JP2007168318A - Polyethylene-based resin laminated foam - Google Patents

Polyethylene-based resin laminated foam Download PDF

Info

Publication number
JP2007168318A
JP2007168318A JP2005370437A JP2005370437A JP2007168318A JP 2007168318 A JP2007168318 A JP 2007168318A JP 2005370437 A JP2005370437 A JP 2005370437A JP 2005370437 A JP2005370437 A JP 2005370437A JP 2007168318 A JP2007168318 A JP 2007168318A
Authority
JP
Japan
Prior art keywords
polyethylene
foam
laminated foam
resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005370437A
Other languages
Japanese (ja)
Other versions
JP4803721B2 (en
Inventor
Kazuhiko Morita
和彦 森田
Takashi Muroi
崇 室井
Teruyuki Akiyama
照幸 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2005370437A priority Critical patent/JP4803721B2/en
Priority to TW95141365A priority patent/TWI404634B/en
Priority to CN2006101686748A priority patent/CN1986618B/en
Publication of JP2007168318A publication Critical patent/JP2007168318A/en
Application granted granted Critical
Publication of JP4803721B2 publication Critical patent/JP4803721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyethylene-based resin laminated foam which has excellent resistance to cracking and tearing while sufficiently retaining mechanical physical properties such as rigidity, a cushioning property, etc. <P>SOLUTION: The polyethylene resin laminated foam with 2 to 8 mm thickness and 150 to 350 MPa bending modulus, which has polyethylene-based resin layers formed on both surfaces of a polyethylene-based resin foamed layer with 150 to 350 g/L apparent density and lower than the 40% proportion of interconnected cells. In this polyethylene resin laminated foam, the ratio "a/b" of the tensile elongation "a" (mm) of the polyethylene-based resin layer to the 25% compression strength "b" (MPa) of the polyethylene-based resin laminated foam, is not less than 2.4 mm/MPa, and the 25% compression strength "b" (MPa) of the polyethylene-based resin laminated foam is 0.5 to 1.5 MPa. Thus the resultant polyethylene-based resin laminated foam shows excellent resistance to cracking and tearing while sufficiently retaining the mechanical properties such as rigidity, the cushioning property, etc. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリエチレン系樹脂積層発泡体に関する。   The present invention relates to a polyethylene resin laminated foam.

ポリエチレン系樹脂発泡体は、緩衝材、包装材などの各種用途に広く用いられている。
このようなポリエチレン系樹脂発泡体を構成する基材樹脂としては、高圧法低密度ポリエチレンが発泡性に優れることから好ましく用いられる。しかし、このポリエチレンは密度が低いため、得られるポリエチレン系樹脂発泡体の剛性に劣るという欠点があり、ほとんど軟包装の用途にしか用いられなかった。
Polyethylene resin foams are widely used in various applications such as cushioning materials and packaging materials.
As the base resin constituting such a polyethylene resin foam, high-pressure low-density polyethylene is preferably used because of its excellent foamability. However, since this polyethylene has a low density, there is a drawback that the obtained polyethylene-based resin foam is inferior in rigidity, and it has been used only for soft packaging applications.

そこで、特許文献1には、見掛け密度70g/L〜350g/L、連続気泡率40%以下のポリエチレン系樹脂押出発泡シートであって、該発泡シートを構成するポリエチレン系樹脂の曲げ弾性率が300MPa以上であり、該樹脂の190℃での溶融張力(A)が15mN〜400mN、且つ溶融張力(A)と該樹脂のMFR(B:g/10分)の積(A×B)の値が100以上であるポリエチレン系樹脂押出発泡シートが提案されている。特許文献1に記載の発明によれば、ある程度の剛性と緩衝性を兼ね備えたポリエチレン系樹脂押出発泡樹脂シートが提供される。   Therefore, Patent Document 1 discloses a polyethylene resin extruded foam sheet having an apparent density of 70 g / L to 350 g / L and an open cell ratio of 40% or less, and the flexural modulus of the polyethylene resin constituting the foam sheet is 300 MPa. The melt tension (A) at 190 ° C. of the resin is 15 mN to 400 mN, and the product (A × B) of the melt tension (A) and the MFR (B: g / 10 min) of the resin is A polyethylene resin extruded foam sheet of 100 or more has been proposed. According to the invention described in Patent Document 1, a polyethylene resin extruded foamed resin sheet having a certain degree of rigidity and buffering properties is provided.

特開2004−43813号公報JP 2004-43813 A

特許文献1では、確かにポリエチレン系樹脂押出発泡樹脂シートの剛性と緩衝性は十分向上するものの、これに折り曲げ等の加工を施して例えば組立箱などといった加工品が製造される際におけるポリエチレン系樹脂押出発泡樹脂シートの割れや裂けに対する耐性については、更に改良する余地を残すものであった。すなわち、特許文献1では、ポリエチレン系樹脂押出発泡樹脂シートについて、その割れや裂けに対する耐性を向上させることが要請されている。   In Patent Document 1, although the rigidity and shock-absorbing property of the polyethylene-based resin extruded foamed resin sheet are improved sufficiently, the polyethylene-based resin when a processed product such as an assembly box is manufactured by performing a process such as bending. The resistance to cracking and tearing of the extruded foamed resin sheet left room for further improvement. That is, in patent document 1, it is requested | required to improve the tolerance with respect to the crack and a tear about a polyethylene-type resin extrusion foaming resin sheet.

本発明は、剛性や緩衝性などの機械的物性を十分維持しつつ、割れや裂けに対する耐性に優れたポリエチレン系樹脂積層発泡体の提供を目的とする。   An object of this invention is to provide the polyethylene-type resin laminated foam excellent in the tolerance with respect to a crack and a tear, fully maintaining mechanical physical properties, such as rigidity and a shock absorbing property.

本発明は、(1)見かけ密度が150g/L〜350g/L、連続気泡率40%以下のポリエチレン系樹脂発泡層の両面にポリエチレン系樹脂層を有する厚み2〜8mm、曲げ弾性率が150〜350MPaのポリエチレン系樹脂積層発泡体であって、ポリエチレン系樹脂層の引張伸び(a(mm))とポリエチレン系樹脂積層発泡体の25%圧縮強さ(b(MPa))との比(a/b)が2.4 mm/MPa以上であり、ポリエチレン系樹脂積層発泡体の25%圧縮強さ(b(MPa))が0.5〜1.5MPaであることを特徴とするポリエチレン系樹脂積層発泡体、(2)ポリエチレン系樹脂発泡層を構成するポリエチレン系樹脂は、密度が930g/L以下のポリエチレン(Xa)40〜80重量%と、密度が930g/L超970g/L以下のポリエチレン(Ya)20〜60重量%(但し、XaとYaとの合計は100重量%)とからなることを特徴とする上記(1)記載のポリエチレン系樹脂積層発泡体、(3)ポリエチレン系樹脂層を構成するポリエチレン系樹脂は、密度が930g/L以下の直鎖状ポリエチレン(Xb)10〜40重量%と、密度が930g/L超970g/L以下のポリエチレン(Yb)50〜90重量%と、密度が930g/L以下の高圧法ポリエチレン(Xc)0〜30重量%(但し、XbとYbとXcの合計は100重量%)とからなることを特徴とする上記(1)又は(2)に記載のポリエチレン系樹脂積層発泡体、を要旨とする。   The present invention includes (1) a thickness of 2 to 8 mm having a polyethylene resin layer on both sides of a polyethylene resin foam layer having an apparent density of 150 g / L to 350 g / L and an open cell ratio of 40% or less, and a flexural modulus of 150 to 350MPa polyethylene resin laminate foam, ratio of tensile elongation (a (mm)) of polyethylene resin layer to 25% compressive strength (b (MPa)) of polyethylene resin laminate foam (a / b) is 2.4 mm / MPa or more, and 25% compressive strength (b (MPa)) of the polyethylene resin laminated foam is 0.5 to 1.5 MPa, (2 ) Polyethylene resin constituting the polyethylene resin foam layer is composed of 40 to 80% by weight of polyethylene (Xa) with a density of 930 g / L or less, and polyethylene (Ya) 20 to 60 with a density of more than 930 g / L and 970 g / L or less. Description in (1) above, comprising: wt% (however, the sum of Xa and Ya is 100 wt%) Polyethylene resin laminated foam, (3) The polyethylene resin that composes the polyethylene resin layer is 10 to 40% by weight of linear polyethylene (Xb) with a density of 930 g / L or less, and the density is over 930 g / L and over 970 g / L or less of polyethylene (Yb) 50 to 90% by weight, and high pressure polyethylene (Xc) having a density of 930 g / L or less 0 to 30% by weight (however, the total of Xb, Yb and Xc is 100% by weight) The gist of the polyethylene-based resin laminate foam according to the above (1) or (2), characterized in that

本発明によれば、剛性などの機械的物性に優れるとともに、折り曲げられても割れや破断を生じ難いポリエチレン系樹脂積層発泡体が得られる。   According to the present invention, it is possible to obtain a polyethylene-based resin laminated foam which is excellent in mechanical properties such as rigidity and hardly breaks or breaks even when bent.

本発明のポリエチレン系樹脂積層発泡体(以下、単に積層発泡体ということがある。)は、見かけ密度が150g/L〜350g/L、連続気泡率40%以下のポリエチレン系樹脂発泡層の両面にポリエチレン系樹脂層を有する厚み2〜8mm、曲げ弾性率が150〜350MPaの軽量性、曲げ剛性などの機械的物性に優れる板状の積層発泡体において、該積層発泡体の芯層を構成するポリエチレン系樹脂発泡層(以下、単に発泡層ということがある。)の両面にポリエチレン系樹脂層(以下、単に樹脂層ということがある。)を形成しており、該ポリエチレン系樹脂層の引張伸び(a(mm))とポリエチレン系樹脂積層発泡体の25%圧縮強さ(b(MPa))との比a/b(mm/MPa)を2.4以上(但し、ポリエチレン系樹脂積層発泡体の25%圧縮強さ(b(MPa))が0.5〜1.5MPaである。)とすることにより、耐折性を向上させたものである。圧縮強さbと引張伸びaの関係を示すグラフを用いて本発明の積層発泡体を説明すると、この積層発泡体は図1において領域Dで示される領域にあてはまるものである。なお図1は、圧縮強さbを横軸にとり引張伸びaを縦軸にとったグラフであり、領域A、B、C、Dは、それぞれ(b<0.5)、(b>1.5)、(0.5≦b≦0.5且つa/b<2.4)、(0.5≦b≦0.5且つa/b≧2.4)で指定される領域を示す。   The polyethylene-based resin laminated foam of the present invention (hereinafter sometimes simply referred to as a laminated foam) is formed on both surfaces of a polyethylene-based resin foam layer having an apparent density of 150 g / L to 350 g / L and an open cell ratio of 40% or less. A plate-like laminated foam having a polyethylene resin layer with a thickness of 2 to 8 mm and a flexural modulus of 150 to 350 MPa and excellent mechanical properties such as light weight and bending rigidity, the polyethylene constituting the core layer of the laminated foam A polyethylene resin layer (hereinafter sometimes simply referred to as a resin layer) is formed on both sides of a resin-based resin foam layer (hereinafter sometimes simply referred to as a foam layer), and the tensile elongation ( a (mm)) and 25% compressive strength (b (MPa)) of polyethylene-based resin laminated foam, a / b (mm / MPa) is 2.4 or more (however, 25% of polyethylene-based resin laminated foam) Compressive strength (b (MPa)) is 0.5 to 1.5 MPa.) Accordingly, those with improved folding endurance. If the laminated foam of this invention is demonstrated using the graph which shows the relationship between the compressive strength b and the tensile elongation a, this laminated foam applies to the area | region shown by the area | region D in FIG. FIG. 1 is a graph with the compressive strength b on the horizontal axis and the tensile elongation a on the vertical axis. Regions A, B, C, and D are (b <0.5), (b> 1.5), ( An area specified by 0.5 ≦ b ≦ 0.5 and a / b <2.4) and (0.5 ≦ b ≦ 0.5 and a / b ≧ 2.4) is shown.

