistance characteristics is characterized in that through-holes of 0.2 to 50 pieces per 1 cm<SP>2</SP>, are formed in the steel sheet randomly, preferably in a honeycomb or grid form in either process of forming an insulation film after final cold rolling through secondary recrystallization annealing in a manufacturing direction of the grain oriented silicon steel sheet containing 1.5 to 7.0 mass% Si. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、変圧器や発電器の鉄心等に用いられる方向性電磁鋼板に関し、特に歪取焼鈍による鉄損劣化のない低鉄損方向性電磁鋼板とその製造方法に関するものである。   The present invention relates to a grain-oriented electrical steel sheet used for an iron core or the like of a transformer or a generator, and more particularly to a low iron loss grain-oriented electrical steel sheet without iron loss deterioration due to strain relief annealing and a method for manufacturing the same.

Siを1.5〜7.0mass%含有し、結晶方位が(110)〔001〕方位(ゴス方位)に配向した結晶粒(ゴス粒)からなる方向性電磁鋼板は、優れた軟磁気特性を示すことから、商用周波数帯域で使用される各種鉄芯材料として広く用いられている。   A grain-oriented electrical steel sheet composed of crystal grains (goth grains) containing 1.5 to 7.0 mass% of Si and oriented in the (110) [001] orientation (goth orientation) has excellent soft magnetic properties. Since it shows, it is widely used as various iron core materials used in a commercial frequency band.

上記電磁鋼板に要求される特性としては、800A/mの磁化力における磁束密度B(T)が高いこと、および、周波数50Hz、最大磁束密度1.7Tで磁化させた時の鉄損W17/50(W/kg)が低いことが挙げられる。 As the characteristics required for the electromagnetic steel sheet, the magnetic flux density B 8 (T) at a magnetizing force of 800 A / m is high, and the iron loss W 17 when magnetized at a frequency of 50 Hz and a maximum magnetic flux density of 1.7 T. / 50 (W / kg) is low.

一般に、方向性電磁鋼板の磁束密度は、上記ゴス方位への集積度に依存し、集積度が高い程、磁束密度が高いことが知られている。また、磁束密度が高い方向性電磁鋼板は、ヒステリシス損失も低い場合が多く、鉄損特性にも優れているのが普通である。しかし、(110)〔001〕方位への集積度を高めると、ゴス粒が粗大化し、それに伴って磁区幅も大きくなるため、鉄損を構成するもう一つの渦電流損失が増大する。その結果、ヒステリシス損失の低減が相殺されて、それ以上の鉄損の向上は望めなくなる。   Generally, it is known that the magnetic flux density of the grain-oriented electrical steel sheet depends on the degree of integration in the Goss direction, and the higher the degree of integration, the higher the magnetic flux density. Further, grain oriented electrical steel sheets having a high magnetic flux density often have low hysteresis loss and are generally excellent in iron loss characteristics. However, when the degree of accumulation in the (110) [001] direction is increased, goss grains become coarse, and the magnetic domain width increases accordingly, so that another eddy current loss constituting the iron loss increases. As a result, the reduction in hysteresis loss is offset and no further improvement in iron loss can be expected.

そこで、高磁束密度の方向性電磁鋼板の鉄損をさらに向上するために、磁区を細分化する各種技術が開発されている。例えば、特許文献1には、仕上焼鈍済みの鋼板表面に冷間圧延方向と直角方向に線状の微小歪を導入する方法が、特許文献2には、仕上焼鈍済みの鋼板表面にレーザーを照射して線状歪を導入する方法が、また、特許文献3には、プラズマ炎を線状に照射する方法が開示されている。しかし、これらの方法で導入した歪は、熱的安定性に乏しく、約800℃の温度で行われる歪取焼鈍によってその効果は消失してしまうという問題がある。   Accordingly, various techniques for subdividing the magnetic domains have been developed in order to further improve the iron loss of the directional electrical steel sheet having a high magnetic flux density. For example, Patent Document 1 discloses a method of introducing a linear micro strain in a direction perpendicular to the cold rolling direction on a surface of a finish-annealed steel sheet, and Patent Document 2 irradiates a laser on the surface of a steel sheet that has been subjected to finish annealing. Thus, a method of introducing linear distortion is disclosed, and Patent Document 3 discloses a method of linearly irradiating a plasma flame. However, the strain introduced by these methods has poor thermal stability, and there is a problem that the effect disappears by strain relief annealing performed at a temperature of about 800 ° C.

