JP2007165622A - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
JP2007165622A
JP2007165622A JP2005360423A JP2005360423A JP2007165622A JP 2007165622 A JP2007165622 A JP 2007165622A JP 2005360423 A JP2005360423 A JP 2005360423A JP 2005360423 A JP2005360423 A JP 2005360423A JP 2007165622 A JP2007165622 A JP 2007165622A
Authority
JP
Japan
Prior art keywords
resistor
layer
resistance
semiconductor device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005360423A
Other languages
English (en)
Inventor
Hiroshi Nakamura
寛志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005360423A priority Critical patent/JP2007165622A/ja
Publication of JP2007165622A publication Critical patent/JP2007165622A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】 段差及び高温工程の影響を抑制し、抵抗素子の抵抗ばらつきを低減することができる半導体装置を提供する。
【解決手段】 絶縁膜21上に設けられた第1の抵抗体13、第1の抵抗体13の上面及び側面、並びに絶縁膜21の上面にある抵抗体間絶縁膜23、及び、側面が、抵抗体間絶縁膜23を介して第1の抵抗体13の側面に対向し、上面が、第1の抵抗体13の上面に形成された抵抗体間絶縁膜23の上面と同一面をなす第2の抵抗体15とを有し、第1の抵抗体13と第2の抵抗体15とが配線材35で直列に接続されている。
【選択図】 図1

Description

本発明は、半導体装置及び半導体装置の製造方法に関する。
抵抗素子の抵抗値の精度が必要とされる回路、例えば、A−D及びD−A変換回路、画像・音声等の信号処理回路、電源回路、高周波アナログ回路等を有する半導体装置において、抵抗値のばらつき抑制の要求が高い。
抵抗素子の抵抗ばらつきを抑制する半導体装置及び半導体装置の製造方法が開示されている(例えば、特許文献1参照。)。この開示された半導体装置は、フィールド酸化膜上に、帯状の複数のノンドープポリシリコン膜が縞状に形成され、ノンドープポリシリコン膜に隣接して帯状の下層抵抗体が形成されている。ノンドープポリシリコン膜上に高温酸化膜を介して帯状の上層抵抗体が形成されている。下層抵抗体は上層抵抗体に対して自己整合的に1層のノンドープポリシリコン膜に帯状かつ縞状に不純物イオンが導入されて形成されたものであり、上層抵抗体により画定されている。そして、下層抵抗体と上層抵抗体は電気的に接続されて、加工ばらつきに起因する抵抗値の変化を低減することができ、抵抗素子の抵抗ばらつきを抑制することができる。
しかしながら、開示された半導体装置において、下層抵抗体と上層抵抗体との間には、層厚方向に大きな段差が存在するために、これらの抵抗体に垂直に形成されるコンタクトホール及びコンタクトプラグにばらつきが生じ、これらを接続した抵抗素子の抵抗ばらつきが抑制されるとは限らない。また、下層抵抗体は、1層のノンドープポリシリコン膜に、イオン注入によって、帯状かつ縞状に形成されているために、抵抗値を規定するのに重要な隣接するノンドープポリシリコン膜との境界が、イオン注入後の工程、特に高温となる工程の変動の影響を受けるために、抵抗素子の抵抗がばらつく原因となるという問題がある。
