JP7010321B2 - Directional electrical steel sheet and its manufacturing method - Google Patents

Directional electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP7010321B2
JP7010321B2 JP2020046858A JP2020046858A JP7010321B2 JP 7010321 B2 JP7010321 B2 JP 7010321B2 JP 2020046858 A JP2020046858 A JP 2020046858A JP 2020046858 A JP2020046858 A JP 2020046858A JP 7010321 B2 JP7010321 B2 JP 7010321B2
Authority
JP
Japan
Prior art keywords
groove
rolling direction
cross
steel sheet
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020046858A
Other languages
Japanese (ja)
Other versions
JP2020158882A (en
Inventor
博貴 井上
健 大村
邦浩 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020158882A publication Critical patent/JP2020158882A/en
Application granted granted Critical
Publication of JP7010321B2 publication Critical patent/JP7010321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、変圧器などの鉄心材料に好適な方向性電磁鋼板およびその製造方法に関するものである。 The present invention relates to a grain-oriented electrical steel sheet suitable for an iron core material such as a transformer and a method for manufacturing the same.

鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有する方向性電磁鋼板は、特に電力用変圧器の鉄心材料として用いられている。かかる電力用変圧器は、その鉄心構造から積鉄心変圧器と巻鉄心変圧器に大別される。 A grain-oriented electrical steel sheet having a crystal structure whose <001> orientation, which is an axis for easily magnetizing iron, is highly aligned in the rolling direction of the steel sheet, is particularly used as an iron core material for a power transformer. Such power transformers are roughly classified into stacked iron core transformers and wound iron core transformers according to their iron core structures.

積鉄心変圧器とは、所定の形状に切断した鋼板を積層することによって鉄心を形成するものである。一方、巻鉄心変圧器は、鋼板を巻き重ねて鉄心を形成するものである。変圧器鉄心として要求される特性は種々あるが、特に重要なのは鉄損が小さいことである。 A product core transformer is a transformer that forms an iron core by laminating steel plates cut into a predetermined shape. On the other hand, a wound iron core transformer is one in which steel plates are wound to form an iron core. There are various characteristics required for a transformer core, but the most important one is that the iron loss is small.

その観点から、鉄心素材である方向性電磁鋼板に要求される特性として、鉄損値が小さいことが挙げられ、この特性は重要である。ここで、鉄損を下げるための技術の一つとして、磁区細分化技術がある。磁区細分化技術とは、鋼板の表面に対して物理的な手法で磁束の不均一性を導入することにより、磁区の幅を細分化して鉄損を低減する技術である。 From this point of view, a characteristic required for grain-oriented electrical steel sheets, which is an iron core material, is that the iron loss value is small, and this characteristic is important. Here, there is a magnetic domain subdivision technique as one of the techniques for reducing iron loss. The magnetic domain subdivision technique is a technique for subdividing the width of a magnetic domain and reducing iron loss by introducing non-uniformity of magnetic flux into the surface of a steel sheet by a physical method.

例えば、特許文献1には、方向性電磁鋼板の圧延方向と交差する向きに線状の溝を形成することで、磁区を細分化する技術が記載されている。また、特許文献2には、仕上げ焼鈍済みの鋼板に882~2156MPa(90~220kgf/mm2)の荷重で地鉄部分に深さ5μm超の溝を形成したのち、750℃以上の温度で加熱処理することにより、磁区を細分化する技術が記載されている。これらの技術は、トランス組立後の歪取り焼鈍を行ってもその効果が消失しない、いわゆる耐熱型の磁区細分化技術である。 For example, Patent Document 1 describes a technique for subdividing a magnetic domain by forming a linear groove in a direction intersecting the rolling direction of a grain-oriented electrical steel sheet. Further, in Patent Document 2, a groove having a depth of more than 5 μm is formed in the base metal portion with a load of 882 to 2156 MPa (90 to 220 kgf / mm 2 ) on the finish-annealed steel sheet, and then heated at a temperature of 750 ° C. or higher. A technique for subdividing a magnetic domain by processing is described. These techniques are so-called heat-resistant magnetic domain subdivision techniques in which the effect does not disappear even if the strain is removed and annealed after the transformer is assembled.

ここで、鋼板の鉄損特性を表す代表的な指標は、周波数50 Hz、最大磁束密度1.7Tにおける鉄損W17/50の値であり、鋼板はその大きさによりグレード分けされている。また、近年の環境規制の強化によって、変圧器の効率化がより求められる結果、1.7Tよりも低い磁束密度での磁化領域で鋼板が使われるケースも多くなってきている。さらに、近年増えた太陽光発電等に接続された小規模系統で使われる変圧器では、励磁突入電流への対応も必要であり、それには、高い磁化領域における磁束密度、すなわち磁化力800A/mにおける磁束密度B8といった磁気特性にも優れる必要がある。 Here, a typical index showing the iron loss characteristics of the steel sheet is the value of the iron loss W 17/50 at a frequency of 50 Hz and a maximum magnetic flux density of 1.7 T, and the steel sheets are graded according to their size. In addition, as a result of the recent tightening of environmental regulations, the efficiency of transformers is required to be improved, and as a result, steel plates are often used in the magnetization region with a magnetic flux density lower than 1.7T. Furthermore, in transformers used in small-scale systems connected to solar power generation, which has increased in recent years, it is also necessary to deal with exciting inrush current, which is the magnetic flux density in the high magnetization region, that is, the magnetization force of 800 A / m. It is also necessary to have excellent magnetic characteristics such as the magnetic flux density B 8 in.

特開昭63-76819号公報Japanese Unexamined Patent Publication No. 63-76819 特公昭63-44804号公報Special Publication No. 63-44804

前述したように、最近では、最大磁束密度1.7Tといった鋼板グレードを決める磁化領域での鉄損W17/50が小さいだけでなく、1.0~1.5Tといった低い磁束密度となるように低い磁化力で磁化した領域(以下、単に低い磁化領域という)での鉄損に優れ、かつ磁化力800A/mといった高い磁化力で磁化した領域(以下、単に高い磁化領域という)における磁束密度B8といった磁気特性にも優れる方向性電磁鋼板が求められている。 As mentioned above, recently, not only the iron loss W 17/50 in the magnetization region that determines the steel plate grade such as the maximum magnetic flux density of 1.7T is small, but also the magnetization force is low so that the magnetic flux density is as low as 1.0 to 1.5T. Excellent iron loss in the magnetized region (hereinafter simply referred to as low magnetization region), and magnetic characteristics such as magnetic flux density B 8 in the region magnetized with a high magnetization force of 800 A / m (hereinafter simply referred to as high magnetization region). There is also a demand for an excellent directional electromagnetic steel plate.

低い磁化領域での磁気特性を向上させるためには、1.0~1.5Tにおける鉄損を小さくすればよい。ここで、かかる領域での鉄損を小さくするためには、磁区細分化のために形成する不均一部、すなわち溝部などの体積を増やし、磁区細分化効果を強くすれば良い。しかし、形成する不均一部の体積を増やすとB8といった高い磁化領域における磁束密度が劣化するという問題があった。 In order to improve the magnetic properties in the low magnetization region, the iron loss at 1.0 to 1.5T may be reduced. Here, in order to reduce the iron loss in such a region, the volume of the non-uniform portion formed for the subdivision of the magnetic domain, that is, the groove portion or the like may be increased to strengthen the effect of subdividing the magnetic domain. However, there is a problem that the magnetic flux density in a high magnetization region such as B 8 deteriorates when the volume of the formed non-uniform portion is increased.

本発明は、上記の問題を克服し、低い磁化領域から高い磁化領域までの磁気特性に優れた方向性電磁鋼板を提供することを目的とする。また、本発明は、かかる磁気特性に優れた方向性電磁鋼板の製造方法を併せて提供することを目的とする。 An object of the present invention is to overcome the above-mentioned problems and to provide a grain-oriented electrical steel sheet having excellent magnetic properties from a low magnetization region to a high magnetization region. Another object of the present invention is to provide a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties.

鉄損といった磁気特性に影響を与えるのは、磁区細分化処理をする際に、形成する不均一部の体積やその分布であることが知られている。 It is known that it is the volume and distribution of the non-uniform portion formed during the magnetic domain subdivision process that affects the magnetic properties such as iron loss.

ここで、鋼板単位面積当たりに導入される不均一部(溝部など磁束が不均一になる部分をいう)の体積を増やすこと、すなわち、圧延方向に導入する線状の溝間隔を狭めたり、溝深さを深くする等で1列の線状溝部の体積を増やしたりすることで、主磁区をより細分化する。 Here, increasing the volume of the non-uniform portion (meaning a portion where the magnetic flux becomes non-uniform such as a groove portion) introduced per unit area of the steel sheet, that is, narrowing the linear groove spacing introduced in the rolling direction or making a groove. The main magnetic domain is further subdivided by increasing the volume of one row of linear grooves by increasing the depth.

かように不均一部の体積を増やした磁区細分化が施されると、低い磁化領域では、主磁区の180°磁壁移動により磁化が進行するので、主磁区の磁区が狭い程、磁壁の移動距離、速度が小さくなる。その結果、渦電流損が減少して鉄損は減少する。一方、高い磁化領域では、不均一部の体積を増やした場合、溝部の分だけ鉄の断面積が減少するため、磁束の集中が起こり磁気特性は劣化する。さらに、高い磁化領域では、主磁区の180°磁壁移動だけでは磁化が進行できなくなるため、磁化回転が生じるが、鋼板単位面積当たりに導入される溝部の体積が増えると、その溝部分が磁化回転を阻害するため、その分も含めて磁気特性は劣化する。 When the magnetic domain is subdivided by increasing the volume of the non-uniform part in this way, in the low magnetization region, the magnetization progresses due to the 180 ° domain wall movement of the main magnetic domain. Distance and speed become smaller. As a result, the eddy current loss is reduced and the iron loss is reduced. On the other hand, in the high magnetization region, when the volume of the non-uniform portion is increased, the cross-sectional area of iron is reduced by the amount of the groove portion, so that the magnetic flux is concentrated and the magnetic characteristics are deteriorated. Furthermore, in the high magnetization region, magnetization cannot proceed only by moving the domain wall by 180 ° in the main magnetic domain, so magnetization rotation occurs. However, when the volume of the groove introduced per unit area of the steel plate increases, the groove portion rotates. Therefore, the magnetic properties are deteriorated including that amount.

よって、単純に不均一部の体積を制御するだけでは、低い磁化領域から高い磁化領域までの磁気特性に優れた鋼板を作製することはできない。
ここで、過去の公知知見、例えば、特許第3885239号公報(以下、特許公報という)には、特に、板厚が0.30~0.35mm程度の厚物材の場合に、磁束密度B8、鉄損分布W17/50が共に優れる耐熱型の磁区細分化方向性電磁鋼板の製造方法が開示されている。
Therefore, it is not possible to produce a steel sheet having excellent magnetic properties from a low magnetization region to a high magnetization region by simply controlling the volume of the non-uniform portion.
Here, in the past publicly known knowledge, for example, Japanese Patent No. 3885239 (hereinafter referred to as Patent Gazette), especially in the case of a thick material having a plate thickness of about 0.30 to 0.35 mm, the magnetic flux density B 8 and iron loss A method for manufacturing a heat-resistant magnetic domain subdivided grain-oriented electrical steel sheet having an excellent distribution W 17/50 is disclosed.

上記特許公報によると、重量%で、Si:2.0~4.5%を含む方向性珪素鋼板素材を用い、最終冷延後2次再結晶焼鈍前の工程において、圧延の幅方向に線状溝を形成するにあたり、浅溝を有する線状溝と深溝を有する線状溝とを交互に配置することで、高い磁化領域の磁気特性B8を下げることなく、W17/50を改善することが示されている。すなわち、従来の磁区細分化処理鋼板では、図1に記載のとおり、均一な線状溝形成部が周期的な間隔で並んでいたが、上記特許公報に記載の発明では、図2に記載しているように、線状溝形成深さが各線ごとに異なるように制御することで、高い磁化領域の磁気特性B8とW17/50との両立を達成している。 According to the above patent gazette, a directional silicon steel plate material containing Si: 2.0 to 4.5% by weight is used to form linear grooves in the width direction of rolling in the process after final cold rolling and before secondary recrystallization annealing. It has been shown that by alternately arranging the linear grooves having shallow grooves and the linear grooves having deep grooves, W 17/50 is improved without lowering the magnetic property B 8 in the high magnetization region. ing. That is, in the conventional magnetic domain subdivided steel sheet, uniform linear groove forming portions are lined up at periodic intervals as shown in FIG. 1, but in the invention described in the above patent gazette, it is described in FIG. By controlling the linear groove formation depth to be different for each line, both the magnetic properties B 8 and W 17/50 in the high magnetization region are achieved.