そこで、歪取焼鈍でも効果が消失しない磁区細分化方法として、物理的に溝を形成する各種技術が提案されている。例えば、特許文献4には、仕上焼鈍済みの鋼板表面に突起付きの歯車型ロールを用いて荷重を加えて溝を形成する方法が開示されている。また、特許文献5には、表面に難溶解のレジストをパターン塗布し、地鉄を部分的に酸でエッチングするか、または、電解によりエッチングして溝を形成する方法が開示されている。さらに、特許文献6には、レーザーにより絶縁被膜を破壊してからエッチングにより溝を形成する方法が開示されている。
特公昭58−5968号公報 特公昭57−2252号公報 特公平07−72300号公報 特開昭62−53579号公報 特公平08−6140号公報 特開昭61−253380号公報
Therefore, various techniques for physically forming grooves have been proposed as magnetic domain refinement methods that do not lose their effects even with strain relief annealing. For example, Patent Document 4 discloses a method for forming a groove by applying a load to a surface of a finish-annealed steel plate using a gear-type roll with a protrusion. Further, Patent Document 5 discloses a method of forming a groove by pattern-applying a hardly soluble resist on the surface and etching the base iron partly with an acid, or etching by electrolysis. Further, Patent Document 6 discloses a method of forming a groove by etching after breaking an insulating film with a laser.
Japanese Patent Publication No.58-5968 Japanese Patent Publication No.57-2252 Japanese Patent Publication No. 07-72300 JP-A 62-53579 Japanese Patent Publication No. 08-6140 JP-A-61-253380

しかしながら、特許文献4に開示の方法は、仕上焼鈍済みの鋼板表面に存在する、フォルステライトを主成分とするセラミックス被膜のために、歯車型ロールの歯先の摩耗が激しく、工業的規模での生産には不向きである他、鋼板の局部的な変形を伴うため、占積率の低下を招くという問題がある。また、特許文献5に開示の方法は、占積率の低下もなく、溝深さも均一に制御できる点で優れているが、レジストの除去工程も含めた製造コストが高いという欠点がある。また、特許文献6に開示の方法は、絶縁被膜の厚さの変動によって被膜が残存する場合があり、溝深さが変動して、鉄損低減効果が安定して得られないという問題がある。   However, the method disclosed in Patent Document 4 is a ceramic coating mainly composed of forsterite present on the surface of a finish-annealed steel sheet. In addition to being unsuitable for production, there is a problem in that the space factor is lowered due to local deformation of the steel sheet. Further, the method disclosed in Patent Document 5 is excellent in that the space factor is not reduced and the groove depth can be uniformly controlled, but there is a drawback that the manufacturing cost including the resist removal step is high. Further, the method disclosed in Patent Document 6 has a problem in that the coating film may remain due to the variation in the thickness of the insulating coating, and the groove depth varies and the iron loss reduction effect cannot be obtained stably. .

さらに、上記いずれの溝形成方法も、圧延方向とほぼ直角方向に溝を形成するため、磁束密度の低下を招くという問題があり、これを回避するためには、形成する溝の深さを板厚の10%程度に制限せざるを得ないという本質的な問題が存在する。   Furthermore, since any of the above groove forming methods forms a groove in a direction substantially perpendicular to the rolling direction, there is a problem that the magnetic flux density is lowered. To avoid this, the depth of the groove to be formed is set to a plate. There is an essential problem that it must be limited to about 10% of the thickness.

そこで、本発明の目的は、歪取焼鈍による鉄損劣化のない耐歪取焼鈍特性に優れた低鉄損の方向性電磁鋼板と、その有利な製造方法を提案することにある。   Accordingly, an object of the present invention is to propose a grain-oriented electrical steel sheet having a low iron loss which is excellent in anti-distortion annealing characteristics without deterioration of iron loss due to stress relief annealing, and an advantageous manufacturing method thereof.

発明者らは、従来技術が抱える上述した問題点を解決すべく、鋭意、検討を重ねた。その結果、鋼板の表面に板厚を貫通する微小穴を多数形成することに想到した。そして、さらに検討を重ねた結果、貫通穴を形成した場合には、溝形成の場合のような、溝深さの変動による鉄損低減効果のばらつきという問題が本質的に生じ得ないことに加えて、磁束の流れが二次元的に平面に分散するため、磁束密度の低下がほとんど生じないことを見出した。さらに、貫通穴の分布パターンや面密度を適正に制御することによって、磁束密度の低下を招くことなく磁区細分化の効果を発現でき、ひいては低鉄損化が図れることを見出し、本発明を完成させた。   The inventors have intensively studied in order to solve the above-mentioned problems of the prior art. As a result, the inventors have conceived that a large number of micro holes penetrating the plate thickness are formed on the surface of the steel plate. As a result of further investigation, when a through hole is formed, the problem of variation in the iron loss reduction effect due to a change in groove depth, as in the case of groove formation, can not occur essentially. Thus, the present inventors have found that since the flow of magnetic flux is two-dimensionally distributed on a plane, the magnetic flux density hardly decreases. Furthermore, by properly controlling the distribution pattern and surface density of the through holes, it has been found that the effect of magnetic domain subdivision can be expressed without incurring a decrease in magnetic flux density, and as a result, low iron loss can be achieved. I let you.