特開2003−124323号公報
本発明は、段差及び高温工程の影響を抑制し、抵抗素子の抵抗ばらつきを低減することができる半導体装置及び半導体装置の製造方法を提供する。
本発明の一態様の半導体装置は、第1の層上に設けられた第1の抵抗体と、前記第1の抵抗体の上面及び側面、並びに前記第1の層の上面にある第2の層と、側面が、前記第2の層を介して前記第1の抵抗体の側面に対向し、上面が、前記第1の抵抗体の上面に形成された前記第2の層の上面と同一面をなす第2の抵抗体とを有し、前記第1の抵抗体と前記第2の抵抗体とが、配線材で直列に接続されていることを特徴とする。
また、本発明の別の態様の半導体装置の製造方法は、第1の層上に第1のポリシリコン膜を形成する工程と、前記第1のポリシリコン膜を帯状に加工して、少なくとも2本の第1の帯状ポリシリコン膜を並列に形成する工程と、前記第1の帯状ポリシリコン膜の上面及び側面、並びに、前記第1の層の上面に第2の層を形成する工程と、並列された前記第1の帯状ポリシリコン膜の間に、前記第2の層を介して、前記第1の帯状ポリシリコン膜と実質的に同じ膜厚を有する第2の帯状ポリシリコン膜を形成する工程と、ガウス分布近似で、注入した不純物量の99%以上が第1及び第2の帯状ポリシリコン膜の中に存在するように、前記第2の帯状ポリシリコン膜、及び、前記第2の層上から前記第1の帯状ポリシリコン膜に、同時にイオン注入する工程と、前記イオン注入後、前記第2の層及び前記第2の帯状ポリシリコン膜の上に、第3の層を形成し、前記第1及び第2の帯状ポリシリコン膜をアニールし、それぞれ、第1及び第2の抵抗体とする工程と、前記第1の抵抗体及び第2の抵抗体の相対向する一端部を電気的に接続し、前記第1及び第2の抵抗体が直列に接続された抵抗素子を形成する工程とを有することを特徴とする。
本発明によれば、段差及び高温工程の影響を抑制し、抵抗素子の抵抗ばらつきを低減することができる半導体装置及び半導体装置の製造方法を提供することができる。
以下、本発明の実施例について、図面を参照しながら説明する。以下に示す図では、同一乃至同一の機能を有する構成要素には同一の符号を付している。
本発明の実施例に係る半導体装置及び半導体装置の製造方法について、図1乃至図5を参照しながら説明する。
図1は、半導体装置を構成する抵抗素子を模式的に示すもので、図1(a)は平面図、図1(b)は図1(a)のA−A線に沿った断面図、図1(c)は図1(a)のB−B線に沿った断面図である。図2は半導体装置の抵抗素子の部分の製造方法を模式的に示す工程毎の断面図である。図3は図2に続く抵抗素子の部分の製造方法を模式的に示す工程毎の断面図である。図4は、抵抗素子の幅のばらつきを模式的に示す図で、図4(a)は抵抗素子を構成する一方の抵抗体の幅が増大した平面図、図4(b)は隣接する他方の抵抗体の幅が増大した平面図である。図5は、抵抗素子を構成する抵抗体の幅のばらつきと抵抗素子の抵抗値の変動との関係を示す図である。
まず、図1に示すように、半導体装置は、半導体基板11の上の絶縁膜21上に、第1の抵抗体13及び抵抗補助体14、抵抗体間絶縁膜23、第2の抵抗体15、及び、第1の抵抗体13と第2の抵抗体15が、配線材35で直列に接続された抵抗素子17を有している。なお、半導体基板11の側を下、半導体基板11に形成される膜の側を上、上下方向の寸法を厚さ(膜の場合は膜厚)、伸長方向の寸法を長さ、上下方向及び伸長方向に垂直な方向の寸法を幅として説明する。
これらの構成要素の概略の関係を説明する。第1の抵抗体13及び抵抗補助体14は、第1の絶縁膜である絶縁膜21上に伸長した側面を並列に配置して構成される。第2の絶縁膜である抵抗体間絶縁膜23は、第1の抵抗体13及び抵抗補助体14の上面及び側面、並びに絶縁膜21の上面にある。第2の抵抗体15は、側面が、抵抗体間絶縁膜23を介して第1の抵抗体13及び抵抗補助体14の伸長した側面に相対向し、上面が、第1の抵抗体13及び抵抗補助体14の上面に形成された抵抗体間絶縁膜23の上面とほぼ同一面をなし、隣接する第1の抵抗体13(または抵抗補助体14)の幅と合計した幅が一定となるように形成されている。そして、第1の抵抗体13と第2の抵抗体15の相対向する一端部が、配線材35で互いに接続された抵抗素子17は、他端部において、配線材33で半導体装置内の他の素子(図示略)等に接続されている。