本発明における、上記比a/bの構成、及び積層発泡体の圧縮強さbの構成を満足することによる効果は、図1を用いて説明することができる。即ち、図1において、積層発泡体の圧縮強さbが0.5 MPa未満の領域Aの積層発泡体は、板状発泡体として必要とされる曲げ剛性に劣り、積層発泡体の圧縮強さbが1.5 MPa超の領域Bの積層発泡体は、曲げ剛性が高すぎ加工性、緩衝性などにおいて問題がある。また、該圧縮強さbが0.5〜1.5MPaであってもポリエチレン系樹脂層の引張伸びaと該圧縮強さbとの比a/bが2.4未満の領域Cの積層発泡体は、ポリエチレン系樹脂層の引張破断強度と芯層を構成するポリエチレン系樹脂発泡層の圧縮強度とのバランスが悪く、該圧縮強さbが高過ぎるか、該引張伸びaが小さすぎるため、積層発泡体を折り曲げた場合に、樹脂層の破断や発泡層の割れや裂けが発生することがある。   The effect obtained by satisfying the configuration of the ratio a / b and the compression strength b of the laminated foam in the present invention can be described with reference to FIG. That is, in FIG. 1, the laminated foam in the region A in which the compression strength b of the laminated foam is less than 0.5 MPa is inferior in the bending rigidity required as a plate-like foam, and the compression strength b of the laminated foam is low. The laminated foam of region B exceeding 1.5 MPa has a problem in terms of workability, buffering property, etc. because its bending rigidity is too high. Further, even if the compressive strength b is 0.5 to 1.5 MPa, the laminated foam in the region C in which the ratio a / b between the tensile elongation a of the polyethylene resin layer and the compressive strength b is less than 2.4 is polyethylene-based. The balance between the tensile breaking strength of the resin layer and the compressive strength of the polyethylene resin foam layer constituting the core layer is poor, and the laminated foam is bent because the compressive strength b is too high or the tensile elongation a is too small. In such a case, the resin layer may break or the foamed layer may crack or tear.

従って、本発明の積層発泡体では、樹脂層の引張伸び(a(mm))と積層発泡体の25%圧縮強さ(b(MPa))との比a/bは2.4mm/MPa以上であり、好ましくは、3.5〜5.0 mm/MPaである。また、比a/bの上限は、おおむね7.0mm/MPaである。   Therefore, in the laminated foam of the present invention, the ratio a / b between the tensile elongation (a (mm)) of the resin layer and the 25% compressive strength (b (MPa)) of the laminated foam is 2.4 mm / MPa or more. Yes, preferably 3.5 to 5.0 mm / MPa. Further, the upper limit of the ratio a / b is approximately 7.0 mm / MPa.

また、本発明の積層発泡体では、上記の観点から25%圧縮強さ(b)は0.5〜1.5MPaであり、好ましくは0.6〜1.2 MPa、更に0.6〜1.0 MPaである。   In the laminated foam of the present invention, from the above viewpoint, the 25% compressive strength (b) is 0.5 to 1.5 MPa, preferably 0.6 to 1.2 MPa, and more preferably 0.6 to 1.0 MPa.

なお、本発明の積層発泡体は前提条件として、見かけ密度が150g/L〜350g/L、連続気泡率が40%以下、厚みが2〜8mm、曲げ弾性率が150MPa〜350MPaのものである。   In addition, the laminated foam of the present invention has, as preconditions, an apparent density of 150 g / L to 350 g / L, an open cell ratio of 40% or less, a thickness of 2 to 8 mm, and a flexural modulus of 150 MPa to 350 MPa.

積層発泡体の曲げ弾性率が150MPa未満であると、その剛性や強度が不十分となる虞があり、例えば積層発泡体に加工を施して組立箱等の加工品を得ようとする場合、加工品は剛性や強度が不十分で胴膨れを生じやく壊れやすいものとなる虞がある。一方、積層発泡体の曲げ弾性率が350MPaを超えると、積層発泡体は剛性に過ぎるものとなって加工性に劣る虞がある。すなわち、例えば、積層発泡体を用いて組立箱などの加工品を製造しようとするにあたり、その積層発泡体を折り曲げたり、折り目を付与したりする等の加工を施そうとしても、積層発泡体の剛性により、そうした加工を施すことが困難になり、作業性が低下する虞がある。また、加工品が、組立箱等、その使用の際に繰り返し折り曲げが行われるようなものである場合、積層発泡体の剛性が過剰であると、使用者は折り曲げを容易に実施できず、結局、加工品は使用者にとって使い勝手の悪いものとなってしまう。上記観点から本発明の積層発泡体の曲げ弾性率は170〜300MPaであることが好ましい。   If the flexural modulus of the laminated foam is less than 150 MPa, its rigidity and strength may be insufficient. For example, when processing a laminated foam to obtain a processed product such as an assembly box, There is a risk that the product is insufficient in rigidity and strength, easily bulging, and easily broken. On the other hand, if the flexural modulus of the laminated foam exceeds 350 MPa, the laminated foam may be too rigid and have poor processability. That is, for example, when trying to manufacture a processed product such as an assembly box using a laminated foam, even if the laminated foam is subjected to processing such as folding or giving a crease, Rigidity makes it difficult to perform such processing, which may reduce workability. In addition, when the processed product is an assembly box or the like that is repeatedly bent during its use, if the rigidity of the laminated foam is excessive, the user cannot easily bend, and eventually The processed product is unusable for the user. From the above viewpoint, the flexural modulus of the laminated foam of the present invention is preferably 170 to 300 MPa.

また、積層発泡体の厚みが2mm未満であると、その剛性や緩衝性が不十分になる虞があり、また、積層発泡体の厚みが8mmを超えると、これを用いて仕切板や組立箱などといった加工品を製造するような場合に、作業性が低下する虞がある。上記観点から本発明の積層発泡体の厚みは2.5〜6mmであることが好ましい。   Also, if the thickness of the laminated foam is less than 2 mm, its rigidity and buffering properties may be insufficient, and if the thickness of the laminated foam exceeds 8 mm, it will be used to partition plates and assembly boxes. In the case of manufacturing a processed product such as, there is a risk that workability may be reduced. From the above viewpoint, the thickness of the laminated foam of the present invention is preferably 2.5 to 6 mm.

また、積層発泡体の発泡層の見掛け密度が150g/Lよりも小さいと、その剛性が不十分になり、そのような積層発泡体を用いて組立箱などの加工品を製造した場合に加工品の強度も不十分になる虞がある。また、積層発泡体の発泡層の見掛け密度が350g/Lよりも大きいと、その緩衝性等が不十分になる虞があるばかりか、そのような積層発泡体を用いて加工品を製造する場合に、加工品は、過重なものになりやすく、また必要以上に原料を消費するものとなって、製造コストの嵩むものとなってしまう虞がある。上記観点から本発明の積層発泡体の発泡層の見掛け密度は170〜300g/Lであることが好ましい。   In addition, if the apparent density of the foamed layer of the laminated foam is less than 150 g / L, the rigidity becomes insufficient, and when a processed product such as an assembly box is manufactured using such a laminated foam, the processed product There is a possibility that the strength of the steel becomes insufficient. In addition, when the apparent density of the foamed layer of the laminated foam is higher than 350 g / L, there is a risk that the buffering property and the like may be insufficient, and when a processed product is manufactured using such a laminated foam. In addition, the processed product tends to be excessive and consumes more raw materials than necessary, which may increase the manufacturing cost. From the above viewpoint, the apparent density of the foam layer of the laminated foam of the present invention is preferably 170 to 300 g / L.

また、積層発泡体の発泡層の連続気泡率が40%より大きいと、得られる積層発泡体の剛性や緩衝性が不十分になってしまう虞がある。上記観点から本発明の積層発泡体の発泡層の連続気泡率は25%以下であることが好ましい。   Further, if the open cell ratio of the foamed layer of the laminated foam is larger than 40%, the rigidity and buffering property of the obtained laminated foam may be insufficient. From the above viewpoint, the open cell ratio of the foamed layer of the laminated foam of the present invention is preferably 25% or less.

本発明の積層発泡体の発泡層を構成する基材樹脂(以下、発泡層基材樹脂という)としては、高圧法低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレンなどのエチレン単独重合体、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−ブテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−4−メチルペンテン−1共重合体、エチレン−オクテン−1共重合体などのエチレン系共重合体、さらにはこれらの2種以上の混合物などのポリエチレン系樹脂が挙げられ、密度が930g/L以下のポリエチレン(L-ポリエチレンという)40〜80重量%と、密度が930g/Lより大きく970g/L以下のポリエチレン(H-ポリエチレンという)20〜60重量%とを含んでいるポリエチレン系樹脂(L-ポリエチレンとH-ポリエチレンの合計は100重量%)を使用することにより、優れた剛性と割れや裂けを防ぐ優れた弾性とのバランスを取り易く、両物性を兼備させたものを安価に得ることができる等の理由から好ましく、L-ポリエチレン40〜65重量%とH-ポリエチレン35〜60重量%(L-ポリエチレンとH-ポリエチレンの合計は100重量%)とを含んでいるものであることがより好ましい。   The base resin constituting the foam layer of the laminated foam of the present invention (hereinafter referred to as the foam layer base resin) is an ethylene homopolymer such as a high-pressure method low-density polyethylene, high-density polyethylene, or linear low-density polyethylene. , Ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-propylene-butene-1 copolymer, ethylene-butene-1 copolymer, ethylene-hexene-1 copolymer, ethylene-4-methyl Examples thereof include an ethylene copolymer such as a pentene-1 copolymer and an ethylene-octene-1 copolymer, and a polyethylene resin such as a mixture of two or more of these, and a polyethylene having a density of 930 g / L or less ( (Polyester) containing 40 to 80% by weight (referred to as L-polyethylene) and 20 to 60% by weight of polyethylene (referred to as H-polyethylene) having a density greater than 930 g / L and 970 g / L or less By using an ethylene-based resin (the total of L-polyethylene and H-polyethylene is 100% by weight), it is easy to balance excellent rigidity and excellent elasticity to prevent cracking and tearing. It is preferable because it can be obtained at low cost, and contains 40 to 65% by weight of L-polyethylene and 35 to 60% by weight of H-polyethylene (the total of L-polyethylene and H-polyethylene is 100% by weight). More preferably.

上記L-ポリエチレンとしては、所謂、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン(直鎖状低密度ポリエチレンと直鎖状超低密度ポリエチレンと併せて本発明では密度が930g/L以下の直鎖状ポリエチレンともいう。)、高圧法低密度ポリエチレン(本発明では高圧法ポリエチレンともいう。)が挙げられる。また、H-ポリエチレンとしては、所謂、高密度ポリエチレンが挙げられる。   Examples of the L-polyethylene include so-called linear low density polyethylene, linear ultra-low density polyethylene (in the present invention, the density is 930 g / L or less in combination with the linear low-density polyethylene and linear ultra-low density polyethylene). And high pressure method low density polyethylene (also referred to as high pressure method polyethylene in the present invention). Moreover, as H-polyethylene, so-called high density polyethylene can be mentioned.

