JP2007163491A - マルチ・モダリティ撮像の方法及び装置 - Google Patents

マルチ・モダリティ撮像の方法及び装置 Download PDF

Info

Publication number
JP2007163491A
JP2007163491A JP2006334072A JP2006334072A JP2007163491A JP 2007163491 A JP2007163491 A JP 2007163491A JP 2006334072 A JP2006334072 A JP 2006334072A JP 2006334072 A JP2006334072 A JP 2006334072A JP 2007163491 A JP2007163491 A JP 2007163491A
Authority
JP
Japan
Prior art keywords
pet
slice
data
image
axial position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006334072A
Other languages
English (en)
Other versions
JP2007163491A5 (ja
JP5122801B2 (ja
Inventor
Scott D Wollenweber
スコット・デイビッド・ウォレンウェーバー
Albert H R Lonn
アルバート・エイチ・アール・ロン
Charles William Stearns
チャールズ・ウィリアム・スターンズ
Diane M Miesbauer
ダイアン・マリー・マイスバウアー
Kathryn M Littlejohn
キャスリン・メアリー・リトルジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2007163491A publication Critical patent/JP2007163491A/ja
Publication of JP2007163491A5 publication Critical patent/JP2007163491A5/ja
Application granted granted Critical
Publication of JP5122801B2 publication Critical patent/JP5122801B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/1611Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)

Abstract

【課題】スキャナのCT部分から入手可能な臨床的に最適なCTデータから、スキャナのPET部分に必要とされる補正データを生成する。
【解決手段】複数の計算機式断層写真法(CT)画像データを生成し、CT画像データの一部を選択する。放出データの適当なエネルギにおける複数の減弱補正(CTAC)ファクタを生成するために、選択されたCTデータを処理し(106)、放出減弱補正マップを形成するために、CTデータの軸方向位置及びスライス厚、並びにPETデータ又はSPECTデータの軸方向位置及びスライス厚に基づいて決定される加重でCTACファクタに加重する(108)。そして、減弱補正されたPET画像を形成するために、形成された減弱補正マップを利用し(110)、補正データを生成する。
【選択図】 図3

