JP2007154147A - Biodegradable resin composition - Google Patents

Biodegradable resin composition Download PDF

Info

Publication number
JP2007154147A
JP2007154147A JP2006014245A JP2006014245A JP2007154147A JP 2007154147 A JP2007154147 A JP 2007154147A JP 2006014245 A JP2006014245 A JP 2006014245A JP 2006014245 A JP2006014245 A JP 2006014245A JP 2007154147 A JP2007154147 A JP 2007154147A
Authority
JP
Japan
Prior art keywords
biodegradable resin
nucleating agent
resin composition
plasticizer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006014245A
Other languages
Japanese (ja)
Other versions
JP4611214B2 (en
Inventor
Shogo Nomoto
昌吾 野本
Akira Takenaka
晃 武中
Toshiki Matsuo
俊樹 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006014245A priority Critical patent/JP4611214B2/en
Publication of JP2007154147A publication Critical patent/JP2007154147A/en
Application granted granted Critical
Publication of JP4611214B2 publication Critical patent/JP4611214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable resin composition which is good in moldability and is excellent in heat resistance and impact resistance, and to provide a method for manufacturing a biodegradable resin molded article obtained by using this biodegradable resin composition. <P>SOLUTION: The biodegradable resin composition, containing a biodegradable resin, a plasticizer, an organic nucleating agent and an inorganic nucleating agent, is characterized in that the plasticizer is a compound having two or more of ester groups in its molecule and having an average mole number for ethylene oxide addition of 3-9, and the organic nucleating agent is a compound having a hydroxy group and an amide group in its molecule. The method for manufacturing a biodegradable resin molded article comprises (1) a process of mixing the biodegradable resin composition at a temperature higher than the melting point (Tm) of the biodegradable resin, and (2) a process of heat-treating the mixture at a temperature from a glass transition temperature (Tg) of the biodegradable resin composition to lower than Tm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生分解性樹脂組成物、及び該生分解性樹脂組成物を用いた生分解性樹脂成形体の製造方法に関する。   The present invention relates to a biodegradable resin composition and a method for producing a biodegradable resin molded body using the biodegradable resin composition.

ポリプロピレン、ポリ塩化ビニルなどの石油を原料とする汎用樹脂は、良好な加工性及び、耐久性等の性質から、日用雑貨、家電製品、自動車部品、建築材料あるいは食品包装などの様々な分野に使用されている。しかしながらこれらの樹脂製品は、役目を終えて廃棄する段階で良好な耐久性が欠点となり、自然界における分解性に劣るため、生態系に影響を及ぼす可能性がある。   General-purpose resins made from petroleum such as polypropylene and polyvinyl chloride are used in various fields such as daily goods, household appliances, automobile parts, building materials, and food packaging because of their good processability and durability. in use. However, these resin products have a disadvantage of good durability at the stage of finishing and discarding their functions, and are inferior in degradability in nature, and thus may affect the ecosystem.

このような問題を解決するために、熱可塑性樹脂で生分解性を有する樹脂として、ポリ乳酸及び乳酸と他の脂肪族ヒドロキシカルボン酸とのコポリマー、脂肪族多価アルコールと脂肪族多価カルボン酸から誘導される脂肪族ポリエステル等の生分解性樹脂組成物が開発されている。   In order to solve such problems, thermoplastic resins and biodegradable resins include polylactic acid and copolymers of lactic acid and other aliphatic hydroxycarboxylic acids, aliphatic polyhydric alcohols and aliphatic polycarboxylic acids. Biodegradable resin compositions such as aliphatic polyesters derived from have been developed.

これらの生分解性樹脂組成物の中でもポリ乳酸樹脂は、トウモロコシ、芋などからとれる糖分から、発酵法によりL−乳酸が大量に作られ安価になってきたこと、原料が自然農作物なので総酸化炭素排出量が極めて少ない、また得られた樹脂の性能として剛性が強く透明性が良いという特徴があるので、現在その利用が期待され、フラットヤーン、ネット、育苗用ポット等の農業土木資材分野、窓付き封筒、買い物袋、コンポストバッグ、文具、雑貨等に使用されている。しかしながらポリ乳酸樹脂の場合は、脆く、硬く、可撓性に欠ける特性のためにいずれも硬質成形品分野に限られ、フィルムなどに成形した場合は、柔軟性の不足や、折り曲げたときに白化などの問題があり、軟質又は半硬質分野においては十分に普及していないのが現状である。   Among these biodegradable resin compositions, polylactic acid resin is made of sugar from corn, straw, etc., and L-lactic acid has been made in large quantities by fermentation. Since the amount of discharged resin is extremely small, and the performance of the obtained resin is strong and transparent, it is expected to be used at present, and it is expected to be used in the field of agricultural civil engineering materials such as flat yarn, nets, seedling pots, windows, etc. Used in envelopes, shopping bags, compost bags, stationery, miscellaneous goods, etc. However, in the case of polylactic acid resin, it is fragile, hard, and lacks flexibility, so all are limited to the field of hard molded products. When molded into a film, it becomes inflexible or whitens when bent. The current situation is that it is not widely spread in the soft or semi-rigid field.

ポリ乳酸樹脂を軟質、半硬質分野に応用する技術として可塑剤を添加する方法が種々提案されている。例えばアセチルクエン酸トリブチル、ジグリセリンテトラアセテート等の可塑剤を添加する技術が開示されている。これら可塑剤をポリ乳酸に添加し、押出成形等でフィルム又はシートを成形した場合、良好な柔軟性が得られるが、その樹脂が非晶状態であるためにガラス転移点付近の温度変化による柔軟性の変化が著しく(感温性)、また高温時の耐熱性が不足しているため、季節によって物性が著しく変化し、高温環境下での使用が困難となる問題があった。この問題を解決するためにタルク等(特許文献1)の結晶核剤を添加することによって、ポリ乳酸を結晶化させ、耐熱性等を改善する方法が提案されている。しかしながらタルク等の結晶核剤を多量に添加すると熱成形後のシート、フィルムの透明性を低下させ、成形品を高温高湿下で放置すると可塑剤がブリードする問題があった。   Various methods for adding a plasticizer have been proposed as techniques for applying polylactic acid resin to soft and semi-rigid fields. For example, a technique of adding a plasticizer such as tributyl acetylcitrate or diglycerin tetraacetate is disclosed. When these plasticizers are added to polylactic acid and a film or sheet is formed by extrusion or the like, good flexibility is obtained, but because the resin is in an amorphous state, flexibility due to temperature changes near the glass transition point is obtained. The property changes markedly (temperature sensitivity) and the heat resistance at high temperatures is insufficient, so that the physical properties change significantly depending on the season, making it difficult to use in a high temperature environment. In order to solve this problem, a method of improving the heat resistance and the like by crystallizing polylactic acid by adding a crystal nucleating agent such as talc (Patent Document 1) has been proposed. However, when a large amount of a crystal nucleating agent such as talc is added, the transparency of the sheet or film after thermoforming is lowered, and there is a problem that the plasticizer bleeds when the molded product is left under high temperature and high humidity.

また、特許文献2には、重量平均分子量が10万以上でかつ残存モノマー量が5000ppm以下の脂肪族ポリエステルと、アミド基を有する低分子化合物と、タルクと、カルボジイミド系化合物、イソシアネート系化合物及びオキサゾリン系化合物からなる群から選択される少なくとも一つの加水分解抑制剤とを含有することを特徴とする脂肪族ポリエステル組成物が開示されている。しかしながら、柔軟性を有し、成形性が良好で、更に耐熱性と耐衝撃性がともに優れる脂肪族ポリエステル成形体は得られていない。
特許第3410075号公報 特開2005−60474号公報
Patent Document 2 discloses an aliphatic polyester having a weight average molecular weight of 100,000 or more and a residual monomer amount of 5000 ppm or less, a low molecular compound having an amide group, talc, a carbodiimide compound, an isocyanate compound, and an oxazoline. An aliphatic polyester composition comprising at least one hydrolysis inhibitor selected from the group consisting of a series compound is disclosed. However, an aliphatic polyester molded article having flexibility, good moldability, and excellent both heat resistance and impact resistance has not been obtained.
Japanese Patent No. 3410075 JP 2005-60474 A

本発明の課題は、成形性が良好で、耐熱性と耐衝撃性に優れる生分解性樹脂組成物並びにその生分解性樹脂組成物を用いた生分解性樹脂成形体の製造方法を提供することにある。   An object of the present invention is to provide a biodegradable resin composition having good moldability, excellent heat resistance and impact resistance, and a method for producing a biodegradable resin molded body using the biodegradable resin composition. It is in.

本発明は、生分解性樹脂、可塑剤、有機核剤及び無機核剤を含有する生分解性樹脂組成物であって、可塑剤が、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が3〜9の化合物であり、有機核剤が、分子中に水酸基とアミド基とを有する化合物である生分解性樹脂組成物を提供する。   The present invention is a biodegradable resin composition containing a biodegradable resin, a plasticizer, an organic nucleating agent, and an inorganic nucleating agent, wherein the plasticizer has two or more ester groups in the molecule, Provided is a biodegradable resin composition which is a compound having an average added mole number of oxide of 3 to 9, and the organic nucleating agent is a compound having a hydroxyl group and an amide group in the molecule.