発泡層を構成する基材樹脂には、上記L-ポリエチレンとH-ポリエチレン以外のポリエチレン系樹脂が含まれてもよい。発泡層基材樹脂中に、L-ポリエチレン及びH-ポリエチレンとともに配合することのできるとしては、例えば、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ブテン−1共重合体、エチレン−ブテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−4−メチルペンテン−1共重合体、エチレン−オクテン−1共重合体等のエチレン成分単位50モル%を超えるエチレン系共重合体等が挙げられる。   The base resin constituting the foam layer may include a polyethylene resin other than the L-polyethylene and the H-polyethylene. Examples of the foam layer base resin that can be blended with L-polyethylene and H-polyethylene include, for example, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-propylene-butene-1 copolymer More than 50 mol% of ethylene component units such as a polymer, an ethylene-butene-1 copolymer, an ethylene-hexene-1 copolymer, an ethylene-4-methylpentene-1 copolymer, and an ethylene-octene-1 copolymer Examples thereof include an ethylene copolymer.

発泡層基材樹脂には、L-ポリエチレンとH-ポリエチレン以外にも上記したポリエチレン系樹脂が含まれていても良いが、L-ポリエチレンとH-ポリエチレンとを用いたことの利点が十分に発揮されるように、両者が合計で70重量%以上含まれていることが好ましい。発泡層基材樹脂中の全重量における、L−ポリエチレンとH−ポリエチレンの合計重量は、より好ましくは80重量%以上であり、両者の合計が90重量%以上である。発泡層基材樹脂中のL-ポリエチレンとH-ポリエチレンの合計重量が90重量%以上である場合、発泡層が殆どポリエチレンのみであるような混合物で構成されるため、積層発泡体のリサイクル性に優れる利点がある。   In addition to L-polyethylene and H-polyethylene, the foam layer resin may contain the above-mentioned polyethylene resins, but the advantages of using L-polyethylene and H-polyethylene are fully demonstrated. Thus, it is preferable that both are contained in a total of 70% by weight or more. The total weight of L-polyethylene and H-polyethylene in the total weight of the foam layer base resin is more preferably 80% by weight or more, and the total of both is 90% by weight or more. When the total weight of L-polyethylene and H-polyethylene in the foam layer base resin is 90% by weight or more, the foam layer is composed of a mixture containing almost only polyethylene. There are excellent advantages.

本発明の積層発泡体の樹脂層を構成する基材樹脂(樹脂層基材樹脂)としては、上記発泡層基材樹脂と同様のポリエチレン系樹脂が挙げられる。それらの内、特に密度が930g/L以下の直鎖状ポリエチレン10〜40重量%と、密度が930g/L超970g/L以下のポリエチレン50〜90重量%と、密度が930g/L以下の高圧法ポリエチレン0〜30重量%(但し、これら密度が930g/L以下の直鎖状ポリエチレンと、密度が930g/L超970g/L以下のポリエチレンと、密度が930g/L以下の高圧法ポリエチレンの合計は100重量%)とからなる構成を採用すると、樹脂層の優れた剛性を維持しつつ引張伸びを向上させることができる樹脂層を効率良く形成することができ、得られる積層発泡体は前記発泡層の構成と相俟って剛性に優れ、割れや裂けを確実に防ぐことができる等の理由から好ましい。   Examples of the base resin (resin layer base resin) constituting the resin layer of the laminated foam of the present invention include the same polyethylene-based resins as the above foam layer base resin. Among them, in particular, 10 to 40% by weight of linear polyethylene having a density of 930 g / L or less, 50 to 90% by weight of polyethylene having a density of more than 930 g / L and 970 g / L or less, and a high pressure having a density of 930 g / L or less. Method polyethylene 0-30% by weight (however, the total of linear polyethylene having a density of 930 g / L or less, polyethylene having a density of more than 930 g / L and not more than 970 g / L, and high-pressure method polyethylene having a density of 930 g / L or less) 100% by weight), it is possible to efficiently form a resin layer that can improve the tensile elongation while maintaining the excellent rigidity of the resin layer, and the obtained laminated foam is the foam Combined with the layer structure, it is excellent in rigidity and is preferable for the reason that cracking and tearing can be surely prevented.

また、樹脂層基材樹脂は、積層発泡体の折り曲げ加工時の破断防止の観点から引張伸びが100%以上であることが好ましい。   In addition, the resin layer base resin preferably has a tensile elongation of 100% or more from the viewpoint of preventing breakage during bending of the laminated foam.

また、樹脂層基材樹脂は、剛性等の強度低下防止、折り曲げ加工時の破断防止の観点から引張弾性率が150〜300MPaであることが好ましい。   In addition, the resin layer base resin preferably has a tensile elastic modulus of 150 to 300 MPa from the viewpoint of preventing strength reduction such as rigidity and preventing breakage during bending.

なお、樹脂層は、単層、複数層のいずれで構成されてもよい。樹脂層が複数層で構成されている場合には、上記の好ましい樹脂層基材樹脂の組成、樹脂層基材樹脂の引張伸び、樹脂層基材樹脂の引張弾性率の構成は、各々の構成を満足する樹脂層の各層の坪量の合計が樹脂層全体の坪量の80%以上であることが好ましく、特に樹脂層を構成する各層全てにおいて満足していることが好ましい。   The resin layer may be composed of a single layer or a plurality of layers. When the resin layer is composed of a plurality of layers, the composition of the above preferred resin layer base resin, the tensile elongation of the resin layer base resin, and the tensile elastic modulus of the resin layer base resin are the respective configurations. It is preferable that the total basis weight of each layer of the resin layer satisfying the above is 80% or more of the basis weight of the entire resin layer, and it is particularly preferable that all the layers constituting the resin layer are satisfied.

なお、発泡層或いは樹脂層の基材樹脂中には、各種の添加剤が含まれてもよい。添加剤としては、例えば造核剤、酸化防止剤、熱安定剤、帯電防止剤、導電性付与剤、耐候剤、紫外線吸収剤、難燃剤等の機能性添加剤、無機充填剤等が挙げられる。特に樹脂層において、該樹脂層が複数層で構成されている場合は発泡層表面に接して積層されている内層にポリエチレンワックス等の滑剤作用が発現されるものを添加することが好ましい。このことにより、後述する共押出発泡法において本発明における樹脂層の引張伸びや引張弾性率等の物性を満足する範囲内で、該内層の溶融粘度を下げることが可能となり、その結果、発泡層の連続気泡率が低く、外観に優れる良好な積層発泡体を容易に得ることができる。   In addition, various additives may be contained in the base resin of the foam layer or the resin layer. Examples of additives include nucleating agents, antioxidants, heat stabilizers, antistatic agents, conductivity-imparting agents, weathering agents, UV absorbers, functional additives such as flame retardants, inorganic fillers, and the like. . In particular, in the resin layer, when the resin layer is composed of a plurality of layers, it is preferable to add a material that exhibits a lubricant action such as polyethylene wax to the inner layer laminated in contact with the surface of the foam layer. This makes it possible to lower the melt viscosity of the inner layer within the range satisfying the physical properties such as tensile elongation and tensile elastic modulus of the resin layer in the present invention in the coextrusion foaming method to be described later. A good laminated foam having a low open cell ratio and excellent appearance can be easily obtained.

また、発泡層或いは樹脂層の基材樹脂は、本発明の積層発泡体の目的及び効果を阻害しない範囲で、ポリスチレン等のスチレン系樹脂、アイオノマーやエチレンプロピレンゴム等のエラストマー、ポリブテン等のブテン系樹脂、ポリ塩化ビニル等の塩化ビニル系樹脂を添加することができる。その場合の添加量はポリエチレン系樹脂100重量%に対して40重量%以下が好ましく、20重量%以下がより好ましく、10重量%以下が特に好ましい。   The base resin of the foam layer or resin layer is a styrene resin such as polystyrene, an elastomer such as ionomer or ethylene propylene rubber, or a butene system such as polybutene, as long as the purpose and effect of the laminated foam of the present invention are not impaired. A vinyl chloride resin such as a resin or polyvinyl chloride can be added. In this case, the addition amount is preferably 40% by weight or less, more preferably 20% by weight or less, and particularly preferably 10% by weight or less with respect to 100% by weight of the polyethylene resin.

また、樹脂層が複数層からなる場合、発泡層を挟み込むように樹脂層を積層している本発明の積層発泡体において最外側に積層されている樹脂層(最外層ということがある。)の少なくとも一方には、表面固有抵抗率が1×1013Ω以下となるように高分子型帯電防止剤が含有されていることが特に好ましい。なお、以下、樹脂層が複数層からなり、樹脂層の最外層と発泡層の間に積層された樹脂層を内層ということがある。 When the resin layer is composed of a plurality of layers, the resin layer (sometimes referred to as the outermost layer) laminated on the outermost side in the laminated foam of the present invention in which the resin layers are laminated so as to sandwich the foam layer. It is particularly preferable that at least one contains a polymer type antistatic agent so that the surface resistivity is 1 × 10 13 Ω or less. Hereinafter, the resin layer is composed of a plurality of layers, and the resin layer laminated between the outermost layer of the resin layer and the foamed layer may be referred to as an inner layer.

積層発泡体においては、ポリエチレン系樹脂層の最外層に高分子型帯電防止剤が含有されていることで、高価な該帯電防止剤の使用量を抑え十分な帯電防止効果が期待できる。即ち、該帯電防止剤を添加して帯電防止効果を得るためには最低限必要な濃度以上の添加を要し、厚みの薄い最外層を対象に帯電防止剤を必要濃度となるように添加することが、結果として高価な高分子型帯電防止剤の使用量を節約することに繋がる。このことは、当然のことながら帯電防止剤に限らず、例えば、抗菌剤、防黴剤などの添加においても同様に添加量低減効果を発揮する。   In the laminated foam, since the polymer type antistatic agent is contained in the outermost layer of the polyethylene resin layer, a sufficient antistatic effect can be expected by suppressing the amount of the expensive antistatic agent used. That is, in order to obtain the antistatic effect by adding the antistatic agent, it is necessary to add more than the minimum necessary concentration, and the antistatic agent is added to the required concentration for the thinnest outermost layer. As a result, the amount of expensive polymer antistatic agent used can be saved. Of course, this is not limited to the antistatic agent, and for example, the addition amount of the antibacterial agent and the antifungal agent also exhibits the effect of reducing the addition amount.

ポリエチレン系樹脂層に含まれる前述した高分子型帯電防止剤としては、数平均分子量が2000以上、好ましくは2000〜100000、更に好ましくは5000〜60000、特に好ましくは8000〜40000の帯電防止剤であり、界面活性剤からなる帯電防止剤とは区別される。尚、該高分子型帯電防止剤の数平均分子量の上限は概ね10000000である。また、高分子型帯電防止剤は表面固有抵抗率が1×1010(Ω)未満である樹脂が好ましい。高分子型帯電防止剤の数平均分子量を上記の範囲とすることにより、帯電防止性能が環境に左右されずより安定的に発現され、被包装体へ帯電防止剤が移行して被包装体表面を汚染することも殆どないようにすることができる。 The polymer type antistatic agent contained in the polyethylene resin layer is an antistatic agent having a number average molecular weight of 2000 or more, preferably 2000 to 100,000, more preferably 5000 to 60000, and particularly preferably 8000 to 40000. It is distinguished from an antistatic agent comprising a surfactant. The upper limit of the number average molecular weight of the polymer type antistatic agent is approximately 10000000. The polymer antistatic agent is preferably a resin having a surface resistivity of less than 1 × 10 10 (Ω). By setting the number average molecular weight of the polymer type antistatic agent within the above range, the antistatic performance is more stably expressed without being influenced by the environment, and the antistatic agent migrates to the packaged body surface. Can be prevented from being contaminated.