すなわち、本発明は、Siを1.5〜7.0mass%含有する方向性電磁鋼板において、鋼板に1cm当たり0.2〜50個の貫通穴が形成されてなることを特徴とする耐歪取焼鈍特性に優れる低鉄損方向性電磁鋼板である。 That is, the present invention is a grain-oriented electrical steel sheet containing 1.5 to 7.0 mass% of Si, wherein 0.2 to 50 through holes are formed in the steel sheet per 1 cm 2. It is a low iron loss grain-oriented electrical steel sheet with excellent annealing characteristics.

本発明の電磁鋼板における上記貫通穴は、ハニカム状、格子状もしくはランダムに分布してなることを特徴とする。   The through holes in the electrical steel sheet of the present invention are characterized by being distributed in a honeycomb shape, a lattice shape, or randomly.

また、本発明は、Siを1.5〜7.0mass%含有する方向性電磁鋼板の製造方向において、最終冷延後から二次再結晶焼鈍を経て絶縁被膜を形成するまでのいずれかの工程において、鋼板に上記の貫通穴を形成することを特徴とする耐歪取焼鈍特性に優れる低鉄損方向性電磁鋼板の製造方法である。   Further, the present invention provides any process from the final cold rolling to the secondary recrystallization annealing until the formation of the insulating coating in the production direction of the grain-oriented electrical steel sheet containing 1.5 to 7.0 mass% of Si. The method for producing a low iron loss directional electrical steel sheet having excellent anti-strain annealing characteristics, wherein the through hole is formed in the steel sheet.

本発明の製造方法における上記貫通穴は、ハニカム状、格子状もしくはランダムに分布してなることを特徴とする。   In the production method of the present invention, the through holes are formed in a honeycomb shape, a lattice shape, or randomly distributed.

本発明によれば、磁束密度をほとんど損なうことなく耐歪取焼鈍特性に優れる磁区細分化処理を施した低鉄損の方向性電磁鋼板を、簡便かつ安価に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the low iron loss directional electrical steel sheet which performed the magnetic domain refinement process which is excellent in the anti-distortion annealing characteristic can be easily and cheaply manufactured, without damaging magnetic flux density almost.

本発明に係る方向性電磁鋼板は、従来公知の製造方法、即ち、Siを1.5〜7.0mass%含有する鋼スラブを熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施してから、1回または中間焼鈍を挟んだ2回の冷間圧延により最終板厚の冷延板とし、次いで、湿水素雰囲気中で、脱炭を兼ねた一次再結晶焼鈍を施してから、焼鈍分離剤を塗布してコイル状に巻き取り、二次再結晶させる仕上焼鈍を施し、その後、鋼板表面に絶縁被膜を形成する製造方法で製造することができる。そして、本発明は、上記一連の方向性電磁鋼板の製造工程において、最終冷延後から絶縁被膜形成前までの間に、レーザー照射等の方法を用いて鋼板の表面全体にわたって微小径の貫通穴を形成し、磁区細分化を図るところに特徴がある。   The grain-oriented electrical steel sheet according to the present invention is a conventionally known manufacturing method, that is, a steel slab containing 1.5 to 7.0 mass% of Si is hot-rolled into a hot-rolled sheet, and if necessary, a hot-rolled sheet After annealing, cold-rolled sheet with the final thickness is obtained by cold rolling twice or once with intermediate annealing, and then primary recrystallization annealing also serves as decarburization in a wet hydrogen atmosphere. Then, it can be manufactured by a manufacturing method in which an annealing separator is applied, coiled into a coil, and subjected to finish annealing for secondary recrystallization, and then an insulating coating is formed on the surface of the steel sheet. And in the manufacturing process of the above-mentioned series of grain-oriented electrical steel sheets, the present invention provides a through-hole having a small diameter over the entire surface of the steel sheet using a method such as laser irradiation between the last cold rolling and before the formation of the insulating coating. It is characterized in that it is formed and the magnetic domain is subdivided.