半導体基板11上の絶縁膜21は、例えば、シリコン酸化膜である。第1の抵抗体13及び抵抗補助体14は、絶縁膜21の上にあって、ポリシリコン膜からなり、それぞれ、膜厚約300nm、幅約1μm、長さ約22μmの帯状に形成され、互いに分離されて配列されている。これらのポリシリコン膜に、不純物、例えば、B(ボロン)が注入されて、一定の抵抗値に形成されている。ここで、抵抗補助体14は、第1の抵抗体13と実質的に同じ形状及び同じ抵抗値を有しているが、本実施例では、抵抗素子として使用されないので、抵抗補助体と称す。
第2の抵抗体15は、ポリシリコン膜からなり、膜厚約30nmのシリコン酸化膜からなる抵抗体間絶縁膜23を介して、第1の抵抗体13及び抵抗補助体14の間に配列され、抵抗体間絶縁膜23の上に配置されている。第2の抵抗体15は、第1の抵抗体13及び抵抗補助体14と同様に、膜厚約300nm、幅約1μm、長さ約22μmの帯状に形成されている。このポリシリコン膜に、不純物、例えば、Bが注入されて、第1の抵抗体13及び抵抗補助体14と実質的に同じ抵抗率に形成され、寸法が同じなので、実質的に同じ抵抗値になるように形成されている。
第2の抵抗体15は、第1の抵抗体13及び抵抗補助体14に比較して、抵抗体間絶縁膜23の膜厚分だけ、絶縁膜21から高い位置にある。すなわち、第1の抵抗体13及び抵抗補助体14上の抵抗体間絶縁膜23の上面と、第2の抵抗体15の上面がほぼ同一面となるように形成されている。なお、第2の抵抗体15の幅は、第1の抵抗体13及び抵抗補助体14の間隔、及び、第1の抵抗体13及び抵抗補助体14の側面に形成される抵抗体間絶縁膜23の膜厚を基に、制御されている。
抵抗体間絶縁膜23及び第2の抵抗体15に接して、例えば、シリコン酸化膜からなる絶縁膜25が形成されている。第1の抵抗体13の一端部上、すなわち、図1(a)の下端部上、にある抵抗体間絶縁膜23及び絶縁膜25にコンタクトホール31が開けられ、第1の抵抗体13のコンタクトホール31に対向する第2の抵抗体15にコンタクトホール31が開けられ、これらのコンタクトホールを介して、例えば、Cu(銅)からなる配線材35で、第1の抵抗体13と第2の抵抗体15は、電気的に接続されて、抵抗素子17が形成されている。
抵抗素子17の他端部上、すなわち、図1(a)の上端部上にある抵抗体間絶縁膜23及び絶縁膜25にコンタクトホール31が開けられ、例えば、Cuからなる配線材33で、第1の抵抗体13は、他の素子等に接続されている。同様に、絶縁膜25に開けられたコンタクトホール31を介して、第2の抵抗体15に接続された配線材33は、第1の抵抗体13に接続された配線材33に対向する方向に引き出され、他の素子等に接続されている。なお、第1の抵抗体13の一端部と他端部にあるコンタクトホール31間の距離は約20μmであり、第2の抵抗体15の同様の距離も約20μmである。
次に、半導体装置を構成する抵抗素子17の製造方法を説明する。図2(a)に示すように、半導体基板11上に、例えば、シリコン酸化膜からなる絶縁膜21を形成する。絶縁膜21の上に、抵抗素子17の第1の抵抗体13等となる予定の膜厚約300nmの第1のポリシリコン膜であるポリシリコン膜113を、例えば、LPCVD法で形成する。なお、絶縁膜21は他のシリコン窒化膜等であってもよいし、また、ポリシリコン膜113の製造は他の方法であってよい。
図2(b)に示すように、ポリシリコン膜113の上にレジスト41を形成し、第1の抵抗体13及び抵抗補助体14となる部分に対応する形状のレジスト41の残しパターン、並びに、後述の抵抗体間絶縁膜23及び第1の抵抗体13及び抵抗補助体14と同じ幅の第2の抵抗体15を配置するためのレジスト41の抜きパターンを形成する。