なお、上記数平均分子量は、高温ゲルパーミエーションクロマトグラフィーを用いて求められる。例えば、高分子型帯電防止剤がポリエーテルエステルアミドやポリエーテルを主成分とする親水性樹脂の場合にはオルトジクロロベンゼンを溶媒として試料濃度3mg/mlとし、ポリスチレンを基準物質としてカラム温度135℃の条件にて測定される値である。なお、上記溶媒の種類、カラム温度は、高分子型帯電防止剤の種類に応じて適宜変更する。   In addition, the said number average molecular weight is calculated | required using high temperature gel permeation chromatography. For example, when the polymer type antistatic agent is a hydrophilic resin mainly composed of polyetheresteramide or polyether, the sample concentration is 3 mg / ml using orthodichlorobenzene as a solvent, and the column temperature is 135 ° C. using polystyrene as a reference substance. It is a value measured under the conditions. In addition, the kind of said solvent and column temperature are suitably changed according to the kind of polymeric antistatic agent.

また、該高分子型帯電防止剤の融点は、好ましくは70〜270℃、より好ましくは80〜230℃、特に好ましくは80〜200℃であることが、本発明積層発泡体のような坪量の小さなポリオレフィン系樹脂層の形成性および良好な帯電防止機能発現性の観点から望ましい。   The melting point of the polymer antistatic agent is preferably 70 to 270 ° C., more preferably 80 to 230 ° C., and particularly preferably 80 to 200 ° C. Is desirable from the viewpoint of forming a small polyolefin resin layer and exhibiting good antistatic function.

高分子型帯電防止剤の融点は、以下のJIS K 7121(1987)に準拠する方法により測定することができる。即ちJIS K 7121(1987)における試験片の状態調節(2)の条件(但し、冷却速度は10℃/分)により前処理を行い、10℃/分にて昇温することにより融解ピークを得る。そして得られた融解ピークの頂点の温度を融点とする。尚、融解ピークが2つ以上現れる場合は、最も面積の大きな融解ピークの頂点の温度を融点とする。但し、最も面積の大きな融解ピークが複数存在する場合は、それらの融解ピークの内、最も高温側の融解ピークの頂点の温度を融点とする。   The melting point of the polymer antistatic agent can be measured by a method based on the following JIS K 7121 (1987). That is, pretreatment is performed according to the condition (2) for condition adjustment of the test piece in JIS K 7121 (1987) (however, the cooling rate is 10 ° C./min), and the melting peak is obtained by raising the temperature at 10 ° C./min. . The temperature at the top of the obtained melting peak is taken as the melting point. When two or more melting peaks appear, the temperature at the top of the melting peak having the largest area is defined as the melting point. However, when there are a plurality of melting peaks having the largest area, the melting point is the temperature at the apex of the melting peak on the highest temperature side among the melting peaks.

本発明で使用される高分子型帯電防止剤としては、金属イオンとしてカリウム、ルビジウム及びセシウムからなる群より選ばれたアルカリ金属を含むアイオノマー樹脂、ポリエーテルエステルアミドやポリエーテルを主成分とする親水性樹脂が好ましい。また高分子型帯電防止剤にはポリエチレン系樹脂層の基材樹脂との相溶性を向上させ、優れた帯電防止効果を与えると共に、帯電防止剤を添加することによる物性低下を抑制する効果を得るために、ポリエチレン系樹脂層の基材樹脂と同種或いは相溶性の高い樹脂をブロック共重合させたものを用いることが更に好ましい。   As the polymer type antistatic agent used in the present invention, an ionomer resin containing an alkali metal selected from the group consisting of potassium, rubidium and cesium as metal ions, a polyether ester amide, and a hydrophilic mainly composed of a polyether. Is preferred. In addition, the polymer antistatic agent improves the compatibility of the polyethylene-based resin layer with the base resin and gives an excellent antistatic effect, and also has the effect of suppressing deterioration in physical properties due to the addition of the antistatic agent. For this purpose, it is more preferable to use a block copolymer of the same kind or highly compatible resin as the base resin of the polyethylene resin layer.

特に好ましい高分子型帯電防止剤は、エチレン−不飽和カルボン酸共重合体の一部又は全部がカリウム、ルビジウム及びセシウムからなる群より選ばれたアルカリ金属で中和されているアイオノマーや特開2001-278985号公報に記載されている組成物が挙げられる。   Particularly preferred polymer antistatic agents include ionomers in which part or all of the ethylene-unsaturated carboxylic acid copolymer is neutralized with an alkali metal selected from the group consisting of potassium, rubidium and cesium, and The composition described in -278985 is mentioned.

特開2001-278985号公報記載の組成物は、ポリオレフィン(a)のブロックと、体積固有抵抗率が105〜1011Ω・cmの親水性ポリマー(b)のブロックとが、繰り返し交互に結合した構造を有する数平均分子量(Mn)が2000〜60000のブロックポリマーである。上記(a)のブロックと(b)のブロックとは、エステル結合、アミド結合、エーテル結合、ウレタン結合、イミド結合から選ばれる少なくとも1種の結合を介して繰り返し交互に結合した構造を有するものである。上記高分子型帯電防止剤はそれぞれ単独で使用することができるが、組み合わせて使用してもよい。
上記のような高分子型帯電防止剤としては、例えば三洋化成工業株式会社製「ペレスタット300」、「ペレスタットNC7530」というものがある。
In the composition described in JP-A-2001-278985, a block of polyolefin (a) and a block of hydrophilic polymer (b) having a volume resistivity of 10 5 to 10 11 Ω · cm are bonded alternately and repeatedly. It is a block polymer having a number average molecular weight (Mn) of 2000 to 60000 having the above structure. The block (a) and the block (b) have a structure in which they are alternately and repeatedly bonded via at least one bond selected from an ester bond, an amide bond, an ether bond, a urethane bond, and an imide bond. is there. The polymer antistatic agents can be used alone or in combination.
Examples of the polymer type antistatic agent as described above include “Pelestat 300” and “Pelestat NC7530” manufactured by Sanyo Chemical Industries, Ltd.

本発明の積層発泡体は、次のようにして製造することができる。   The laminated foam of the present invention can be produced as follows.

まず、発泡層基材樹脂と、気泡調節剤等の添加剤とを押出機に供給して加熱、溶融して混練し、次いで発泡剤を押出機に供給して溶融樹脂と混練して溶融発泡性樹脂組成物を得る。そして、押出機から押出して発泡させる公知の押出発泡法によって、溶融発泡性樹脂組成物を発泡させ、見掛け密度150g/L〜350g/Lで連続気泡率40%以下であるような発泡層を構成する部分となる発泡体(以下、単に、発泡体ということがある)を得る。   First, a foam layer base resin and additives such as a bubble regulator are supplied to an extruder and heated, melted and kneaded, and then a foaming agent is supplied to the extruder and kneaded with a molten resin to be melt foamed. A functional resin composition is obtained. Then, the foamed resin composition is foamed by a known extrusion foaming method that is extruded from an extruder and foamed to form a foamed layer having an apparent density of 150 g / L to 350 g / L and an open cell rate of 40% or less. A foam (hereinafter simply referred to as “foam”) is obtained.

その一方で、樹脂層基材樹脂を用いて公知の押出成形法によりポリエチレン系樹脂フィルム(以下、単にフィルムということがある)を得る。   On the other hand, a polyethylene resin film (hereinafter sometimes simply referred to as a film) is obtained by a known extrusion molding method using a resin layer base resin.

上記のようにして得られた発泡体とフィルムとを、発泡体の両面をフィルムで挟み込むように加熱ロールに通じ、こうした発泡体とフィルムとを相互に熱溶着させて積層構造を形成し、積層発泡体を得る。   The foam and the film obtained as described above are passed through a heating roll so that both surfaces of the foam are sandwiched between the films, and the foam and the film are thermally welded together to form a laminated structure. Obtain a foam.

本発明の積層発泡体は上記方法にて製造する場合に限定されず、次に示すようにして製造されてもよい。
すなわち、積層発泡体は、上記のようにして発泡体を製造し、その後発泡体の製造工程ライン上またはこれとは別の製造ラインで、樹脂層基材樹脂を溶融した樹脂溶融物を別の押出機から発泡体の一方の面上に供給して樹脂層を積層し、さらに発泡体の他方の面についても同様にして樹脂層を積層することで製造されてもよい。
The laminated foam of the present invention is not limited to the case of producing by the above method, and may be produced as follows.
That is, the laminated foam is produced as described above, and then the resin melt obtained by melting the resin layer base resin is separated on the foam production process line or on a separate production line. It may be manufactured by supplying a resin layer on one surface of the foam from the extruder and laminating the resin layer on the other surface of the foam in the same manner.

また、積層発泡体は、一旦発泡体を製造し、発泡体の製造工程ライン上またはこれとは別の製造ラインで、フィルムを供給し発泡体の一方の面に熱融着させて積層構造を形成し、更に発泡体の他方の面に対しては、別の押出機から樹脂層基材樹脂を溶融した樹脂溶融物を供給して発泡体にフィルムを積層する方法により製造されてもよい。   In addition, the laminated foam is manufactured once and then the film is supplied on the production line of the foam or a separate production line and heat-sealed to one surface of the foam to form a laminated structure. Further, the other surface of the foam may be formed by supplying a resin melt obtained by melting the resin layer base resin from another extruder and laminating the film on the foam.

更にまた、本発明の積層発泡体は、共押出法により発泡体の両面にフィルムを積層して、発泡層の両面に樹脂層(単層又は多層の樹脂層)を形成することで製造されてもよい。   Furthermore, the laminated foam of the present invention is produced by laminating films on both sides of the foam by a coextrusion method, and forming resin layers (single layer or multilayer resin layers) on both sides of the foam layer. Also good.

なお、本発明の積層発泡体を製造するにあたり、上記したような各製造方法のうち、共押出法が、他の方法に比べ発泡層の両面に同時に樹脂層を形成できるなど製造工程がシンプルであるため、製造コストの面からも好ましい。しかも、発泡層と樹脂層との接着強度が高いので層間剥離の発生を抑えて良好な積層発泡体が得られる。   In producing the laminated foam of the present invention, among the production methods as described above, the co-extrusion method is simpler than the other methods, such as being able to simultaneously form a resin layer on both sides of the foam layer. Therefore, it is preferable from the viewpoint of manufacturing cost. And since the adhesive strength of a foam layer and a resin layer is high, generation | occurrence | production of delamination is suppressed and a favorable laminated foam is obtained.

そこで、共押出法によりシート状に積層発泡体を得る方法についてさらに詳しく述べると、(1)フラットダイを用いシート状に共押出して積層する方法、(2)環状ダイを用いて共押出して筒状の積層発泡体を製造し、ついで筒状積層発泡体を切り開いてシート状とする方法がある。環状ダイを用いる方法では、より具体的には、該環状ダイから溶融発泡性樹脂溶融物押出し発泡させるとともに樹脂溶融物を押出すことで一旦筒状に積層発泡体を製造し、次いで該筒状の積層発泡体は、円柱状冷却装置上を通過することで筒状の積層発泡体内面から冷却され、これを切開くことにより厚み2〜8mmの積層発泡体を得ることができる。上記(1)、(2)の方法のうち、幅が1000mm以上であるような幅広の積層発泡体を得るには環状ダイを用いた共押出法が適している。   Therefore, the method for obtaining a laminated foam in the form of a sheet by coextrusion will be described in more detail. (1) Method of coextrusion and lamination in a sheet form using a flat die, (2) Coextrusion by using an annular die and cylinder There is a method of producing a sheet-like laminated foam, and then cutting the tubular laminated foam into a sheet form. In the method using an annular die, more specifically, a laminated foam is once produced into a cylindrical shape by extruding and foaming a melt-foamable resin melt from the annular die and then extruding the resin melt, and then the cylindrical shape. The laminated foam is cooled from the inner surface of the cylindrical laminated foam by passing over the columnar cooling device, and a laminated foam having a thickness of 2 to 8 mm can be obtained by cutting this. Of the methods (1) and (2), a coextrusion method using an annular die is suitable for obtaining a wide laminated foam having a width of 1000 mm or more.