まず、本発明を開発する契機となった実験について説明する。
C:0.07mass%、Si:3.3mass%、Mn:0.07mass%、S:0.025mass%、酸可溶性Al:0.026mass%、N:0.008mass%、Sn:0.1mass%を含有する板厚2.0mmの熱延板に、1120℃×2分の焼鈍を施してから、冷間圧延して、最終板厚0.23mmの冷延板とした。この冷延板を、窒素と水素の混合ガス雰囲気中で、850℃×90秒の脱炭を兼ねた一次再結晶焼鈍を施してから、鋼板の切断加工等に用いるCOレーザーを用いて、鋼板の全面にわたって貫通穴を形成した。貫通穴の分布は、図1に示した三角格子状のパターンAとハニカム状のパターンBの2種類とし、貫通穴の面密度を種々に変化させた。形成した貫通穴を光学顕微鏡で観察したところ、貫通穴の直径は約30μmであり、また、穴加工による鋼板の変形や穴の周囲への溶融塊の付着等は認められなかった。その後、MgOを主成分とする焼鈍分離剤のスラリーを塗布し、乾燥させてから、水素75vol%、窒素25vol%の雰囲気中で、1180℃まで25℃/hrで昇温する二次再結晶焼鈍を施した。
First, an experiment that triggered the development of the present invention will be described.
C: 0.07 mass%, Si: 3.3 mass%, Mn: 0.07 mass%, S: 0.025 mass%, acid-soluble Al: 0.026 mass%, N: 0.008 mass%, Sn: 0.1 mass% A hot-rolled sheet having a thickness of 2.0 mm containing the material was annealed at 1120 ° C. for 2 minutes and then cold-rolled to obtain a cold-rolled sheet having a final thickness of 0.23 mm. This cold-rolled sheet is subjected to primary recrystallization annealing that also serves as decarburization at 850 ° C. for 90 seconds in a mixed gas atmosphere of nitrogen and hydrogen, and then using a CO 2 laser used for cutting and the like of the steel sheet, Through holes were formed over the entire surface of the steel plate. The distribution of the through holes was two types, the triangular lattice pattern A and the honeycomb pattern B shown in FIG. 1, and the surface density of the through holes was variously changed. When the formed through hole was observed with an optical microscope, the diameter of the through hole was about 30 μm, and deformation of the steel sheet due to drilling, adhesion of a molten mass around the hole, and the like were not observed. Thereafter, a slurry of an annealing separator mainly composed of MgO is applied and dried, followed by secondary recrystallization annealing in which the temperature is raised to 1180 ° C. at 25 ° C./hr in an atmosphere of 75 vol% hydrogen and 25 vol% nitrogen. Was given.

上記のようにして得た二次再結晶後の鋼板について、磁束密度Bと鉄損W17/50を測定した。図2は、上記測定結果について、貫通穴の面密度と、磁束密度Bおよび鉄損W17/50との関係を示したものである。図2から、貫通穴の分布パターンに関係なく、面密度が0.2個/cm以上で磁区細分化による鉄損W17/50値の低下効果が得られること、一方、面密度が50個/cmより大きくなると、鉄損低減効果が飽和すると共に、磁束密度の低下が大きくなることがわかった。 With respect to the steel sheet after secondary recrystallization obtained as described above, the magnetic flux density B 8 and the iron loss W 17/50 were measured. FIG. 2 shows the relationship between the surface density of the through holes, the magnetic flux density B 8 and the iron loss W 17/50 for the measurement results. From FIG. 2, regardless of the distribution pattern of the through holes, the effect of decreasing the iron loss W 17/50 value by magnetic domain subdivision can be obtained when the surface density is 0.2 pieces / cm 2 or more, while the surface density is 50 It has been found that when it is larger than the number of pieces / cm 2 , the iron loss reduction effect is saturated and the magnetic flux density is greatly reduced.

さらに、同一素材を用いて、貫通穴有無による磁区幅の観察を行った結果、貫通穴による磁区細分化効果が確認された。この貫通穴形成による磁区細分化が起こる原因は、十分に明らかとはなっていないが、貫通穴の側面に現れる磁極による反磁界効果が関係しているものと考えている。また、仕上焼鈍前に穴の形成を行った場合には、貫通穴近傍に徹細粒が形成され、これが磁区細分化に寄与している可能性もある。   Furthermore, as a result of observing the magnetic domain width with and without through holes using the same material, it was confirmed that the magnetic domain was subdivided by the through holes. The cause of the magnetic domain fragmentation due to the formation of the through hole is not sufficiently clear, but is considered to be related to the demagnetizing field effect caused by the magnetic pole appearing on the side surface of the through hole. In addition, when holes are formed before the finish annealing, fine grains are formed in the vicinity of the through holes, which may contribute to magnetic domain subdivision.