図2(c)に示すように、パターン形成されたレジスト41をマスクとして、ポリシリコン膜113の露出された部分をエッチング除去し、帯状のポリシリコン膜113を形成する。第1の抵抗体13及び抵抗補助体14の形状をなすポリシリコン膜113の幅は約1μm、長さは約22μmである。
図2(d)に示すように、レジスト41を除去した後、絶縁膜21及びポリシリコン膜113の上に、ポリシリコン膜113の側面も覆うように、抵抗体間絶縁膜23、例えば、シリコン酸化膜をLPCVD法で形成する。ポリシリコン膜113及び絶縁膜21の上面の抵抗体間絶縁膜23の膜厚は約30nmであり、これらの間の段差は約300nmである。2本のポリシリコン膜113の対向する側面に形成された抵抗体間絶縁膜23の間隔は、約1μmである。
図2(e)に示すように、抵抗体間絶縁膜23の上に、第2のポリシリコン膜であるポリシリコン膜115を、ポリシリコン膜113及び絶縁膜21の上面の抵抗体間絶縁膜23の段差を埋める程度以上の膜厚になるように、例えば、LPCVD法で形成する。
図3(a)に示すように、ポリシリコン膜115を表面側から、例えば、CMP(Chemical and Mechanical Polishing)法にて薄くして、ポリシリコン膜115の上面が、ポリシリコン膜113上の抵抗体間絶縁膜23の上面と同じ面になるように形成する。
図3(b)に示すように、第2の抵抗体15となる予定の帯状のポリシリコン膜115を残すように、例えば、レジスト(図示略)でパターニングして、他のポリシリコン膜115をエッチング除去する。エッチング後、ポリシリコン膜113、115を、実質同じ抵抗値を持つ第1の抵抗体13、抵抗補助体14、及び第2の抵抗体15とするために、不純物、例えば、B+(ボロン)を、加速電圧50keV、ドーズ量3×1015/cm2の条件でイオン注入する。
ここで、ポリシリコン膜113、115及びシリコン酸化膜からなる抵抗体間絶縁膜23は、近似的に同様な密度(2.2〜2.3g/cm3)を有するので、注入イオンに対して同じような性質を持っており、注入イオンの注入距離(投影距離)及び標準偏差を近似的に同じ膜として扱うことが可能である。その結果、ポリシリコン膜115及び抵抗体間絶縁膜23を上面に配したポリシリコン膜113において、注入距離Rpは160nm、標準偏差ΔRpは35nmとなり、ポリシリコン膜113、115は、それぞれ、注入距離Rpの両側(上下側)に標準偏差ΔRpの3倍以上の膜厚を有し、イオン注入された不純物の99.7%以上を有している。
これは、イオン注入された不純物の分布はガウス分布(正規分布)で近似でき、ポリシリコン膜113、115の膜厚をt1、抵抗体間絶縁膜23の膜厚をt2としたとき、
t2+3ΔRp≦Rp≦t1−3ΔRp、
すなわち、
t2≦Rp−3ΔRp、
Rp+3ΔRp≦t1
を満たせば、ポリシリコン膜113、115は、それぞれ、イオン注入された不純物の99.7%以上を有することに由来する。
図3(c)に示すように、イオン注入後、後述の配線材33、35を抵抗素子17と分離するための絶縁膜25、例えば、シリコン酸化膜を、表面に、LPCVD法で形成する。その後、例えば、900℃、10分の条件で、不純物の活性化及びダメージの緩和等のためのアニールを行う。一定の抵抗を有する第1の抵抗体13、抵抗補助体14、及び第2の抵抗体15が形成される。
図3(d)に示すように、絶縁膜25の表面を、例えば、CMP法で平坦化する。
図3(e)に示すように、レジストのパターニング(図示略)後、第1の抵抗体13と第2の抵抗体15を接続するためのコンタクトホール31を、絶縁膜25表面から、第1の抵抗体13及び第2の抵抗体15の表面に向けて形成する。同時に、第1の抵抗体13と第2の抵抗体15を、それぞれ、他の素子と接続するためのコンタクトホール31を、同様に形成する。その後、コンタクトホール31および配線位置(図示略)に、例えば、Cuからなる配線材33、35を形成して、図1(a)、(b)に示す抵抗素子17が形成される。