また、本発明は、上記生分解性樹脂組成物を、生分解性樹脂の融点(Tm)以上で混合する工程(1)と、生分解性樹脂組成物のガラス転移温度(Tg)以上Tm未満の温度で熱処理する工程(2)とを有する生分解性樹脂成形体の製造方法を提供する。   The present invention also includes the step (1) of mixing the biodegradable resin composition above the melting point (Tm) of the biodegradable resin, the glass transition temperature (Tg) of the biodegradable resin composition and less than Tm. The manufacturing method of the biodegradable resin molding which has the process (2) heat-processed at this temperature.

本発明の生分解性樹脂組成物は、成形性が良好で、耐熱性と耐衝撃性に優れている。また、本発明の製造方法によると、低い金型温度においても成形性が良好で、優れた耐熱性と耐衝撃性を有する生分解性樹脂成形体を得ることができる。   The biodegradable resin composition of the present invention has good moldability and excellent heat resistance and impact resistance. Moreover, according to the production method of the present invention, a biodegradable resin molded article having good moldability even at a low mold temperature and having excellent heat resistance and impact resistance can be obtained.

[生分解性樹脂]
本発明で使用される生分解性樹脂としては、JIS K6953(ISO14855)「制御された好気的コンポスト条件の好気的かつ究極的な生分解度及び崩壊度試験」に基づいた生分解性を有するポリエステル樹脂が好ましい。
[Biodegradable resin]
The biodegradable resin used in the present invention has a biodegradability based on JIS K6953 (ISO 14855) “Aerobic and ultimate biodegradability and disintegration test under controlled aerobic compost conditions”. The polyester resin which has is preferable.

本発明で使用される生分解性樹脂は、自然界において微生物が関与して低分子化合物に分解される生分解性を有していればよく、特に限定されるものではない。例えば、ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンサクシネート/アジペート、ポリエチレンサクシネート、ポリ乳酸樹脂、ポリリンゴ酸、ポリグリコール酸、ポリジオキサノン、ポリ(2−オキセタノン)等の脂肪族ポリエステル;ポリブチレンサクシネート/テレフタレート、ポリブチレンアジペート/テレフタレート、ポリテトラメチレンアジペート/テレフタレート等の脂肪族芳香族コポリエステル;デンプン、セルロース、キチン、キトサン、グルテン、ゼラチン、ゼイン、大豆タンパク、コラーゲン、ケラチン等の天然高分子と上記の脂肪族ポリエステルあるいは脂肪族芳香族コポリエステルとの混合物等が挙げられる。   The biodegradable resin used in the present invention is not particularly limited as long as it has a biodegradability capable of being decomposed into a low molecular weight compound with the participation of microorganisms in nature. For example, aliphatic polyesters such as polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polybutylene succinate / adipate, polyethylene succinate, polylactic acid resin, polymalic acid, polyglycolic acid, polydioxanone, poly (2-oxetanone) Aliphatic aliphatic copolyesters such as polybutylene succinate / terephthalate, polybutylene adipate / terephthalate, polytetramethylene adipate / terephthalate; starch, cellulose, chitin, chitosan, gluten, gelatin, zein, soy protein, collagen, keratin, etc. And a mixture of the above natural polymer and the above aliphatic polyester or aliphatic aromatic copolyester.

これらのなかで加工性、経済性、大量に入手でき、かつ物性の点からポリ乳酸樹脂が好ましい。ここで、ポリ乳酸樹脂とは、ポリ乳酸、又は乳酸とヒドロキシカルボン酸とのコポリマーである。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられ、グリコール酸、ヒドロキシカプロン酸が好ましい。好ましいポリ乳酸の分子構造は、L−乳酸又はD−乳酸いずれかの単位20〜100モル%とそれぞれの対掌体の乳酸単位0〜20モル%からなるものである。また、乳酸とヒドロキシカルボン酸とのコポリマーは、L−乳酸又はD−乳酸いずれかの単位85〜100モル%とヒドロキシカルボン酸単位0〜15モル%からなるものである。これらのポリ乳酸樹脂は、L−乳酸、D−乳酸及びヒドロキシカルボン酸の中から必要とする構造のものを選んで原料とし、脱水重縮合することにより得ることができる。好ましくは、乳酸の環状二量体であるラクチド、グリコール酸の環状二量体であるグリコリド及びカプロラクトン等から必要とする構造の ものを選んで開環重合することにより得ることができる。ラクチドにはL−乳酸の環状二量体であるL−ラクチド、D−乳酸の環状二量体であるD−ラクチド、D−乳酸とL−乳酸とが環状二量化したメソ−ラクチド及びD−ラクチドとL−ラクチドとのラセミ混合物であるDL−ラクチドがある。本発明ではいずれのラクチドも用いることができる。但し、主原料は、D−ラクチド又はL−ラクチドが好ましい。   Among these, polylactic acid resin is preferable from the viewpoint of processability, economical efficiency, availability in large quantities, and physical properties. Here, the polylactic acid resin is polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid and the like, and glycolic acid and hydroxycaproic acid are preferable. A preferred molecular structure of polylactic acid is composed of 20 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 20 mol% of each enantiomer. The copolymer of lactic acid and hydroxycarboxylic acid is composed of 85 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 15 mol% of hydroxycarboxylic acid units. These polylactic acid resins can be obtained by dehydrating polycondensation using L-lactic acid, D-lactic acid and hydroxycarboxylic acid as a raw material by selecting those having the required structure. Preferably, it can be obtained by ring-opening polymerization by selecting a desired structure from lactide, which is a cyclic dimer of lactic acid, glycolide, which is a cyclic dimer of glycolic acid, and caprolactone. Lactide includes L-lactide which is a cyclic dimer of L-lactic acid, D-lactide which is a cyclic dimer of D-lactic acid, meso-lactide obtained by cyclic dimerization of D-lactic acid and L-lactic acid, and D-lactide. There is DL-lactide, which is a racemic mixture of lactide and L-lactide. Any lactide can be used in the present invention. However, the main raw material is preferably D-lactide or L-lactide.

市販されている生分解性樹脂としては、例えば、デュポン社製、商品名バイオマックス;BASF社製、商品名Ecoflex;EastmanChemicals社製、商品名EasterBio;昭和高分子(株)製、商品名ビオノーレ;日本合成化学工業(株)製、商品名マタービー;島津製作所(株)製、商品名ラクティ;三井化学(株)製、商品名レイシア;日本触媒(株)製、商品名ルナーレ;チッソ(株)製、商品名ノボン;カーギル・ダウ・ポリマーズ社製、商品名Nature works等が挙げられる。   Examples of commercially available biodegradable resins include DuPont, trade name Biomax; BASF, trade name Ecoflex; Eastman Chemicals, trade name EsterBio; Showa Polymer Co., Ltd., trade name Bionore; Made by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Matterby; manufactured by Shimadzu Corporation, trade name: Lakti; made by Mitsui Chemicals, Inc., trade name: Lacia; manufactured by Nippon Shokubai Co., Ltd., trade name: Lunare; Chisso Corporation And trade name Novon; Cargill Dow Polymers, trade name Nature works and the like.

これらの中では、好ましくはポリ乳酸樹脂(例えば三井化学(株)製、商品名レイシア;カーギル・ダウ・ポリマーズ社製、商品名Nature works)が挙げられる。   Of these, polylactic acid resins (for example, trade name Lacia, trade name: Nature works, manufactured by Mitsui Chemicals, Inc .; Cargill Dow Polymers) are preferable.

[可塑剤]
本発明に用いられる可塑剤は、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が3〜9の化合物であり、コハク酸またはアジピン酸とポリエチレングリコールモノメチルエーテルとのエステル、および酢酸とグリセリンまたはエチレングリコールのエチレンオキサイド付加物とのエステルからなる群より選ばれる少なくとも1種であることが好ましい。
[Plasticizer]
The plasticizer used in the present invention is a compound having 2 or more ester groups in the molecule and having an average addition mole number of ethylene oxide of 3 to 9, and comprising succinic acid or adipic acid and polyethylene glycol monomethyl ether. It is preferably at least one selected from the group consisting of an ester and an ester of acetic acid and an ethylene oxide adduct of glycerin or ethylene glycol.