しかしながら、かかる発明は板厚が0.30~0.35mm程度の厚物材の場合にその効果を発揮するものである。鋼板板厚が0.27mm以下といった薄物材の場合は、厚物材の場合よりも磁区細分化によって減少する渦電流損がもともと小さいため、特に低い磁化領域での磁区細分化の効果は限定的である。さらに、薄物材の場合、高い磁化領域での磁化回転に対し、線状溝形状を含む鋼板表面の性状が与える影響が、板厚が厚い場合よりも大きくなる。すなわち、板厚が薄くなった場合、相似形に溝深さが減少しても、高い磁化領域の磁気特性は劣化する。よって、本発明のように鋼板板厚が0.27mm以下といった薄物材の場合、前記特許文献に記載の発明では、低い磁化領域と高い磁化領域での磁気特性を両立させることは困難である。 However, such an invention exerts its effect in the case of a thick material having a plate thickness of about 0.30 to 0.35 mm. In the case of thin materials with a steel plate thickness of 0.27 mm or less, the eddy current loss reduced by magnetic domain subdivision is originally smaller than in the case of thick materials, so the effect of magnetic domain subdivision is limited, especially in the low magnetization region. be. Further, in the case of a thin material, the influence of the properties of the surface of the steel sheet including the linear groove shape on the magnetization rotation in the high magnetization region becomes larger than that in the case of a thick plate. That is, when the plate thickness becomes thin, the magnetic characteristics of the high magnetization region deteriorate even if the groove depth decreases in a similar shape. Therefore, in the case of a thin material having a steel plate thickness of 0.27 mm or less as in the present invention, it is difficult to achieve both low magnetic properties and high magnetic properties in the invention described in the patent document.

そこで、発明者らは、鋼板板厚が0.27mm以下といった特に板厚が薄い場合に、W13/50といった低い磁化領域での磁気特性から、鋼板のグレードを決めるW17/50、さらに、高い磁化領域での磁気特性であるB8といった従来両立が困難な磁気特性を両立できないかと検討した。 Therefore, the inventors have determined the grade of the steel sheet from the magnetic properties in the low magnetization region such as W 13/50, especially when the sheet thickness is 0.27 mm or less, which is higher than W 17/50 . We investigated whether it would be possible to achieve both magnetic characteristics that were difficult to achieve in the past, such as B 8 , which is the magnetic characteristics in the magnetization region.

その結果、発明者らは、以下の条件を満たすように線状溝を導入すると、低い磁化領域と高い磁化領域での磁気特性が両立できることを知見した。
(1)導入された線状溝は圧延方向断面積が異なる2種以上存在すること
(2)(1)の圧延方向断面積が最大のものと最小のものとで10%以上60%以下異なる範囲で異なること
好ましくは、
(3)(2)の圧延方向断面積の異なる線状溝が圧延方向に交互に並ぶこと
である。
As a result, the inventors have found that when the linear groove is introduced so as to satisfy the following conditions, the magnetic properties in the low magnetization region and the high magnetization region can be compatible with each other.
(1) There are two or more types of introduced linear grooves with different cross-sectional areas in the rolling direction.
(2) It is preferable that the cross-sectional area in the rolling direction of (1) differs between the maximum and the minimum in a range of 10% or more and 60% or less.
(3) Linear grooves having different cross-sectional areas in the rolling direction of (2) are alternately arranged in the rolling direction.

次に、本発明を導くに至った実験結果について説明する。
<実験1>
Si:3.4質量%、Mn:0.06質量%、Cu:0.1質量%、Ni:0.01質量%、Al:240質量ppm、S:20質量ppm、C:0.07質量%、N:90質量ppm、Sb:0.025質量%およびSe:180質量ppmを含有する鋼スラブを、連続鋳造にて製造し、1430℃に加熱後、熱間圧延により板厚:2.4mmの熱延板としたのち、熱延板焼鈍を施した。ついで、冷間圧延により中間板厚:0.40mmとし、中間焼鈍を実施した。その後、塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、板厚:0.23mmの冷延板とした。
さらに、以下の手順で、図3に示すような圧延方向断面積が異なる線状溝の領域I、IIが圧延方向に交互に並ぶ冷延鋼板を作製した。
初めに、表1に示す所定の溝幅を有し、ピッチ6mmの溝ロールにより鋼板表面にレジストインクを印刷することで冷延鋼板の表面をマスキングし、所定の溝深さとなるように電解エッチングを施して、線状溝の領域I(本発明において、単に領域Iまたは溝Iとも記す)を形成した。なお、線状溝の領域Iは圧延直交方向に対し10°傾いて形成した。
次いで、最初に印刷したインクを除去後、3mmずらして、所定の溝幅を有し、ピッチ6mmの溝ロールにより鋼板表面にレジストインクを印刷することでマスキングし、所定の溝深さとなるように電解エッチングを施して、線状溝の領域II(本発明において、単に領域IIまたは溝IIとも記す)を形成した。結果、冷延鋼板の表面には、3mm間隔で線状溝の領域I、IIが交互に並ぶこととなる。
さらに、2度目に印刷したインクを除去して、脱炭焼鈍を施し、ついで、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を実施した。さらに、絶縁コートを塗布後、850℃にて焼付けてコーティング塗布処理をした。このコーティング塗布処理は、平坦化焼鈍も兼ねている。
Next, the experimental results that led to the present invention will be described.
<Experiment 1>
Si: 3.4% by mass, Mn: 0.06% by mass, Cu: 0.1% by mass, Ni: 0.01% by mass, Al: 240% by mass, S: 20% by mass, C: 0.07% by mass, N: 90% by mass, Sb: Steel slabs containing 0.025% by mass and Se: 180% by mass are manufactured by continuous casting, heated to 1430 ° C, hot-rolled to make a hot-rolled plate with a plate thickness of 2.4 mm, and then hot-rolled and annealed. Was given. Then, the intermediate plate thickness was adjusted to 0.40 mm by cold rolling, and intermediate annealing was carried out. Then, after removing the subscale on the surface by pickling with hydrochloric acid, cold rolling was carried out again to obtain a cold-rolled plate having a plate thickness of 0.23 mm.
Further, by the following procedure, cold-rolled steel sheets in which regions I and II of linear grooves having different cross-sectional areas in the rolling direction are alternately arranged in the rolling direction as shown in FIG. 3 were produced.
First, the surface of the cold-rolled steel sheet is masked by printing resist ink on the surface of the steel sheet with a groove roll having a predetermined groove width and a pitch of 6 mm shown in Table 1, and electrolytic etching is performed so as to have a predetermined groove depth. To form a region I of a linear groove (also simply referred to as a region I or a groove I in the present invention). The region I of the linear groove was formed at an angle of 10 ° with respect to the direction orthogonal to the rolling.
Next, after removing the ink printed first, the ink is shifted by 3 mm to have a predetermined groove width, and masking is performed by printing resist ink on the surface of the steel sheet with a groove roll having a pitch of 6 mm so as to have a predetermined groove depth. Electrolytic etching was performed to form a region II of the linear groove (also simply referred to as region II or groove II in the present invention). As a result, the regions I and II of the linear grooves are alternately arranged on the surface of the cold-rolled steel sheet at intervals of 3 mm.
Furthermore, the ink printed a second time is removed, annealed by decarburization, and then an annealed separator containing MgO as a main component is applied, and the final purpose is to form and purify a secondary recrystallization / forsterite film. Finish annealing was carried out. Further, after applying the insulating coat, it was baked at 850 ° C. to apply the coating. This coating coating process also serves as flattening annealing.

Figure 0007010321000001
Figure 0007010321000001

表1に示した条件にて、領域I、IIの線状溝を形成した鋼板の磁気特性を比較した。磁気特性評価は、JIS C 2550に規定されているエプスタイン磁気特性試験によって行った。低い磁化領域での磁気特性としてW13/50、高い磁化領域での磁気特性としてB8、さらに鋼板グレードを決める特性であるW17/50を評価した。図4にW13/50、図5にB8、図6にW17/50の評価結果をそれぞれ示す。 Under the conditions shown in Table 1, the magnetic properties of the steel sheets forming the linear grooves in regions I and II were compared. The magnetic characterization was performed by the Epstein magnetic characterization test specified in JIS C 2550. W 13/50 was evaluated as the magnetic characteristic in the low magnetization region, B 8 was evaluated as the magnetic characteristic in the high magnetization region, and W 17/50 was evaluated as the characteristic that determines the steel sheet grade. Figure 4 shows the evaluation results of W 13/50 , Figure 5 shows the evaluation results of B 8 , and Figure 6 shows the evaluation results of W 17/50 .

溝体積の大きい条件で領域I、IIの両方に溝を形成した条件1,4,7では、低磁化領域での磁気特性W13/50、鋼板グレードを決める特性W17/50は良好なものの、高い磁化領域での磁気特性B8は劣った。逆に、溝体積の小さい条件で領域I、IIの両方に溝を形成した条件3,6,9では、高い磁化領域での磁気特性B8は良好なものの、低い磁化領域での磁気特性W13/50、鋼板グレードを決める特性W17/50は劣った。一方、溝体積の大きい条件と溝体積の小さい条件で、交互に並ぶ領域I、IIに溝を形成した条件2,5,8では、低い磁化領域での磁気特性W13/50、鋼板グレードを決める特性W17/50、高い磁化領域での磁気特性B8いずれも良好な結果であった。 Under conditions 1, 4, and 7 in which grooves are formed in both regions I and II under the condition of a large groove volume, the magnetic characteristics W 13/50 in the low magnetization region and the characteristics W 17/50 that determine the steel sheet grade are good. , The magnetic property B 8 in the high magnetization region was inferior. On the contrary, under the conditions 3, 6 and 9 in which the grooves are formed in both the regions I and II under the condition that the groove volume is small, the magnetic characteristics B 8 in the high magnetization region are good, but the magnetic characteristics W in the low magnetization region. 13/50, the characteristic W 17/50 that determines the steel plate grade was inferior. On the other hand, under conditions 2, 5 and 8 in which grooves are formed in regions I and II that are alternately arranged under the condition that the groove volume is large and the condition that the groove volume is small, the magnetic characteristics W 13/50 and the steel plate grade in the low magnetization region are obtained. Both the determined characteristic W 17/50 and the magnetic characteristic B 8 in the high magnetization region gave good results.

上記実験結果より、異なる溝体積を有する線状溝を並べることで、低い磁化領域と高い磁化領域での磁気特性が両立することが可能であることが示唆された。そこで、発明者らは、異なる溝体積を有する線状溝を如何に並べれば良いのか検討を行った。 From the above experimental results, it was suggested that by arranging linear grooves having different groove volumes, it is possible to achieve both magnetic properties in a low magnetization region and a high magnetization region. Therefore, the inventors have investigated how to arrange linear grooves having different groove volumes.