Description

本発明は一般的には、取得された生画像データに基づく画像処理及び画像再構成に関する。具体的には、CT画像を、診断の再検討、PETとの合成による再検討、並びに減弱及び散乱を含む影響についてのPETデータの較正及び補正を含めた多くの目的に用いるCT−PET及びCT−SPECTのような結合型イメージング・システムにおいて、放出画像の品質を高めることに関する。
計算機式断層写真法(CT)システム、陽電子放出断層写真法(PET)システム及び単光子放出計算機式断層写真法(SPECT)システム等の様々な診断医療システムからの生画像データが、診断を目的として取得されている。CTシステム、PETシステム及びSPECTシステムは、多数の走査モード及び再構成モードをサポートするように構成されている。関連する再構成アルゴリズムは、複雑で計算集約的である。診断医療システムの利用者は、画質の改善、生画像データに基づいて画像を形成するのに要する時間を最短にすること、及び再構成工程の信頼性を高めることを望んでいる。生画像データから所望の画像を形成するのに必要な時間量を減少させることにより、画像をさらに早く評価することができ、患者のスループットを高めることができる。
従って、少なくとも一つの公知のPET−CTシステム及び一つの公知のSPECT−CTシステムは、CT装置によって生成されるデータを利用してPET又はSPECT走査データの減弱補正を生成する。明確に述べると、CT走査時に生成されるCTデータから複数の放出減弱補正ファクタが導かれ、このときCTシステムはCT減弱補正ファクタに利用されるデータを生成するように特定的に構成されている。CTハンスフィールド単位を放出減弱ファクタに変換する方法は、米国特許第6,856,666号明細書(特許文献1)に記載されている。この明細書では、CTACとの用語を用いて、CT画像から得られる放出減弱係数(emission Attenuation Coefficients)のマップを示している。
例えば、PET走査データは、患者の体長に沿った一連の軸方向フレームとして取得されて処理される。PET画像は典型的には、平均軸方向検出器間隔の約数に対応する軸方向間隔、例えば検出器間隔の2分の1の軸方向間隔で再構成される。マルチ・スライス検出器からのCTアキシャル画像は典型的には、公称検出器間隔の倍数に対応する軸方向間隔で再構成される。例えば、PETスライスは検出器間隔の2分の1に対応する約3.3mmの間隔で公称スライス厚を約4mmとして再構成される。CTアキシャル画像は、公称検出器間隔である0.625mmの倍数に対応する間隔で再構成される。CTヘリカル・スキャンは通常、スライス厚に等しい間隔で再構成されるが、GEHC PET−CTではヘリカル・スキャンの間隔を任意の値に設定することができる。PET減弱補正の目的のためには、CT間隔はPET間隔に等しく設定される。従って、公知のCT/PETシステムは、PETスライスに適合する軸方向位置においてPETスライスの厚みに近似的に適合する一組のCTスライスを先ず形成することにより、CT減弱補正ファクタを生成する。
米国特許第6,856,666号明細書
この比較的厚いCTスライスは、PET画像を形成するのに利用されるCT減弱補正ファクタを生成するのには適当であるが、医用撮像目的には一般的には有用ではない。明確に述べると、画像分解能を高めることを容易にし、このようにして患者の医療診断を容易にするためには、医療診断に有用なCT画像は典型的には4mm厚未満である。従って、比較的厚いCTスライスを形成することは、PET画像を形成するのに用いられる減弱補正ファクタを生成するためには有益であるが、この比較的厚いCTスライスは、操作者が、形成されたCT画像を用いて患者の医療診断を行なうことを可能にするような画質又は分解能を有しない場合がある。
一観点では、陽電子放出計算機式断層写真法(PET)からの放出データ又はSPECTデータを補正する方法を提供する。この方法は、複数の計算機式断層写真法(CT)画像データを生成するステップと、このCT画像データの一部を選択するステップと、放出データの適当なエネルギにおける複数の減弱補正(CTAC)ファクタを生成するために、選択されたCTデータを処理するステップと、放出減弱補正マップを形成するために、CTデータの軸方向位置及びスライス厚、並びにPETデータの軸方向位置及びスライス厚に基づいて決定される加重でCTACファクタに加重するステップと、減弱補正されたPET画像を形成するために、形成された減弱補正マップを利用するステップとを含んでいる。
もう一つの観点では、イメージング・システムを提供する。このイメージング・システムは、内部に患者ボアを有するCTユニットと、内部に患者ボアを有するPETユニットと、CTユニット及びPETユニットの運動を制御するようにCTユニット及びPETユニットに結合されて通信する制御機構と、CTユニット及びPETユニットに結合されているコンピュータとを含んでいる。コンピュータは、複数の減弱補正(CTAC)ファクタを生成するために、CTデータの選択された部分を処理し、PET減弱補正マップを形成するために、CTデータの軸方向位置及びスライス厚、並びにPETデータの軸方向位置及びスライス厚に基づいて決定される加重でCTACファクタに加重し、減弱補正されたPET画像を形成するために、形成された減弱補正マップを利用するようにプログラムされている。
さらにもう一つの観点では、コンピュータ・プログラムを提供する。このコンピュータ・プログラムは、複数の計算機式断層写真法減弱補正(CTAC)ファクタを生成するために、CTデータの選択された部分を処理し、PET減弱補正マップを形成するために、CTデータの軸方向位置及びスライス厚、並びにPETデータの軸方向位置及びスライス厚に基づいて決定される加重でCTACファクタに加重し、減弱補正されたPET画像を形成するために、形成された減弱補正マップを利用するように構成されている。
陽電子放出断層写真法(PET)データを補正するシステム及び方法を本書に掲げる。これらの装置及び方法は図面を参照して説明され、図面では類似の参照符号が全図面において同じ構成要素を指す。かかる図面は、制限的ではなく説明的であることを意図しており、本発明の装置及び方法の実施形態の一例の説明を容易にするために本書に含まれている。
少なくとも幾つかのマルチ・モダリティ・システムは、異なるモダリティ毎に異なる視野(FOV)を有している。例えば、CT/PETシステムはPET FOVよりも小さいCT FOVを有していてよく、幾つかの走査条件下では、患者の各部がCT検出器によって測定される領域を超えて延在する場合があり、これにより画像アーティファクト及び撮像対象の不完全な描出を招くことがある。アーティファクト低減に取り組む幾つかの公知の方法が公表されているが、CT FOVの外部に位置する患者の部分の撮像については公表されていない。
例えば統合型PET−CTシステムのようなマルチ・モダリティ・システムには、システムが取得するPET画像とCT画像との固有の位置合わせが存在している。取得のPET部分及びCT部分の間には患者は同じテーブル上に静止して横臥しているため、これら2種の取得時に患者は一貫した位置及び配向にあり、CT画像とPET画像との相関付け及び重ね合わせの工程が大幅に簡略化される。これにより、CT画像を用いてPET画像の再構成のための減弱補正情報を提供することが可能となり、また画像読影者が、CT画像に提示される解剖学的情報とPET画像に提示される機能的情報とを容易に相関付けることが可能となる。しかしながら、CT FOVを超えて延在する患者の部分のPET画像の再構成のために減弱情報を提供することが望ましい。また、FOVの内部でPET画像の正確な減弱情報を提供することが望ましい(トランケーションによって生ずるアーティファクトが偏った減弱情報を生成することに留意されたい)。