なお、二次再結晶粒径と貫通穴の面密度との関係については、おおよそ二次再結晶粒内に1個以上の貫通穴が形成されていればよく、貫通穴が少なくて、1つの結晶粒内に形成される穴が1個程度となった場合でも、1cmあたり0.2以上50個以下の範囲であれば、本発明の磁区細分化効果は十分に得られる。また、貫通穴が形成されていない粒があっても、隣接する粒に貫通穴が形成され磁区細分化がなされている場合には、粒界における磁束の流れの連続性から、磁区細分化されることが確認されている。したがって、貫通穴の面密度が磁区細分化に及ぼす効果は、二次再結晶粒の大きさによっては大きな影響を受けることはない。 As for the relationship between the secondary recrystallized grain size and the surface density of the through-holes, it is sufficient that at least one through-hole is formed in the secondary recrystallized grains, and there are few through-holes. Even when the number of holes formed in the crystal grains is about one, the magnetic domain refinement effect of the present invention is sufficiently obtained as long as it is in the range of 0.2 to 50 per cm 2 . In addition, even if there are grains in which no through hole is formed, if a through hole is formed in an adjacent grain and magnetic domain is subdivided, the magnetic domain is subdivided due to the continuity of the flow of magnetic flux at the grain boundary. It has been confirmed that Therefore, the effect of the surface density of the through holes on the magnetic domain refinement is not greatly affected by the size of the secondary recrystallized grains.

次に、本発明の特徴である貫通穴の形成方法等について説明する。
貫通穴の形成方法は、レーザー照射法が簡便である。ミラーを多数並べることで、同時に多数の貫通穴を形成することができるからである。ただし、ドリルやパンチ等の機械的加工を用いても何ら問題はない。
Next, a method for forming a through hole, which is a feature of the present invention, will be described.
As a method for forming the through hole, a laser irradiation method is simple. This is because a large number of through holes can be formed simultaneously by arranging a large number of mirrors. However, there is no problem even if mechanical processing such as drilling or punching is used.

形成する貫通穴の直径は、5μm〜2mmの範囲とすることが好ましい。5μm未満では、鉄損低減の効果が小さく、一方、2mmより大きくなると、材料の歩留まりを著しく落とすことと、穴形成の負荷が増大することから好ましくない。   The diameter of the through hole to be formed is preferably in the range of 5 μm to 2 mm. If the thickness is less than 5 μm, the effect of reducing the iron loss is small. On the other hand, if it exceeds 2 mm, it is not preferable because the yield of the material is remarkably reduced and the load for hole formation increases.

形成する貫通穴の分布パターンについては、図1に示したような三角格子状やハニカム状のパターンの他、正方格子状、菱形格子状などのパターンが、工業的には形成し易く、好ましい。また、ランダムに分散させても構わないが、この場合には、局部的に面密度が0.2個/cm未満となったり、50個/cm超えとなったりしないようにすることが必要である。 Regarding the distribution pattern of the through holes to be formed, a triangular lattice shape or a honeycomb shape pattern as shown in FIG. 1, a square lattice shape, a rhombus lattice shape, or the like is preferable because it is easy to form industrially. In addition, the surface density may not be locally less than 0.2 / cm 2 or more than 50 / cm 2 in this case. is necessary.

ところで、従来の磁区細分化技術では、溝や微小歪領域を線状あるいは破線状に形成するのが一般的であった。しかしながら、発明者らの検討結果によれば、貫通穴を列状に並べた場合には、隣り合う貫通穴同士が接近し、鉄損低減効果が不十分となるかあるいは却って鉄損低減効果が損なわれることが明らかになった。その原因は、列状に貫通穴を形成した場合には、隣接する貫通穴の間の磁区運動に乱れが生じるためと推定している。また、貫通穴の列状の配置は、鋼板の特定方向の強度あるいは剛性の低下を招くため、磁歪振動が増加して騒音が増大する傾向があることもわかった。   By the way, in the conventional magnetic domain subdivision technique, it has been common to form grooves and minute strain regions in the form of lines or broken lines. However, according to the examination results of the inventors, when the through holes are arranged in a row, adjacent through holes approach each other, and the iron loss reduction effect is insufficient or the iron loss reduction effect is on the contrary. It became clear that it was damaged. The reason is presumed that when the through holes are formed in a row, the magnetic domain motion between adjacent through holes is disturbed. In addition, it was also found that the arrangement of the through holes in a row causes a decrease in strength or rigidity in a specific direction of the steel sheet, and therefore the magnetostrictive vibration tends to increase and noise tends to increase.

この点、本発明の方向性電磁鋼板は、上述したように、特定の方向に列状に貫通穴を形成するのではなく、ハニカム状や各種格子状もしくはランダムに分散配置しているので、上記のような問題を起こすおそれがない。   In this regard, the grain-oriented electrical steel sheet of the present invention does not form through holes in a row in a specific direction, as described above, but is dispersed in a honeycomb or various lattices or randomly. There is no risk of problems such as

鋼板に貫通穴を形成する工程は、最終冷延工程以降でかつ絶縁被膜形成前のいずれかの工程とすることが必要である。穴加工後、圧延を行うことは、穴加工の負荷が増大するだけでなく、穴の形状が変化して磁区細分化効果が失われたり、圧延自体が難しくなったりする。一方、絶縁被膜形成後に貫通穴を形成した場合には、耐食性、絶縁性等の劣化を招くことから、絶縁被膜の再塗布などの補修処理が必要となるからである。   The step of forming the through hole in the steel plate needs to be any step after the final cold rolling step and before the formation of the insulating coating. Performing rolling after drilling not only increases the load of drilling, but also changes the shape of the hole and loses the magnetic domain refinement effect, or makes the rolling itself difficult. On the other hand, when the through-hole is formed after the insulating coating is formed, the corrosion resistance, the insulation, and the like are deteriorated, so that a repair process such as re-application of the insulating coating is required.