まず、各線状溝が有する溝体積を定量化した。指標として、以下に定義される線状溝の圧延方向断面積を用いた。
線状溝の圧延方向断面積=溝の圧延方向幅×溝の板厚方向深さ×溝形成割合(点列状に溝が形成される割合を実数で示す。よって、連続状の溝では1となり、半分の頻度で溝が形成されていれば0.5となる)
溝の圧延方向幅(本発明において単に溝幅とも称す)は、表面から光学顕微鏡で観察し、その幅を計測すればよい。図7-aに示すように、本発明における、溝幅はおおよそ一定(10%程度以内のバラつきは本発明の効果に影響を与えないため許容される)に形成しているため、溝を幅方向5点計測しその平均を溝の圧延方向幅とする。また、図7-bに示すように、溝幅を途中で変更した場合、それぞれの溝の幅につき3点ずつ計測し、それぞれの溝の長さを加重した平均を溝の圧延方向幅とする。さらに、図7-cに示すように、点列状に溝が形成されている場合、溝が形成されている部分の圧延方向幅をそれぞれで少なくとも3点測定すればよい。
First, the groove volume of each linear groove was quantified. As an index, the cross-sectional area in the rolling direction of the linear groove defined below was used.
Rolling direction cross-sectional area of linear groove = Rolling direction width of groove x Depth in plate thickness direction of groove x Groove formation ratio (The ratio of grooves formed in a dotted line is shown as a real number. Therefore, 1 for continuous grooves. If the groove is formed half as often, it will be 0.5)
The rolling direction width of the groove (also simply referred to as the groove width in the present invention) may be observed from the surface with an optical microscope and the width may be measured. As shown in FIG. 7-a, since the groove width in the present invention is formed to be approximately constant (variation within about 10% is permissible because it does not affect the effect of the present invention), the groove width is formed. Measure 5 points in the direction and use the average as the rolling direction width of the groove. In addition, as shown in Fig. 7-b, when the groove width is changed in the middle, 3 points are measured for each groove width, and the average weighted by the length of each groove is taken as the groove rolling direction width. .. Further, as shown in FIG. 7-c, when the grooves are formed in a row of dots, at least three points may be measured at least for each of the rolling direction widths of the portions where the grooves are formed.

他方、溝の板厚方向深さ(本発明において単に溝深さとも称す)は、接触式やレーザ方式等の粗度計を用いて計測する。鋼板表面を基準高さとした溝底部の最大深さを、溝の板厚方向深さとする。
図7-cに示すように、点列状に溝が形成されている場合、圧延方向断面積は、溝の圧延方向幅×溝の板厚方向深さの数値に、溝形成割合(=(溝形成部長さa)/(溝形成部長さa+溝不形成部長さb)を乗じたものとなる。
On the other hand, the depth in the plate thickness direction of the groove (also simply referred to as the groove depth in the present invention) is measured by using a roughness meter such as a contact type or a laser method. The maximum depth of the groove bottom with the surface of the steel plate as the reference height is defined as the depth in the plate thickness direction of the groove.
As shown in FIG. 7-c, when the grooves are formed in a dotted line, the rolling direction cross-sectional area is the value of the rolling direction width of the groove × the depth in the plate thickness direction of the groove, and the groove formation ratio (= ( It is the product of the groove forming portion length a) / (groove forming portion length a + groove non-forming portion length b).

<実験2>
実験1と同様の手順で、0.23mm厚の冷延板を作製し、表2-1に示す条件で、様々な組み合わせの異なる溝断面積を有する線状溝が形成された冷延板を作製した。実験1と同様、溝の作製は、レジストインキによるマスキングと電解エッチングにて行い、溝Iを作製後、インキを剥がして、再度レジストインキによるマスキングと電解エッチングを行って溝IIを形成した。いずれの条件も、線状溝は圧延直交方向に対し10°傾けて形成した。一部条件では、図8-a,bに示すように、点列状に溝を形成した。なお、図8-aに示した「不連続1」の条件では溝形成部長さa=3mm、溝不形成部長さb=2mmとし、図8-bに示した「不連続2」の条件では溝形成部長さa=1.5mm、溝不形成部長さb=3.5mmとなる形成パターンの溝ロールを用いた。なお、図8-a,b中、1は溝形成部長さa、2は溝不形成部長さbである。
<Experiment 2>
In the same procedure as in Experiment 1, a cold rolled plate with a thickness of 0.23 mm was prepared, and under the conditions shown in Table 2-1 a cold rolled plate in which linear grooves having different groove cross-sectional areas were formed in various combinations was prepared. did. Similar to Experiment 1, the groove was formed by masking with resist ink and electrolytic etching. After forming groove I, the ink was peeled off, and masking with resist ink and electrolytic etching were performed again to form groove II. Under both conditions, the linear groove was formed at an angle of 10 ° with respect to the direction orthogonal to the rolling. Under some conditions, grooves were formed in a dot sequence as shown in FIGS. 8-a and b. Under the condition of "discontinuity 1" shown in FIG. 8-a, the groove forming portion length a = 3 mm and the groove non-forming portion length b = 2 mm, and under the condition of "discontinuity 2" shown in FIG. 8-b. A groove roll with a forming pattern was used in which the groove forming portion length a = 1.5 mm and the groove non-forming portion length b = 3.5 mm. In FIGS. 8-a and b, 1 is the groove forming portion length a, and 2 is the groove non-forming portion length b.

溝IIの形成後、インクを除去し、脱炭焼鈍を施した後、MgOを主成分とする焼鈍分
離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を実施した。さらに、絶縁コートを塗布し、850℃にて焼付けた。
その後、実験1と同様に、エプスタイン磁気特性試験に準拠し、低い磁化領域での磁気特性としてW13/50、高い磁化領域での磁気特性としてB8、さらに鋼板グレードを決める特性であるW17/50を評価した。
表2-2に、磁気測定結果を示す。なお、低い磁化領域と高い磁化領域での磁気特性が両立しているかの判定として、以下の条件で整理した。
After forming the groove II, the ink is removed, decarburized and annealed, and then an annealing separator containing MgO as a main component is applied to form a secondary recrystallization / forsterite film and final finish annealing for the purpose of purification. Was carried out. Further, an insulating coat was applied and baked at 850 ° C.
After that, as in Experiment 1, according to the Epstein magnetic property test, W 13/50 is the magnetic property in the low magnetization region, B 8 is the magnetic property in the high magnetization region, and W 17 is the characteristic that determines the steel plate grade. Evaluated / 50 .
Table 2-2 shows the magnetic measurement results. In addition, as a judgment as to whether the magnetic characteristics in the low magnetization region and the high magnetization region are compatible, the following conditions are arranged.

"◎":W13/50≦0.40W/kgかつB8≧1.900TかつW17/50≦0.73W/kg
"○":◎の判定を満たさないかつW13/50≦0.43W/kgかつB8≧1.890TかつW17/50≦0.75W/kg
"×1":W13/50>0.43W/kg
"×2":B8<1.890T
"◎": W 13/50 ≤ 0.40 W / kg and B 8 ≥ 1.900T and W 17/50 ≤ 0.73 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.43 W / kg and B 8 ≥ 1.890 T and W 17/50 ≤ 0.75 W / kg
"× 1": W 13/50 > 0.43W / kg
"× 2": B 8 <1.890T

Figure 0007010321000002
Figure 0007010321000002

Figure 0007010321000003
Figure 0007010321000003

上記の判定のうち、◎または○の判定を得られた条件は、低い磁化領域と高い磁化領域での磁気特性が両立しており、優れた条件である。×1の判定となった条件は、溝導入体積が少なく、十分な磁区細分化効果が得られていない。一方、×2の判定となった条件は、溝導入体積が多く、高い磁化領域での磁気特性に劣っている。 Of the above judgments, the condition in which the judgment of ⊚ or ◯ is obtained is an excellent condition because the magnetic characteristics in the low magnetization region and the high magnetization region are compatible. The condition for determining × 1 is that the groove introduction volume is small and a sufficient magnetic domain subdivision effect is not obtained. On the other hand, the condition of determining × 2 is that the groove introduction volume is large and the magnetic characteristics in the high magnetization region are inferior.

上記実験中、◎、○の判定を得られた条件では、領域IとIIの溝の圧延方向断面積が10%以上60%以下の範囲で異なっており、さらに◎の判定を得られた条件は、領域IとIIの溝の圧延方向断面積が15%以上40%以下の範囲で異なっていた。 In the above experiment, under the conditions where the judgments of ◎ and ○ were obtained, the cross-sectional areas of the grooves in regions I and II in the rolling direction differed in the range of 10% or more and 60% or less, and the conditions where the judgment of ◎ was obtained. Was different in the range where the rolling direction cross-sectional areas of the grooves of regions I and II were 15% or more and 40% or less.

以上の実験から、鋼板の片面に導入された線状溝の圧延方向断面積が少なくとも2種あり、かつかかる圧延方向断面積が10%以上60%以下異なっている線状溝が圧延方向に並ぶ方向性電磁鋼板であることが、0.27mm以下といった薄鋼板において、低い磁化領域と高い磁化領域での磁気特性が両立できる方向性電磁鋼板であることが明らかになり、本発明の完成に至った。 From the above experiments, there are at least two types of linear grooves introduced on one side of the steel sheet in the rolling direction, and the linear grooves having different rolling direction cross-sectional areas of 10% or more and 60% or less are lined up in the rolling direction. It has been clarified that the directional electromagnetic steel sheet is a directional electromagnetic steel sheet that can achieve both magnetic properties in a low magnetization region and a high magnetization region in a thin steel sheet of 0.27 mm or less, and the present invention has been completed. ..

発明者らは、0.27mm以下といった薄鋼板に適用する場合、低い磁化領域と高い磁化領域での磁気特性とを両立できることを知見した。ただし、過去の公知知見(前記特許公報)とは異なり、浅溝を有する線状溝と深溝を有する線状溝を交互に配置するといった、溝の深さのみでの制御では、特性向上が認められるものの、その効果は小さいことを知見した。すなわち、先にも述べたように、鋼板の板厚が薄い場合、特に高い磁化領域での磁気特性が溝で劣化してしまうことが問題となる。よって、板厚が薄い場合は、線状溝の圧延方向断面積をパラメータとして、深さだけでなく、特に、溝の圧延方向幅を変えることや、長さ方向を変えるすなわち点列状に形成することなど、溝形成パターンを三次元的に調整することで初めて、高い磁化領域での磁束集中や、磁化回転による磁気特性劣化を抑制することができると考えられる。 The inventors have found that when applied to a thin steel sheet having a thickness of 0.27 mm or less, it is possible to achieve both a low magnetization region and a magnetic property in a high magnetization region. However, unlike the publicly known knowledge in the past (the above-mentioned patent publication), the characteristic improvement is recognized by the control only by the groove depth, such as arranging the linear grooves having shallow grooves and the linear grooves having deep grooves alternately. However, it was found that the effect was small. That is, as described above, when the thickness of the steel sheet is thin, there is a problem that the magnetic characteristics in a particularly high magnetization region deteriorate in the groove. Therefore, when the plate thickness is thin, the rolling direction cross-sectional area of the linear groove is used as a parameter to change not only the depth but also the rolling direction width of the groove or change the length direction, that is, it is formed in a dotted shape. It is considered that magnetic flux concentration in a high magnetization region and deterioration of magnetic characteristics due to magnetization rotation can be suppressed only by three-dimensionally adjusting the groove formation pattern.

本発明は上記の知見に基づき得られたものであり、本発明の要旨構成は次のとおりである。
1.鋼板片面に、圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の線状溝を有する方向性電磁鋼板であって、
上記線状溝は、圧延方向断面積の異なる少なくとも2種を有し、上記線状溝において、最も大きい圧延方向断面積をA(mm2)および最も小さい圧延方向断面積をB(mm2)とするとき、{(A-B)/A}×100が10%以上60%以下であり、かつ板厚が0.27mm以下である方向性電磁鋼板。
The present invention has been obtained based on the above findings, and the gist structure of the present invention is as follows.
1. 1. A grain-oriented electrical steel sheet having a plurality of linear grooves on one side of a steel sheet, which extends linearly in a direction crossing the rolling direction and is arranged at intervals in the rolling direction.
The linear groove has at least two types having different rolling direction cross-sectional areas, and in the linear groove, the largest rolling direction cross-sectional area is A (mm 2 ) and the smallest rolling direction cross-sectional area is B (mm 2 ). , {(AB) / A} × 100 is 10% or more and 60% or less, and the plate thickness is 0.27 mm or less.

2.前記断面積Aを有する線状溝および前記断面積Bを有する線状溝を圧延方向に交互に繰り返して備える前記1に記載の方向性電磁鋼板。 2. 2. The grain-oriented electrical steel sheet according to 1 above, wherein the linear grooves having the cross-sectional area A and the linear grooves having the cross-section B are alternately and repeatedly provided in the rolling direction.