図1及び図2には、マルチ・モーダル・イメージング・システム10が示されており、マルチ・モーダル・イメージング・システム10は、第一のモダリティ・ユニット及び第二のモダリティ・ユニットを含んでいる。これら二つのモダリティ・ユニットは、システム10が第一のモダリティでは第一のモダリティ・ユニットを用いて対象を走査し、第二のモダリティでは第二のモダリティ・ユニットを用いて同じ対象を走査することを可能にしている。システム10は、異なるモダリティでの多数の走査が可能であり、単一のモダリティ・システムを凌ぐ高められた診断能力を容易にする。一実施形態では、マルチ・モーダル・イメージング・システム10は、計算機式断層写真法/陽電子放出断層写真法(CT/PET)イメージング・システム10である。選択随意で、CT及びPET以外のモダリティがシステム10と共に用いられる。第一のモダリティ・ユニットすなわちCTイメージング・システムは、X線源14を有するガントリ12を含んでおり、X線源14は、X線ビーム16をガントリ12の反対側に設けられている検出器アレイ18に向かって投射する。検出器アレイ18は、各々が複数の検出器素子20を含む複数の検出器横列によって形成されており、検出器素子20は一括で、患者22のような対象を透過した投射X線を感知する。各々の検出器素子20は、入射X線ビームの強度を表わし従って対象又は患者22を透過する際のビームの減弱の推定を可能にする電気信号を発生する。X線投影データを取得するための1回の走査の間に、ガントリ12及びガントリ12に装着されている構成部品は回転中心24の周りを回転する。図2は、検出器素子20の単一の横列(すなわち検出器横列1列)のみを示している。しかしながら、マルチ・スライス検出器アレイ18は、1回の走査中に複数のスライスに対応する投影データが同時に取得され得るように、検出器素子20の複数の平行な検出器横列を含んでいる。
ガントリ12の回転及びX線源14の動作は、CT/PETシステム10の制御機構26によって制御される。制御機構26は、X線源14に電力信号及びタイミング信号を供給するX線制御器28と、ガントリ12の回転速度及び位置を制御するガントリ・モータ制御器30とを含んでいる。制御機構26内のデータ取得システム(DAS)32が、検出器素子20からのアナログ・データをサンプリングして、後続の処理のためにこのデータをディジタル信号へ変換する。画像再構成器34が、サンプリングされディジタル化されたX線データをDAS32から受け取って高速画像再構成を実行する。再構成された画像はコンピュータ36への入力として印加され、コンピュータ36は記憶装置38に画像を記憶させる。コンピュータ36はまた、キーボードを有するコンソール40を介して操作者から指令及び走査用パラメータを受け取る。付設されている視覚表示ユニット42によって、操作者は、再構成された画像及びコンピュータからのその他のデータを観測することができる。
操作者が供給した指令及びパラメータはコンピュータ36によって用いられて、DAS32、X線制御器28及びガントリ・モータ制御器30に制御信号及び情報を供給する。加えて、コンピュータ36は、モータ式テーブル46を制御するテーブル・モータ制御器44を動作させて、患者22をガントリ12内で配置する。具体的には、テーブル46は患者22の少なくとも一部をガントリ開口48を通して移動させる。
一実施形態では、コンピュータ36は、フレキシブル・ディスク、CD−ROM、DVD、又はネットワーク若しくはインターネットのような他のディジタル・ソース等のコンピュータ読み取り可能な媒体52からの命令及び/又はデータを読み取る装置50、例えばフレキシブル・ディスク・ドライブ、CD−ROMドライブ、DVDドライブ、光磁気ディスク(MOD)装置、又はイーサネット(商標)装置等のネットワーク接続装置を含めたその他任意のディジタル装置、並びに開発中のディジタル手段を含んでいる。他の実施形態では、コンピュータ36はファームウェア(図示されていない)に記憶されている命令を実行する。コンピュータ36は、本書に記載する作用を実行するようにプログラムされており、本書で用いられるコンピュータとの用語は、当技術分野でコンピュータと呼ばれている集積回路のみに限らず、コンピュータ、プロセッサ、マイクロコントローラ、マイクロコンピュータ、プログラマブル論理コントローラ、特定応用向け集積回路、及び他のプログラム可能な回路を広範に指しており、これらの用語は本書では互換的に用いられている。
CT/PETシステム10はまた、複数の検出器素子(図示されていない)を含むPET放出検出器60を含む第二の撮像モダリティを含んでいる。PET放出検出器60及びCT検出器アレイ18は両方とも放射線を検出し、いずれも本書では放射線検出器と呼ばれる。一実施形態では、CT/PETシステム10は、General Electric Medical Systems社(米国ウィスコンシン州Waukesha)から市販されており、本書に記載するように構成されているDiscovery LS CT/PETシステム(商標)である。他の実施形態では、CT/PETシステム10は、GE Healthcare社(米国ウィスコンシン州Waukesha)からやはり市販されており、本書に記載するように構成されているHawkeye CT/PET/SPECTシステム(商標)である。加えて、医療環境で説明しているが、本書に記載する本発明の利点はまた、全てのマルチ・モダリティ・イメージング・システムに恩恵を齎すと思量される。
検出器アレイ18は、各々が複数の素子20を有する複数の横列(図示されていない)を有しており、素子20は患者20を透過するX線16を検出する。検出器アレイ18で受光される減弱した放射線ビーム16の強度は、患者24によるX線ビーム16の減弱量に依存している。この実施形態の例では、対象24は患者24である。アレイ18の各々の検出器素子20が、検出器の位置でのビーム強度の測定値である別個の電気信号を発生する。全ての検出器20からの強度測定値が別個に取得されて、透過プロファイルを形成する。
この実施形態の例では、X線源14及び検出器アレイ18は、X線ビーム16が患者24と交差する角度が定常的に変化するように撮像平面内で撮像される患者24の周りをガントリ12と共に回転する。一つのガントリ角度での検出器アレイ18からの一群のX線減弱測定値すなわち投影データを「ビュー」と呼ぶ。患者24の「走査(スキャン)」は、X線源14及び検出器18が一回転する間に様々なガントリ角度又はビュー角度において形成される一組のビューを含んでいる。
アキシャル・スキャン(軸方向走査)では、投影データを処理して、患者24を通して得られる二次元スライスに対応する画像を構築する。一組の投影データから画像を再構成する一方法に、当業界でフィルタ補正逆投影法と呼ばれるものがある。この方法は、積分減弱測定値を各ピクセルでの患者の減弱を表わす画像に変換する。減弱測定値は典型的には、CT数の単位又はハンスフィールド単位に変換される。
全走査時間を短縮するために、「ヘリカル」・スキャン(螺旋走査)を行なうことができる。「ヘリカル」・スキャンを行なうためには、患者24を移動させながら所定の数のスライスのデータを取得する。かかるシステムは、一回のファン・ビーム・ヘリカル・スキャンから単一の螺旋を生成する。ファン・ビームによって悉く写像された螺旋から投影データが得られ、投影データから各々の所定のスライスにおける画像を再構成することができる。
ヘリカル・スキャンのための再構成アルゴリズムは典型的には、収集したデータにビュー角度及び検出器チャネル番号の関数として加重する螺旋加重アルゴリズムを用いる。明確に述べると、フィルタ補正逆投影法の前に、ガントリ角度及び検出器角度の両方の関数である螺旋加重ファクタに従ってデータに加重する。次いで、加重したデータを処理してCT数を生成すると共に、患者24を通して得られる二次元スライスに対応する画像を構築する。
マルチ・スライスCT/PETシステム10の動作時には、多数の投影が多数の検出器横列について同時に取得される。ヘリカル・スキャンの場合と同様に、フィルタ補正逆投影法の前に加重関数が投影データに適用される。
加えて、本書で既に述べたように、システム10はまた、陽電子放出断層写真法(PET)を実行するように構成されている。動作時には、陽電子すなわち正電荷を帯びた電子又は反電子が、サイクロトロン又は他の装置を用いて生成された放射性核種によって放出される。診断撮像で最も頻繁に用いられる放射性核種は、フッ素18(18F)、炭素11(11C)、窒素13(13N)及び酸素15(15O)である。放射性核種は、グルコース又は二酸化炭素のような物質に組み込まれることにより、「放射性医薬品」と呼ばれる放射性トレーサとして用いられる。