本発明に用いられる可塑剤の平均分子量は耐ブリード性および耐揮発性の観点から、好ましくは250〜700であり、より好ましくは300〜600であり、更に好ましくは350〜550であり、特に好ましくは400〜500である。尚、平均分子量は、JIS K0070に記載の方法で鹸化価を求め、次式より計算で求めることができる。
平均分子量=56108×(エステル基の数)/鹸化価
The average molecular weight of the plasticizer used in the present invention is preferably from 250 to 700, more preferably from 300 to 600, still more preferably from 350 to 550, particularly preferably from the viewpoint of bleed resistance and volatile resistance. Is 400-500. The average molecular weight can be obtained by calculating the saponification value by the method described in JIS K0070 and calculating from the following formula.
Average molecular weight = 56108 × (number of ester groups) / saponification value

本発明に用いられる可塑剤としては、生分解性樹脂成形体の成形性、耐衝撃性に優れる観点から、酢酸とグリセリンのエチレンオキサイド平均3〜9モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜9のポリエチレングリコールとのエステル等の多価アルコールのアルキルエーテルエステル、コハク酸とエチレンオキサイドの平均付加モル数が2〜4のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル等の多価カルボン酸とポリエチレングリコールモノメチルエーテルとのエステルがより好ましい。生分解性樹脂成形体の成形性、耐衝撃性および可塑剤の耐ブリード性に優れる観点から、酢酸とグリセリンのエチレンオキサイド平均3〜6モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜6のポリエチレングリコールとのエステル、コハク酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とジエチレングリコールモノメチルエーテルとのエステルがさらに好ましい。生分解性樹脂成形体の成形性、耐衝撃性および可塑剤の耐ブリード性、耐揮発性および耐刺激臭の観点から、コハク酸とトリエチレングリコールモノメチルエーテルとのエステルが特に好ましい。   As a plasticizer used in the present invention, from the viewpoint of excellent moldability and impact resistance of the biodegradable resin molded product, an ester of acetic acid and glycerol with an average of 3 to 9 moles of ethylene oxide adduct, acetic acid and ethylene oxide Alkyl ether esters of polyhydric alcohols such as esters with polyethylene glycol having an average addition mole number of 4 to 9, esters of polyethylene glycol monomethyl ether with an average addition mole number of succinic acid and ethylene oxide of 2 to 4, adipic acid and Esters with polyethylene glycol monomethyl ether having an average addition mole number of ethylene oxide of 2-3, esters of polyethylene glycol monomethyl ether with 1,3,6-hexanetricarboxylic acid and ethylene oxide having an average addition mole number of 2-3, etc. Polyhydric carboxylic acids and polyethylene Esters of glycol monomethyl ether is more preferable. From the viewpoint of excellent moldability, impact resistance and bleed resistance of the plasticizer of the biodegradable resin molded article, an ester of acetic acid and glycerin with an average of 3 to 6 mol of ethylene oxide adduct, an average addition mol of acetic acid and ethylene oxide Esters of polyethylene glycol having a number of 4-6, esters of polyethylene glycol monomethyl ether having an average addition mole number of succinic acid and ethylene oxide of 2-3, esters of adipic acid and diethylene glycol monomethyl ether, 1, 3, 6 -Ester of hexanetricarboxylic acid and diethylene glycol monomethyl ether is more preferable. From the viewpoint of moldability of the biodegradable resin molded article, impact resistance, bleed resistance of the plasticizer, volatility resistance, and irritating odor, an ester of succinic acid and triethylene glycol monomethyl ether is particularly preferable.

尚、本発明のエステルは、可塑剤としての機能を十分発揮させる観点から、全てエステル化された飽和エステルであることが好ましい。   In addition, it is preferable that the ester of this invention is all the esterified saturated ester from a viewpoint of fully exhibiting the function as a plasticizer.

特定の可塑剤によって、本発明の効果が向上する理由は定かではないが、可塑剤が、分子中に2個以上のエステル基、エチレンオキサイドの平均付加モル数が3〜9のポリオキシエチレン鎖を有する化合物(更にメチル基を有していることが好ましく、2個以上有していることが好ましい。)であると、その耐熱性および生分解性樹脂に対する相溶性が良好となる。そのため耐ブリード性が向上するととともに、生分解性樹脂の軟質化効果も向上する。この生分解性樹脂の軟質化向上により、生分解性樹脂が結晶化するときはその成長速度も向上すると考えられる。その結果、低い金型温度でも生分解性樹脂が柔軟性を保持しているため、短い金型保持時間で生分解性樹脂の結晶化が進み良好な成形性を示すものと考えられる。   The reason why the effect of the present invention is improved by a specific plasticizer is not clear, but the plasticizer is a polyoxyethylene chain having 2 or more ester groups in the molecule and an average added mole number of ethylene oxide of 3 to 9 If it is a compound having a (which preferably further has a methyl group, preferably 2 or more), its heat resistance and compatibility with the biodegradable resin will be good. Therefore, the bleed resistance is improved and the softening effect of the biodegradable resin is also improved. It is considered that when the biodegradable resin is crystallized, the growth rate is improved by improving the softening of the biodegradable resin. As a result, since the biodegradable resin retains flexibility even at a low mold temperature, crystallization of the biodegradable resin progresses in a short mold holding time, and good moldability is expected.

[結晶核剤]
本発明は、結晶核剤として、有機核剤と無機核剤とを用いる。
本発明に用いられる有機核剤は、生分解性樹脂成形体の成形性、耐熱性、耐衝撃性および有機核剤の耐ブルーム性の観点から、有機核剤分子中に水酸基とアミド基とを有する化合物であり、水酸基を2つ以上有し、アミド基を2つ以上有する脂肪族化合物であることが好ましい。有機核剤の融点は、65℃以上が好ましく、70℃〜220℃がより好ましく、80〜190℃が更に好ましい。
[Crystal nucleating agent]
In the present invention, an organic nucleating agent and an inorganic nucleating agent are used as the crystal nucleating agent.
The organic nucleating agent used in the present invention contains a hydroxyl group and an amide group in the organic nucleating agent molecule from the viewpoints of moldability, heat resistance, impact resistance and bloom resistance of the organic nucleating agent. It is preferably an aliphatic compound having two or more hydroxyl groups and two or more amide groups. The melting point of the organic nucleating agent is preferably 65 ° C or higher, more preferably 70 ° C to 220 ° C, and still more preferably 80 to 190 ° C.

有機核剤によって、本発明の効果が向上する理由は定かではないが、上記の官能基を2つ以上有すると、生分解性樹脂との相互作用が良好となり、相溶性が向上する結果、樹脂中で微分散することによるものと考えられ、恐らく、水酸基を1つ以上、好ましくは2つ以上有することにより生分解性樹脂への分散性が良好となり、アミド基を1つ以上、好ましくは2つ以上有することにより生分解性樹脂への相溶性が良好となるものと考えられる。結晶核剤の融点は熱処理温度より高く、樹脂組成物の混練温度以下であると、混練時に結晶核剤が溶解することによってその分散性が向上し、熱処理温度より高いと結晶核生成の安定化や熱処理温度が上げられるため、結晶化速度向上の観点でも好ましい。また、上記好ましい結晶核剤は、樹脂溶融状態から冷却過程で速やかに微細な結晶を多数析出するものと考えられ、透明性、結晶化速度向上の観点でも好ましい。   The reason why the effect of the present invention is improved by the organic nucleating agent is not clear, but if it has two or more of the above functional groups, the interaction with the biodegradable resin is improved and the compatibility is improved. It is thought to be due to fine dispersion in the resin. Probably, having one or more, preferably two or more hydroxyl groups improves dispersibility in the biodegradable resin, and one or more amide groups, preferably two. It is considered that the compatibility with the biodegradable resin is improved by having two or more. If the melting point of the crystal nucleating agent is higher than the heat treatment temperature and lower than the kneading temperature of the resin composition, the dispersibility is improved by dissolving the crystal nucleating agent during kneading, and if it is higher than the heat treatment temperature, crystal nucleation is stabilized. And the heat treatment temperature is increased, which is preferable from the viewpoint of improving the crystallization speed. The preferred crystal nucleating agent is considered to precipitate a large number of fine crystals quickly in the cooling process from the resin melt state, and is also preferable from the viewpoint of improving transparency and crystallization speed.

本発明の有機核剤としては、12−ヒドロキシステアリン酸モノエタノールアミド等のヒドロキシ脂肪酸モノアミド、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等のヒドロキシ脂肪酸ビスアミド等が挙げられる。生分解性樹脂成形体の成形性、耐熱性、耐衝撃性および有機核剤の耐ブルーム性の観点から、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミドが好ましい。   Examples of the organic nucleating agent of the present invention include hydroxy fatty acid monoamides such as 12-hydroxy stearic acid monoethanolamide, methylene bis 12-hydroxy stearic acid amide, ethylene bis 12-hydroxy stearic acid amide, hexamethylene bis 12-hydroxy stearic acid amide and the like. And hydroxy fatty acid bisamides. From the viewpoints of moldability of the biodegradable resin molding, heat resistance, impact resistance, and bloom resistance of the organic nucleating agent, ethylene bis 12-hydroxystearic acid amide and hexamethylene bis 12-hydroxystearic acid amide are preferable.

本発明に用いられる無機核剤は、タルク、スメクタイト、カオリン、マイカ、モンモリロナイト等のケイ酸塩、シリカ、酸化マグネシウム等の無機化合物が挙げられ、分散性の観点から平均粒径が0.1〜20μmの無機化合物が好ましく、0.1〜10μmがより好ましい。無機化合物の中でも、生分解性樹脂成形体の成形性および耐熱性の観点からケイ酸塩が好ましく、タルクまたはマイカがより好ましく、タルクが更に好ましい。また、生分解性樹脂成形体の成形性および透明性の観点からシリカが好ましい。   Examples of the inorganic nucleating agent used in the present invention include silicates such as talc, smectite, kaolin, mica, and montmorillonite, silica, and inorganic compounds such as magnesium oxide. An inorganic compound of 20 μm is preferable, and 0.1 to 10 μm is more preferable. Among inorganic compounds, silicate is preferable, talc or mica is more preferable, and talc is still more preferable from the viewpoint of moldability and heat resistance of the biodegradable resin molded body. Silica is preferred from the viewpoint of moldability and transparency of the biodegradable resin molded product.