3.前記1または2に記載の方向性電磁鋼板を製造する方法であって、方向性電磁鋼板用スラブを、熱間圧延し、ついで必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面に焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、張力コーティング及び平坦化焼鈍を施す線状溝を有する方向性電磁鋼板の製造方法において、
(1) 最終板厚を0.27mm以下とする
(2) 前記線状溝は、鋼板片面に、圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の線状の溝であって、最終仕上げ焼鈍前に形成する
(3) 前記線状溝を形成する際、圧延方向断面積の異なる少なくとも2種を形成し、かつ上記線状溝において、最も大きい圧延方向断面積をA(mm2)および最も小さい圧延方向断面積をB(mm2)とするとき、{(A-B)/A}×100が10%以上60%以下の範囲となる溝の形成を連続又は不連続に行う
方向性電磁鋼板の製造方法。
3. 3. The method for manufacturing a directional electromagnetic steel sheet according to 1 or 2 above, wherein the slab for directional electromagnetic steel sheets is hot-rolled, then annealed by hot-rolled sheet as necessary, and then once or intermediately. After cold rolling two or more times with annealing in between to finish the final plate thickness, decarburization annealing is performed, then an annealing separator is applied to the surface of the steel sheet, then final finish annealing is performed, and then tension is applied. In a method for manufacturing a directional electromagnetic steel sheet having linear grooves to be coated and flattened and annealed.
(1) Make the final plate thickness 0.27 mm or less
(2) The linear grooves are a plurality of linear grooves that extend linearly across the rolling direction and are lined up at intervals in the rolling direction on one side of the steel sheet, and are formed before final finishing annealing. do
(3) When forming the linear groove, at least two types having different rolling direction cross-sectional areas are formed, and in the linear groove, the largest rolling direction cross-sectional area is A (mm 2 ) and the smallest rolling direction break. A method for manufacturing a directional electromagnetic steel plate that continuously or discontinuously forms a groove in which {(AB) / A} × 100 is in the range of 10% or more and 60% or less when the area is B (mm 2 ). ..

4.前記断面積Aを有する線状溝または前記断面積Bを有する線状溝を圧延方向に形成し、ついで、断面積Aを有する線状溝を形成した場合は断面積Bを有する線状溝を、また断面積Bを有する線状溝を形成した場合は断面積Aを有する線状溝を形成する前記3に記載の方向性電磁鋼板の製造方法。 4. When the linear groove having the cross-sectional area A or the linear groove having the cross-sectional area B is formed in the rolling direction, and then the linear groove having the cross-sectional area A is formed, the linear groove having the cross-sectional area B is formed. The method for manufacturing a directional electromagnetic steel plate according to 3 above, wherein when a linear groove having a cross-sectional area B is formed, a linear groove having a cross-sectional area A is formed.

本発明によれば、低い磁化領域から高い磁化領域までの広範囲において、磁気特性に優れた方向性電磁鋼板を提供することができる。また、併せて、その方向性電磁鋼板を効果的に得られる製造方法を提供することができる。 According to the present invention, it is possible to provide a grain-oriented electrical steel sheet having excellent magnetic properties in a wide range from a low magnetization region to a high magnetization region. In addition, it is possible to provide a manufacturing method for effectively obtaining the grain-oriented electrical steel sheet.

従来の磁区細分化処理を行った鋼板の線状溝の領域を示す図である。It is a figure which shows the region of the linear groove of the steel sheet which performed the conventional magnetic domain subdivision processing. 特許公報に記載の磁区細分化処理を行った鋼板の線状溝を示す図である。It is a figure which shows the linear groove of the steel sheet which performed the magnetic domain subdivision processing described in the patent gazette. 本発明を導くために行った実験における磁区細分化処理を行った鋼板の線状溝を示す図である。It is a figure which shows the linear groove of the steel sheet which performed the magnetic domain subdivision treatment in the experiment which carried out to guide this invention. 溝体積の形成条件毎の鋼板のW13/50の値を示した図である。It is the figure which showed the value of W 13/50 of the steel sheet for each groove volume formation condition. 溝体積の形成条件毎の鋼板のB8の値を示した図である。It is the figure which showed the value of B 8 of the steel sheet for each formation condition of the groove volume. 溝体積の形成条件毎の鋼板のW17/50の値を示した図である。It is the figure which showed the value of W 17/50 of the steel sheet for each groove volume formation condition. 図7-a、図7-b、図7-cは、それぞれ溝領域の定義を説明する概念図である。FIGS. 7-a, 7-b, and 7-c are conceptual diagrams illustrating the definition of the groove region, respectively. 図8-aは不連続な溝領域を説明する概念図であり、図8-bは他の不連続な溝領域を説明する概念図である。FIG. 8-a is a conceptual diagram illustrating a discontinuous groove region, and FIG. 8-b is a conceptual diagram illustrating another discontinuous groove region.

以下、本発明の詳細を説明する。
前述のとおり、低い磁化領域から高い磁化領域までの磁気特性に優れた方向性電磁鋼板には、以下の条件で、鋼板片面に、圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の線状の溝を形成することが重要である。
(1)導入された線状溝は圧延方向断面積が異なる2種以上存在すること
(2)(1)の圧延方向断面積が最大のものと最小のものとで10%以上60%以下の範囲で異なること
好ましくは、
(3)(2)の圧延方向断面積の異なる線状溝が圧延方向に交互に並ぶこと
より好ましくは、
(4)上記圧延方向断面積の異なる範囲が15%以上40%以下であること
(5)上記線状溝は、圧延方向と直角な方向に30度以内の角度で周期的に線状に延びること
である。
Hereinafter, the details of the present invention will be described.
As described above, for grain-oriented electrical steel sheets with excellent magnetic properties from the low magnetization region to the high magnetization region, they extend linearly on one side of the steel sheet in the direction crossing the rolling direction and are spaced in the rolling direction under the following conditions. It is important to form multiple linear grooves that are lined up side by side.
(1) There are two or more types of introduced linear grooves with different cross-sectional areas in the rolling direction.
(2) It is preferable that the cross-sectional area in the rolling direction of (1) differs between the maximum one and the minimum one in the range of 10% or more and 60% or less.
(3) It is preferable that linear grooves having different cross-sectional areas in the rolling direction of (2) are alternately arranged in the rolling direction.
(4) The range of different cross-sectional areas in the rolling direction is 15% or more and 40% or less.
(5) The linear groove periodically extends linearly at an angle within 30 degrees in the direction perpendicular to the rolling direction.

本発明に従う線状溝を有する方向性電磁鋼板で、上記線状溝の圧延方向断面積を少なくとも2種(例えば領域IとII)とし、該圧延方向断面積の大きい領域IをA(mm2)、小さい領域IIをB(mm2)とするとき、AとBの比率(%)が10%以上60%以下(={(A-B)/A}×100)(本発明において断面積差ともいう)とする。また、断面積Aを有する線状溝と断面積Bを有する線状溝とを圧延方向に交互に繰り返すことが好ましい。
なお、本発明においてAとBの比率(%)は上述の通り10%以上60%以下の範囲とする。というのは、低い磁化領域と高い磁化領域での磁気特性が効果的に両立できるからである。好ましくは、上記比率が15%以上40%以下の範囲である
また、上記断面積差を得るために、溝の深さのみの変更ではなく、溝の幅方向も併せて変更することが好ましい。また、溝の長さ方向も併せ、三次元的に変更することが望ましい。
In a directional electromagnetic steel plate having a linear groove according to the present invention, the rolling direction cross-sectional area of the linear groove is at least two types (for example, regions I and II), and the region I having a large rolling direction cross-sectional area is A (mm 2 ). ), When the small region II is B (mm 2 ), the ratio (%) of A and B is 10% or more and 60% or less (= {(AB) / A} × 100) (cross-sectional area in the present invention). Also called the difference). Further, it is preferable that the linear groove having the cross-sectional area A and the linear groove having the cross-sectional area B are alternately repeated in the rolling direction.
In the present invention, the ratio (%) of A and B is in the range of 10% or more and 60% or less as described above. This is because the magnetic properties in the low magnetization region and the high magnetization region can be effectively compatible with each other. Preferably, the ratio is in the range of 15% or more and 40% or less. Further, in order to obtain the cross-sectional area difference, it is preferable to change not only the depth of the groove but also the width direction of the groove. It is also desirable to change the length direction of the groove three-dimensionally.

本発明において、線状の溝の圧延方向断面積は、前述したように、以下のとおりに定義し測定する。
[線状溝の圧延方向断面積]=[溝の圧延方向幅]×[溝の板厚方向深さ]×[溝形成割合]
In the present invention, the cross-sectional area of the linear groove in the rolling direction is defined and measured as follows, as described above.
[Cross-sectional area in the rolling direction of the linear groove] = [Width in the rolling direction of the groove] x [Depth in the plate thickness direction of the groove] x [Groove formation ratio]

[溝の圧延方向幅]は、表面から光学顕微鏡で観察し、その幅を計測すればよい。図7-aに示すように、本発明における、溝幅はおおよそ一定(10%程度以内のバラつきは本発明の効果に影響を与えないため許容される)に形成しているため、溝の形成方向である鋼板幅方向に適当な間隔で5点計測しその平均を溝の圧延方向幅とする。また、図7-bに示すように、溝幅を途中で変更した場合、それぞれの溝の幅につき適当な間隔で3点ずつ計測し、それぞれの溝の長さを加重した平均を溝の圧延方向幅とする。さらに、図7-cに示すように、点列状に溝が形成されている場合、溝が形成されている部分の圧延方向幅をそれぞれで少なくとも適当な間隔で3点測定すればよい。 The [rolling direction width of the groove] may be observed from the surface with an optical microscope and the width may be measured. As shown in FIG. 7-a, since the groove width in the present invention is formed to be approximately constant (variation within about 10% is permissible because it does not affect the effect of the present invention), the groove is formed. Five points are measured at appropriate intervals in the steel plate width direction, which is the direction, and the average thereof is taken as the rolling direction width of the groove. In addition, as shown in Fig. 7-b, when the groove width is changed in the middle, the width of each groove is measured at three points at appropriate intervals, and the average weighted by the length of each groove is rolled. The width of the direction. Further, as shown in FIG. 7-c, when the grooves are formed in a row of dots, the rolling direction width of the portions where the grooves are formed may be measured at three points at least at appropriate intervals.

[溝の板厚方向深さ]は、接触式やレーザ方式等の粗度計を用いて計測する。鋼板表面を基準高さとした、溝底部の最大深さを[溝の板厚方向深さ]とする。
また、図7-cに示すように、点列状に溝が形成されている場合、圧延方向断面積は、溝の圧延方向幅×溝の板厚方向深さの数値に、[溝形成割合](=(溝形成部長さa)/(溝形成部長さa+溝不形成部長さb)を乗じたものとする。
[Depth in the plate thickness direction of the groove] is measured using a roughness meter such as a contact type or a laser method. The maximum depth of the groove bottom with the surface of the steel plate as the reference height is defined as [the depth in the thickness direction of the groove].
Further, as shown in FIG. 7-c, when the grooves are formed in a row of dots, the cross-sectional area in the rolling direction is the numerical value of the rolling direction width of the groove × the depth in the plate thickness direction of the groove, and [groove formation ratio]. ] (= (Groove forming portion length a) / (Groove forming portion length a + Groove non-forming portion length b) shall be multiplied.

なお、溝の形成は、再現性が極めて高いため、前記の領域(例えば、領域I)当たり1つの線状に延びる領域(以下、1ラインという)を前述したように適当な間隔で5点測定すれば良い。よって、例えば、体積の異なる領域が2種(領域Iと領域II)であれば、体積の異なる線状に延びる領域を1種につき1ライン、すなわち、領域I、領域IIのそれぞれにつき1ラインを選んで測定すれば、上記溝の圧延方向幅、溝の板厚方向深さおよび溝形成割合のそれぞれが求められる。 Since the formation of the groove is extremely reproducible, one linearly extending region (hereinafter referred to as one line) per the region (for example, region I) is measured at five points at appropriate intervals as described above. Just do it. So, for example, if there are two types of regions with different volumes (region I and region II), one line for each type of linearly extending region with different volumes, that is, one line for each of region I and region II. If selected and measured, the width in the rolling direction of the groove, the depth in the plate thickness direction of the groove, and the groove formation ratio can be obtained.