典型的な用法では、放射性医薬品が患者24のような患者に注入されて、器官又は血管等の構造に蓄積したものが撮像される。特定の放射性医薬品が幾つかの器官内で濃縮することが公知であり、又は血管の場合には特定の放射性医薬品が血管壁によって吸収されないことが公知である。濃縮の過程はしばしば、グルコース代謝、脂肪酸代謝及び蛋白質合成のような過程に関係する。
放射性医薬品が関心のある器官内で濃縮した後に、放射性核種が崩壊している間に、放射性核種は陽電子を放出する。陽電子は電子に遭遇するまで極く短距離を移動し、電子に遭遇すると消滅して2個の光子に変換される。この消滅事象は、撮像、具体的には光子放出断層写真法(PET)を用いた医用撮像に関係する二つの特徴によって特徴付けられる。第一に、各々の消滅光子は消滅時に約511keVのエネルギを有している。第二に、2個の消滅光子は実質的に反対の方向に向かう。
PET撮像では、消滅の全体的な位置を三次元で識別することができれば、関心のある器官の三次元画像を再構成して観察することができる。消滅位置を検出するために、例えば放出検出器60のようなPETカメラが用いられる。例示的なPETカメラは、複数の検出器と、他のものの中でも特に同時検出サーキットリを含むプロセッサとを含んでいる。
同時検出サーキットリ(図示されていない)は、撮像区域の両側に本質的に位置する検出器に対応した本質的に同時的なパルス対を識別する。従って、同時パルス対は、消滅事象が、関連する一対の検出器の間の直線上で起こったことを示す。数分間の取得時間にわたって数百万の消滅が記録され、各々の消滅は例えばDAS32を介して特定の検出器対と関連付けられる。取得時間の後に、記録された消滅データは幾つかの異なる周知の逆投影手順の任意のものを介して用いられて、関心のある器官の三次元画像を構築することができる。
本書で用いる場合には、単数形で記載されており単数不定冠詞を冠した要素又はステップとの用語は、排除を明記していない限りかかる要素又はステップを複数備えることを排除しないものと理解されたい。さらに、本発明の「一実施形態」に対する参照は、所載の特徴を同様に組み入れている他の実施形態の存在を排除しないものと解釈されたい。
また、本書で用いられる「画像を再構成する」との表現は、画像を表わすデータが生成されるが可視画像は形成されないような本発明の実施形態を排除するものではない。従って、本書で用いられる「画像」との用語は可視画像及び可視画像を表わすデータの両方を広く指す。但し、多くの実施形態は少なくとも1枚の可視画像を形成する(か又は形成するように構成されている)。
本書で既に述べたように、CT/PETシステム10は、システム10のCTモダリティを動作させて生成されるデータを利用して、システム10のPETモダリティの動作時に利用される減弱補正ファクタを生成するように構成されている。明確に述べると、CT走査時に生成されるCTデータから放出減弱補正ファクタ(CTAC)が導かれ、このときCTシステムは、最良のCT画質を形成する間隔及び手法でCTデータを生成し、同じCTデータを利用して、減弱補正されたPET画像を形成するように構成されている。
さらに明確に述べると、この実施形態の例では、CT/PETイメージング・システム10を利用して患者24を走査し、複数のCT画像を形成する(ブロック102)。本書で述べているように、「画像」との用語は、可視画像及び可視画像を表わすデータの両方を広く指す。次いで、形成された画像を利用して、複数のCT減弱補正ファクタを生成する。
図3は、陽電子放出断層写真法(PET)データを補正する例示的な方法100を示す流れ図である。この実施形態の例では、方法100は、複数の計算機式断層写真法(CT)画像データを生成するステップ102と、CT画像データの一部を選択するステップ104と、複数の放出減弱補正(CTAC)ファクタを生成するために、選択されたCTデータを処理するステップ106と、PET減弱補正マップを形成するために、CTデータの軸方向位置及びスライス厚、並びにPETデータの軸方向位置及びスライス厚に基づいて決定される加重でCTACファクタに加重するステップ108と、減弱補正されたPET画像を形成するために、形成された減弱補正マップを利用するステップ110とを含んでいる。CT画像データを放出減弱ファクタ(CTAC)に変換する工程106は、放出分解能に適合するようにCT画像の分解能を低下させるステップと、CTピクセル値、公称X線管電圧設定、並びに放出エネルギでの水及び骨の減弱係数に基づく変換を用いてCT単位を減弱係数に変換するステップとを含んでいる。
代替的には、全ての選択されたCT画像が、kVのような特性が同じであり、同じ変換ファクタを用いてCT単位から放出減弱係数へ変換することが可能である場合には、CT画像単位を減弱に変換する工程106が処理108の後に実行されてもよい。
図4は、複数の減弱補正ファクタ(CTAC)を形成するのに利用することのできるCT撮像データを選択する例示的な方法102を示す流れ図である。さらに明確に述べると、CT走査が実行された後に、生成されたCT画像データは操作者によって利用されて、PET走査を実行すべき位置又は座標を決定する。例えば、CT走査が胴領域全体にわたって実行されている場合に、操作者が、PET走査を胴領域の一部のみについて行なうことを望む場合がある。従って、操作者は生成されたCTデータ及び/又はCT画像を利用して、PET走査を実行すべき所望の軸方向座標を決定する。
従って、ステップ120において、各々の対象PETスライスについてCTデータを検索して、CTデータが、同じ系列すなわち同じ検査の範囲内にあり、PET走査を実行するのに利用される座標と同じ座標すなわち同じ患者配向を含む撮像データを含むか否かを判定する。さらに明確に述べると、CTデータを解析してCTデータのスライス位置を決定し、CTスライス・データのいずれかが対象PETスライスの範囲内に含まれるか否かを判定する。例えば、CTデータを解析して、形成されるべきPETスライスの軸方向位置の範囲内にCTスライスが含まれるか否かを判定する。CT撮像データの一部が選択されたら、選択されたCT画像の軸方向位置がステップ122で決定される。さらに明確に述べると、対象PETスライスの範囲内の各々のCTスライスのそれぞれの開始及び終了が決定される。選択されたCT画像の軸方向位置がステップ122で決定された後に、選択された画像をステップ124で解析して、CT画像のいずれかが所望のPET走査領域と重なり合っているか否か、及び/又は所望のPET走査領域内に多数のCT画像が存在するか否かを判定する。
図5(A)〜図5(F)を参照して説明すると、CT画像データを解析して、CTデータのいずれかが所望のPET走査領域内に含まれるか否かを判定する。例えば、図5(A)はPET走査領域内にある複数の重なり合っていない隣接するCT画像を示し、図5(B)はPET走査領域内にある複数の重なり合ったCT画像を示し、図5(C)はPET走査領域内にある複数の重なり合っていないCT画像を示し、ここでは各々の画像又はスライスは一定の距離だけ離隔しており、図5(D)はPET走査領域内にある複数の重なり合った画像及び重なり合っていないCT画像を示し、図5(E)はPET走査領域内にCT画像又はスライスが位置していないことを示し、図5(F)は1枚のCT画像の少なくとも一部がPET走査領域内に位置しており、第二のCTスライスがPET走査領域外に位置している場合を示している。
従って、ステップ124においてPET走査領域が複数の重なり合ったCT画像を含むと判定された場合(図5(B)に示す)、同じ位置に多数のCT画像が存在すると判定された場合(図5(D)に示す)、及び/又はPET走査領域外に位置する少なくとも1枚のCT画像が存在すると判定された場合(図5(E)及び図5(F))には、選択されるCT画像はステップ126で利用される。代替的には、ステップ124において複数の重なり合っていない画像が判定された場合(図5(A)及び図5(C)に示す)には、重なり合っていない画像はさらなる処理のために加重アルゴリズム130に送られる。