本発明は、有機核剤と無機核剤とを併用することにより、生分解性樹脂成形体の成形性、耐熱性および耐衝撃性が良好となり、有機核剤の耐ブルーム性も良好となる。本発明の効果が向上する理由は定かではないが、無機核剤を単独で使用すると分散性が悪くなるところ、有機核剤を併用することにより、樹脂中における無機核剤の分散性が向上することによって、生分解性樹脂が結晶化する起点が増加して微結晶化するものと考えられる。その結果、結晶化速度が向上するため、短い金型保持時間で生分解性樹脂の結晶化が進んで 良好な成形性を示し、また、その成形体は結晶が緻密であるため、耐熱性および耐衝撃性が良好となるものと考えられる。また、無機核剤の親水面と有機核剤の極性基が相互作用することによって、有機核剤が樹脂表面に析出(ブルーム)することを抑制しているため、金型汚染を防止しているものと考えられる。   In the present invention, by using an organic nucleating agent and an inorganic nucleating agent in combination, the moldability, heat resistance and impact resistance of the biodegradable resin molded article are improved, and the bloom resistance of the organic nucleating agent is also improved. The reason why the effect of the present invention is improved is not clear, but dispersibility deteriorates when the inorganic nucleating agent is used alone. By using the organic nucleating agent in combination, the dispersibility of the inorganic nucleating agent in the resin is improved. Therefore, it is considered that the starting point for crystallization of the biodegradable resin increases and microcrystallization occurs. As a result, since the crystallization speed is improved, crystallization of the biodegradable resin progresses with a short mold holding time and shows good moldability, and since the molded body is dense, the heat resistance and It is considered that the impact resistance is improved. In addition, the interaction between the hydrophilic surface of the inorganic nucleating agent and the polar group of the organic nucleating agent prevents the organic nucleating agent from precipitating (blooming) on the resin surface, thus preventing mold contamination. It is considered a thing.

[生分解性樹脂組成物]
本発明の生分解性樹脂組成物は、生分解性樹脂、可塑剤、有機核剤及び無機核剤を含有するものである。本発明の生分解性樹脂組成物における生分解性樹脂、可塑剤、有機核剤及び無機核剤の特に好ましい組合せとしては、生分解性樹脂がポリ乳酸、可塑剤がコハク酸とトリエチレングリコールモノメチルエーテルとのエステル、有機核剤がエチレンビス12−ヒドロキシステアリン酸アミド及びヘキサメチレンビス12−ヒドロキシステアリン酸アミドから選ばれる少なくとも1種、無機核剤がタルク、マイカ及びシリカから選ばれる少なくとも1種である。
[Biodegradable resin composition]
The biodegradable resin composition of the present invention contains a biodegradable resin, a plasticizer, an organic nucleating agent, and an inorganic nucleating agent. Particularly preferred combinations of the biodegradable resin, plasticizer, organic nucleating agent and inorganic nucleating agent in the biodegradable resin composition of the present invention include polylactic acid as the biodegradable resin, and succinic acid and triethylene glycol monomethyl as the plasticizer. An ester with ether, an organic nucleating agent is at least one selected from ethylene bis 12-hydroxystearic acid amide and hexamethylene bis 12-hydroxystearic acid amide, and an inorganic nucleating agent is at least one selected from talc, mica and silica. is there.

上記の通り、本発明の生分解性樹脂組成物は、生分解性樹脂、可塑剤、有機核剤及び無機核剤を含有することにより本発明の効果を有するものである。従って、生分解性樹脂、特にポリ乳酸樹脂に上記可塑剤、および結晶核剤を単独で添加しても、本発明の効果が得られない。   As described above, the biodegradable resin composition of the present invention has the effects of the present invention by containing a biodegradable resin, a plasticizer, an organic nucleating agent, and an inorganic nucleating agent. Therefore, even if the plasticizer and the crystal nucleating agent are added alone to a biodegradable resin, particularly polylactic acid resin, the effect of the present invention cannot be obtained.

ポリマーの結晶化はポリマー結晶核の生成、ポリマーセグメントの拡散による2段階で進行する。結晶化速度向上の観点から、上記の有機核剤は樹脂溶融状態では溶解し分散性を高め、冷却時には瞬時に多数の微細な結晶核剤の結晶を生成し、その結果ポリマー結晶核生成を促し、かつ結晶核数を増やす効果が著しいものと考えられる。しかしポリマーの結晶核が生成しても、ポリマーセグメントの拡散速度が遅いとトータルの結晶化速度は満足のいくレベルではない。このポリマーの拡散速度を向上させるためには温度を上げれば良いが、逆にポリマーの結晶核が不安定になるため好ましくない。上記可塑剤はポリマーの結晶成長速度を向上させる効果が著しく高いため、50〜90℃の低温でも十分な結晶化速度が得られる。さらに、無機核剤は、上記有機核剤により樹脂中における分散性が向上し、特に90℃以上でポリマーの結晶成長速度を向上させる効果を発揮するため、結果として幅広い温度範囲でポリマーの結晶成長速度を向上させる効果が得られる。また、無機核剤は有機核剤が樹脂表面に析出(ブルーム)することを抑制する。これらの効果は上記可塑剤、有機核剤及び無機核剤を組み合わせて初めて実現できる。   Crystallization of the polymer proceeds in two stages by generation of polymer crystal nuclei and diffusion of polymer segments. From the viewpoint of improving the crystallization speed, the above organic nucleating agent dissolves in the resin melt state and improves dispersibility, and upon cooling, a large number of fine crystal nucleating agent crystals are instantly formed, and as a result, polymer crystal nucleation is promoted. In addition, the effect of increasing the number of crystal nuclei is considered to be remarkable. However, even if polymer crystal nuclei are formed, if the diffusion rate of the polymer segment is slow, the total crystallization rate is not satisfactory. In order to improve the diffusion rate of the polymer, the temperature may be increased, but it is not preferable because the crystal nucleus of the polymer becomes unstable. Since the plasticizer has an extremely high effect of improving the crystal growth rate of the polymer, a sufficient crystallization rate can be obtained even at a low temperature of 50 to 90 ° C. Furthermore, the inorganic nucleating agent improves the dispersibility in the resin by the organic nucleating agent, and exhibits the effect of improving the crystal growth rate of the polymer especially at 90 ° C. or higher. As a result, the crystal growth of the polymer over a wide temperature range. The effect of improving the speed is obtained. Further, the inorganic nucleating agent suppresses the organic nucleating agent from precipitating (blooming) on the resin surface. These effects can be realized only by combining the plasticizer, organic nucleating agent and inorganic nucleating agent.

また本発明の十分な結晶化速度と耐衝撃性を得るために、可塑剤の添加量は、生分解性樹脂100重量部に対し、5重量部以上が好ましく、7重量部以上がより好ましい。   In order to obtain a sufficient crystallization speed and impact resistance of the present invention, the amount of the plasticizer added is preferably 5 parts by weight or more, more preferably 7 parts by weight or more with respect to 100 parts by weight of the biodegradable resin.

本発明の生分解性樹脂組成物中の、生分解性樹脂の含有量は、本発明の目的を達成する観点から、好ましくは50重量%以上であり、より好ましくは70重量%以上である。   The content of the biodegradable resin in the biodegradable resin composition of the present invention is preferably 50% by weight or more, more preferably 70% by weight or more from the viewpoint of achieving the object of the present invention.

本発明の生分解性樹脂組成物における可塑剤の含有量は、十分な結晶化速度と耐衝撃性を得る観点から、生分解性樹脂100重量部に対し、5〜30重量部が好ましく、7〜30重量部より好ましく、10〜30重量部がさらに好ましい。   The content of the plasticizer in the biodegradable resin composition of the present invention is preferably 5 to 30 parts by weight with respect to 100 parts by weight of the biodegradable resin from the viewpoint of obtaining a sufficient crystallization speed and impact resistance. More preferably, it is more preferably -30 parts by weight, and more preferably 10-30 parts by weight.

本発明の生分解性樹脂組成物における有機核剤の含有量は、生分解性樹脂100重量部に対し、0.1〜2重量部が好ましく、0.3〜2重量部が更に好ましく、0.5〜1.5重量部が特に好ましい。   The content of the organic nucleating agent in the biodegradable resin composition of the present invention is preferably 0.1 to 2 parts by weight, more preferably 0.3 to 2 parts by weight, based on 100 parts by weight of the biodegradable resin. .5 to 1.5 parts by weight is particularly preferred.