ここで、本発明の周期的とは、圧延方向に所定の間隔で、圧延方向と直角な方向に対して30度以内の角度で線状に延びることや、鋼板の90%以上の面積で本発明の条件を満足している場合も含むものとする。いずれの場合も、本発明の効果を得ることができるからである。 Here, the term "periodic" of the present invention means that the material extends linearly at a predetermined interval in the rolling direction at an angle within 30 degrees with respect to the direction perpendicular to the rolling direction, and that the area is 90% or more of the steel sheet. It shall include the case where the conditions of the invention are satisfied. This is because the effect of the present invention can be obtained in either case.

[[溝形成方法]]
線状溝の形成は、局所的にエッチング処理する方法、刃物などでけがく方法、突起付きロールで圧延する方法などが挙げられるが、最も好ましいのは、最終冷延後の鋼板に印刷等によりエッチングレジストを付着させたのち、非付着域に電解エッチング処理により線状溝を形成する方法である。また、溝底部にフォルステライト被膜が形成されることが、磁区細分化にとって好適のため、溝形成をフォルステライト被膜が形成される最終仕上げ焼鈍前に実施することが好ましい。
なお、線状溝の圧延方向と直角な向きに対するずれは±30°以内とすることが好ましい。また、本発明において、「線状」とは、実線だけでなく、点線や破線など点列状も含むものとする。
[[Groove formation method]]
Examples of the formation of the linear groove include a method of locally etching, a method of scratching with a blade, a method of rolling with a roll with protrusions, etc., but the most preferable method is printing on a steel sheet after final cold rolling. This is a method of forming a linear groove by electrolytic etching treatment in a non-adhesive region after attaching an etching resist. Further, since it is preferable to form a forsterite film on the bottom of the groove for magnetic domain subdivision, it is preferable to perform the groove formation before the final finish annealing in which the forsterite film is formed.
The deviation of the linear groove with respect to the direction perpendicular to the rolling direction is preferably within ± 30 °. Further, in the present invention, the term "linear" includes not only a solid line but also a dotted line such as a dotted line or a broken line.

[[異なる圧延方向断面積を持つ線状溝を形成する方法]]
前記の線状溝を形成する条件を満たす限りにおいては、いずれの方法を用いることができる。例えば、エッチングレジストと電解エッチングを用いる方法では、複数回の印刷とエッチングを繰り返すことにより、異なる圧延方向断面積を持つ線状溝を所望の範囲に形成することができる。また、溝ロールによるエッチングレジスト印刷をする場合には、溝ロール側の溝パターン(溝幅や点列溝とするなど)を所望の範囲で変えれば、同じく異なる圧延方向断面積を持つ線状溝を所望の範囲に形成することができる。さらに、突起付きロールによる圧延の方法では、突起付きロールの突起パターンを周期的に変えれば、同じく異なる圧延方向断面積を持つ線状溝を所望の範囲に形成することができる。
[[Method of forming linear grooves with different rolling direction cross-sectional areas]]
Any method can be used as long as the conditions for forming the linear groove are satisfied. For example, in the method using an etching resist and electrolytic etching, linear grooves having different rolling direction cross-sectional areas can be formed in a desired range by repeating printing and etching a plurality of times. Further, in the case of etching resist printing using a groove roll, if the groove pattern on the groove roll side (groove width, dotted groove, etc.) is changed within a desired range, a linear groove having a different rolling direction cross-sectional area is also obtained. Can be formed in a desired range. Further, in the method of rolling with a roll with protrusions, if the protrusion pattern of the roll with protrusions is periodically changed, linear grooves having different rolling direction cross-sectional areas can be formed in a desired range.

また、本発明に従う少なくとも2種の圧延方向断面積を持つ線状溝を形成するには、以下のレーザを使った方法を用いることが好適である。
この方法では、鋼板全面にレジストインクを塗布し、この塗布面にレーザを圧延方向に交差する方向に走査して線状にレジストを除去した後、電解エッチングを行ってレジストが除去された領域(非付着域)に線状溝を形成する。その際、照射エネルギーやビーム径などのレーザ照射条件を走査位置ごとに変更することで、容易にレジスト非付着域の圧延方向幅や不連続等の形状を変更することができ、その結果として、本発明で所望する、異なる圧延方向断面積を持つ線状溝の形成パターンを得ることができる。
なお、レーザ照射条件を変えるには、例えば複数台のレーザ照射装置を用意し、それぞれの装置でレーザ照射条件を変えて、同一の鋼帯にレーザを照射する、あるいは単一のレーザ照射装置で走査速度を変更する、レーザ照射のオンオフで、不連続に非付着域を形成する等の方法が挙げられる。
Further, in order to form a linear groove having at least two types of cross-sectional areas in the rolling direction according to the present invention, it is preferable to use the following method using a laser.
In this method, resist ink is applied to the entire surface of the steel sheet, a laser is scanned on the coated surface in a direction intersecting the rolling direction to remove the resist linearly, and then electrolytic etching is performed to remove the resist (region (). A linear groove is formed in the non-adhesive area). At that time, by changing the laser irradiation conditions such as irradiation energy and beam diameter for each scanning position, it is possible to easily change the shape such as the rolling direction width and discontinuity of the resist non-adherent region, and as a result, It is possible to obtain a linear groove formation pattern having a different rolling direction cross-sectional area, which is desired in the present invention.
To change the laser irradiation conditions, for example, prepare multiple laser irradiation devices, change the laser irradiation conditions in each device, and irradiate the same steel strip with the laser, or use a single laser irradiation device. Methods such as changing the scanning speed and forming a non-adhesive region discontinuously by turning on / off the laser irradiation can be mentioned.

本発明に従う方向性電磁鋼板の製造方法においては、以下の項目が重要である。
(1) 鋼板の最終板厚を0.27mm以下とする。
(2) 鋼板表面の線状溝は、鋼板片面に、圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の線状の溝であって、最終仕上げ焼鈍前に形成する。
(3) 前記線状溝を形成する際、圧延方向断面積の異なる少なくとも2種を形成し、かつ上記線状溝において、最も大きい圧延方向断面積をA(mm2)および最も小さい圧延方向断面積をB(mm2)とするとき、{(A-B)/A}×100が10%以上60%以下の範囲となる溝の形成を連続又は不連続に行う。
The following items are important in the method for manufacturing grain-oriented electrical steel sheets according to the present invention.
(1) The final thickness of the steel plate shall be 0.27 mm or less.
(2) The linear grooves on the surface of the steel sheet are multiple linear grooves that extend linearly across the rolling direction and are lined up at intervals in the rolling direction on one side of the steel sheet, and are before final finishing annealing. Form to.
(3) When forming the linear groove, at least two types having different rolling direction cross-sectional areas are formed, and in the linear groove, the largest rolling direction cross-sectional area is A (mm 2 ) and the smallest rolling direction break. When the area is B (mm 2 ), the grooves in which {(AB) / A} × 100 is in the range of 10% or more and 60% or less are continuously or discontinuously formed.

また、上記溝形成をする際、前記断面積Aを有する線状溝または前記断面積Bを有する線状溝を圧延方向に形成し、ついで、断面積Aを有する線状溝を形成した場合は断面積Bを有する線状溝をまた断面積Bを有する線状溝を形成した場合は断面積Aを有する線状溝を形成するという手順を採ることが好ましい。 Further, when the groove is formed, the linear groove having the cross-sectional area A or the linear groove having the cross-sectional area B is formed in the rolling direction, and then the linear groove having the cross-sectional area A is formed. When a linear groove having a cross-sectional area B is formed and a linear groove having a cross-sectional area B is formed, it is preferable to take a procedure of forming a linear groove having a cross-sectional area A.

本発明の方向性電磁鋼板を製造する方法において、上記磁区細分化処理に直接関係しない事柄については特に限定されないが、推奨される好適成分組成および本発明のポイント以外の製造方法について以下に述べる。 In the method for producing grain-oriented electrical steel sheets of the present invention, matters not directly related to the magnetic domain subdivision treatment are not particularly limited, but the recommended suitable component composition and the production method other than the points of the present invention will be described below.

[成分組成]
本発明において、方向性電磁鋼板用スラブの成分組成は、二次再結晶が生じる成分組成であればよい。また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量は、それぞれ、Al:0.01~0.065質量%、N:0.005~0.012質量%、S:0.005~0.03質量%、Se:0.005~0.03質量%である。なお、最終仕上げ焼鈍においてAl、N、SおよびSeは純化され、それぞれ不可避的不純物程度の含有量に低減される。
[Ingredient composition]
In the present invention, the component composition of the slab for grain-oriented electrical steel sheets may be any component composition that causes secondary recrystallization. Further, when an inhibitor is used, for example, when an AlN-based inhibitor is used, Al and N are contained, and when an MnS / MnSe-based inhibitor is used, Mn and Se and / or S are contained in appropriate amounts. good. Of course, both inhibitors may be used in combination. In this case, the preferable contents of Al, N, S and Se are Al: 0.01 to 0.065% by mass, N: 0.005 to 0.012% by mass, S: 0.005 to 0.03% by mass and Se: 0.005 to 0.03% by mass, respectively. be. In the final finish annealing, Al, N, S and Se are purified and each of them is reduced to the content of unavoidable impurities.

さらに、本発明は、Al、N、SおよびSeの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。この場合、Al、N、SおよびSe量はそれぞれ、Al:100質量ppm以下、N:50質量ppm以下、S:50質量ppm以下およびSe:50質量ppm以下に抑制することが好ましい。 Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets that do not use inhibitors and have limited contents of Al, N, S and Se. In this case, the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less and Se: 50 mass ppm or less, respectively.

その他の基本成分および任意添加成分について述べると、次のとおりである。
C:0.08質量%以下
C量が0.08質量%を超えると磁気時効の起こらない50質量ppm以下まで製造工程中にCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はなく、0質量%でよい。なお、脱炭焼鈍においてCは鋼中から除去され、不可避的不純物程度の含有量に低減される。
The other basic components and optional additive components are as follows.
C: 0.08% by mass or less If the amount of C exceeds 0.08% by mass, it becomes difficult to reduce C to 50% by mass or less where magnetic aging does not occur during the manufacturing process. Therefore, it is preferably 0.08% by mass or less. As for the lower limit, since secondary recrystallization is possible even with a material containing no C, it is not necessary to provide it in particular, and 0% by mass may be used. In decarburization annealing, C is removed from the steel and the content is reduced to the extent of unavoidable impurities.

Si:2.0~8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下する。そのため、Si量は2.0~8.0質量%の範囲とすることが好ましい。
Si: 2.0-8.0% by mass
Si is an element that is effective in increasing the electrical resistance of steel and improving iron loss, but if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds, the workability is remarkably lowered, and the magnetic flux density is also lowered. Therefore, the amount of Si is preferably in the range of 2.0 to 8.0% by mass.

Mn:0.005~1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下する。そのため、Mn量は0.005~1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0% by mass
Mn is an element necessary for improving hot workability, but its addition effect is poor when the content is less than 0.005% by mass, while the magnetic flux density of the product plate decreases when it exceeds 1.0% by mass. Therefore, the amount of Mn is preferably in the range of 0.005 to 1.0% by mass.

上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%、Mo:0.005~0.10質量%およびCr:0.03~1.50質量%のうちから選んだ少なくとも1種
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03 to 1.50% by mass, Sn: 0.01 to 1.50% by mass, Sb: 0.005 to 1.50% by mass, Cu: 0.03 to 3.0% by mass, P: 0.03 to 0.50% by mass, Mo: 0.005 to 0.10% by mass and Cr: At least one selected from 0.03 to 1.50% by mass

Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.50質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03~1.50質量%の範囲とするのが好ましい。 Ni is a useful element for improving the thermal rolled plate structure and improving the magnetic properties. However, if the content is less than 0.03% by mass, the effect of improving the magnetic characteristics is small, while if it exceeds 1.50% by mass, the secondary recrystallization becomes unstable and the magnetic characteristics deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.50% by mass.