例えば、ステップ126では、CT画像データを解析して、CT画像データのいずれかが、例えば図5(A)、図5(B)、図5(C)、図5(D)及び図5(F)のように同径の視野(dFOV)の範囲内で採取されたか否かを判定する。ステップ126で同じdFOV内にCT撮像データが存在している場合には、ステップ130において、相対的に大きいdFOVでの選択されたCT画像データを加重アルゴリズムに送る。代替的には、選択されたdFOVの範囲内に選択されたCT撮像データが存在しない場合、例えば図5(E)の場合には、CT撮像データはステップ128に送られ、ここで画像データは共に平均され、次いで、ステップ130で加重アルゴリズムに送られる。
この実施形態の例では、CTACデータを形成するのに利用されるCT撮像データを選択するステップ102は、全ての適当な医用画質のCTデータを利用して、操作者が特定のCT手法を利用して身体の異なる部分に所望のCTデータ画質を生ずることを可能にしつつ、PET減弱補正ファクタを生成することを容易にしている。
次いで、選択された画像データは加重アルゴリズム130を利用して加重され(ブロック108)、この加重アルゴリズムは、選択されたCT画像データを利用して、選択されたCT画像データを減弱補正マップとも呼ばれる一組の減弱補正ファクタに結合するように構成されており、次いで、減弱補正ファクタを用いてPET画像を減弱補正する(ブロック110)。動作時には、加重アルゴリズム130は、CTACデータの品質を制御するために用いられる二つのファクタを利用してパラメータ化される。第一のファクタは計算の軸方向終点で適用される最大許容補外であり、第二のファクタはCT画像データにおける最大間隙である。さらに明確に述べると、動作時に、2枚のCTスライスの少なくとも一部がPETスライスの軸方向境界内に位置している場合すなわち図5(A)、図5(B)、図5(C)、図5(D)及び図5(F)に示すような場合に、加重アルゴリズム130は、CT画像データに基づいて決定される4種の入力を受け取るように構成され又はプログラムされている。
begin_pet:PETスライスの開始の軸方向位置(mm)、
end_pet:PETスライスの終了の軸方向位置、
begin_ct:CTスライスの開始の軸方向位置、及び
end_ct:CTスライスの終了の軸方向位置。
この4種の入力を利用して、加重アルゴリズム130は次式に従って加重ファクタを算出する。
B=max([begin_pet,begin_ct])
E=min([end_pet,end_ct])
加重ファクタ=E−B
式中、max[a,b]はa及びbの大きい方を返し、min[a,b]はこれら二つの値の小さい方を返す。
PETスライスの積分和にCTスライスを加算するときには、CTスライスは自身の加重で乗算され、加重ファクタの積分は記憶される。全てのCTスライスが和スライスに加算された後に、和スライスはPETスライスに寄与する全てのスライスについての加重ファクタの積分で除算される。選択随意で、PETスライスの軸方向境界内にCTスライスが位置していない場合(全ての加重がゼロである図5(E)の場合)には、次の加重計算が実行される。
dist_lower
=abs(petスライス中心−下方CTスライス中心)(図5(E)の「b」)
dist_upper
=abs(petスライス中心−上方CTスライス中心)(図5(E)の「a」)
weight_CT_lower
=dist_upper/(dist_lower+dist_upper)
weight_CT_upper
=1.0−weight_CT_lower
式中、absは絶対値を取ることを定義しており、全てのスライス中心はmm単位での軸方向位置である。次いで、加重を乗法によって下方CTスライス及び上方CTスライスに適用する。利用時には、PETスライス中心に近い中心を有するCTスライスほど加重が大きくなる。次いで、これらの加重を用いて、2枚のCT画像から得られたPETスライスの減弱の加重平均を算出する。
本書に記載する方法及び装置は、PET画像から減弱及び散乱の影響を除去するために利用することのできる減弱補正マップを形成することを容易にする。明確に述べると、複数の減弱補正ファクタ(CTAC)が、CT目的の診断品質画像を形成するためにも有用であるCT走査時に形成される。例えば、同じ患者について診断目的で実行されるCT走査は、異なる位置で、異なるスライス厚を用いて、ヘリカル・スキャン手法、アキシャル・スキャン手法及び/又はシネ/ゲート式スキャン手法時に、造影剤を用いて/用いずに異なるkVを用いて、傾きを用いて及び/又は用いずに、取得され得る。
動作時には、PET走査データは患者の体長に沿った一連の軸方向フレームとして取得されて処理される。CTACに用いることのできるCTデータの例としては、限定しないが、1対1の例すなわち1枚のCT画像が唯1枚のPETスライスをカバーする例、薄いCTスライスの例すなわち1よりも多いCT画像がPETスライスCTACに寄与する例、狭い間隔の厚いCTスライスの例すなわち多数のCT画像をPETスライスCTACのために共に平均する例、結合型CT手法の例すなわち幾つかの軸方向位置には薄いCTスライスが位置し、他の位置には厚いCTスライスが位置する例、間隙によって離隔されたCT画像スライスの例すなわち画像を補間して近接したCT画像を用いてPETスライスCTACを生成する例等がある。
従って、本書に記載する方法は、操作者が現実的な臨床シナリオにおいて臨床的に有用なCT画像を形成することを可能にし、特定の診断シナリオについて設定された最適なCT画像を形成するような間隔及び手法で、またPETパラメータに適合させるように2回目のCT走査を実行する必要なしに関連するPETデータについてのCT式減弱補正ファクタを生成するような間隔及び手法で、CTデータを生成することを容易にする。
結果として、本書に記載する加重方式及びデータ選択ルーチンは、PET−CTシステムの操作者が、スキャナのCT部分から入手可能な臨床的に最適なCTデータから、スキャナのPET部分に必要とされる補正データを生成することを可能にする。より多くのCT撮像方法を両方の目的に用いることが可能になり、またCT診断の観点から臨床的に最適とは言えない態様で患者をCTによってCTACを得るために走査することを必要とする現状での制限を取り除く。
本発明は、例えば限定しないが陽電子放出断層写真法(PET)及び計算機式断層写真法(CT)のような異なるモダリティを用いて走査を行なうことが可能なマルチ・モーダル・イメージング・システムに関する。マルチ・モードとマルチ・モダリティとの相違は、マルチ・モード・システムは異なるモード(例えばフルオロ・モード及びトモシンセシス・モード)で走査を実行するのに用いられ、マルチ・モーダル・システム(マルチ・モダリティ・システム)は異なるモダリティ(例えばCT及びPET)で走査を実行するのに用いられることにある。本発明の利点は、例えば限定しないがCT/PETイメージング・システムのような全てのマルチ・モダリティ・イメージング・システムに恩恵を齎すと思量される。
本発明を様々な特定の実施形態について記載したが、当業者であれば、特許請求の範囲の要旨及び範囲内にある改変を施して本発明を実施し得ることが理解されよう。
CTイメージング・システムの実施形態の見取り図である。 図1に示すシステムのブロック模式図である。 陽電子放出断層写真法(PET)データを補正する方法を示す流れ図である。 図3に示す方法の一部を示す流れ図である。 図3に示す方法の一部の見取り図である。
符号の説明
10 CT/PETシステム
12 ガントリ
14 X線源
16 X線ビーム
18 検出器アレイ
20 検出器素子
22 対象又は患者
24 患者
26 制御機構
28 X線制御器
30 ガントリ・モータ制御器
32 DAS
34 画像再構成器
36 コンピュータ
38 記憶装置
40 コンソール
42 表示ユニット
44 テーブル・モータ制御器
46 テーブル
48 ガントリ開口
50 装置
52 コンピュータ読み取り可能な媒体
60 PET放出検出器
100 方法
102 生成する
104 選択する
106 処理する
108 加重する
110 利用する
120 ステップ
122 ステップ
124 ステップ
126 ステップ
128 ステップ
130 加重アルゴリズム