なお、本発明の磁区細分化技術は、絶縁被膜を形成した方向性電磁鋼板に限定されるものではなく、例えば、仕上焼鈍時の分離剤の成分を調整して、フォルステライトを主体とする鉱物質被膜を意図的に形成しないようにした鋼板や、形成したフォルステライト被膜を除去し、表面を平滑化した鋼板に対して適用しても有効であることは言うまでもない。   The magnetic domain refinement technique of the present invention is not limited to the grain-oriented electrical steel sheet on which an insulating film is formed. For example, a mineral mainly composed of forsterite is prepared by adjusting the component of the separating agent during finish annealing. Needless to say, the present invention is effective even when applied to a steel sheet in which a quality film is not intentionally formed, or a steel sheet in which the formed forsterite film is removed and the surface is smoothed.

次に、本発明の方向性電磁鋼板の望ましい成分組成について説明する。
本発明の方向性電磁鋼板は、Siを1.5〜7.0mass%、Mnを0.03〜2.5mass%の範囲で含有することが好ましい。SiおよびMnは、鋼板の電気抵抗を高めて鉄損を低減するのに有効な成分であり、それぞれ1.5mass%以上、0.03mass%以上含有するのが好ましい。しかし、Siは、7.0mass%を超えると、硬度が高くなり過ぎて、製造や加工が困難になり、また、Mnは、2.5mass%を超えると、熱処理時にγ変態を誘起して磁気特性を劣化させるおそれがあるからである。
Next, the desirable component composition of the grain-oriented electrical steel sheet of the present invention will be described.
The grain-oriented electrical steel sheet of the present invention preferably contains Si in a range of 1.5 to 7.0 mass% and Mn in a range of 0.03 to 2.5 mass%. Si and Mn are effective components for increasing the electric resistance of the steel sheet and reducing iron loss, and it is preferable to contain 1.5 mass% or more and 0.03 mass% or more, respectively. However, if Si exceeds 7.0 mass%, the hardness becomes too high, making manufacture and processing difficult, and if M exceeds 2.5 mass%, γ transformation is induced at the time of heat treatment to induce magnetic transformation. This is because the characteristics may be deteriorated.

本発明の方向性電磁鋼板は、上記Si,Mnの他に、二次再結晶を起こさせるために不可欠なインヒビター成分として、Al,B,Bi,Sb,Mo,Te,Sn,P,Ge,As,Nb,Cr,Ti,Cu,Pb,ZnおよびInなどの元素を、それぞれの元素が有する特徴に応じて、単独または複合して含有することが好ましい。   In addition to the Si and Mn, the grain-oriented electrical steel sheet of the present invention includes Al, B, Bi, Sb, Mo, Te, Sn, P, Ge, as an inhibitor component essential for causing secondary recrystallization. It is preferable to contain elements such as As, Nb, Cr, Ti, Cu, Pb, Zn, and In alone or in combination depending on the characteristics of each element.

また、本発明の方向性電磁鋼板において、C,S,N等の不純物成分は、いずれも磁気特性に対して有害な作用があり、特に鉄損を劣化させるので、それぞれC:0.003mass%以下、S:0.002mass%以下、N:0.002mass%以下とすることが好ましい。   Further, in the grain-oriented electrical steel sheet of the present invention, impurity components such as C, S, and N all have a harmful effect on magnetic properties, and particularly deteriorate iron loss. Therefore, C: 0.003 mass%, respectively. Hereinafter, it is preferable to set S: 0.002 mass% or less and N: 0.002 mass% or less.