十分な結晶化速度と透明性を得る観点から、本発明の生分解性樹脂組成物における無機核剤の含有量は、生分解性樹脂100重量部に対し、0.1〜2重量部が好ましく、0.3〜2重量部が更に好ましく、0.5〜1.5重量部が特に好ましい。
また、十分な結晶化速度と耐熱性および耐衝撃性を得る観点から、本発明の生分解性樹 脂組成物における無機核剤の含有量は、生分解性樹脂100重量部に対し、3〜50重量部が好ましく、5〜40重量部が更に好ましく、5〜30重量部が特に好ましい。
From the viewpoint of obtaining sufficient crystallization speed and transparency, the content of the inorganic nucleating agent in the biodegradable resin composition of the present invention is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the biodegradable resin. 0.3 to 2 parts by weight is more preferable, and 0.5 to 1.5 parts by weight is particularly preferable.
In addition, from the viewpoint of obtaining a sufficient crystallization speed, heat resistance and impact resistance, the content of the inorganic nucleating agent in the biodegradable resin composition of the present invention is 3 to 100 parts by weight of the biodegradable resin. 50 parts by weight is preferable, 5 to 40 parts by weight is still more preferable, and 5 to 30 parts by weight is particularly preferable.

また本発明の生分解性樹脂組成物は、生分解性樹脂のガラス転移点(Tg1)と、生分解性樹脂組成物のガラス転移点(Tg2)との差[Tg1−Tg2]が10〜80℃の範囲が好ましく、15〜70℃の範囲が更に好ましく、20〜60℃の範囲が特に好ましい。   In the biodegradable resin composition of the present invention, the difference [Tg1-Tg2] between the glass transition point (Tg1) of the biodegradable resin and the glass transition point (Tg2) of the biodegradable resin composition is 10 to 80. The range of ° C is preferable, the range of 15 to 70 ° C is more preferable, and the range of 20 to 60 ° C is particularly preferable.

本発明の生分解性樹脂組成物は、上記の本発明の結晶核剤、可塑剤以外に、更に、加水分解抑制剤を含有することができる。加水分解抑制剤としては、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、生分解性樹脂成形体の成形性の観点からポリカルボジイミド化合物が好ましく、生分解性樹脂成形体の耐熱性、耐衝撃性および有機核剤の耐ブルーム性の観点から、モノカルボジイミド化合物が好ましい。   The biodegradable resin composition of the present invention can further contain a hydrolysis inhibitor in addition to the crystal nucleating agent and the plasticizer of the present invention. Examples of the hydrolysis inhibitor include carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds, polycarbodiimide compounds are preferred from the viewpoint of moldability of the biodegradable resin molded body, and the heat resistance of the biodegradable resin molded body, From the viewpoint of impact resistance and bloom resistance of the organic nucleating agent, a monocarbodiimide compound is preferred.

ポリカルボジイミド化合物としてはポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5−トリイソプロピルベンゼンおよび1,5−ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられ、モノカルボジイミド化合物としては、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミド等が挙げられる。   Examples of the polycarbodiimide compound include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, and poly (1,3,5). -Triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide and the like, and examples of the monocarbodiimide compound include N, N'-di-2,6-diisopropylphenylcarbodiimide.

上記カルボジイミド化合物は、生分解性樹脂成形体の成形性、耐熱性、耐衝撃性および有機核剤の耐ブルーム性を満たすために、単独または2種以上組み合わせて用いてもよい。また、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA−1(日清紡績(株)製)を、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミドおよびポリ(1,3,5−トリイソプロピルベンゼンおよび1,5−ジイソプロピルベンゼン)ポリカルボジイミドはスタバクゾールPおよびスタバクゾールP−100(Rhein Chemie社製)を、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドはスタバクゾールI(Rhein Chemie社製)をそれぞれ購入して使用することができる。   The carbodiimide compounds may be used alone or in combination of two or more in order to satisfy the moldability, heat resistance, impact resistance and bloom resistance of the organic nucleating agent of the biodegradable resin molded product. Poly (4,4′-dicyclohexylmethanecarbodiimide) is obtained from carbodilite LA-1 (manufactured by Nisshinbo Co., Ltd.), poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5). -Triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide are stabuxol P and stabuxol P-100 (Rhein Chemie), N, N'-di-2,6-diisopropylphenylcarbodiimide is stabuxol I (Rhein Chemie) Can be purchased and used.

本発明の生分解性樹脂組成物における加水分解抑制剤の含有量は、生分解性樹脂成形体の成形性の観点から、生分解性樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。   The content of the hydrolysis inhibitor in the biodegradable resin composition of the present invention is 0.05 to 3 parts by weight with respect to 100 parts by weight of the biodegradable resin from the viewpoint of moldability of the biodegradable resin molded article. Preferably, 0.1 to 2 parts by weight is more preferable.

本発明の生分解性樹脂組成物は、上記以外に、更にヒンダードフェノール又はフォスファイト系の酸化防止剤、又は炭化水素系ワックス類やアニオン型界面活性剤である滑剤等の他の成分を含有することができる。酸化防止剤、滑剤のそれぞれの含有量は、生分解性樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。   In addition to the above, the biodegradable resin composition of the present invention further contains other components such as a hindered phenol or phosphite antioxidant, or a hydrocarbon wax or a lubricant that is an anionic surfactant. can do. The content of each of the antioxidant and the lubricant is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the biodegradable resin.

本発明の生分解性樹脂組成物は、上記以外の他の成分として、帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、無機充填剤、防カビ剤、抗菌剤、発泡剤、難燃剤等を、本発明の目的達成を妨げない範囲で含有することができる。   The biodegradable resin composition of the present invention includes an antistatic agent, an antifogging agent, a light stabilizer, an ultraviolet absorber, a pigment, an inorganic filler, an antifungal agent, an antibacterial agent and a foaming agent as components other than those described above. In addition, flame retardants and the like can be contained as long as the object of the present invention is not hindered.

本発明の生分解性樹脂組成物は、加工性が良好で、例えば200℃以下の低温で加工することができるため、可塑剤の分解が起こり難い利点もあり、フィルムやシートに成形して、各種用途に用いることができる。   Since the biodegradable resin composition of the present invention has good processability and can be processed at a low temperature of, for example, 200 ° C. or lower, there is also an advantage that the plasticizer is hardly decomposed. It can be used for various purposes.

[生分解性樹脂成形体の製造法]
本発明の生分解性樹脂成形体の製造法は、本発明の生分解性樹脂組成物を、生分解性樹脂の融点(Tm)以上で混合する工程(1)と、生分解性樹脂組成物のガラス転移温度(Tg)以上Tm未満の温度で熱処理する工程(2)とを有する。
[Production method of biodegradable resin molding]
The method for producing the biodegradable resin molded article of the present invention comprises the step (1) of mixing the biodegradable resin composition of the present invention at a melting point (Tm) or higher of the biodegradable resin, and the biodegradable resin composition. And (2) a heat treatment at a temperature not lower than the glass transition temperature (Tg) and lower than Tm.

また、工程(1)を経た後、冷却して非晶状態(すなわち高角X線回折法で測定される結晶化度が1%以下となる条件)とした後、工程(2)を行う方法や、工程(1)を経た後、冷却して直ちに工程(2)を行う方法が好ましく、本発明の結晶化速度向上効果発現の観点から、工程(1)を経た後、冷却して直ちに工程(2)を行う方法がより好ましい。   In addition, after passing through the step (1), after cooling to an amorphous state (that is, a condition that the degree of crystallinity measured by high angle X-ray diffraction method is 1% or less), the method of performing the step (2) After the step (1), the method of cooling and immediately performing the step (2) is preferable. From the viewpoint of the crystallization speed improvement effect of the present invention, the step (1) is followed by cooling and the step (1). The method of performing 2) is more preferable.

本発明の生分解性樹脂成形体の製造法における、工程(1)の具体例としては、通常の方法によって行う事ができ、例えば、押出し機等を用いて生分解性樹脂を溶融させながら、本発明の可塑剤、有機核剤及び無機核剤を混合する方法等が挙げられる。工程(1)の温度は、本発明の可塑剤、有機核剤及び無機核剤の分散性の観点から、生分解性樹脂の融点(Tm)以上であり、好ましくはTm〜Tm+100℃の範囲であり、より好ましくはTm〜Tm+50℃の範囲である。例えば、生分解性樹脂がポリ乳酸樹脂の場合は、好ましくは170〜240℃であり、より好ましくは170〜220℃である。   As a specific example of the step (1) in the method for producing a biodegradable resin molded body of the present invention, it can be performed by a usual method, for example, while melting the biodegradable resin using an extruder or the like, The method etc. which mix the plasticizer of this invention, an organic nucleating agent, and an inorganic nucleating agent are mentioned. The temperature of the step (1) is not less than the melting point (Tm) of the biodegradable resin from the viewpoint of dispersibility of the plasticizer, organic nucleating agent and inorganic nucleating agent of the present invention, preferably in the range of Tm to Tm + 100 ° C. More preferably, it is the range of Tm-Tm + 50 degreeC. For example, when the biodegradable resin is a polylactic acid resin, the temperature is preferably 170 to 240 ° C, more preferably 170 to 220 ° C.