Claims (10)

  1. 内部に患者ボアを有するCT(計算機式断層写真法)ユニットと、
    内部に患者ボアを有するPET(陽電子放出断層写真法)ユニットと、
    前記CTユニット及びPETユニットの運動を制御するように前記CTユニット及びPETユニットに結合されて通信する制御機構と、
    前記CTユニット及びPETユニットに結合されているコンピュータ(36)と、
    を備えた患者(22)を撮像するイメージング・システム(10)であって、前記コンピュータは、
    複数の計算機式断層写真法減弱補正(CTAC)ファクタを生成するために、CTデータの選択された部分を処理し(106)、
    PET減弱補正マップを形成するために、前記CTデータの軸方向位置及びスライス厚、並びにPETデータの軸方向位置及びスライス厚に基づいて決定される加重で前記CTACファクタに加重し(108)、
    減弱補正されたPET画像を形成するために、前記形成された減弱補正マップを利用する(110)
    ようにプログラムされている、イメージング・システム(10)。
  2. 前記コンピュータ(36)はさらに、
    前記CTデータのスライス位置を決定し、
    前記CTスライス・データのいずれかがPET走査領域の軸方向位置の範囲内に位置するか否かを判定するために、前記決定されたスライスを解析し、
    前記PET走査領域の前記軸方向位置の範囲内に配置されている少なくとも2枚のCTスライスを選択する
    ようにプログラムされている、請求項1に記載のイメージング・システム(10)。
  3. 前記コンピュータ(36)はさらに、前記PET走査領域内の各々の選択されたCTスライスの開始及び終了を決定するようにプログラムされている、請求項2に記載のイメージング・システム(10)。
  4. 前記コンピュータ(36)はさらに、前記選択されたCTスライスのいずれかが前記PET走査領域の範囲内に位置するか否かを判定するようにプログラムされている、請求項3に記載のイメージング・システム(10)。
  5. 前記コンピュータ(36)はさらに、前記PET走査領域内のCTスライスの量を決定するようにプログラムされている、請求項4に記載のイメージング・システム(10)。
  6. 2枚のCTスライスの少なくとも一部が前記PET走査領域の範囲内に含まれる場合に、前記コンピュータ(36)はさらに、次式
    B=max([begin_pet,begin_ct])
    E=min([end_pet,end_ct])
    加重ファクタ=E−B
    に従って前記少なくとも2枚のCTスライスについて加重を決定し、式中、
    begin_petは、前記PETスライスの開始の軸方向位置(mm)であり、
    end_petは、前記PETスライスの終了の軸方向位置であり、
    begin_ctは、前記CTスライスの開始の軸方向位置であり、
    end_ctは、前記CTスライスの終了の軸方向位置である、
    請求項5に記載のイメージング・システム(10)。
  7. 前記PET走査領域の範囲内にCTスライスが含まれない場合に、前記コンピュータ(36)はさらに、次式
    weight_CT_lower
    =dist_upper/(dist_lower+dist_upper)
    weight_CT_upper
    =1.0−weight_CT_lower
    に従って2枚の最近接のCTスライスについて加重を決定するようにプログラムされており、式中、
    dist_lower
    =abs(petスライス中心−下方CTスライス中心)
    dist_upper
    =abs(petスライス中心−上方スライス中心)
    である、請求項5に記載のイメージング・システム(10)。
  8. コンピュータ読み取り可能な媒体に具現化されており、陽電子放出断層写真法(PET)を補正するコンピュータ・プログラムであって、
    複数の計算機式断層写真法減弱補正(CTAC)ファクタを生成するために、CTデータの選択された部分を処理し(106)、
    PET減弱補正マップを形成するために、前記CTデータの軸方向位置及びスライス厚、並びに前記PETデータの軸方向位置及びスライス厚に基づいて決定される加重で前記CTACファクタに加重し(108)、
    減弱補正されたPET画像を形成するために、前記形成された減弱補正マップを利用する(110)
    ように構成されているコンピュータ・プログラム。
  9. 前記CTデータのスライス位置を決定し、
    前記CTスライス・データのいずれかがPET走査領域の軸方向位置の範囲内に位置するか否かを判定するために、前記決定されたスライスを解析し、
    前記PET走査領域の前記軸方向位置の範囲内に配置されている少なくとも2枚のCTスライスを選択する
    ようにさらにプログラムされている請求項8に記載のコンピュータ・プログラム。
  10. 前記PET走査領域内の各々の選択されたCTスライスの開始及び終了を決定し、
    前記選択されたCTスライスのいずれかが前記PET走査領域の範囲内に位置するか否かを判定するようにさらにプログラムされている請求項9に記載のコンピュータ・プログラム。
JP2006334072A 2005-12-12 2006-12-12 マルチ・モダリティ撮像の方法及び装置 Active JP5122801B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/301,149 US7348564B2 (en) 2005-12-12 2005-12-12 Multi modality imaging methods and apparatus
US11/301,149 2005-12-12