上述したように、本実施例では、2本の第1の抵抗体13及び抵抗補助体14が形成され、それらの間に薄い抵抗体間絶縁膜23を介して形成された第2の抵抗体15が、絶縁膜21上のほぼ同一平面に、自己整合的に形成されている。第1の抵抗体13と第2の抵抗体15とは、互いに接続され、抵抗素子17が形成されている。第1の抵抗体13及び抵抗補助体14を形成するときに使用するマスク(レチクル)は、一定の半導体製造プロセス条件の下で、第1の抵抗体13及び抵抗補助体14と第2の抵抗体15の幅が同じになるように設計されている。しかしながら、この製造プロセス条件のわずかな変動によって、第1の抵抗体13、抵抗補助体14、及び第2の抵抗体15の幅はばらつくことになる。
例えば、図4(a)に示すように、第1の抵抗体13及び抵抗補助体14の幅が増大する場合がある。マスク(レチクル)のパターンをポリシリコン膜に転写するまでの間に、露光条件あるいはエッチング条件等の変動が起こり、第1の抵抗体13及び抵抗補助体14の幅が増大する方向にばらついた結果である。このばらつきは、同じ工程の、半導体基板上の近接した領域では、ランダムに起こることは少ない。すなわち、一定の領域内では、ほとんど同じ製造条件の下にあると考えてよく、第1の抵抗体13の幅が増大するとき、近接して並列の位置にある抵抗補助体14の幅が増大することが極めて多いということが経験的に分かっている。しかも、第1の抵抗体13及び抵抗補助体14の幅の増大は、幅の中心線(1点鎖線で表示)を中心に対称な変化として現れることが多い。その結果、第1の抵抗体13及び抵抗補助体14の幅の増大は、それぞれの中心線から両側方向に増大することになり、後続の工程で、第1の抵抗体13及び抵抗補助体14の間に、自己整合的に形成される第2の抵抗体15は、第1の抵抗体13及び抵抗補助体14の幅の増大分だけ狭くなる。
一方、図4(b)に示すように、第1の抵抗体13及び抵抗補助体14の幅の減少は、それぞれの中心線方向に両側から減少することにより起こる。後続の工程で、第1の抵抗体13及び抵抗補助体14の間に、自己整合的に形成される第2の抵抗体15は、第1の抵抗体13及び抵抗補助体14の幅の減少分だけ広くなる。
幅の変動を相補うように形成された抵抗素子17の幅変動に対する抵抗値の変動割合を説明する。図5に示すように、本実施例の抵抗素子17の一方の抵抗体(例えば、第1の抵抗体13。設計幅1μm、長さ20μm)の幅を変動させた場合、抵抗値の変動の割合は、自己整合的に形成されてない抵抗体で形成された従来構造の抵抗素子(設計幅1μm、長さ20μmを2本接続)に比較して、大幅に小さくなる。なお、図5は、抵抗素子として測定できる抵抗値、すなわち、抵抗体の抵抗値に、配線材の抵抗、配線材と抵抗体との接触抵抗等を加えた抵抗値として表わしたもので、実プロセスに基づいて補正を加えて計算したものである。
図5において、例えば、抵抗素子に求められる抵抗値の許容範囲を2%以内とすると、従来例では、幅の変動は約±0.02μm以内とする必要があるが、本実施例では、約−0.10〜+0.20μmであればよいことを示している。逆に、幅を従来の変動内(約±0.02μm以内)に抑えると、抵抗値の変動は、約−0.3〜+0.2%の範囲に抑えることが可能となる。つまり、本実施例の抵抗素子17を有する半導体装置は、抵抗ばらつきが抑制されて、製造歩留まりを大きく向上させることが可能となる。
また、図5に示す抵抗値の変動は、意識的に幅を変動させた第1及び第2の抵抗体13、15からなる抵抗素子17の測定でも裏付けられる。
第1の抵抗体13と第2の抵抗体15には、抵抗体間絶縁膜23の膜厚30nmに相当する高低差がある。しかしながら、この高低差は、実測値を見る限り、抵抗素子17の抵抗値に影響を及ぼすほどのコンタクトホール31の形状変化等を起こすことにはならない。また、イオン注入後のアニール工程、更に、多層配線の形成等の工程を経て、半導体装置を完成させているが、第1の抵抗体13と第2の抵抗体15の間は抵抗体間絶縁膜23で分離されているために、抵抗素子17の抵抗値の変動が抑制されている。すなわち、本実施例によれば、段差及び高温工程の影響を抑制し、抵抗素子17の抵抗ばらつきを低減することが可能である。