本発明の成形体の製造法における、工程(2)の具体例としては、通常の方法によって行う事ができ、例えば、押出し機等により押し出された生分解性樹脂組成物を熱処理する方法や射出成形機等により生分解性樹脂組成物を金型に充填し、生分解性樹脂組成物を熱処理する方法等が挙げられる。工程(2)の温度は、結晶化速度向上の観点から、生分解性樹脂組成物のガラス転移温度(Tg)以上Tm未満であり、好ましくはTg〜Tg+100℃の範囲であり、より好ましくはTg+10〜Tg+80℃の範囲であり、特に好ましくはTg+20〜Tg+70℃の範囲である。例えば、生分解性樹脂がポリ乳酸樹脂である生分解性樹脂組成物の場合は、50〜90℃が好ましく、70〜80℃がより好ましい。   As a specific example of the step (2) in the method for producing a molded article of the present invention, it can be carried out by an ordinary method, for example, a method of heat-treating or injection of a biodegradable resin composition extruded by an extruder or the like. Examples thereof include a method in which a biodegradable resin composition is filled in a mold with a molding machine or the like and the biodegradable resin composition is heat-treated. From the viewpoint of improving the crystallization speed, the temperature in the step (2) is not less than the glass transition temperature (Tg) of the biodegradable resin composition and less than Tm, preferably in the range of Tg to Tg + 100 ° C., more preferably Tg + 10. It is the range of -Tg + 80 degreeC, Most preferably, it is the range of Tg + 20-Tg + 70 degreeC. For example, in the case of a biodegradable resin composition in which the biodegradable resin is a polylactic acid resin, 50 to 90 ° C is preferable, and 70 to 80 ° C is more preferable.

尚、生分解性樹脂の融点(Tm)は、JIS−K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より求められる値である。また、生分解性樹脂組成物のガラス転移温度(Tg)は、JIS−K7198に基づいた動的粘弾性測定における損失弾性率(E'')のピーク温度より求められる値である。   In addition, melting | fusing point (Tm) of biodegradable resin is a value calculated | required from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121. Moreover, the glass transition temperature (Tg) of a biodegradable resin composition is a value calculated | required from the peak temperature of the loss elastic modulus (E '') in the dynamic viscoelasticity measurement based on JIS-K7198.

本発明の生分解性樹脂成形体の熱変形温度は、生分解性樹脂、可塑剤、結晶核剤の種類や添加量などによって異なるので一概には決定することができないが、特にポリ乳酸樹脂の場合、本発明の効果を発現する観点から、70℃以上が好ましく、75℃以上がより好ましく、80℃以上が更に好ましい。尚、ここで本発明の生分解性樹脂成形体の熱変形温度は、実施例に記載された測定法により測定される値である。   The thermal deformation temperature of the biodegradable resin molded product of the present invention varies depending on the type and amount of biodegradable resin, plasticizer, and crystal nucleating agent and cannot be determined unconditionally. In this case, from the viewpoint of expressing the effect of the present invention, 70 ° C. or higher is preferable, 75 ° C. or higher is more preferable, and 80 ° C. or higher is still more preferable. In addition, the heat distortion temperature of the biodegradable resin molding of this invention is a value measured by the measuring method described in the Example here.

本発明の生分解性樹脂成形体の耐衝撃性は、生分解性樹脂、可塑剤、結晶核剤の種類や添加量などによって異なるので一概には決定することができないが、特にポリ乳酸樹脂の場合、本発明の効果を発現する観点から、60(J/m)以上が好ましく、70(J/m)以上がより好ましく、80(J/m)以上が更に好ましい。尚、ここで本発明の生分解性樹脂成形体の耐衝撃性は、実施例に記載された測定法により測定される値である。   The impact resistance of the biodegradable resin molded product of the present invention cannot be determined unconditionally because it varies depending on the type and amount of biodegradable resin, plasticizer, and crystal nucleating agent. In this case, from the viewpoint of manifesting the effects of the present invention, 60 (J / m) or more is preferable, 70 (J / m) or more is more preferable, and 80 (J / m) or more is more preferable. Here, the impact resistance of the biodegradable resin molded product of the present invention is a value measured by the measurement method described in the examples.

本発明の生分解性樹脂成形体の厚さ3mmにおける全透過率(%)は、ポリ乳酸樹脂の場合、30%以上が好ましく、40%以上がより好ましく、50%以上が更に好ましい。なお、ここで全透過率(%)は、JIS-K7105規定の積分球式光線透過率測定装置(ヘイズメーター)を用いて測定することができる。   In the case of a polylactic acid resin, the total transmittance (%) at a thickness of 3 mm of the biodegradable resin molded product of the present invention is preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. Here, the total transmittance (%) can be measured using an integrating sphere light transmittance measuring device (haze meter) defined in JIS-K7105.

本発明の生分解性樹脂成形体の結晶化度は、生分解性樹脂、可塑剤、結晶核剤の種類や添加量などによって異なるので一概には決定することができないが、特にポリ乳酸樹脂の場合、本発明の効果を発現する観点から、好ましくは30〜70%であり、より好ましくは40〜70%であり、特に好ましくは50〜65%である。尚、ここで本発明の生分解性樹脂成形体の結晶化度は、実施例に記載された測定法により測定される値である。   The degree of crystallinity of the biodegradable resin molded product of the present invention cannot be determined unconditionally because it varies depending on the type and amount of biodegradable resin, plasticizer, and crystal nucleating agent. In the case, from the viewpoint of expressing the effect of the present invention, it is preferably 30 to 70%, more preferably 40 to 70%, and particularly preferably 50 to 65%. In addition, the crystallinity degree of the biodegradable resin molding of this invention is a value measured by the measuring method described in the Example here.

実施例1〜6、比較例1〜6
生分解性樹脂組成物として表1に示す本発明品(A〜F)および比較品(a〜f)を、ニーダー((株)森山製作所製 DS3-20MWB-E)にて180℃、10分間溶融混練し、その後直ちに80℃の8インチロール(日本ロール製造(株)製)で約5mmの厚さに引き延ばし、縦×横=8cm×8cm程度の大きさに裁断した後、40℃以下で粉砕機(ダイコー精機(株)製 S-20)にて粉砕し、生分解性樹脂組成物の粉砕品を得た。
Examples 1-6, Comparative Examples 1-6
The present invention products (A to F) and comparative products (af) shown in Table 1 as biodegradable resin compositions are subjected to 180 ° C. for 10 minutes using a kneader (DS3-20MWB-E manufactured by Moriyama Seisakusho). It is melt-kneaded, and then immediately stretched to a thickness of about 5 mm with an 8-inch roll (manufactured by Nippon Roll Manufacturing Co., Ltd.) at 80 ° C. and cut into a size of about 8 cm × 8 cm in length × width = 8 ° C. The product was pulverized by a pulverizer (S-20 manufactured by Daiko Seiki Co., Ltd.) to obtain a pulverized product of the biodegradable resin composition.

得られた粉砕品は、70℃減圧下で1日乾燥し、水分量を500ppm以下とした。   The obtained pulverized product was dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.

Figure 2007154147
Figure 2007154147

*1:ポリ乳酸樹脂(三井化学(株)製、LACEA H−400)
*2:コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
*3:エチレンビス12−ヒドロキシステアリン酸アミド(日本化成(株)製、スリパックス H)
*4:日本タルク(株)製 、Micro Ace P-6
*5:ヘキサメチレンビス12−ヒドロキシステアリン酸アミド(日本化成(株)製、スリパックス ZHH)
*6:グリセリンのエチレンオキサイド6モル付加物の酢酸エステル
*7:林化成(株)製、マイカWG−325
*8:ジグリセリンテトラアセテート
*9:アセチルポリエチレングリコールモノメチルエーテル(三洋化成(株)製、ポリエチレングリコール骨格分子量400)
*10:花王(株)製、脂肪酸アマイドE
* 1: Polylactic acid resin (manufactured by Mitsui Chemicals, LACEA H-400)
* 2: Diester of succinic acid and triethylene glycol monomethyl ether * 3: Ethylene bis 12-hydroxystearic acid amide (Nippon Kasei Co., Ltd., SLIPAX H)
* 4: Nihon Talc Co., Ltd., Micro Ace P-6
* 5: Hexamethylene bis 12-hydroxystearic acid amide (Nippon Kasei Co., Ltd., SLIPAX ZHH)
* 6: Acetic ester of glycerin ethylene oxide 6 mol adduct * 7: Hayashi Kasei Co., Ltd., Mica WG-325
* 8: Diglycerin tetraacetate * 9: Acetyl polyethylene glycol monomethyl ether (manufactured by Sanyo Chemical Co., Ltd., polyethylene glycol skeleton molecular weight 400)
* 10: Fatty acid amide E, manufactured by Kao Corporation

次に、このようにして得られた粉砕品を、シリンダー温度を200℃とした射出成形機(日本製鋼所製 J75E-D)を用いて射出成形し、表2に示す金型温度および金型保持時間におけるテストピース〔平板(70mm×40mm×3mm)、角柱状試験片(125mm×12mm×6mm)および角柱状試験片(63mm×12mm×5mm)〕の金型離型性を下記の基準で評価した。また、射出100ショット後の金型汚染を下記の基準で評価した。さらに、得られた平板(70mm×40mm×3mm)の耐ブリード性および透明性を下記の方法で評価した。これらの結果を表2に示す。   Next, the pulverized product thus obtained was injection molded using an injection molding machine (Japan Steel Works J75E-D) with a cylinder temperature of 200 ° C., and the mold temperatures and molds shown in Table 2 were used. Mold releasability of test pieces [flat plate (70mm x 40mm x 3mm), prismatic specimen (125mm x 12mm x 6mm) and prismatic specimen (63mm x 12mm x 5mm)] during the holding time based on the following criteria evaluated. Further, mold contamination after 100 shots of injection was evaluated according to the following criteria. Furthermore, the bleed resistance and transparency of the obtained flat plate (70 mm × 40 mm × 3 mm) were evaluated by the following methods. These results are shown in Table 2.