Publications (3)

Publication Number Publication Date
JP2007163491A true JP2007163491A (ja) 2007-06-28
JP2007163491A5 JP2007163491A5 (ja) 2011-02-03
JP5122801B2 JP5122801B2 (ja) 2013-01-16

Family

ID=38138349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334072A Active JP5122801B2 (ja) 2005-12-12 2006-12-12 マルチ・モダリティ撮像の方法及び装置

Country Status (2)

Country Link
US (1) US7348564B2 (ja)
JP (1) JP5122801B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025035A (ja) * 2007-07-17 2009-02-05 Toshiba Corp 核医学イメージング装置および核医学画像作成方法
JP2014215238A (ja) * 2013-04-26 2014-11-17 玄紀 田中 核医学画像再構成装置、核医学画像再構成方法、及びプログラム

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177825B1 (en) * 1999-05-11 2007-02-13 Borders Louis H Integrated system for ordering, fulfillment, and delivery of consumer products using a data network
DE102006014630B4 (de) * 2006-03-29 2014-04-24 Siemens Aktiengesellschaft Verfahren zur Korrektur von Trunkierungsartefakten
US8492762B2 (en) * 2006-06-27 2013-07-23 General Electric Company Electrical interface for a sensor array
US7729467B2 (en) * 2007-03-22 2010-06-01 General Electric Company Methods and systems for attentuation correction in medical imaging
DE102007034953B4 (de) * 2007-07-26 2016-09-22 Siemens Healthcare Gmbh Verfahren zur Bewegungsvorgänge berücksichtigenden Aufnahme von Messdaten eines Patienten und zugehörige medizinische Einrichtung
EP2161594B1 (en) 2008-09-09 2017-11-08 Multi Magnetics Incorporated System and method for correcting attenuation in hybrid medical imaging
EP2338142A2 (en) * 2008-09-17 2011-06-29 Koninklijke Philips Electronics N.V. Mr segmentation using transmission data in hybrid nuclear/mr imaging
US8600136B2 (en) * 2008-09-19 2013-12-03 Koninklijke Philips N.V. Method for generation of attenuation map in PET-MR
JP5472907B2 (ja) * 2008-12-24 2014-04-16 株式会社東芝 画像診断装置及び画像診断方法
CN102292743B (zh) * 2009-01-22 2015-01-14 皇家飞利浦电子股份有限公司 核图像重建
US8781199B2 (en) 2009-03-24 2014-07-15 Koninklijke Philips N.V. Hybrid dual-modality image processing system and method
TWI412730B (zh) * 2009-06-08 2013-10-21 Wistron Corp 用於一智慧型手持裝置之測距方法及測距裝置、辨識標的物之位置的方法及電子裝置以及辨識當前位置的方法及電子裝置
DE102009030714A1 (de) * 2009-06-26 2010-12-30 Siemens Aktiengesellschaft Verfahren zur Absorptionskorrektur von PET-Daten und MR-PET-Anlage
US8299438B2 (en) * 2009-07-16 2012-10-30 Siemens Medical Solutions Usa, Inc. Model based estimation of a complete or partial positron emission tomography attenuation map using maximum likelihood expectation maximization
JP5815573B2 (ja) 2010-03-18 2015-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 機能的画像データ強調方法及びエンハンサ
JP5925444B2 (ja) * 2010-08-04 2016-05-25 株式会社東芝 放射線診断装置および制御方法
US8963093B2 (en) 2010-10-09 2015-02-24 Fmi Technologies, Inc. Tomographic imaging methods and systems for digital wave front decimation in time sampling
US8946643B2 (en) 2010-10-09 2015-02-03 Fmi Technologies, Inc. Virtual pixelated detector for pet and/or spect
US20140003688A1 (en) * 2011-03-17 2014-01-02 Koninklijke Philips N.V. Multiple modality cardiac imaging
US20120256092A1 (en) * 2011-04-06 2012-10-11 General Electric Company Ct system for use in multi-modality imaging system
JP6042879B2 (ja) 2011-05-24 2016-12-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 画像の画像領域と要素クラスとの間の割り当てを生成する装置
US8879814B2 (en) 2012-05-22 2014-11-04 General Electric Company Method and apparatus for reducing motion related imaging artifacts using consistency values
CN103054605B (zh) * 2012-12-25 2014-06-04 沈阳东软医疗系统有限公司 一种衰减校正的方法和系统
CN103054606B (zh) * 2012-12-26 2014-12-24 沈阳东软医疗系统有限公司 一种基于ct图像获取线性衰减系数分布的方法及装置
JP2014147689A (ja) * 2013-01-08 2014-08-21 Toshiba Corp 医用画像診断装置、核医学診断装置、x線ct装置、及び寝台装置
DE102015217617A1 (de) * 2015-09-15 2017-03-16 Siemens Healthcare Gmbh Verfahren zum Korrigieren von Röntgenbilddaten umfassend Information bezüglich eines Zerfallsprozesses eines radioaktiven Materials
CN105193442B (zh) 2015-09-17 2018-12-25 沈阳东软医疗系统有限公司 一种pet扫描时间的确定方法和装置
US9905044B1 (en) 2016-08-25 2018-02-27 General Electric Company Systems and methods for functional imaging
CN108074270B (zh) * 2016-11-11 2021-11-30 上海东软医疗科技有限公司 一种pet衰减校正方法和装置
CN106510746B (zh) * 2016-11-23 2020-07-07 北京市医疗器械检验所 评估应用ct衰减校正后spect成像的测试试验方法
US11302003B2 (en) * 2017-10-26 2022-04-12 Wisconsin Alumni Research Foundation Deep learning based data-driven approach for attenuation correction of pet data
EP3480792A1 (en) * 2017-11-07 2019-05-08 Koninklijke Philips N.V. Attenuation correction of pet data of moving object
US10803633B2 (en) 2018-02-06 2020-10-13 General Electric Company Systems and methods for follow-up functional imaging
CN109633729B (zh) * 2018-12-29 2022-09-20 哈尔滨工业大学 一种移动机器人核环境下的放射源定位及强度估计方法
CN109692015B (zh) * 2019-02-18 2023-04-28 上海联影医疗科技股份有限公司 一种扫描参数调整方法、装置、设备及存储介质
CN110215228B (zh) * 2019-06-11 2023-09-05 上海联影医疗科技股份有限公司 Pet重建衰减校正方法、系统、可读存储介质和设备
US11207046B2 (en) 2019-09-17 2021-12-28 GE Precision Healthcare LLC Methods and systems for a multi-modal medical imaging system
CN110811665A (zh) * 2019-11-29 2020-02-21 上海联影医疗科技有限公司 Pet图像衰减校正方法、装置、计算机设备和存储介质
US11309072B2 (en) 2020-04-21 2022-04-19 GE Precision Healthcare LLC Systems and methods for functional imaging
US11300695B2 (en) 2020-04-24 2022-04-12 Ronald Nutt Time-resolved positron emission tomography encoder system for producing event-by-event, real-time, high resolution, three-dimensional positron emission tomographic image without the necessity of performing image reconstruction
US11054534B1 (en) 2020-04-24 2021-07-06 Ronald Nutt Time-resolved positron emission tomography encoder system for producing real-time, high resolution, three dimensional positron emission tomographic image without the necessity of performing image reconstruction
CN112784545B (zh) * 2020-07-15 2023-06-27 山东核电有限公司 一种放射性γ核素报告文件的动态图表编辑方法
CN114820432B (zh) * 2022-03-08 2023-04-11 安徽慧软科技有限公司 一种基于pet和ct弹性配准技术的放射治疗效果评估方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004405A1 (en) * 1999-10-14 2003-01-02 Cti Pet Systems, Inc. Combined PET and X-Ray CT tomograph
JP2005193018A (ja) * 2003-12-16 2005-07-21 Ge Medical Systems Global Technology Co Llc 画像処理のシステム及び方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914607A (en) * 1973-12-12 1975-10-21 Industrial Nucleonics Corp Thickness measuring apparatus and method for tire ply and similar materials
US4029963A (en) * 1976-07-30 1977-06-14 The Board Of Trustees Of Leland Stanford Junior University X-ray spectral decomposition imaging system
US4578803A (en) * 1981-12-07 1986-03-25 Albert Macovski Energy-selective x-ray recording and readout system
US4633398A (en) * 1983-12-07 1986-12-30 General Electric Company Attenuation compensated emission reconstruction with simultaneous attenuation factor evaluation
US5376795A (en) * 1990-07-09 1994-12-27 Regents Of The University Of California Emission-transmission imaging system using single energy and dual energy transmission and radionuclide emission data
US5338936A (en) * 1991-06-10 1994-08-16 Thomas E. Kocovsky, Jr. Simultaneous transmission and emission converging tomography
US5210421A (en) * 1991-06-10 1993-05-11 Picker International, Inc. Simultaneous transmission and emission converging tomography
US5608221A (en) * 1995-06-09 1997-03-04 Adac Laboratories Multi-head nuclear medicine camera for dual SPECT and PET imaging with monuniform attenuation correction
US6429434B1 (en) * 1998-05-01 2002-08-06 Charles C. Watson Transmission attenuation correction method for PET and SPECT
US6310968B1 (en) * 1998-11-24 2001-10-30 Picker International, Inc. Source-assisted attenuation correction for emission computed tomography
US6878941B2 (en) * 2002-04-09 2005-04-12 Elgems Ltd. Gamma camera and CT system
WO2000075691A1 (en) * 1999-06-06 2000-12-14 Elgems Ltd. Gamma camera and ct system
US6735277B2 (en) * 2002-05-23 2004-05-11 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
US6856666B2 (en) * 2002-10-04 2005-02-15 Ge Medical Systems Global Technology Company, Llc Multi modality imaging methods and apparatus
AU2003276658A1 (en) * 2002-11-04 2004-06-07 V-Target Technologies Ltd. Apparatus and methods for imaging and attenuation correction
US6850585B2 (en) * 2003-03-05 2005-02-01 Ge Medical Systems Global Technology Company, Llc Progressive updating approach for volumetric CT image reconstruction
US6950494B2 (en) * 2003-09-11 2005-09-27 Siemens Medical Solutions, Usa Method for converting CT data to linear attenuation coefficient map data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004405A1 (en) * 1999-10-14 2003-01-02 Cti Pet Systems, Inc. Combined PET and X-Ray CT tomograph
JP2005193018A (ja) * 2003-12-16 2005-07-21 Ge Medical Systems Global Technology Co Llc 画像処理のシステム及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025035A (ja) * 2007-07-17 2009-02-05 Toshiba Corp 核医学イメージング装置および核医学画像作成方法
JP2014215238A (ja) * 2013-04-26 2014-11-17 玄紀 田中 核医学画像再構成装置、核医学画像再構成方法、及びプログラム