また、Sn、Sb、Cu、P、MoおよびCrはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さい。一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害される。そのため、それぞれ上記の範囲で含有させることが好ましい。なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。 Further, Sn, Sb, Cu, P, Mo and Cr are each elements useful for improving the magnetic properties, but if all of them do not meet the lower limit of each component described above, the effect of improving the magnetic properties is small. On the other hand, if the upper limit of each component described above is exceeded, the development of secondary recrystallized grains is inhibited. Therefore, it is preferable to contain each in the above range. The rest other than the above components are unavoidable impurities and Fe mixed in the manufacturing process.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
[加熱]
上記した成分組成を有するスラブは、常法に従い加熱する。加熱温度は、1150~1450℃の範囲が好ましい。
Next, the method for manufacturing the grain-oriented electrical steel sheet of the present invention will be described.
[heating]
The slab having the above-mentioned composition is heated according to a conventional method. The heating temperature is preferably in the range of 1150 to 1450 ° C.

[熱間圧延]
上記加熱後に、熱間圧延を行う。鋳造後、加熱せずに直ちに熱間圧延を行ってもよい。薄鋳片の場合には、直ちに熱間圧延を行うこととしてもよく、あるいは、熱間圧延を省略することとしてもよい。
熱間圧延を実施する場合は、粗圧延最終パスの圧延温度を900℃以上、仕上げ圧延最終パスの圧延温度を700℃以上で実施することが好ましい。
[Hot rolling]
After the above heating, hot rolling is performed. After casting, hot rolling may be performed immediately without heating. In the case of thin slabs, hot rolling may be performed immediately, or hot rolling may be omitted.
When hot rolling is carried out, it is preferable to carry out the rolling temperature of the rough rolling final pass at 900 ° C. or higher and the rolling temperature of the finish rolling final pass at 700 ° C. or higher.

[熱延板焼鈍]
熱間圧延後、必要に応じて熱延板焼鈍を施す。このとき、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800~1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が極めて困難となる。
[Annealed hot-rolled plate]
After hot rolling, hot-rolled sheet is annealed as necessary. At this time, in order to develop the Goth structure in the product plate to a high degree, the hot-rolled plate annealing temperature in the range of 800 to 1100 ° C. is suitable. When the hot-rolled plate annealing temperature is less than 800 ° C., the band structure in hot rolling remains, it becomes difficult to realize a sized primary recrystallization structure, and the development of secondary recrystallization is hindered. .. On the other hand, when the hot-rolled plate annealing temperature exceeds 1100 ° C., the particle size after hot-rolled plate annealing becomes too coarse, and it becomes extremely difficult to realize a sized primary recrystallized structure.

[冷間圧延]
熱間圧延または熱延板焼鈍後、1回または中間焼鈍を挟む2回以上の冷間圧延を施す。中間焼鈍温度は800℃以上1150℃以下が好適である。また、中間焼鈍時間は、10~100sec程度とすることが好ましい。
[Cold rolling]
After hot rolling or hot rolling plate annealing, cold rolling is performed once or two or more times with intermediate annealing sandwiched between them. The intermediate annealing temperature is preferably 800 ° C or higher and 1150 ° C or lower. The intermediate annealing time is preferably about 10 to 100 sec.

[脱炭焼鈍]
冷間圧延後、脱炭焼鈍を行う。脱炭焼鈍では、焼鈍温度:750~900℃、雰囲気酸化性(酸化度)PH2O/PH2:0.25~0.60および焼鈍時間:50~300sec程度とすることが好ましい。
[Decarburization annealing]
After cold rolling, decarburization annealing is performed. For decarburization annealing, it is preferable that the annealing temperature is 750 to 900 ° C., the atmosphere is oxidizing (degree of oxidation) PH 2 O / PH 2 : 0.25 to 0.60, and the annealing time is about 50 to 300 sec.

[焼鈍分離剤の塗布]
脱炭焼鈍後、焼鈍分離剤を塗布する。焼鈍分離剤は、主成分をMgOとし、塗布量を両面で8~15g/m2程度とすることが好適である。
[Applying annealing separator]
After decarburization and annealing, an annealing separator is applied. It is preferable that the main component of the annealing separator is MgO and the coating amount is about 8 to 15 g / m 2 on both sides.

[最終仕上げ焼鈍]
焼鈍分離剤の塗布後、二次再結晶およびフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す。かかる最終仕上げ焼鈍は常法によればよいが、焼鈍温度は1100℃以上、焼鈍時間は30分以上とすることが好ましい。
[Final finish annealing]
After the application of the annealing separator, final finish annealing is performed for the purpose of secondary recrystallization and formation of a forsterite film. The final finish annealing may be carried out by a conventional method, but it is preferable that the annealing temperature is 1100 ° C. or higher and the annealing time is 30 minutes or longer.

[平坦化処理および絶縁コーティング]
最終仕上げ焼鈍後には、平坦化焼鈍を行って形状を矯正することが有効である。平坦化焼鈍は、焼鈍温度:750~950℃および焼鈍時間:10~200sec程度で実施するのが好ましい。
なお、本発明では、平坦化焼鈍前または後に、鋼板表面に絶縁コーティングを施す。ここでの絶縁コーティングとは、鉄損低減のために、鋼板に張力を付与するコーティング(張力コーティング)を意味する。張力コーティングとしては、シリカを含有する無機系コーティングや、物理蒸着法、化学蒸着法等によるセラミックコーティング等が挙げられる。
[Flatration and insulation coating]
After the final finish annealing, it is effective to perform flattening annealing to correct the shape. The flattening annealing is preferably carried out at an annealing temperature of 750 to 950 ° C. and an annealing time of about 10 to 200 sec.
In the present invention, an insulating coating is applied to the surface of the steel sheet before or after flattening and annealing. The insulating coating here means a coating (tension coating) that applies tension to a steel sheet in order to reduce iron loss. Examples of the tension coating include an inorganic coating containing silica and a ceramic coating by a physical vapor deposition method, a chemical vapor deposition method, or the like.

[磁区細分化処理]
本発明の特徴の1つである磁区細分化処理は、上記した工程のいずれかの間で線状溝を形成するものであるが、前述したとおり、本発明で規定する条件に従うことが肝要である。
特に、最終冷延後であってフォルステライト被膜が形成される最終仕上げ焼鈍前に実施することが好適である。
[Magnetic domain subdivision processing]
The magnetic domain subdivision treatment, which is one of the features of the present invention, forms a linear groove between any of the above steps, but as described above, it is important to comply with the conditions specified in the present invention. be.
In particular, it is preferable to carry out after the final cold rolling and before the final finish annealing in which the forsterite film is formed.

(実施例1)
Si:3.4質量%、Mn:0.1質量%、Ni:0.2質量%、Al:240質量ppm、S:20質量ppm、C:0.07質量%、N:90質量ppmおよびSe:180質量ppmを含有し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、連続鋳造にて製造し、1430℃に加熱後、熱間圧延により板厚:2.4mmの熱延板としたのち、1100℃で20秒の熱延板焼鈍を施した。かかる熱延板焼鈍後の鋼板を、冷間圧延により中間板厚:0.40mmとし、酸化度PH2O/PH2=0.40、温度:1000℃、時間:70秒の条件で中間焼鈍を実施した。その後、かかる中間焼鈍後の鋼板を、塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、板厚:0.27、0.23、0.20mmの冷延板とした。
表3-1に示す条件で、様々な組み合わせの異なる溝断面積を有する線状溝を交互に並べた冷延板を作製した。実験1と同様、まず、レジストインキによるマスキングと電解エッチングを用いて溝Iを形成した。ついで、溝Iの形成に用いたレジストインキを剥がして、再度レジストインキによるマスキングと電解エッチングを行って溝IIを形成した。いずれの条件も、線状溝は圧延直交方向に対し10°傾けて形成した。なお、「不連続1」および「不連続2」は、実験2と同様に、図8-a,bに示した形状であって、「不連続1」の条件では図8- aに示した溝形成部長さa=3mm、溝不形成部長さb=2mmとし、「不連続2」の条件では図8-bに示した溝形成部長さa=1.5mm、溝不形成部長さb=3.5mmとなる形成パターンとした。
ついで、該冷延板を、酸化度PH2O/PH2=0.44、均熱温度:820℃で300秒保持する脱炭焼鈍を施した後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶、フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を1160℃で10h保持する条件で実施した。そして、かかる最終仕上げ焼鈍後の鋼板に、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布、850℃にて焼付けた。このコーティング塗布処理は、平坦化焼鈍も兼ねている。
かくして得られた鋼板に対し、エプスタイン試験にて磁気測定を行い、低い磁化領域での磁気特性W13/50、鋼板グレードを決める特性W17/50、高い磁化領域での磁気特性B8を評価した。
(Example 1)
Contains Si: 3.4% by mass, Mn: 0.1% by mass, Ni: 0.2% by mass, Al: 240% by mass, S: 20% by mass, C: 0.07% by mass, N: 90% by mass and Se: 180% by mass. A steel slab consisting of Fe and unavoidable impurities is manufactured by continuous casting, heated to 1430 ° C, hot-rolled to make a hot-rolled plate with a thickness of 2.4 mm, and then 20 at 1100 ° C. A second hot-rolled plate was annealed. The steel sheet after such hot-rolled sheet annealing was subjected to intermediate annealing under the conditions of an intermediate sheet thickness of 0.40 mm by cold rolling, an oxidation degree of PH 2 O / PH 2 = 0.40, a temperature of 1000 ° C., and a time of 70 seconds. .. Then, the surface subscale of the steel sheet after the intermediate annealing was removed by pickling with hydrochloric acid, and then cold rolling was performed again to obtain a cold-rolled sheet having a plate thickness of 0.27, 0.23, 0.20 mm.
Under the conditions shown in Table 3-1 cold-rolled plates were prepared by alternately arranging linear grooves having various combinations of different groove cross-sectional areas. As in Experiment 1, first, the groove I was formed by masking with resist ink and electrolytic etching. Then, the resist ink used for forming the groove I was peeled off, and masking with the resist ink and electrolytic etching were performed again to form the groove II. Under both conditions, the linear groove was formed at an angle of 10 ° with respect to the direction orthogonal to the rolling. Note that "discontinuity 1" and "discontinuity 2" have the same shapes shown in FIGS. 8-a and b as in Experiment 2, and are shown in FIGS. 8-a under the condition of "discontinuity 1". The groove forming portion length a = 3 mm and the groove non-forming portion length b = 2 mm, and under the condition of "discontinuity 2", the groove forming portion length a = 1.5 mm and the groove non-forming portion length b = 3.5 shown in Fig. 8-b. The formation pattern was mm.
Then, the cold rolled plate was subjected to decarburization annealing by holding it at an oxidation degree of PH 2 O / PH 2 = 0.44 and a soaking temperature of 820 ° C for 300 seconds, and then an annealing separator containing MgO as a main component was applied. The final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was carried out at 1160 ° C. under the condition of holding for 10 hours. Then, an insulating coat made of 60% colloidal silica and aluminum phosphate was applied to the steel sheet after the final finish annealing, and baked at 850 ° C. This coating coating process also serves as flattening annealing.
The steel sheet thus obtained is magnetically measured by the Epstein test to evaluate the magnetic property W 13/50 in the low magnetization region, the characteristic W 17/50 that determines the steel sheet grade, and the magnetic property B 8 in the high magnetization region. did.