次に、上記実施例の変形例について説明する。上記実施例では、第1の抵抗体13及び抵抗補助体14の幅は同じであったが、変形例では、図6に示す平面図のように、抵抗素子17を構成しない抵抗補助体14aの幅が、抵抗素子17を構成する第1の抵抗体13の幅より、狭く設計され、形成されている点が異なる。
第2の抵抗体15の幅は、第1の抵抗体13の側面に接する抵抗体間絶縁膜23及び抵抗補助体14aの側面に接する抵抗体間絶縁膜23で規定されるように、抵抗補助体14aを配置してある。抵抗補助体14aの幅を縮小することにより、抵抗補助体14aに隣接する素子等(図示略)は、縮小した幅の分だけ抵抗補助体14a側に寄せて配置されている。この抵抗補助体14aの幅の縮小及びそれに伴う配置の変動以外は、上記実施例と同じ構成をなし、抵抗素子17の製造方法は上記実施例と同じである。
本変形例では、抵抗補助体14aの幅を第1の抵抗体13の約2/3に縮小してあるが、縮小可能な抵抗補助体14aの幅は、抵抗補助体14aの製造プロセスにおける幅方向の変動傾向が、第1の抵抗体13の幅方向の変動傾向と同じであることが必要で、その変動傾向が同じである最小値までとなる。従って、製造プロセスの世代が進めば、抵抗補助体14aの幅の最小値は、より小さくすることができる。
本変形例は、上記実施例の有する効果を全て有している。更に、抵抗補助体14aの幅を狭くすることになるので、抵抗素子17と抵抗補助体14aの占める面積は上記実施例に比較して低減され、半導体装置の面積効率を上げることが可能である。
以上、本発明は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々変形して実施することができる。
例えば、実施例では、第1及び第2の抵抗体は、ポリシリコンである例を示したが、アモルファスシリコンであっても差し支えない。
また、実施例では、抵抗体間絶縁膜は、シリコン酸化膜である例を示したが、他の絶縁膜、例えば、シリコン窒化膜、その他であっても差し支えない。ただし、抵抗体をなす材料、例えば、ポリシリコンとは密度等が異なる絶縁膜を使用する場合、絶縁膜の膜厚、抵抗体の膜厚、イオン注入条件等を適当なものとなるように選択して、所望の抵抗素子を形成することができる。
また、実施例では、第1及び第2の抵抗体にイオン注入された不純物がBである例を示したが、他のアクセプタとなる不純物、及び、As(ヒ素)、P(リン)等のドナーとなる不純物であっても差し支えない。
また、実施例では、第1及び第2の抵抗体を2本直列に接続して抵抗素子を形成する例を示したが、抵抗体の本数は2本に限る必要はなく、3本以上を直列に接続して抵抗素子を形成することは差し支えない。例えば、3本を直列に接続する場合、上記実施例に照らすと、抵抗補助体を抵抗体として機能させることによって、すなわち、抵抗補助体を別の第1の抵抗体とすることによって、第1の抵抗体、第2の抵抗体、そして第1の抵抗体の順に直列に接続した抵抗素子とすることになる。抵抗体の本数を多くすると、奇数本目の抵抗値による影響は相対的に小さくなる。従って、本数が多い奇数の抵抗体を全て直列に接続して使用すれば、抵抗素子として利用されない抵抗補助体を配置する必要はなくなるので、半導体装置の面積効率を上げることが可能である。
本発明の実施例に係る半導体装置を構成する抵抗素子を模式的に示すもので、図1(a)は平面図、図1(b)は図1(a)のA−A線に沿った断面図、図1(c)は図1(a)のB−B線に沿った断面図。 本発明の実施例に係る半導体装置の抵抗素子の部分の製造方法を模式的に示す工程毎の断面図。 本発明の実施例に係る半導体装置の抵抗素子の部分の製造方法の図2に続く製造方法を模式的に示す工程毎の断面図。 本発明の実施例に係る半導体装置の抵抗素子の幅のばらつきを模式的に示す図で、図4(a)は抵抗素子を構成する一方の抵抗体の幅が増大した平面図、図4(b)は隣接する他方の抵抗体の幅が増大した平面図。 本発明の実施例に係る半導体装置の抵抗素子を構成する抵抗体の幅のばらつきと抵抗素子の抵抗値の変動との関係を示す図。 本発明の実施例の変形例に係る半導体装置を構成する抵抗素子を模式的に示す平面図。