尚、上記したような共押出法によって積層発泡体を得る場合、ダイの出口や、ダイの出口の外で樹脂層と発泡層との積層構造が形成される共押出法を採用してもよい。また環状ダイを用いて押出発泡する場合の押出機、環状ダイ、円柱状冷却装置、筒状積層発泡体を切開く装置としては、従来から押出発泡の分野で用いられてきた公知のものを用いることができる。   In addition, when a laminated foam is obtained by the above-described coextrusion method, a coextrusion method in which a laminated structure of a resin layer and a foamed layer is formed outside the die outlet or the die outlet may be adopted. . In addition, as an extruder, an annular die, a columnar cooling device, and a device for opening a cylindrical laminated foam in the case of extrusion foaming using an annular die, known ones conventionally used in the field of extrusion foaming are used. be able to.

本発明の積層発泡体は、連続気泡率が40%以下であるが、積層発泡体を製造するにあたり連続気泡率をこのような範囲とする方法としては、例えば、気泡調整剤の量や押出温度等の押出条件設定により調整できる。   The laminated foam of the present invention has an open cell ratio of 40% or less, and as a method for setting the open cell ratio in such a range in producing the laminated foam, for example, the amount of the bubble regulator and the extrusion temperature It can be adjusted by setting the extrusion conditions.

本発明の積層発泡体の発泡体の形成に用いる発泡剤としては、従来からポリエチレン系樹脂発泡体の製造に用いられていると同様の無機系物理発泡剤や有機系物理発泡剤等が使用できる。無機系物理発泡剤としては例えば、酸素、窒素、二酸化炭素、空気等が挙げられ、有機系物理発泡剤としては例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、イソヘキサン、シクロヘキサン等の脂肪族炭化水素、塩化メチル、塩化エチル等の塩化炭化水素が挙げられる。上記した発泡剤は、2種以上を混合して使用することも可能である。これらの内、特にポリエチレン系樹脂との相溶性、発泡性の良好なノルマルブタン、イソブタン、またはこれらの混合物を主成分とするものが好適である。一方、環境対応、安全性などの観点から二酸化炭素、またはその混合物を発泡剤として使用することも好ましい。またアゾジカルボンアミド等の分解型発泡剤も併用することができる。   As the foaming agent used for forming the foam of the laminated foam of the present invention, the same inorganic physical foaming agent and organic physical foaming agent as those conventionally used for the production of polyethylene resin foams can be used. . Examples of the inorganic physical foaming agent include oxygen, nitrogen, carbon dioxide, and air. Examples of the organic physical foaming agent include propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, isohexane, and cyclohexane. And aliphatic hydrocarbons, chlorohydrocarbons such as methyl chloride and ethyl chloride. The above foaming agents can be used in combination of two or more. Of these, those having, as a main component, normal butane, isobutane, or a mixture thereof having good compatibility with polyethylene-based resins and good foaming properties are preferable. On the other hand, it is also preferable to use carbon dioxide or a mixture thereof as a foaming agent from the viewpoint of environmental friendliness and safety. A decomposable foaming agent such as azodicarbonamide can also be used in combination.

発泡剤の添加量は、発泡剤の種類、目的とする発泡体の見掛け密度に応じて調整する。例えば、本発明の積層発泡体を得るためには発泡剤としてイソブタンを用いた場合、イソブタンの添加量は発泡層基材樹脂100重量部当たり0.3〜5.0重量部、好ましくは0.4〜4.5重量部、より好ましくは0.5〜3.0重量部であり、二酸化炭素を用いた場合、二酸化炭素の添加量は発泡層基材樹脂100重量部当たり0.1〜3重量部、好ましくは0.12〜2.5重量部、より好ましくは0.15〜2重量部である。   The amount of foaming agent added is adjusted according to the type of foaming agent and the apparent density of the desired foam. For example, when isobutane is used as a foaming agent in order to obtain the laminated foam of the present invention, the amount of isobutane added is 0.3 to 5.0 parts by weight, preferably 0.4 to 4.5 parts by weight per 100 parts by weight of the foam layer resin. More preferably 0.5 to 3.0 parts by weight, and when carbon dioxide is used, the amount of carbon dioxide added is 0.1 to 3 parts by weight, preferably 0.12 to 2.5 parts by weight, more preferably 100 parts by weight of the foam layer base resin. 0.15 to 2 parts by weight.

また、発泡層を構成する発泡層基材樹脂には気泡調整剤が添加されることが好ましい。このような気泡調整剤としては、有機系のもの、無機系のもののいずれも使用することができる。無機系気泡調整剤としては、ホウ酸亜鉛、ホウ酸マグネシウム、硼砂等のホウ酸金属塩、塩化ナトリウム、水酸化アルミニウム、タルク、ゼオライト、シリカ、炭酸カルシウム、重炭酸ナトリウム等が挙げられる。また有機系気泡調整剤としては、リン酸−2,2−メチレンビス(4,6−tert−ブチルフェニル)ナトリウム、安息香酸ナトリウム、安息香酸カルシウム、安息香酸アルミニウム、ステアリン酸ナトリウム等が挙げられる。またクエン酸と重炭酸ナトリウム、クエン酸のアルカリ塩と重炭酸ナトリウム等を組み合わせたもの等も気泡調整剤として用いることができる。これらの気泡調整剤は2種以上を混合して用いることができる。   Moreover, it is preferable that a bubble regulator is added to the foam layer base resin constituting the foam layer. As such a bubble adjusting agent, either an organic type or an inorganic type can be used. Examples of the inorganic foam regulator include borate metal salts such as zinc borate, magnesium borate, borax, sodium chloride, aluminum hydroxide, talc, zeolite, silica, calcium carbonate, sodium bicarbonate, and the like. Examples of the organic foam regulator include sodium 2,2-methylenebis (4,6-tert-butylphenyl) phosphate, sodium benzoate, calcium benzoate, aluminum benzoate, and sodium stearate. A combination of citric acid and sodium bicarbonate, an alkali salt of citric acid and sodium bicarbonate, or the like can also be used as the bubble regulator. These bubble regulators can be used in combination of two or more.

気泡調整剤の添加量は、目的とする気泡径に応じて調節する。気泡調整剤としてタルクを用いた場合、タルクの添加量は発泡層基材樹脂100重量部当たり、0.1〜2重量部、好ましくは0.2〜1.5重量部である。   The amount of bubble regulator added is adjusted according to the target bubble diameter. When talc is used as the cell regulator, the amount of talc added is 0.1 to 2 parts by weight, preferably 0.2 to 1.5 parts by weight, per 100 parts by weight of the foam layer base resin.

本発明の積層発泡体は、剛性、緩衝性、耐衝撃性に優れることから、適宜形状に加工されたり成形されたりして組立箱、板材などといった各種加工品や成形品を製造するために使用されうる。また、この積層発泡体は、上記したような加工品のほか、段ボール代替品、仕切材、組立箱、コンクリート型枠の養生板等の用途に用いられることも好適である。   Since the laminated foam of the present invention is excellent in rigidity, shock-absorbing property and impact resistance, it is used to produce various processed products such as assembly boxes and plate materials and molded products by being processed or molded into appropriate shapes. Can be done. In addition to the processed product as described above, the laminated foam is also preferably used for applications such as a corrugated cardboard substitute, a partition material, an assembly box, and a curing plate for a concrete formwork.

本発明の積層発泡体は、ランドセル芯材など簡単な熱成形が要求される場合には、例えば、ポリエチレン系樹脂積層発泡体を加熱軟化させた後、雄型及び/又は雌型からなる金型を使用して熱成形することができる。なお、熱成形法としては、真空成形や圧空成形のほか、フリードローイング成形、プラグ・アンド・リッジ成形、リッジ成形、マッチド・モールド成形、ストレート成形、ドレープ成形、リバースドロー成形、エアスリップ成形、プラグアシスト成形、プラグアシストリバースドロー成形などや、これらを適宜組合せた成形方法などが挙げられる。   In the case where simple thermoforming such as a satchel core material is required, the laminated foam of the present invention is, for example, a mold comprising a male mold and / or a female mold after heat-softening a polyethylene resin laminated foam. Can be thermoformed. In addition to vacuum forming and pressure forming, thermoforming methods include free drawing, plug and ridge, ridge, matched mold, straight, drape, reverse draw, air slip, and plug. Examples include assist molding, plug assist reverse draw molding, and a molding method in which these are appropriately combined.

本発明において、積層発泡体の諸物性の測定方法は以下の通りである。   In the present invention, methods for measuring physical properties of the laminated foam are as follows.

積層発泡体の厚みは次のように算出される。
まず積層発泡体の押出方向に直行する方向にて積層発泡体を垂直に切断する。そして、積層発泡体の切断面の厚みを顕微鏡により幅方向に等間隔で10点撮影を行い、撮影された各点における全体厚みを測定し、得られた値の算術平均値を積層発泡体の厚みとした。なお、これと同様にして、樹脂層の厚みについても測定できる。さらに、得られた積層発泡体の厚みを示す数値から樹脂層の厚みを示す数値を減ずることで発泡層の厚みが算出される。
The thickness of the laminated foam is calculated as follows.
First, the laminated foam is cut perpendicularly in a direction perpendicular to the extrusion direction of the laminated foam. Then, the thickness of the cut surface of the laminated foam was photographed at 10 points at equal intervals in the width direction with a microscope, the total thickness at each photographed point was measured, and the arithmetic average value of the obtained values was calculated for the laminated foam The thickness was taken. In the same manner, the thickness of the resin layer can be measured. Furthermore, the thickness of the foamed layer is calculated by subtracting the numerical value indicating the thickness of the resin layer from the numerical value indicating the thickness of the obtained laminated foam.

発泡層の見掛け密度は、積層発泡体の坪量から樹脂層の坪量を除いた発泡層の坪量を、発泡層の厚みに対応する値で除して得られた値を換算することで算出される。   The apparent density of the foam layer can be calculated by converting the basis weight of the foam layer excluding the basis weight of the resin layer from the basis weight of the laminated foam by the value corresponding to the thickness of the foam layer. Calculated.

なお、積層発泡体および樹脂層それぞれの坪量は次のように測定される。
積層発泡体の坪量は、上記のように算出された縦25mm×横25mm×積層発泡体の厚みの試験片を切り出し、試験片の重量(g)を測定し、その測定値を1600倍にして1m2当たりの重量に換算した値(g/m2)として算出される。
The basis weight of each of the laminated foam and the resin layer is measured as follows.
The basis weight of the laminated foam is calculated by cutting out a test piece of 25 mm long x 25 mm wide x laminated foam thickness calculated as above, measuring the weight (g) of the test piece, and multiplying the measured value by 1600 times. is calculated as a value in terms of weight per 1 m 2 Te (g / m 2).

樹脂層の坪量は、上記のように算出された樹脂層の厚みに樹脂層の密度を乗じ、単位換算をして求める。   The basis weight of the resin layer is obtained by multiplying the thickness of the resin layer calculated as described above by the density of the resin layer and converting the unit.

発泡層の連続気泡率は、積層発泡体を試験片として、ASTM D 2856-70に記載されている手順Cに準拠し、東芝ベックマン株式会社製の空気比較式比重計930型を用いて測定された試験片の実容積(独立気泡の容積と樹脂部分の容積との和)Vx(L)から、下記式(1)により算出された値である。   The open cell ratio of the foam layer is measured using an air-comparing hydrometer 930 model manufactured by Toshiba Beckman Co., Ltd. in accordance with Procedure C described in ASTM D 2856-70 using a laminate foam as a test piece. It is a value calculated by the following equation (1) from the actual volume (sum of the volume of closed cells and the volume of the resin portion) Vx (L).