<金型離型性の評価基準>
○:非常に離れ易い(テストピースの変形がなく、取り出しが容易。)
△:若干離れ難い(テストピースの変形が若干あり、取り出しが困難。)
×:離れない(テストピースの変形が大きく、ランナー部から離れない。)
尚、金型離型性は、金型内部およびランナー部分でテストピースの溶融結晶化速度が速いほど成形性が良好となる。
<Evaluation criteria for mold releasability>
○: Very easy to leave (the test piece is not deformed and can be taken out easily)
Δ: Slightly difficult to separate (test piece is slightly deformed and difficult to remove)
X: Not separated (the test piece is greatly deformed and does not leave the runner)
The mold releasability becomes better as the melt crystallization speed of the test piece increases in the mold and in the runner portion.

<金型汚染の評価基準>
射出100ショット後の金型汚染を目視により評価した。
○:汚染無し
△:若干汚染有り
×:非常に汚染有り
<耐ブリード性>
射出成形後の平板(70mm×40mm×3mm)について、50℃/80%Rhの高温高湿度下で3ヶ月放置し、その表面における可塑剤のブリードの有無を肉眼で観察した。
<Evaluation criteria for mold contamination>
Mold contamination after 100 shots of injection was visually evaluated.
○: No contamination △: Some contamination ×: Very contamination <Bleed resistance>
The injection-molded flat plate (70 mm × 40 mm × 3 mm) was left under high temperature and high humidity of 50 ° C./80% Rh for 3 months, and the presence or absence of plasticizer bleed on the surface was observed with the naked eye.

<透明性>
射出成形後の平板(70mm×40mm×3mm)について、JIS-K7105規定の積分球式光線透過率測定装置(ヘイズメーター)を用い、3mm厚の平板の全透過率(%)を測定した。数字の大きい方が透明性良好であることを示す。
<Transparency>
About the flat plate after injection molding (70 mm × 40 mm × 3 mm), the total transmittance (%) of the 3 mm thick flat plate was measured using an integrating sphere type light transmittance measuring device (haze meter) defined in JIS-K7105. Larger numbers indicate better transparency.

Figure 2007154147
Figure 2007154147

表2の結果から、特定の可塑剤および有機核剤とタルクまたはマイカを含有した本発明の生分解性樹脂組成物(A〜F)は、80℃の金型温度においても短い金型保持時間で成形が可能であり、その成形品は高温高湿下における耐ブリード性も良好であった。また、優れた成形性を満足するにもかかわらず、透明性の低下は少ないことが分かる。   From the results in Table 2, the biodegradable resin composition (A to F) of the present invention containing a specific plasticizer and organic nucleating agent and talc or mica has a short mold holding time even at a mold temperature of 80 ° C. The molded product was good in bleed resistance under high temperature and high humidity. Further, it is understood that the transparency is hardly lowered despite satisfying excellent moldability.

一方、無機核剤または特定の有機核剤を含有しない樹脂組成物(a〜cおよびe)や特定の可塑剤を含有しない樹脂組成物(dおよびf)は、80℃の金型温度では短い金型保持時間での成形が不可能であった。また、有機核剤のみを含有する樹脂組成物(aおよびb)は有機核剤の含有量が増加すると射出成形時に金型汚染し易く、従来の可塑剤を含有する樹脂組成物(dおよびf)の成形品は高温高湿下における耐ブリード性が不良であった。   On the other hand, resin compositions (a to c and e) not containing an inorganic nucleating agent or a specific organic nucleating agent and resin compositions not containing a specific plasticizer (d and f) are short at a mold temperature of 80 ° C. Molding with the mold holding time was impossible. In addition, the resin compositions (a and b) containing only the organic nucleating agent are likely to contaminate the mold during injection molding when the content of the organic nucleating agent is increased, and the resin compositions containing conventional plasticizers (d and f) ) Was poor in bleed resistance under high temperature and high humidity.

実施例7〜17、比較例7〜10
生分解性樹脂組成物として表3に示す本発明品(G〜Q)および比較品(g〜j)を、ニーダー((株)森山製作所製 DS3-20MWB-E)にて180℃、10分間溶融混練し、その後直ちに80℃の8インチロール(日本ロール製造(株)製)で約5mmの厚さに引き延ばし、縦×横=8cm×8cm程度の大きさに裁断した後、40℃以下で粉砕機(ダイコー精機(株)製 S-20)にて粉砕し、生分解性樹脂組成物の粉砕品を得た。
Examples 7-17, Comparative Examples 7-10
The present invention products (G to Q) and comparative products (g to j) shown in Table 3 as biodegradable resin compositions were subjected to 180 ° C. for 10 minutes using a kneader (DS3-20MWB-E manufactured by Moriyama Seisakusho Co., Ltd.). It is melt-kneaded, and then immediately stretched to a thickness of about 5 mm with an 8-inch roll (manufactured by Nippon Roll Manufacturing Co., Ltd.) at 80 ° C. and cut into a size of about 8 cm × 8 cm in length × width = 8 ° C. The product was pulverized by a pulverizer (S-20 manufactured by Daiko Seiki Co., Ltd.) to obtain a pulverized product of the biodegradable resin composition.

得られた粉砕品は、70℃減圧下で1日乾燥し、水分量を500ppm以下とした。   The obtained pulverized product was dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.

Figure 2007154147
Figure 2007154147

*11:日清紡積(株)製、カルボジライトLA−1
*12:ビス(ジイソプロピルフェニル)カルボジイミド
*13:水澤化学(株)製、ミズカシルP−526
*14:カプリル酸モノグリセライドジアセテート
* 11: Nisshinbo product, Carbodilite LA-1
* 12: Bis (diisopropylphenyl) carbodiimide * 13: Mizusawa Chemical Co., Ltd., Mizukacil P-526
* 14: Caprylic acid monoglyceride diacetate

次に、このようにして得られた粉砕品を、シリンダー温度を200℃とした射出成形機(日本製鋼所製 J75E-D)を用いて射出成形し、表4に示す金型温度および金型保持時間におけるテストピース〔平板(70mm×40mm×3mm)、角柱状試験片(125mm×12mm×6mm)および角柱状試験片(63mm×12mm×5mm)〕の金型離型性を実施例1と同様の基準で評価した。また、射出100ショット後の金型汚染を実施例1と同様の基準で評価した。さらに、得られた平板(70mm×40mm×3mm)の耐ブリード性および透明性を実施例1と同様の方法で評価した。これらの結果を表4に示す。   Next, the pulverized product thus obtained was injection molded using an injection molding machine (J75E-D manufactured by Nippon Steel Works) with a cylinder temperature of 200 ° C., and the mold temperatures and molds shown in Table 4 were used. The mold releasability of the test piece [flat plate (70 mm × 40 mm × 3 mm), prismatic test piece (125 mm × 12 mm × 6 mm) and prismatic test piece (63 mm × 12 mm × 5 mm)] during the holding time as in Example 1 Evaluation was made according to the same criteria. Further, mold contamination after 100 shots of injection was evaluated according to the same criteria as in Example 1. Furthermore, the bleed resistance and transparency of the obtained flat plate (70 mm × 40 mm × 3 mm) were evaluated in the same manner as in Example 1. These results are shown in Table 4.

Figure 2007154147
Figure 2007154147

表4の結果から、特定の可塑剤および有機核剤と、タルク、マイカまたはシリカを含有し、さらに、加水分解抑制剤を含有した本発明の生分解性樹脂組成物(G〜Q)は、80℃の金型温度においても短い金型保持時間で成形が可能であり、その成形品は高温高湿下における耐ブリード性も良好であった。また、生分解性樹脂組成物(GおよびK〜Q)は、優れた成形性を満足するにもかかわらず、透明性の低下は少ないことが分かる。   From the results of Table 4, the biodegradable resin composition (G to Q) of the present invention containing a specific plasticizer and an organic nucleating agent, talc, mica or silica, and further containing a hydrolysis inhibitor, Molding was possible with a short mold holding time even at a mold temperature of 80 ° C., and the molded product had good bleed resistance under high temperature and high humidity. In addition, it can be seen that the biodegradable resin compositions (G and K to Q) have little decrease in transparency despite satisfying excellent moldability.