Also Published As

Publication number Publication date
US7348564B2 (en) 2008-03-25
US20070131858A1 (en) 2007-06-14
JP5122801B2 (ja) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5122801B2 (ja) マルチ・モダリティ撮像の方法及び装置
JP6747885B2 (ja) 放射線診断装置及び放射線診断装置作動方法
US6856666B2 (en) Multi modality imaging methods and apparatus
US7221728B2 (en) Method and apparatus for correcting motion in image reconstruction
US6765983B2 (en) Method and apparatus for imaging a region of dynamic tissue
US8705822B2 (en) Method for creating images indicating material decomposition in dual energy, dual source helical computed tomography
US8553959B2 (en) Method and apparatus for correcting multi-modality imaging data
US8064986B2 (en) Method and system for displaying a cine loop formed from combined 4D volumes
US7729467B2 (en) Methods and systems for attentuation correction in medical imaging
US20090003655A1 (en) Methods and systems for assessing patient movement in diagnostic imaging
US20120278055A1 (en) Motion correction in radiation therapy
JP2005211655A (ja) 断層撮影装置による画像データの取得および評価方法
JP4740558B2 (ja) 対象物の異常を分析するシステム及び方法
JP2004174249A (ja) ボリューム灌流を計算するための方法及び装置
KR20170088681A (ko) 단층 촬영 장치 및 그에 따른 단층 영상 복원 방법
JP6416572B2 (ja) コンピュータ断層撮影(ct)画像再構成におけるアーチファクトを低減するための方法および装置
JP4347651B2 (ja) マルチ・モダリティ・イメージング方法及び装置
KR20170105876A (ko) 단층 촬영 장치 및 그에 따른 단층 영상 재구성 방법
US20110110570A1 (en) Apparatus and methods for generating a planar image
JP2009047602A (ja) 陽電子放出コンピュータ断層撮影装置、減弱マップ作成装置および減弱マップ作成プログラム
US7853314B2 (en) Methods and apparatus for improving image quality
US9858688B2 (en) Methods and systems for computed tomography motion compensation
US10383589B2 (en) Direct monochromatic image generation for spectral computed tomography
JP2010142478A (ja) X線ct装置
JP6411877B2 (ja) コンピュータ断層撮影データにビームハードニング補正を行うためのビームハードニング補正係数を取得する方法およびデバイス

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111003

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5122801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250