本発明の方向性電磁鋼板の表面に形成する絶縁被膜は、張力付与型のものが好ましい。張力付与型の絶縁被膜としては、フォルステライト被膜を有する方向性電磁鋼板の絶縁被膜として従来から用いられている、リン酸塩−コロイダルシリカ−クロム酸系のものが、磁気特性の面から、また、均一処理性やコスト等の製造性の点から好適である。絶縁被膜の厚さは、張力付与効果や占積率、被膜密着性等の観点から、0.3〜10μmの範囲が好ましい。なお、張力付与型の絶縁被膜としては、上記リン酸塩−コロイダルシリカ−クロム酸系に限定されるものではなく、例えば、特開平6−65754号公報、特開平6−65755号公報、特開平8−299366号公報などで提案されているホウ酸−アルミナ等の酸化物系被膜を適用することもできる。   The insulating coating formed on the surface of the grain-oriented electrical steel sheet of the present invention is preferably of a tension imparting type. As the tension-imparting type insulating coating, a phosphate-colloidal silica-chromic acid type conventionally used as an insulating coating of a grain-oriented electrical steel sheet having a forsterite coating is used in terms of magnetic properties, From the viewpoint of manufacturability such as uniform processability and cost. The thickness of the insulating coating is preferably in the range of 0.3 to 10 μm from the viewpoints of tension application effect, space factor, coating adhesion, and the like. The tension imparting type insulating coating is not limited to the above-mentioned phosphate-colloidal silica-chromic acid system. For example, JP-A-6-65754, JP-A-6-65555, An oxide-based film such as boric acid-alumina proposed in Japanese Patent Laid-Open No. 8-299366 can also be applied.

Siを3mass%含有する板厚が0.20mmの方向性電磁鋼板の冷延板に、脱炭を兼ねた一次再結晶焼鈍を施し、その後、COレーザーを用いて試料全面に50μm径の貫通穴を、図3に示すような4つのパターンで、面密度を変更して形成した。
その後、材料を2つに分け、1つは、MgOを主成分とした焼鈍分離剤を塗布し、二次再結晶過程と純化過程を含む最終仕上焼鈍を施し、フォルステライト被膜を有する方向性電磁鋼板とした。もう1つは、MgOを主成分とし塩化鉛を含む焼鈍分離剤を塗布し、フォルステライト被膜のない平滑な表面を有する最終仕上焼鈍板とし、引き続き、NaCl水溶液中で電解して平滑化処理を施してから、CVD法を用いてTiN皮膜を片面当たり1μmの厚さで被成し、方向性電磁鋼板とした。
その後、両鋼板に対して、リン酸マグネシウム、コロイダルシリカおよびクロム酸マグネシウムを主成分とする水性処理液を塗布し、800℃で焼き付けて、付着量が約8.0g/mの絶縁被膜を形成し、磁束密度B(T)および鉄損W17/50(W/kg)の測定に供した。
A cold-rolled sheet of grain oriented electrical steel sheet containing 3 mass% of Si and having a thickness of 0.20 mm is subjected to primary recrystallization annealing that also serves as decarburization, and then penetrates the entire surface of the sample using a CO 2 laser with a diameter of 50 μm. The holes were formed by changing the surface density in four patterns as shown in FIG.
After that, the material is divided into two, one is the application of an annealing separator mainly composed of MgO, the final finishing annealing including the secondary recrystallization process and the purification process, and the directional electromagnetic having a forsterite film A steel plate was used. The other is to apply an annealing separator containing MgO as the main component and lead chloride to obtain a final finish annealing plate having a smooth surface without a forsterite film, followed by electrolysis in a NaCl aqueous solution for smoothing treatment. Then, a TiN film was deposited with a thickness of 1 μm per side using a CVD method to obtain a grain-oriented electrical steel sheet.
Thereafter, an aqueous treatment liquid mainly composed of magnesium phosphate, colloidal silica and magnesium chromate is applied to both steel plates, and baked at 800 ° C. to form an insulating coating having an adhesion amount of about 8.0 g / m 2. The magnetic flux density B 8 (T) and the iron loss W 17/50 (W / kg) were measured.

上記測定の結果を、鋼板の表面状態、貫通穴の分布パターンおよび面密度も併せて表1に示した。この結果から、貫通穴の分布パターンに拘わらず、貫通穴の面密度が0.2個/cm未満のNo.1や7の鋼板は、鉄損の低減効果が得られず、一方、面密度が50個/cmを超えるNo.5,6および10の鋼板は、磁束密度の低下が大きく、それに伴って鉄損の劣化も生じているのがわかる。それに対して、本発明の条件(面密度:0.2〜50個/cm)を満たすNo.2〜4、8および9の鋼板は、高い磁束密度を維持したまま、鉄損の低減が達成できていることがわかる。なお、これら鋼板について、歪取焼鈍に相当する800℃×180分の焼鈍を行い、その後、磁束密度および鉄損を測定したところ、いずれの特性も劣化は認められなかった。 The results of the measurement are shown in Table 1 together with the surface state of the steel sheet, the distribution pattern of the through holes, and the surface density. From these results, it was found that the surface density of the through holes was less than 0.2 / cm 2 regardless of the distribution pattern of the through holes. The steel sheets Nos. 1 and 7 were not able to obtain the effect of reducing iron loss, while the surface density of No. 1 exceeding 50 / cm 2 . It can be seen that the steel plates of 5, 6 and 10 have a large decrease in magnetic flux density and accompanying this, the deterioration of iron loss has also occurred. On the other hand, No. 1 satisfying the conditions of the present invention (surface density: 0.2 to 50 / cm 2 ). It can be seen that the steel sheets 2-4, 8 and 9 have achieved a reduction in iron loss while maintaining a high magnetic flux density. These steel sheets were annealed at 800 ° C. for 180 minutes corresponding to strain relief annealing, and then the magnetic flux density and iron loss were measured. No deterioration was observed in any of the properties.