符号の説明
11 半導体基板
13 第1の抵抗体
14、14a 抵抗補助体
15 第2の抵抗体
17 抵抗素子
21、25 絶縁膜
23 抵抗体間絶縁膜
31 コンタクトホール
33、35 配線材
41 レジスト
113、115 ポリシリコン膜

Claims (5)

  1. 第1の層上に設けられた第1の抵抗体と、
    前記第1の抵抗体の上面及び側面、並びに前記第1の層の上面にある第2の層と、
    側面が、前記第2の層を介して前記第1の抵抗体の側面に対向し、上面が、前記第1の抵抗体の上面に形成された前記第2の層の上面と同一面をなす第2の抵抗体とを有し、
    前記第1の抵抗体と前記第2の抵抗体とが、配線材で直列に接続されていることを特徴とする半導体装置。
  2. 前記第1及び第2の抵抗体はポリシリコン膜、及び、前記第2の層はシリコン酸化膜からなることを特徴とする請求項1に記載の半導体装置。
  3. 前記第1及び第2の抵抗体は実質的に同じ抵抗率を有することを特徴とする請求項1または2に記載の半導体装置。
  4. 第1の層上に第1のポリシリコン膜を形成する工程と、
    前記第1のポリシリコン膜を帯状に加工して、少なくとも2本の第1の帯状ポリシリコン膜を並列に形成する工程と、
    前記第1の帯状ポリシリコン膜の上面及び側面、並びに、前記第1の層の上面に第2の層を形成する工程と、
    並列された前記第1の帯状ポリシリコン膜の間に、前記第2の層を介して、前記第1の帯状ポリシリコン膜と実質的に同じ膜厚を有する第2の帯状ポリシリコン膜を形成する工程と、
    ガウス分布近似で、注入した不純物量の99%以上が第1及び第2の帯状ポリシリコン膜の中に存在するように、前記第2の帯状ポリシリコン膜、及び、前記第2の層上から前記第1の帯状ポリシリコン膜に、同時にイオン注入する工程と、
    前記イオン注入後、前記第2の層及び前記第2の帯状ポリシリコン膜の上に、第3の層を形成し、前記第1及び第2の帯状ポリシリコン膜をアニールし、それぞれ、第1及び第2の抵抗体とする工程と、
    前記第1の抵抗体及び第2の抵抗体の相対向する一端部を電気的に接続し、前記第1及び第2の抵抗体が直列に接続された抵抗素子を形成する工程と、
    を有することを特徴とする半導体装置の製造方法。
  5. 前記第1の抵抗体の膜厚をt1、前記第2の層の膜厚をt2とし、前記第1の抵抗体のイオン注入の注入深さ(投影距離)をRp及び標準偏差をΔRpとしたとき、
    t2≦Rp−3ΔRp、
    Rp+3ΔRp≦t1
    を満たす関係にあることを特徴とする請求項4に記載の半導体装置の製造方法。
JP2005360423A 2005-12-14 2005-12-14 半導体装置及び半導体装置の製造方法 Pending JP2007165622A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360423A JP2007165622A (ja) 2005-12-14 2005-12-14 半導体装置及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360423A JP2007165622A (ja) 2005-12-14 2005-12-14 半導体装置及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2007165622A true JP2007165622A (ja) 2007-06-28

Family