(数1)
S(%)=(Va-Vx)×100/(Va-W/ρ) ・・・(1)
(Equation 1)
S (%) = (Va-Vx) × 100 / (Va-W / ρ) (1)

ただし、上記式(1)中、Va、W、ρは次の通りである。
Va:測定に用いた試験片の外寸法から計測されるその見掛け容積(L)
W:試験片の重量(g)
ρ:試験片を構成する樹脂の密度(g/L)
However, in said formula (1), Va, W, and (rho) are as follows.
Va: Its apparent volume (L) measured from the outer dimensions of the specimen used for measurement
W: Weight of test specimen (g)
ρ: Density of resin constituting the test piece (g / L)

なお、試験片を構成する樹脂の密度ρ(g/L)および重量W(g)は、試験片を加熱プレスすることにより積層発泡体の発泡層から気泡を脱泡させて冷却する操作が行われることで得られるサンプルの重量と体積から求めることができる。   Note that the density ρ (g / L) and weight W (g) of the resin constituting the test piece are cooled by defoaming bubbles from the foamed layer of the laminated foam by hot pressing the test piece. It can be determined from the weight and volume of the sample obtained.

試験片は、上記した空気比較式比重計に付属のサンプルカップに非圧縮状態にて収納される必要があるため、この試験片としては、積層発泡体から縦、横がそれぞれ25mm、厚みが積層発泡体厚みのものを切り出して使用されるとともに、見掛け体積が15〜16cm3となるような最小限の枚数を積み重ねて使用する。 Since the test piece needs to be stored in a non-compressed state in the sample cup attached to the above-mentioned air comparison type hydrometer, this test piece is made from a laminated foam with a thickness of 25 mm and a thickness of 25 mm each. A foam having the thickness of the foam is cut out and used, and a minimum number of sheets having an apparent volume of 15 to 16 cm 3 are stacked and used.

積層発泡体の曲げ弾性率は、JIS K 7203(1982)に準拠して押出方向(MD)と幅方向(TD)について測定し、得られた値を相加平均した値より算出される。JIS K 7203(1982)に準拠した測定は、長さ100mm×幅25mm×積層発泡体の厚みのものを試験片として用い、支点の先端R=5(mm)、加圧の先端R=5(mm)、支点間距離が50mm、曲げ速度が10mm/分の条件にて実施する。なお、測定には、5個の試験片を用い、それぞれの試験片につき押出方向(MD)と幅方向(TD)についての測定値を得て、試験片ごとに相加平均値を得る。そして、各試験片ごとに得られた相加平均値の平均値を算出し、この算出された平均値を曲げ弾性率として採用した。   The flexural modulus of the laminated foam is calculated from the value obtained by measuring the extrusion direction (MD) and the width direction (TD) in accordance with JIS K 7203 (1982) and averaging the obtained values. Measurement in accordance with JIS K 7203 (1982) uses a specimen with a length of 100 mm × width 25 mm × laminated foam thickness as a test piece, with a fulcrum tip R = 5 (mm) and a pressure tip R = 5 ( mm), the distance between fulcrums is 50 mm, and the bending speed is 10 mm / min. For the measurement, five test pieces are used, and measured values in the extrusion direction (MD) and the width direction (TD) are obtained for each test piece, and an arithmetic average value is obtained for each test piece. And the average value of the arithmetic mean value obtained for every test piece was computed, and this computed average value was employ | adopted as a bending elastic modulus.

樹脂層の引張伸び(a(mm))は、積層発泡体から積層発泡体の押出方向を長手方向とした長さ30mm以上、幅10mm短冊状の試験片(幅10mm)を切り出し、長手方向中央部に全幅に亘る切込みを入れたものを用いて測定される。なお、該切込み形状は積層発泡体の片面の樹脂層が切断されないようにして発泡層と樹脂層の界面を頂点とする内角45度のV字の切込みとする。次に、該試験片の長手方向を上下方向にして、試験片の上端部と下端部を、掴み具を備えた固定具にて、掴み具間距離を10mmに保持し左右方向にぐらつかないように固定する。そして、引張速度500mm/分の条件で試験片を上下方向に引張り、試験片が破断するまでに延伸された掴み具間距離を測定し、この値から延伸される前の掴み具間距離10mmを差し引いて得られた値を引張伸び(a(mm))とする。   The tensile elongation (a (mm)) of the resin layer was determined by cutting a strip-shaped test piece (width 10 mm) with a length of 30 mm or more and a width 10 mm with the extrusion direction of the layered foam from the layered foam. Measured using a part with a cut across the entire width. The cut shape is a V-shaped cut having an inner angle of 45 degrees with the interface between the foam layer and the resin layer as the apex so that the resin layer on one side of the laminated foam is not cut. Next, with the longitudinal direction of the test piece up and down, the upper and lower ends of the test piece are held by a fixture equipped with a gripping tool so that the distance between the gripping tools is kept at 10 mm so as not to wobble in the left-right direction. Secure to. Then, the test piece is pulled up and down at a pulling speed of 500 mm / min, and the distance between the grips stretched until the test piece breaks is measured. From this value, the distance between grips 10 mm before stretching is calculated. The value obtained by subtraction is taken as the tensile elongation (a (mm)).

積層発泡体の25%圧縮強さ(b(MPa))は、JIS K 7220(1990)に準拠して測定された値に基づいてつぎのように算出される。まず、積層発泡体より、長さ50mm×幅50mm×積層発泡体の厚みのものを切り出して試験片とし、その試験片についてその厚み方向に圧縮速度0.5 mm/分にて25%圧縮した時点での圧縮応力が測定される。なお、この圧縮応力の測定にあたっては、5つの試験片を調整したうえで、それぞれの試験片について圧縮応力が測定される。こうして測定された5つの圧縮応力の値を相加平均して平均値を算出し、その平均値を25%圧縮強さとする。   The 25% compressive strength (b (MPa)) of the laminated foam is calculated as follows based on the value measured according to JIS K 7220 (1990). First, from the laminated foam, a test piece having a length of 50 mm × width 50 mm × laminate foam was cut out to give a test piece, and the test piece was compressed 25% in the thickness direction at a compression rate of 0.5 mm / min. Compressive stress is measured. In measuring the compressive stress, after adjusting five test pieces, the compressive stress is measured for each test piece. The average value is calculated by arithmetically averaging the values of the five compressive stresses thus measured, and the average value is defined as a 25% compressive strength.

樹脂層基材樹脂の引張伸び及び引張弾性率は、JIS K 7127(1989)に準拠して測定される。なお、測定に用いる試験片は、積層発泡体から切り出された樹脂層を加熱プレスした後冷却することで調整される。また測定には、厚みが0.9mmの2号型試験片を5つ用い、それぞれの試験片について、掴み具間距離80mm、引張速度500mm/分の条件にて測定値を得て、得られた測定データを平均して平均値を算出し、算出された平均値を引張伸びとして採用した。なお、測定には、株式会社オリエンテック製のテンシロン万能試験機などが使用される。   The tensile elongation and tensile elastic modulus of the resin layer base resin are measured according to JIS K 7127 (1989). In addition, the test piece used for a measurement is adjusted by heat-pressing and then cooling the resin layer cut out from the laminated foam. In addition, five type 2 test pieces with a thickness of 0.9 mm were used for the measurement, and the measured values were obtained under the conditions of a distance between grips of 80 mm and a tensile speed of 500 mm / min for each test piece. The average value was calculated by averaging the measurement data, and the calculated average value was adopted as the tensile elongation. For the measurement, a Tensilon universal testing machine manufactured by Orientec Co., Ltd. is used.

次に、本発明の積層発泡体について、実施例を用いて具体的に説明する。   Next, the laminated foam of this invention is demonstrated concretely using an Example.

実施例1〜5、比較例1〜3、5、6
積層発泡体の発泡層形成用押出機として、直径90mmと直径120mmの2台の押出機からなるタンデム押出機を使用し、内層樹脂層形成用の押出機として直径50mmの押出機を使用し、また最外樹脂層形成用の押出機として直径40mmを使用し、上記各押出機により混練された溶融樹脂を合流させ共押出する直径165mmの環状スリットを有する環状ダイを用いた。
Examples 1-5, Comparative Examples 1-3, 5, 6
As an extruder for forming a foamed layer of a laminated foam, a tandem extruder consisting of two extruders with a diameter of 90 mm and a diameter of 120 mm is used, and an extruder with a diameter of 50 mm is used as an extruder for forming an inner resin layer, Further, as an extruder for forming the outermost resin layer, a diameter of 40 mm was used, and an annular die having an annular slit having a diameter of 165 mm for joining and co-extruding the molten resins kneaded by the respective extruders was used.

まず、発泡層を形成するために表1記載の樹脂100重量部に対して、気泡調整剤クエン酸モノナトリウムと炭酸水素ナトリウムとの混合物(大日精化工業株式会社製「ファインセルマスターSSC-PO208K」)を0.7重量部配合して、直径90mmの押出機の原料投入口に供給し、加熱混練し、約200℃に調製された溶融樹脂混合物とし、該溶融樹脂混合物に発泡剤としてイソブタンを樹脂100重量部に対して1.2重量部となるように圧入し、次いで前記直径90mmの押出機の下流側に連結された直径120mmの押出機に供給し発泡性溶融樹脂混合物を得た。   First, in order to form a foam layer, 100 parts by weight of the resin shown in Table 1 was mixed with a mixture of a foam regulator monosodium citrate and sodium bicarbonate (“Finecell Master SSC-PO208K, manufactured by Dainichi Seika Kogyo Co., Ltd.). Is blended in 0.7 parts by weight, fed to the raw material inlet of an extruder with a diameter of 90 mm, heated and kneaded to obtain a molten resin mixture prepared at about 200 ° C., and isobutane as a blowing agent in the molten resin mixture The mixture was press-fitted to 1.2 parts by weight with respect to 100 parts by weight, and then supplied to an extruder with a diameter of 120 mm connected to the downstream side of the extruder with a diameter of 90 mm to obtain a foamable molten resin mixture.

一方、内層を形成するために表1記載の樹脂を直径50mmの押出機に供給し溶融混練して溶融樹脂を得た。また最外層を形成するために表1記載の樹脂を直径40mmの押出機より溶融混練して溶融樹脂を得た。なお、内層と、最外層の比率は、表1に示すような比率にて形成した。   On the other hand, in order to form an inner layer, the resins shown in Table 1 were supplied to an extruder having a diameter of 50 mm and melt kneaded to obtain a molten resin. In order to form the outermost layer, the resins shown in Table 1 were melt-kneaded from an extruder having a diameter of 40 mm to obtain a molten resin. The ratio between the inner layer and the outermost layer was formed as shown in Table 1.

それぞれの溶融樹脂を前記の環状ダイ中へ供給し、最外層を構成する溶融樹脂、内層を構成する溶融樹脂、発泡性溶融樹脂混合物を積層合流させて環状ダイスから共押出し、押出直後に筒状積層発泡体外側から冷却エアーを吹き付けて外側から最外層/内層/発泡層/内層/最外層の順に積層された筒状積層発泡体を形成した。   Each molten resin is fed into the annular die, and the molten resin constituting the outermost layer, the molten resin constituting the inner layer, and the foamable molten resin mixture are laminated and co-extruded from the annular die, and cylindrical immediately after extrusion. Cooling air was blown from the outside of the laminated foam to form a cylindrical laminated foam that was laminated from the outside in the order of outermost layer / inner layer / foamed layer / inner layer / outermost layer.

形成された該筒状積層発泡体を直径350mmの円柱状の冷却装置(マンドレル)に沿わせて引き取りながら筒状物を切り開いた後、その積層発泡体の両面を加熱炉で加熱し、冷却ロールを通して平板状とし目的の板状積層発泡体を得た。なお、実施例1〜5にて得られた積層発泡体は平滑性などの外観においても優れるものであった。   The tubular laminated foam formed is cut along a cylindrical cooling device (mandrel) having a diameter of 350 mm, and the tubular product is cut open. Then, both sides of the laminated foam are heated in a heating furnace, and a cooling roll The target plate-like laminated foam was obtained through a flat plate. The laminated foams obtained in Examples 1 to 5 were excellent in appearance such as smoothness.