Figure 2007169726
Figure 2007169726

実験に用いた貫通穴の分布パターンを説明する図である。It is a figure explaining the distribution pattern of the through-hole used for experiment. 貫通穴の面密度が方向性電磁鋼板の磁気特性(磁束密度,鉄損)に及ぼす影響を示すグラフである。It is a graph which shows the influence which the surface density of a through hole exerts on the magnetic characteristics (magnetic flux density, iron loss) of a grain-oriented electrical steel sheet. 実施例で用いた貫通穴の分布パターンを説明する図である。It is a figure explaining the distribution pattern of the through-hole used in the Example.

Claims (4)

Siを1.5〜7.0mass%含有する方向性電磁鋼板において、鋼板に1cm当たり0.2〜50個の貫通穴が形成されてなることを特徴とする耐歪取焼鈍特性に優れる低鉄損方向性電磁鋼板。 In a grain-oriented electrical steel sheet containing 1.5 to 7.0 mass% of Si, the steel sheet is formed with 0.2 to 50 through-holes per 1 cm 2. Iron loss-oriented electrical steel sheet. 上記貫通穴は、ハニカム状、格子状もしくはランダムに分布してなることを特徴とする請求項1に記載の低鉄損方向性電磁鋼板。 2. The low iron loss directional electrical steel sheet according to claim 1, wherein the through holes are formed in a honeycomb shape, a lattice shape, or randomly distributed. Siを1.5〜7.0mass%含有する方向性電磁鋼板の製造方向において、最終冷延後から二次再結晶焼鈍を経て絶縁被膜を形成するまでのいずれかの工程において、鋼板に1cm当たり0.2〜50個の貫通穴を形成することを特徴とする耐歪取焼鈍特性に優れる低鉄損方向性電磁鋼板の製造方法。 In the production direction of the grain-oriented electrical steel sheet containing 1.5 to 7.0 mass% of Si, 1 cm 2 is applied to the steel sheet in any step from the final cold rolling to the formation of the insulating coating through secondary recrystallization annealing. A method for producing a low iron loss directional electrical steel sheet having excellent anti-strain annealing characteristics, wherein 0.2 to 50 through holes are formed per one. 上記貫通穴は、ハニカム状、格子状もしくはランダムに分布してなることを特徴とする請求項3に記載の低鉄損方向性電磁鋼板の製造方法。
The method for producing a low iron loss grain-oriented electrical steel sheet according to claim 3, wherein the through holes are formed in a honeycomb shape, a lattice shape, or randomly distributed.
JP2005369822A 2005-12-22 2005-12-22 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof Active JP4807064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369822A JP4807064B2 (en) 2005-12-22 2005-12-22 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369822A JP4807064B2 (en) 2005-12-22 2005-12-22 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007169726A true JP2007169726A (en) 2007-07-05
JP4807064B2 JP4807064B2 (en) 2011-11-02

Family

ID=38296666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369822A Active JP4807064B2 (en) 2005-12-22 2005-12-22 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4807064B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100123A (en) * 1989-09-12 1991-04-25 Babcock Hitachi Kk Production of grain-oriented silicon sheet reduced in iron loss

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100123A (en) * 1989-09-12 1991-04-25 Babcock Hitachi Kk Production of grain-oriented silicon sheet reduced in iron loss

Also Published As

Publication number Publication date
JP4807064B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
KR100727333B1 (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP2012036447A (en) Grain-oriented magnetic steel sheet and method of manufacturing the same
JP7331800B2 (en) Oriented electrical steel sheet
WO2020149347A1 (en) Method for producing grain-oriented electromagnetic steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JPWO2020203928A1 (en) Directional electrical steel sheet and its manufacturing method
WO2012017669A1 (en) Grain-oriented electrical steel sheet, and method for producing same
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
WO2019131974A1 (en) Oriented electromagnetic steel sheet
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
JP2020105589A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4807064B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
WO2024063163A1 (en) Grain-oriented electrical steel sheet
JP4876799B2 (en) Oriented electrical steel sheet
JP7010321B2 (en) Directional electrical steel sheet and its manufacturing method
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4807064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250