ID=38248181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360423A Pending JP2007165622A (ja) 2005-12-14 2005-12-14 半導体装置及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2007165622A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289126B2 (en) 2010-10-26 2012-10-16 Renesas Electronics Corporation Resistive element and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289126B2 (en) 2010-10-26 2012-10-16 Renesas Electronics Corporation Resistive element and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4982921B2 (ja) 半導体装置及びその製造方法
EP3240028B1 (en) Contact pad structure and method for fabricating the same
CN109801965B (zh) 具有双层间隙壁的晶体管及其形成方法
US9576898B2 (en) Resistance structure, integrated circuit, and method of fabricating resistance structure
CN110739314B (zh) 多晶硅电阻结构及其制作方法
US6368514B1 (en) Method and apparatus for batch processed capacitors using masking techniques
US9941153B1 (en) Pad structure and manufacturing method thereof
KR101603500B1 (ko) 반도체 소자 및 그 제조 방법
JP7092534B2 (ja) 半導体装置の製造方法
KR100759215B1 (ko) 반도체소자의 커패시터 및 그 제조방법
JP2007165622A (ja) 半導体装置及び半導体装置の製造方法
KR100280516B1 (ko) 반도체 소자의 분리 구조 제조방법 및 반도체 소자 제조방법
US9508645B1 (en) Contact pad structure
JP4565847B2 (ja) 半導体装置およびその製造方法
KR100712491B1 (ko) 다저항소자와 고정전용량의 커패시터를 구비하는 반도체소자의 제조방법
US6627936B2 (en) Semiconductor device and method of producing the same
US8604588B2 (en) Semiconductor device and semiconductor device fabrication
US8236664B2 (en) Phase change memory device accounting for volume change of phase change material and method for manufacturing the same
JP5286318B2 (ja) 半導体装置
JP2007194352A (ja) 半導体装置およびその製造方法
JPH0997876A (ja) 半導体装置及びその製造方法
KR100973280B1 (ko) 반도체 소자의 제조방법
JP6036896B2 (ja) 半導体装置及びその製造方法
JP5582154B2 (ja) 半導体装置及び半導体装置の製造方法
JP2006351998A (ja) 半導体装置の製造方法及び半導体装置