実施例6、比較例4
最外樹脂層形成用の押出機として直径50mmを使用し、内層が存在しない最外層/発泡層/最外層の3層構成に積層された積層発泡体とした以外は実施例1同様に積層板状発泡体を得た。実施例6にて得られた積層発泡体は平滑性などの外観においても優れるものであった。
Example 6, Comparative Example 4
Laminate as in Example 1 except that a 50 mm diameter was used as an extruder for forming the outermost resin layer, and a laminated foam was laminated in a three-layer configuration of outermost layer / foamed layer / outermost layer with no inner layer. A foam was obtained. The laminated foam obtained in Example 6 was excellent in appearance such as smoothness.

実施例7
発泡剤として炭酸ガスを使用し、発泡層を形成するための樹脂100重量部に対して、炭酸ガス0.6重量部圧入した以外は実施例1同様に板状積層発泡体を得た。実施例7にて得られた積層発泡体は平滑性などの外観においても優れるものであった。
Example 7
A plate-like laminated foam was obtained in the same manner as in Example 1 except that carbon dioxide was used as the foaming agent and 0.6 parts by weight of carbon dioxide was injected into 100 parts by weight of the resin for forming the foamed layer. The laminated foam obtained in Example 7 was excellent in appearance such as smoothness.

比較例7
発泡層を形成するための樹脂100重量部に対して、イソブタンを1.4重量部圧入し、各層の坪量を表2記載のものとなるようにした以外は実施例1同様に板状積層発泡体を得た。
Comparative Example 7
Plate-like laminated foam as in Example 1, except that 1.4 parts by weight of isobutane is pressed into 100 parts by weight of the resin for forming the foamed layer, and the basis weight of each layer is as shown in Table 2. Got.

Figure 2007168318
Figure 2007168318

なお、表1中、使用した樹脂は次に示すとおりである。
LD1:分岐状低密度ポリエチレン(密度=922g/L、MFR=2.4g/10min、日本ユニカー株式会社製、商品名「NUC-8321」)
LD2:分岐状低密度ポリエチレン(密度=922g/L、MFR=0.3g/10min、住友化学工業株式会社製、商品名「F-102」)
LL1:直鎖状低密度ポリエチレン(密度=924g/L、MFR=8.0g/10min、日本ポリエチレン株式会社製、商品名「UJ460」)
LL2:直鎖状低密度ポリエチレン(密度=920g/L、MFR=2.1g/10min、日本ポリエチレン株式会社製、商品名「UF240」)
HD1:高密度ポリエチレン(密度=964g/L、MFR=8.0g/10min、日本ポリエチレン株式会社製、商品名「HJ560WUF240」)
HD2:高密度ポリエチレン(密度=961g/L、MFR=0.9g/10min、東ソー株式会社製、商品名「5110」)
P300:ポリエーテル-ポリプロピレンブロック共重合体を主成分とする高分子型帯電防止剤(密度=990g/L、MFR=20g/10min、三洋化成工業株式会社、商品名「ペレスタット300」)
In Table 1, the resins used are as shown below.
LD1: Branched low density polyethylene (Density = 922g / L, MFR = 2.4g / 10min, manufactured by Nihon Unicar Co., Ltd., trade name “NUC-8321”)
LD2: Branched low-density polyethylene (Density = 922g / L, MFR = 0.3g / 10min, manufactured by Sumitomo Chemical Co., Ltd., trade name “F-102”)
LL1: Linear low-density polyethylene (density = 924g / L, MFR = 8.0g / 10min, manufactured by Nippon Polyethylene Co., Ltd., trade name “UJ460”)
LL2: Linear low-density polyethylene (Density = 920g / L, MFR = 2.1g / 10min, manufactured by Nippon Polyethylene Co., Ltd., trade name “UF240”)
HD1: High density polyethylene (Density = 964g / L, MFR = 8.0g / 10min, manufactured by Nippon Polyethylene Co., Ltd., trade name “HJ560WUF240”)
HD2: High density polyethylene (Density = 961g / L, MFR = 0.9g / 10min, manufactured by Tosoh Corporation, trade name "5110")
P300: Polymer type antistatic agent based on polyether-polypropylene block copolymer (Density = 990g / L, MFR = 20g / 10min, Sanyo Chemical Industries, Ltd., trade name “Pelestat 300”)

得られた積層発泡体について、発泡層の見掛け密度、発泡層の連続気泡率、積層発泡体の厚み、曲げ弾性率、ポリエチレン系樹脂層の引張伸び(a(mm))、積層発泡体の25%圧縮強さ(b(MPa))を測定し、またa/bの値を算出した。結果は表2に示す通りである。   About the obtained laminated foam, the apparent density of the foam layer, the open cell ratio of the foam layer, the thickness of the laminate foam, the flexural modulus, the tensile elongation of the polyethylene resin layer (a (mm)), 25 of the laminate foam % Compressive strength (b (MPa)) was measured and the value of a / b was calculated. The results are as shown in Table 2.

Figure 2007168318
Figure 2007168318

また、得られた積層発泡体について、次に示すように、耐折性、割れ耐性、剛性、衝撃穴あけ強さ、表面固有抵抗率を評価し結果を表3に示した。   Further, the obtained laminated foam was evaluated for folding resistance, crack resistance, rigidity, impact piercing strength, and surface resistivity as shown below, and the results are shown in Table 3.

[耐折性]
耐折性は、耐折回数を測定することで評価された。耐折回数の測定は、JIS P 8115(1994)に基づいて実施された。耐折回数の測定は、株式会社東洋精機製作所製の耐折試験機を用いて次のように実施された。
積層発泡体を押圧処理することにより、3本罫線を幅方向に設けることで折り曲げ部を形成した幅15mmの試験片を用意し、荷重9.8Nにて該試験片の両端を固定し、Rが0.38mmの治具を支点にして折り曲げ角度が135度の左右往復動作を行い該折り曲げ部にて折り曲げた。1分間に175往復の折り曲げる速度にて、試験片に割れが発生するまで上記折り曲げを繰り返し行い、割れが発生した時点における折り曲げ回数を測定した。この測定は3回行われ、測定値の平均値を耐折回数とした。結果は、表3に示されるとおりである。
[Folding resistance]
Folding resistance was evaluated by measuring the number of foldings. The number of folding times was measured based on JIS P 8115 (1994). The number of folding times was measured using a folding tester manufactured by Toyo Seiki Seisakusho Co., Ltd. as follows.
By pressing the laminated foam, a test piece with a width of 15 mm in which a bent part is formed by providing three ruled lines in the width direction is fixed, and both ends of the test piece are fixed with a load of 9.8 N. Using a jig of 0.38 mm as a fulcrum, a reciprocating operation was performed at a bending angle of 135 degrees, and bending was performed at the bent portion. The above bending was repeated at a rate of 175 reciprocations per minute until the test piece was cracked, and the number of times of bending when the crack occurred was measured. This measurement was performed three times, and the average value of the measured values was defined as the folding endurance number. The results are as shown in Table 3.

[割れ耐性]
押出方向、幅方向に150×20mmの大きさに切り出された試験片を各10個、計20個調整し、それぞれの試験片について手で折り曲げを行い、割れの発生有無を目視にて確認した。20個の試験片のうち割れの発生しなかった試験片の個数を測定し、割れの発生しなかった試験片の割合に応じて次に示すように割れ耐性を評価した。
80%以上の試験片に割れは発生しない。・・・・・・・・◎
50%以上80%未満の試験片に割れが発生しない。・・・○
20%以上50%未満の試験片に割れが発生しない。・・・△
20%未満の試験片に割れが発生しない。・・・・・・・・×
[Crack resistance]
Ten test pieces each cut to a size of 150 x 20 mm in the extrusion direction and the width direction were adjusted, 20 in total, and each test piece was bent by hand, and the presence or absence of cracks was confirmed visually. . Of the 20 test pieces, the number of test pieces that did not crack was measured, and the crack resistance was evaluated as follows according to the ratio of the test pieces that did not crack.
Cracks do not occur in 80% or more test pieces.・ ・ ・ ・ ・ ・ ・ ・ ◎
Cracks do not occur in specimens of 50% or more and less than 80%.・ ・ ・ ○
Cracks do not occur in test pieces of 20% or more and less than 50%. ... △
Cracks do not occur in test pieces less than 20%.・ ・ ・ ・ ・ ・ ・ ・ ×

[剛性]
積層発泡体より約420×240×230(高さ)mmの組立箱を作製し、この組立箱に15kgの内容物を入れ、5段積み重ね、23℃の環境下、48hr後の最下段の組立箱のふくれ具合(胴ぶくれ)を測定した。この胴ぶくれにより以下のように評価した。
胴ぶくれが15mm以下・・・○
胴ぶくれが15mm以上または、重みに耐えられず荷崩れを起こす・・・×
[rigidity]
An assembly box of approximately 420 x 240 x 230 (height) mm is made from the laminated foam, and the contents of 15 kg are put into this assembly box, stacked in five stages, and assembled at the bottom stage after 48 hours in an environment of 23 ° C. The degree of blistering (trunk) of the box was measured. Evaluation was carried out as follows by using this blister.
Body blister is 15mm or less ... ○
Bumper is 15mm or more, or can not withstand the weight and collapses ... ×

[衝撃穴あけ強さ]
衝撃穴あけ強さの測定は、JIS P 8134(1976)に準拠して実施された。測定には、縦150mm×横150mm×積層発泡体の全厚のものが試験片として用いられ、また、試験片を恒温槽に-25℃で15時間以上保温し、試験片を恒温槽から常温下に取り出した後3秒以内に測定する条件で測定が実施された。この試験は、少なくとも5回行われ、それぞれの試験で計測された測定値を平均して得られた平均値を衝撃穴あけ強さ(F(kgf・cm))を示す値とし、その値に応じて、次に示すように衝撃穴あけ強さを評価した。
F>120(kgf・cm)・・・・・・・・・・・・◎
120(kgf・cm)≧F>100(kgf・cm)・・○
100(kgf・cm)≧F>60(kgf・cm)・・・△
F≦60(kgf・cm)・・・・・・・・・・・・・×
[Shock drilling strength]
The impact piercing strength was measured according to JIS P 8134 (1976). For the measurement, a test piece with a length of 150 mm x 150 mm x laminated foam is used as a test piece. The test piece is kept in a thermostatic bath at -25 ° C for 15 hours or more. The measurement was carried out under the condition of measuring within 3 seconds after taking out below. This test was performed at least 5 times, and the average value obtained by averaging the measured values in each test was taken as the value indicating the impact drilling strength (F (kgf · cm)), and depending on the value The impact drilling strength was evaluated as follows.
F> 120 (kgf ・ cm) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ◎
120 (kgf ・ cm) ≧ F> 100 (kgf ・ cm) ・ ○
100 (kgf · cm) ≧ F> 60 (kgf · cm) ・ ・ ・ △
F ≦ 60 (kgf ・ cm) ・ ・ ・ ・ ・ ・ ・ ・ ×

[表面固有抵抗率]
積層発泡体表面の表面固有抵抗率は、試験片の状態調整を以下の通り行う以外はJIS K 6911(1995)に準拠して測定した。具体的には、測定対象物である積層発泡体から縦100mm×横100mm(厚みは積層発泡体の厚みのまま)の大きさに切り出した試験片を23℃のエタノール40重量%水溶液(エタノール40重量%とイオン交換水60重量%との混合溶液)中に沈めて超音波洗浄を24時間行った後、該試験片を温度30℃、相対湿度30%の雰囲気下で36時間放置して乾燥することにより試験片の状態調整を完了し、印加電圧500Vの条件にて電圧印加を開始して1分経過後の表面固有抵抗率を求めた。
[Surface resistivity]
The surface resistivity of the surface of the laminated foam was measured in accordance with JIS K 6911 (1995) except that the condition of the test piece was adjusted as follows. Specifically, a test piece cut into a size of 100 mm in length and 100 mm in width (thickness is the thickness of the laminated foam) from the laminated foam as a measurement object was used. And then ultrasonically cleaned for 24 hours, and then the specimen is left to dry for 36 hours in an atmosphere of 30 ° C. and 30% relative humidity. As a result, the condition adjustment of the test piece was completed, and voltage application was started under the condition of an applied voltage of 500 V, and the surface resistivity after one minute was obtained.