Figure 0007010321000004
Figure 0007010321000004

表3-2に、磁気測定結果を記載する。なお、低い磁化領域と高い磁化領域での磁気特性が両立しているかの判定として、以下の条件で整理した。
板厚:0.27mmの場合
"◎":W13/50≦0.48W/kgかつB8≧1.900TかつW17/50≦0.85W/kg
"○":◎の判定を満たさないかつW13/50≦0.50W/kgかつB8≧1.890TかつW17/50≦0.88W/kg
"×1":W13/50>0.50W/kg
"×2":B8<1.890T
板厚:0.23mmの場合
"◎":W13/50≦0.40W/kgかつB8≧1.900TかつW17/50≦0.73W/kg
"○":◎の判定を満たさないかつW13/50≦0.43W/kgかつB8≧1.890TかつW17/50≦0.75W/kg
"×1":W13/50>0.43W/kg
"×2":B8<1.890T
板厚:0.20mmの場合
"◎":W13/50≦0.37W/kgかつB8≧1.895TかつW17/50≦0.67W/kg
"○":◎の判定を満たさないかつW13/50≦0.38W/kgかつB8≧1.885TかつW17/50≦0.69W/kg
"×1":W13/50>0.38W/kg
"×2":B8<1.885T
Table 3-2 shows the magnetic measurement results. In addition, as a judgment as to whether the magnetic characteristics in the low magnetization region and the high magnetization region are compatible, the following conditions are arranged.
Plate thickness: 0.27 mm
"◎": W 13/50 ≤ 0.48 W / kg and B 8 ≥ 1.900 T and W 17/50 ≤ 0.85 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.50 W / kg and B 8 ≥ 1.890 T and W 17/50 ≤ 0.88 W / kg
"× 1": W 13/50 > 0.50W / kg
"× 2": B 8 <1.890T
Plate thickness: 0.23 mm
"◎": W 13/50 ≤ 0.40 W / kg and B 8 ≥ 1.900 T and W 17/50 ≤ 0.73 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.43 W / kg and B 8 ≥ 1.890 T and W 17/50 ≤ 0.75 W / kg
"× 1": W 13/50 > 0.43W / kg
"× 2": B 8 <1.890T
Plate thickness: 0.20 mm
"◎": W 13/50 ≤ 0.37 W / kg and B 8 ≥ 1.895 T and W 17/50 ≤ 0.67 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.38 W / kg and B 8 ≥ 1.85 T and W 17/50 ≤ 0.69 W / kg
"× 1": W 13/50 > 0.38W / kg
"× 2": B 8 <1.885T

Figure 0007010321000005
Figure 0007010321000005

本発明に適合する条件4~12、17~25、30~38では、いずれの条件も、低い磁化領域および高い磁化領域の磁気特性に優れ、低い磁化領域と高い磁化領域の磁気特性を両立できていた。 Under the conditions 4 to 12, 17 to 25, and 30 to 38 suitable for the present invention, the magnetic characteristics of the low magnetization region and the high magnetization region are excellent, and the magnetic characteristics of the low magnetization region and the high magnetization region can be compatible with each other. Was there.

(実施例2)
Si:3.4質量%、Mn:0.1質量%、Ni:0.2質量%、Al:240質量ppm、S:20質量ppm、C:0.07質量%、N:90質量ppmおよびSe:180質量ppmを含有し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、連続鋳造にて製造し、1430℃に加熱後、熱間圧延により板厚:2.4mmの熱延板としたのち、1100℃で20秒の熱延板焼鈍を施した。かかる熱延板焼鈍後の鋼板を、冷間圧延により中間板厚:0.40mmとし、酸化度PH2O/PH2=0.40、温度:1000℃、時間:70秒の条件で中間焼鈍を実施した。その後、かかる中間焼鈍後の鋼板を、塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、板厚:0.27、0.23、0.20mmの冷延板とした。
表4-1に示す条件で、様々な組み合わせの異なる溝断面積を有する線状溝を3種以上並べた冷延板を作製した。実験1と同様、まず、レジストインキによるマスキングと電解エッチングを用いて溝Iを形成した。ついで、溝Iの形成に用いたレジストインキを剥がして、再度レジストインキによるマスキングと電解エッチングを行って溝IIを形成した。同様の工程を繰り返し、溝IIIを形成した後、一部に溝IVを形成し、さらにその一部に溝Vを形成した。いずれの条件も、線状溝は圧延直交方向に対し10°傾けて形成した。なお、「不連続1」および「不連続2」は、実施例1と同様に、図8-a,bに示した形状であって、「不連続1」の条件では図8- aに示した溝形成部長さa=3mm、溝不形成部長さb=2mmとし、「不連続2」の条件では図8-bに示した溝形成部長さa=1.5mm、溝不形成部長さb=3.5mmとなる形成パターンとした。
ついで、該冷延板を、酸化度PH2O/PH2=0.44、均熱温度:820℃で300秒保持する脱炭焼鈍を施した後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶、フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を1160℃で10h保持する条件で実施した。そして、かかる最終仕上げ焼鈍後の鋼板に、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布、850℃にて焼付けた。このコーティング塗布処理は、平坦化焼鈍も兼ねている。
かくして得られた鋼板に対し、エプスタイン試験にて磁気測定を行い、低い磁化領域での磁気特性W13/50、鋼板グレードを決める特性W17/50、高い磁化領域での磁気特性B8を評価した。
(Example 2)
Contains Si: 3.4% by mass, Mn: 0.1% by mass, Ni: 0.2% by mass, Al: 240% by mass, S: 20% by mass, C: 0.07% by mass, N: 90% by mass and Se: 180% by mass. A steel slab consisting of Fe and unavoidable impurities is manufactured by continuous casting, heated to 1430 ° C, hot-rolled to make a hot-rolled plate with a thickness of 2.4 mm, and then 20 at 1100 ° C. A second hot-rolled plate was annealed. The steel sheet after such hot-rolled sheet annealing was subjected to intermediate annealing under the conditions of an intermediate sheet thickness of 0.40 mm by cold rolling, an oxidation degree of PH 2 O / PH 2 = 0.40, a temperature of 1000 ° C., and a time of 70 seconds. .. Then, the surface subscale of the steel sheet after the intermediate annealing was removed by pickling with hydrochloric acid, and then cold rolling was performed again to obtain a cold-rolled sheet having a plate thickness of 0.27, 0.23, 0.20 mm.
Under the conditions shown in Table 4-1, a cold-rolled plate in which three or more types of linear grooves having different groove cross-sectional areas in various combinations were arranged was produced. As in Experiment 1, first, groove I was formed by masking with resist ink and electrolytic etching. Then, the resist ink used for forming the groove I was peeled off, and masking with the resist ink and electrolytic etching were performed again to form the groove II. The same process was repeated to form the groove III, then the groove IV was formed in a part thereof, and the groove V was further formed in a part thereof. Under both conditions, the linear groove was formed at an angle of 10 ° with respect to the direction orthogonal to the rolling. Note that "discontinuity 1" and "discontinuity 2" have the same shapes as shown in FIGS. 8-a and b, and are shown in FIGS. 8-a under the condition of "discontinuity 1". The groove forming portion length a = 3 mm and the groove non-forming portion length b = 2 mm, and under the condition of "discontinuity 2", the groove forming portion length a = 1.5 mm and the groove non-forming portion length b = shown in Fig. 8-b. The formation pattern was 3.5 mm.
Then, the cold rolled plate was subjected to decarburization annealing by holding it at an oxidation degree of PH 2 O / PH 2 = 0.44 and a soaking temperature of 820 ° C for 300 seconds, and then an annealing separator containing MgO as a main component was applied. The final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was carried out at 1160 ° C. under the condition of holding for 10 hours. Then, an insulating coat made of 60% colloidal silica and aluminum phosphate was applied to the steel sheet after the final finish annealing, and baked at 850 ° C. This coating coating process also serves as flattening annealing.
The steel sheet thus obtained is magnetically measured by the Epstein test to evaluate the magnetic property W 13/50 in the low magnetization region, the characteristic W 17/50 that determines the steel sheet grade, and the magnetic property B 8 in the high magnetization region. did.

Figure 0007010321000006
Figure 0007010321000006

表4-2に、磁気測定結果を記載する。なお、低い磁化領域と高い磁化領域での磁気特性が両立しているかの判定として、以下の条件で整理した。
板厚:0.27mmの場合
"◎":W13/50≦0.48W/kgかつB8≧1.900TかつW17/50≦0.85W/kg
"○":◎の判定を満たさないかつW13/50≦0.50W/kgかつB8≧1.890TかつW17/50≦0.88W/kg
"×1":W13/50>0.50W/kg
"×2":B8<1.890T
板厚:0.23mmの場合
"◎":W13/50≦0.40W/kgかつB8≧1.900TかつW17/50≦0.73W/kg
"○":◎の判定を満たさないかつW13/50≦0.43W/kgかつB8≧1.890TかつW17/50≦0.75W/kg
"×1":W13/50>0.43W/kg
"×2":B8<1.890T
板厚:0.20mmの場合
"◎":W13/50≦0.37W/kgかつB8≧1.895TかつW17/50≦0.67W/kg
"○":◎の判定を満たさないかつW13/50≦0.38W/kgかつB8≧1.885TかつW17/50≦0.69W/kg
"×1":W13/50>0.38W/kg
"×2":B8<1.885T
Table 4-2 shows the magnetic measurement results. In addition, as a judgment as to whether the magnetic characteristics in the low magnetization region and the high magnetization region are compatible, the following conditions are arranged.
Plate thickness: 0.27 mm
"◎": W 13/50 ≤ 0.48 W / kg and B 8 ≥ 1.900 T and W 17/50 ≤ 0.85 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.50 W / kg and B 8 ≥ 1.890 T and W 17/50 ≤ 0.88 W / kg
"× 1": W 13/50 > 0.50W / kg
"× 2": B 8 <1.890T
Plate thickness: 0.23 mm
"◎": W 13/50 ≤ 0.40 W / kg and B 8 ≥ 1.900 T and W 17/50 ≤ 0.73 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.43 W / kg and B 8 ≥ 1.890 T and W 17/50 ≤ 0.75 W / kg
"× 1": W 13/50 > 0.43W / kg
"× 2": B 8 <1.890T
Plate thickness: 0.20 mm
"◎": W 13/50 ≤ 0.37 W / kg and B 8 ≥ 1.895 T and W 17/50 ≤ 0.67 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.38 W / kg and B 8 ≥ 1.85 T and W 17/50 ≤ 0.69 W / kg
"× 1": W 13/50 > 0.38W / kg
"× 2": B 8 <1.885T

Figure 0007010321000007
Figure 0007010321000007

本発明に適合する条件3~9、13~19、23~29では、いずれの条件も、低い磁化領域および高い磁化領域の磁気特性に優れ、低い磁化領域と高い磁化領域の磁気特性を両立できていた。 Under the conditions 3 to 9, 13 to 19, and 23 to 29 suitable for the present invention, the magnetic characteristics of the low magnetization region and the high magnetization region are excellent, and the magnetic characteristics of the low magnetization region and the high magnetization region can be compatible with each other. Was there.