Figure 2007168318
Figure 2007168318

本発明のポリエチレン系樹脂積層発泡体におけるポリエチレン系樹脂層の引張伸び(a(mm))とポリエチレン系樹脂積層発泡体の25%圧縮強さ(b(MPa))との関係を説明するための説明図である。For explaining the relationship between the tensile elongation (a (mm)) of the polyethylene resin layer and the 25% compressive strength (b (MPa)) of the polyethylene resin laminate foam in the polyethylene resin laminate foam of the present invention It is explanatory drawing.

Claims (3)

見かけ密度が150g/L〜350g/L、連続気泡率40%以下のポリエチレン系樹脂発泡層の両面にポリエチレン系樹脂層を有する厚み2〜8mm、曲げ弾性率が150〜350MPaのポリエチレン系樹脂積層発泡体であって、ポリエチレン系樹脂層の引張伸び(a(mm))とポリエチレン系樹脂積層発泡体の25%圧縮強さ(b(MPa))との比(a/b)が2.4 mm/MPa以上であり、ポリエチレン系樹脂積層発泡体の25%圧縮強さ(b(MPa))が0.5〜1.5MPaであることを特徴とするポリエチレン系樹脂積層発泡体。   Polyethylene resin laminated foam with an apparent density of 150g / L to 350g / L, a polyethylene resin foam layer with an open cell ratio of 40% or less, a thickness of 2 to 8mm with a polyethylene resin layer on both sides, and a flexural modulus of 150 to 350MPa The ratio (a / b) of the tensile elongation (a (mm)) of the polyethylene resin layer to the 25% compressive strength (b (MPa)) of the polyethylene resin laminated foam is 2.4 mm / MPa. A polyethylene resin laminated foam, wherein the 25% compressive strength (b (MPa)) of the polyethylene resin laminated foam is 0.5 to 1.5 MPa. ポリエチレン系樹脂発泡層を構成するポリエチレン系樹脂は、密度が930g/L以下のポリエチレン(Xa)40〜80重量%と、密度が930g/L超970g/L以下のポリエチレン(Ya)20〜60重量%(但し、XaとYaの合計は100重量%)とからなることを特徴とする請求項1記載のポリエチレン系樹脂積層発泡体。   The polyethylene resin constituting the polyethylene resin foam layer is composed of polyethylene (Xa) 40 to 80% by weight having a density of 930 g / L or less, and polyethylene (Ya) 20 to 60% by weight having a density of more than 930 g / L and 970 g / L or less. 2. The polyethylene-based resin laminated foam according to claim 1, comprising:% (provided that the total of Xa and Ya is 100% by weight). ポリエチレン系樹脂層を構成するポリエチレン系樹脂は、密度が930g/L以下の直鎖状ポリエチレン(Xb)10〜40重量%と、密度が930g/L超970g/L以下のポリエチレン(Yb)50〜90重量%と、密度が930g/L以下の高圧法ポリエチレン(Xc)0〜30重量%(但し、XbとYbとXcの合計は100重量%)とからなることを特徴とする請求項1又は2記載のポリエチレン系樹脂積層発泡体。   The polyethylene resin constituting the polyethylene resin layer is composed of 10 to 40% by weight of linear polyethylene (Xb) having a density of 930 g / L or less, and polyethylene (Yb) 50 to a density of more than 930 g / L to 970 g / L or less. The high-pressure polyethylene (Xc) having a density of 930 g / L or less and 0 to 30% by weight (provided that the total of Xb, Yb and Xc is 100% by weight). 2. Polyethylene resin laminate foam according to 2.
JP2005370437A 2005-12-22 2005-12-22 Polyethylene resin laminated foam Active JP4803721B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005370437A JP4803721B2 (en) 2005-12-22 2005-12-22 Polyethylene resin laminated foam
TW95141365A TWI404634B (en) 2005-12-22 2006-11-08 A laminated foam of polyethylene resin
CN2006101686748A CN1986618B (en) 2005-12-22 2006-12-22 Polystyrene resin laminated foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370437A JP4803721B2 (en) 2005-12-22 2005-12-22 Polyethylene resin laminated foam

Publications (2)

Publication Number Publication Date
JP2007168318A true JP2007168318A (en) 2007-07-05
JP4803721B2 JP4803721B2 (en) 2011-10-26

Family

ID=38183569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370437A Active JP4803721B2 (en) 2005-12-22 2005-12-22 Polyethylene resin laminated foam

Country Status (3)

Country Link
JP (1) JP4803721B2 (en)
CN (1) CN1986618B (en)
TW (1) TWI404634B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035177A (en) * 2011-08-05 2013-02-21 Jsp Corp Polyethylene resin multilayer foamed sheet and molded form thereof
CN103570966A (en) * 2012-08-03 2014-02-12 株式会社Jsp Process for producing polyethylene resin foam sheet
JP2016532727A (en) * 2013-06-20 2016-10-20 サウディ ベーシック インダストリーズ コーポレイション Foam film composed of polyethylene foam
WO2019189452A1 (en) * 2018-03-29 2019-10-03 積水化学工業株式会社 Foamed composite sheet, adhesive tape, cushioning material for electronic components, and adhesive tape for electronic components
JP2020163632A (en) * 2019-03-28 2020-10-08 株式会社ジェイエスピー Polyethylene-based resin multilayer foam sheet
JP7112229B2 (en) 2018-03-30 2022-08-03 積水化学工業株式会社 foam composite sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5694832B2 (en) * 2011-04-07 2015-04-01 株式会社ジェイエスピー Foam sheet for packaging
WO2015133354A1 (en) 2014-03-05 2015-09-11 株式会社ジェイエスピー Multilayer foam sheet and interleaf for glass plates
JP2017008255A (en) * 2015-06-25 2017-01-12 リンテック株式会社 Composite sheet for forming protective film, tip with protective film and manufacturing method of tip with protective film
CN106393898A (en) * 2016-08-31 2017-02-15 北京创然铝塑工业有限公司 Three-layer foamed co-extrusion composite board
JP7090534B2 (en) * 2018-12-05 2022-06-24 株式会社ジェイエスピー Polystyrene resin multilayer foam sheet and paper using it
JPWO2020158886A1 (en) * 2019-01-31 2021-12-09 積水化学工業株式会社 Multi-layer foam sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202433A (en) * 1987-12-05 1989-08-15 Lohmann Gmbh & Co Kg Polymer coat foam and manufacture thereof
JP2002036338A (en) * 2000-07-19 2002-02-05 Sekisui Plastics Co Ltd Foam of non-crosslinked polyethylene resin, manufacturing method therefor and molding using this foam
JP2004001401A (en) * 2002-04-03 2004-01-08 Jsp Corp Polyethylene resin laminated foam and manufacturing method therefor
JP2004043813A (en) * 2002-07-09 2004-02-12 Jsp Corp Polyethylene-based resin extruded and foamed sheet, shaped product of the foamed sheet, assembled box, lining sheet for concrete formwork, and manufacturing method of the formed sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW565507B (en) * 2000-06-30 2003-12-11 Mitsui Chemicals Inc Foamed laminate based on olefin and use thereof
EP1491329B1 (en) * 2003-06-27 2006-04-12 JSP Corporation Method of producing composite sheet having polyolefin foam layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202433A (en) * 1987-12-05 1989-08-15 Lohmann Gmbh & Co Kg Polymer coat foam and manufacture thereof
JP2002036338A (en) * 2000-07-19 2002-02-05 Sekisui Plastics Co Ltd Foam of non-crosslinked polyethylene resin, manufacturing method therefor and molding using this foam
JP2004001401A (en) * 2002-04-03 2004-01-08 Jsp Corp Polyethylene resin laminated foam and manufacturing method therefor
JP2004043813A (en) * 2002-07-09 2004-02-12 Jsp Corp Polyethylene-based resin extruded and foamed sheet, shaped product of the foamed sheet, assembled box, lining sheet for concrete formwork, and manufacturing method of the formed sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035177A (en) * 2011-08-05 2013-02-21 Jsp Corp Polyethylene resin multilayer foamed sheet and molded form thereof
CN103570966A (en) * 2012-08-03 2014-02-12 株式会社Jsp Process for producing polyethylene resin foam sheet
JP2016532727A (en) * 2013-06-20 2016-10-20 サウディ ベーシック インダストリーズ コーポレイション Foam film composed of polyethylene foam
EP3010964B1 (en) 2013-06-20 2018-05-02 Saudi Basic Industries Corporation Foamed film comprising polyethylene foam
WO2019189452A1 (en) * 2018-03-29 2019-10-03 積水化学工業株式会社 Foamed composite sheet, adhesive tape, cushioning material for electronic components, and adhesive tape for electronic components
JP7112229B2 (en) 2018-03-30 2022-08-03 積水化学工業株式会社 foam composite sheet
JP2020163632A (en) * 2019-03-28 2020-10-08 株式会社ジェイエスピー Polyethylene-based resin multilayer foam sheet
JP7178941B2 (en) 2019-03-28 2022-11-28 株式会社ジェイエスピー Polyethylene resin multilayer foam sheet

Also Published As

Publication number Publication date
TWI404634B (en) 2013-08-11
TW200730354A (en) 2007-08-16
CN1986618A (en) 2007-06-27
JP4803721B2 (en) 2011-10-26
CN1986618B (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4803721B2 (en) Polyethylene resin laminated foam
KR101546544B1 (en) Multi-layered polystyrene resin foamed sheet
JP5557309B2 (en) Polyolefin resin foam sheet
EP2708344A1 (en) Method for producing multi-layer polyethylene resin foam sheet
JP4919371B2 (en) Co-extrusion laminated foam and molded product thereof
KR102343721B1 (en) Multilayer foam sheet and interleaf for glass plates
JP6832260B2 (en) Interleaving paper
JP4878154B2 (en) Co-extrusion laminated foam and molded product thereof
JP4276488B2 (en) Polyethylene resin extruded foam sheet, molded body of foam sheet, assembly box, lining sheet for concrete formwork, and method for producing foam sheet
KR20050001437A (en) Method of producing composite sheet having polyolefin foam layer
JP6429322B2 (en) Glass board slip
JP6614697B2 (en) Multi-layer foam sheet and interleaf paper for glass plate
JP4493000B2 (en) Polyolefin resin foam sheet
JP4845168B2 (en) Multi-layer polystyrene resin foam
JP4157310B2 (en) Antistatic polypropylene-based resin laminated foam sheet and molded article for packaging
JP3164131U (en) Polyethylene resin multilayer foam sheet
JP3143726U (en) Packing material
JP4610139B2 (en) Multilayer polypropylene resin foam board and assembly box thereof
JP6608652B2 (en) Multilayer foam sheet
JP4221122B2 (en) Laminated body
JP4547972B2 (en) Polypropylene resin laminated foam sheet and molded body
JPH08174737A (en) Laminated foamed polypropylene resin sheet and molded piece thereof
JP7470468B1 (en) Laminated Sheets and Thermoformed Products
KR20230056024A (en) Manufacturing method of polyethylene-based resin multilayer foam sheet, slip sheet for glass plate, and polyethylene-based resin multilayer foam sheet
JP2022049996A (en) Laminated resin foam sheet for thermoforming, formed article, and container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4803721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250