(実施例3)
Si:3.4質量%、Mn:0.1質量%、Ni:0.2質量%、Al:240質量ppm、S:20質量ppm、C:0.07質量%、N:90質量ppmおよびSe:180質量ppmを含有し、残部はFeおよび不可避的不純物の組成からなる鋼スラブを、連続鋳造にて製造し、1430℃に加熱後、熱間圧延により板厚:2.4mmの熱延板としたのち、1100℃で20秒の熱延板焼鈍を施した。かかる熱延板焼鈍後の鋼板を、冷間圧延により中間板厚:0.40mmとし、酸化度PH2O/PH2=0.40、温度:1000℃、時間:70秒の条件で中間焼鈍を実施した。その後、かかる中間焼鈍後の鋼板を、塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、板厚:0.27、0.23、0.20mmの冷延板とした。
鋼板表面の全面にレジストインクを塗布したあと、レーザを圧延方向と直交する向きに走査して、圧延方向に所定の列間隔を置いてレジストインクを剥離した。レーザ照射は、複数台のレーザ装置にて、シングルモードファイバーレーザをガルバノスキャナー方式によって、鋼板の端から端まで連続的にレジストインクを完全に剥離し、その後電解エッチングを施し線状溝を形成した。その際、各装置のレーザ照射エネルギー、ビーム径を変えることで、表5-1に示す条件の、様々な組み合わせの異なる溝断面積を有する線状溝を2種または3種並べた冷延板を作製した。
ついで、該冷延板を、酸化度PH2O/PH2=0.44、均熱温度:820℃で300秒保持する脱炭焼鈍を施した後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶、フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を1160℃で10h保持する条件で実施した。そして、かかる最終仕上げ焼鈍後の鋼板に、60%のコロイダルシリカとリン酸アルミニウムからなる絶縁コートを塗布、850℃にて焼付けた。このコーティング塗布処理は、平坦化焼鈍も兼ねている。
かくして得られた鋼板に対し、エプスタイン試験にて磁気測定を行い、低い磁化領域での磁気特性W13/50、鋼板グレードを決める特性W17/50、高い磁化領域での磁気特性B8を評価した。
(Example 3)
Contains Si: 3.4% by mass, Mn: 0.1% by mass, Ni: 0.2% by mass, Al: 240% by mass, S: 20% by mass, C: 0.07% by mass, N: 90% by mass and Se: 180% by mass. A steel slab consisting of Fe and unavoidable impurities is manufactured by continuous casting, heated to 1430 ° C, hot-rolled to make a hot-rolled plate with a thickness of 2.4 mm, and then 20 at 1100 ° C. A second hot-rolled plate was annealed. The steel sheet after such hot-rolled sheet annealing was subjected to intermediate annealing under the conditions of an intermediate sheet thickness of 0.40 mm by cold rolling, an oxidation degree of PH 2 O / PH 2 = 0.40, a temperature of 1000 ° C., and a time of 70 seconds. .. Then, the surface subscale of the steel sheet after the intermediate annealing was removed by pickling with hydrochloric acid, and then cold rolling was performed again to obtain a cold-rolled sheet having a plate thickness of 0.27, 0.23, 0.20 mm.
After applying the resist ink to the entire surface of the steel sheet, the laser was scanned in a direction orthogonal to the rolling direction to peel off the resist ink at predetermined row intervals in the rolling direction. For laser irradiation, a single-mode fiber laser was continuously peeled off from one end of the steel sheet to the other by a galvano scanner method using a plurality of laser devices, and then electrolytic etching was performed to form a linear groove. .. At that time, by changing the laser irradiation energy and beam diameter of each device, a cold-rolled plate in which two or three types of linear grooves having different groove cross-sectional areas in various combinations under the conditions shown in Table 5-1 are arranged. Was produced.
Then, the cold rolled plate was subjected to decarburization annealing by holding it at an oxidation degree of PH 2 O / PH 2 = 0.44 and a soaking temperature of 820 ° C for 300 seconds, and then an annealing separator containing MgO as a main component was applied. The final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was carried out at 1160 ° C. under the condition of holding for 10 hours. Then, an insulating coat made of 60% colloidal silica and aluminum phosphate was applied to the steel sheet after the final finish annealing, and baked at 850 ° C. This coating coating process also serves as flattening annealing.
The steel sheet thus obtained is magnetically measured by the Epstein test to evaluate the magnetic property W 13/50 in the low magnetization region, the characteristic W 17/50 that determines the steel sheet grade, and the magnetic property B 8 in the high magnetization region. did.

Figure 0007010321000008
Figure 0007010321000008

表5-2に、磁気測定結果を記載する。なお、低い磁化領域と高い磁化領域での磁気特性が両立しているかの判定として、以下の条件で整理した。
板厚:0.27mmの場合
"◎":W13/50≦0.48W/kgかつB8≧1.900TかつW17/50≦0.85W/kg
"○":◎の判定を満たさないかつW13/50≦0.50W/kgかつB8≧1.890TかつW17/50≦0.88W/kg
"×1":W13/50>0.50W/kg
"×2":B8<1.890T
板厚:0.23mmの場合
"◎":W13/50≦0.40W/kgかつB8≧1.900TかつW17/50≦0.73W/kg
"○":◎の判定を満たさないかつW13/50≦0.43W/kgかつB8≧1.890TかつW17/50≦0.75W/kg
"×1":W13/50>0.43W/kg
"×2":B8<1.890T
板厚:0.20mmの場合
"◎":W13/50≦0.37W/kgかつB8≧1.895TかつW17/50≦0.67W/kg
"○":◎の判定を満たさないかつW13/50≦0.38W/kgかつB8≧1.885TかつW17/50≦0.69W/kg
"×1":W13/50>0.38W/kg
"×2":B8<1.885T
Table 5-2 shows the magnetic measurement results. In addition, as a judgment as to whether the magnetic characteristics in the low magnetization region and the high magnetization region are compatible, the following conditions are arranged.
Plate thickness: 0.27 mm
"◎": W 13/50 ≤ 0.48 W / kg and B 8 ≥ 1.900 T and W 17/50 ≤ 0.85 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.50 W / kg and B 8 ≥ 1.890 T and W 17/50 ≤ 0.88 W / kg
"× 1": W 13/50 > 0.50W / kg
"× 2": B 8 <1.890T
Plate thickness: 0.23 mm
"◎": W 13/50 ≤ 0.40 W / kg and B 8 ≥ 1.900 T and W 17/50 ≤ 0.73 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.43 W / kg and B 8 ≥ 1.890 T and W 17/50 ≤ 0.75 W / kg
"× 1": W 13/50 > 0.43W / kg
"× 2": B 8 <1.890T
Plate thickness: 0.20 mm
"◎": W 13/50 ≤ 0.37 W / kg and B 8 ≥ 1.895 T and W 17/50 ≤ 0.67 W / kg
"○": Does not meet the judgment of ◎ and W 13/50 ≤ 0.38 W / kg and B 8 ≥ 1.85 T and W 17/50 ≤ 0.69 W / kg
"× 1": W 13/50 > 0.38W / kg
"× 2": B 8 <1.885T

Figure 0007010321000009
Figure 0007010321000009

本発明に適合する条件3~6、10~13、17~20では、いずれの条件も、低い磁化領域および高い磁化領域の磁気特性に優れ、低い磁化領域と高い磁化領域の磁気特性を両立できていた。 Under the conditions 3 to 6, 10 to 13, and 17 to 20 suitable for the present invention, the magnetic characteristics of the low magnetization region and the high magnetization region are excellent, and the magnetic characteristics of the low magnetization region and the high magnetization region can be compatible with each other. Was there.

1 溝形成部長さa
2 溝不形成部長さb
1 Groove forming part length a
2 Groove non-forming part length b

Claims (2)

鋼板片面に、圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の線状溝を有する方向性電磁鋼板であって、
上記線状溝は、圧延方向断面積の異なる少なくとも2種を有し、上記線状溝において、最も大きい圧延方向断面積をA(mm2)および最も小さい圧延方向断面積をB(mm2)とするとき、{(A-B)/A}×100が10%以上60%以下であって前記断面積Aを有する線状溝および前記断面積Bを有する線状溝を圧延方向に交互に繰り返して備え、かつ板厚が0.27mm以下である方向性電磁鋼板。
A grain-oriented electrical steel sheet having a plurality of linear grooves on one side of a steel sheet, which extends linearly in a direction crossing the rolling direction and is arranged at intervals in the rolling direction.
The linear groove has at least two types having different rolling direction cross-sectional areas, and in the linear groove, the largest rolling direction cross-sectional area is A (mm 2 ) and the smallest rolling direction cross-sectional area is B (mm 2 ). When {(AB) / A} × 100 is 10% or more and 60% or less, the linear groove having the cross-sectional area A and the linear groove having the cross-sectional area B are alternately alternated in the rolling direction. A directional electromagnetic steel plate with a thickness of 0.27 mm or less.
請求項1に記載の方向性電磁鋼板を製造する方法であって、方向性電磁鋼板用スラブを、熱間圧延し、ついで必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げたのち、脱炭焼鈍を施し、ついで鋼板表面に焼鈍分離剤を塗布してから、最終仕上げ焼鈍を行った後、張力コーティング及び平坦化焼鈍を施す線状溝を有する方向性電磁鋼板の製造方法において、
(1) 最終板厚を0.27mm以下とする
(2) 前記線状溝は、鋼板片面に、圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の線状の溝であって、最終仕上げ焼鈍前に形成する
(3) 前記線状溝を形成する際、圧延方向断面積の異なる少なくとも2種を形成し、かつ上記線状溝において、最も大きい圧延方向断面積をA(mm2)および最も小さい圧延方向断面積をB(mm2)とするとき、{(A-B)/A}×100が10%以上60%以下の範囲となる溝の形成を連続又は不連続に行う
(4)前記断面積Aを有する線状溝または前記断面積Bを有する線状溝を圧延方向に形成し、ついで、断面積Aを有する線状溝を形成した場合は断面積Bを有する線状溝を、また断面積Bを有する線状溝を形成した場合は断面積Aを有する線状溝を形成する
方向性電磁鋼板の製造方法。
The method for manufacturing a directional electromagnetic steel sheet according to claim 1, wherein the slab for the directional electromagnetic steel sheet is hot-rolled, then hot-rolled and annealed as necessary, and then once or intermediately annealed. After cold rolling two or more times to finish the final plate thickness, decarburization annealing is performed, then an annealing separator is applied to the surface of the steel sheet, then final finish annealing is performed, and then tension coating is performed. And in the method of manufacturing a directional electromagnetic steel sheet having a linear groove to be flattened and annealed.
(1) Make the final plate thickness 0.27 mm or less
(2) The linear grooves are a plurality of linear grooves that extend linearly across the rolling direction and are lined up at intervals in the rolling direction on one side of the steel sheet, and are formed before final finishing annealing. do
(3) When forming the linear groove, at least two types having different rolling direction cross-sectional areas are formed, and in the linear groove, the largest rolling direction cross-sectional area is A (mm 2 ) and the smallest rolling direction break. When the area is B (mm 2 ), the grooves in which {(AB) / A} × 100 is in the range of 10% or more and 60% or less are continuously or discontinuously formed.
(4) When the linear groove having the cross-sectional area A or the linear groove having the cross-sectional area B is formed in the rolling direction, and then the linear groove having the cross-sectional area A is formed, the line having the cross-sectional area B is formed. When a linear groove having a cross-sectional area B is formed, a linear groove having a cross-sectional area A is formed.
Manufacturing method of grain-oriented electrical steel sheet.
JP2020046858A 2019-03-19 2020-03-17 Directional electrical steel sheet and its manufacturing method Active JP7010321B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019051791 2019-03-19
JP2019051791 2019-03-19

Publications (2)

Publication Number Publication Date
JP2020158882A JP2020158882A (en) 2020-10-01
JP7010321B2 true JP7010321B2 (en) 2022-02-10

Family

ID=72642121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046858A Active JP7010321B2 (en) 2019-03-19 2020-03-17 Directional electrical steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7010321B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012639A (en) 2010-06-29 2012-01-19 Jfe Steel Corp Oriented electromagnetic steel sheet
WO2016129235A1 (en) 2015-02-10 2016-08-18 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
WO2016171129A1 (en) 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246375A (en) * 1985-04-25 1986-11-01 Kawasaki Steel Corp Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production
JPH07320922A (en) * 1994-03-31 1995-12-08 Kawasaki Steel Corp One directional electromagnetic steel sheet at low iron loss
JP3885239B2 (en) * 1995-02-16 2007-02-21 Jfeスチール株式会社 Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
KR101440597B1 (en) * 2012-05-16 2014-09-17 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012639A (en) 2010-06-29 2012-01-19 Jfe Steel Corp Oriented electromagnetic steel sheet
WO2016129235A1 (en) 2015-02-10 2016-08-18 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
WO2016171129A1 (en) 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2020158882A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
CN107012303B (en) Grain-oriented electromagnetic steel sheet and method for producing same
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101553497B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
KR20220156644A (en) Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
KR20190107079A (en) Directional electrical steel sheet
KR102407899B1 (en) grain-oriented electrical steel sheet
JP6973369B2 (en) Directional electromagnetic steel plate and its manufacturing method
EP2243865B1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JP7010321B2 (en) Directional electrical steel sheet and its manufacturing method
CN115605624B (en) Grain oriented electromagnetic steel sheet
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP4876799B2 (en) Oriented electrical steel sheet
WO2021020026A1 (en) Grain-oriented electrical steel sheet
JP7375670B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2023121125A (en) Grain-oriented electromagnetic steel sheet
JP4807064B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7010321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150