一方、無機核剤または特定の有機核剤を含有しない樹脂組成物(gおよびh)や特定の可塑剤を含有しない樹脂組成物(iおよびj)は、80℃の金型温度では短い金型保持時間での成形が不可能であった。また、有機核剤のみを含有する樹脂組成物(g)はポリカルボジイミド化合物を含有すると射出成形時に金型汚染し易く、従来の可塑剤を含有する樹脂組成物(i)の成形品は高温高湿下における耐ブリード性が不良であった。   On the other hand, resin compositions (g and h) that do not contain an inorganic nucleating agent or a specific organic nucleating agent or resin compositions (i and j) that do not contain a specific plasticizer have a short mold at a mold temperature of 80 ° C. Molding with the holding time was impossible. In addition, when the resin composition (g) containing only the organic nucleating agent contains a polycarbodiimide compound, the resin composition (i) containing a conventional plasticizer is likely to be contaminated with a mold at the time of injection molding. Bleed resistance under humidity was poor.

実施例18〜28、比較例11〜14
生分解性樹脂組成物として前記表3に示す本発明品(G〜Q)および比較品(g〜j)を用い、実施例7〜17及び比較例7〜10と同様にして生分解性樹脂組成物の粉砕品を得た。
Examples 18-28, Comparative Examples 11-14
Using the products (G to Q) and comparative products (g to j) shown in Table 3 as biodegradable resin compositions, the biodegradable resins were used in the same manner as in Examples 7 to 17 and Comparative Examples 7 to 10. A pulverized product of the composition was obtained.

得られた粉砕品を、表5に示す金型離型性良好な金型温度および金型保持時間で射出成形機(日本製鋼所製 J75E-D)を用いて射出成形した。得られたテストピース〔平板(70mm×40mm×3mm)、角柱状試験片(125mm×12mm×6mm)および角柱状試験片(63mm×12mm×5mm)〕について、角柱状試験片(125mm×12mm×6mm)は熱変形温度を、角柱状試験片(63mm×12mm×5mm)は耐衝撃性を、また、平板(70mm×40mm×3mm)は結晶化度を、それぞれ下記の方法で評価した。これらの結果を表5に示す。   The obtained pulverized product was injection molded using an injection molding machine (J75E-D, manufactured by Nippon Steel Works) at a mold temperature and mold holding time with good mold releasability shown in Table 5. About the obtained test piece [flat plate (70 mm × 40 mm × 3 mm), prismatic test piece (125 mm × 12 mm × 6 mm) and prismatic test piece (63 mm × 12 mm × 5 mm)], a prismatic test piece (125 mm × 12 mm × 6 mm) was evaluated for heat distortion temperature, prismatic specimens (63 mm × 12 mm × 5 mm) were evaluated for impact resistance, and flat plates (70 mm × 40 mm × 3 mm) were evaluated for crystallinity by the following methods. These results are shown in Table 5.

<熱変形温度>
角柱状試験片(125mm×12mm×6mm)について、JIS-K7191に基づいて、熱変形温度測定機(東洋精機製作所製 B-32)を使用して、荷重0.45Mpaにおいて0.025mmたわむときの温度を測定した。
<Heat deformation temperature>
For a prismatic test piece (125 mm x 12 mm x 6 mm), the temperature at which the heat deflection temperature measuring machine (Toyo Seiki Seisakusho B-32) is deflected by 0.025 mm at a load of 0.45 MPa is based on JIS-K7191. It was measured.

<耐衝撃性>
角柱状試験片(63mm×12mm×5mm)について、JIS-K7110に基づいて、衝撃試験機(株式会社上島製作所製 863型)を使用して、Izod衝撃強度を測定した。
<Impact resistance>
The Izod impact strength of a prismatic test piece (63 mm × 12 mm × 5 mm) was measured using an impact tester (type 863 manufactured by Ueshima Seisakusho Co., Ltd.) based on JIS-K7110.

<結晶化度>
射出成形後の平板(70mm×40mm×3mm)について、テストピースを広角X線回折測定装置(理学電機製 RINT2500VPC,光源CuKα,管電圧40kV,管電流120mA)を使用し、2θ=5〜30°の範囲の非晶及び結晶のピーク面積を解析して結晶化度を求めた。
<Crystallinity>
Use a wide-angle X-ray diffraction measurement device (RINT2500VPC, light source CuKα, tube voltage 40kV, tube current 120mA, manufactured by Rigaku Corporation) for the flat plate after injection molding (70mm × 40mm × 3mm) 2θ = 5-30 ° The crystallinity was determined by analyzing the amorphous and crystalline peak areas in the range.

Figure 2007154147
Figure 2007154147

表5の結果から、特定の可塑剤および有機核剤と、タルク、マイカまたはシリカを含有し、さらに、加水分解抑制剤を含有した本発明の生分解性樹脂組成物(G〜Q)は、80℃の金型温度においても短い金型保持時間で成形が可能であり、その成形品は75℃以上の耐熱性と70J/m以上の耐衝撃性を示す優れたものであった。   From the results of Table 5, the biodegradable resin composition (G to Q) of the present invention containing a specific plasticizer and organic nucleating agent, talc, mica or silica, and further containing a hydrolysis inhibitor, Molding was possible with a short mold holding time even at a mold temperature of 80 ° C., and the molded product was excellent in exhibiting heat resistance of 75 ° C. or higher and impact resistance of 70 J / m or higher.

一方、無機核剤または特定の有機核剤を含有しない樹脂組成物(gおよびh)や特定の可塑剤を含有しない樹脂組成物(i)は、良好な成形品を得るために80℃の金型温度では長い金型保持時間を必要とし、可塑剤を含有しない樹脂組成物(j)では、良好な成形品を得るために110℃の金型温度でも長い金型保持時間を必要とした。また、得られた成形品は優れた耐熱性と耐衝撃性を両立することができなかった。   On the other hand, a resin composition (g and h) that does not contain an inorganic nucleating agent or a specific organic nucleating agent or a resin composition (i) that does not contain a specific plasticizer, The mold temperature requires a long mold holding time, and the resin composition (j) containing no plasticizer requires a long mold holding time even at a mold temperature of 110 ° C. in order to obtain a good molded product. Further, the obtained molded product could not achieve both excellent heat resistance and impact resistance.

以上の結果から、特定の可塑剤および有機核剤と無機核剤を含有した本発明の生分解性樹脂組成物は、低い金型温度で優れた成形性を示し、その成形品は高温高湿下における耐ブリード性も良好であり、優れた耐熱性と耐衝撃性を両立するものであることが分かる。
From the above results, the biodegradable resin composition of the present invention containing a specific plasticizer, an organic nucleating agent and an inorganic nucleating agent exhibits excellent moldability at a low mold temperature, and the molded product has a high temperature and high humidity. The bleed resistance below is also good, and it can be seen that both excellent heat resistance and impact resistance are achieved.

Claims (9)

生分解性樹脂、可塑剤、有機核剤及び無機核剤を含有する生分解性樹脂組成物であって、可塑剤が、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が3〜9の化合物であり、有機核剤が、分子中に水酸基とアミド基とを有する化合物である生分解性樹脂組成物。   Biodegradable resin composition containing a biodegradable resin, a plasticizer, an organic nucleating agent and an inorganic nucleating agent, wherein the plasticizer has two or more ester groups in the molecule, and an average addition of ethylene oxide A biodegradable resin composition, which is a compound having 3 to 9 moles and the organic nucleating agent is a compound having a hydroxyl group and an amide group in the molecule. 生分解性樹脂100重量部に対し、可塑剤の含有量が5〜30重量部、有機核剤の含有量が0.1〜2重量部、無機核剤の含有量が0.1〜2重量部である、請求項1記載の生分解性樹脂組成物。   The content of the plasticizer is 5 to 30 parts by weight, the content of the organic nucleating agent is 0.1 to 2 parts by weight, and the content of the inorganic nucleating agent is 0.1 to 2 parts by weight based on 100 parts by weight of the biodegradable resin. The biodegradable resin composition according to claim 1, which is a part. 可塑剤が、コハク酸またはアジピン酸とポリエチレングリコールモノメチルエーテルとのエステル、および酢酸とグリセリンまたはエチレングリコールのエチレンオキサイド付加物とのエステルからなる群より選ばれる少なくとも1種である請求項1又は2記載の生分解性樹脂組成物。   The plasticizer is at least one selected from the group consisting of an ester of succinic acid or adipic acid and polyethylene glycol monomethyl ether, and an ester of acetic acid and glycerin or an ethylene oxide adduct of ethylene glycol. Biodegradable resin composition. 有機核剤が、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミドおよびヘキサメチレンビス12−ヒドロキシステアリン酸アミドから選ばれる少なくとも1種である請求項1〜3いずれか記載の生分解性樹脂組成物。   The biodegradation according to any one of claims 1 to 3, wherein the organic nucleating agent is at least one selected from methylene bis 12-hydroxystearic acid amide, ethylene bis 12-hydroxystearic acid amide, and hexamethylene bis 12-hydroxystearic acid amide. Resin composition. 無機核剤が、タルクである請求項1〜4いずれか記載の生分解性樹脂組成物。   The biodegradable resin composition according to any one of claims 1 to 4, wherein the inorganic nucleating agent is talc. 生分解性樹脂が、ポリ乳酸樹脂である請求項1〜5いずれか記載の生分解性樹脂組成物。   The biodegradable resin composition according to any one of claims 1 to 5, wherein the biodegradable resin is a polylactic acid resin. 請求項1〜6いずれか記載の生分解性樹脂組成物を、生分解性樹脂の融点(Tm)以上で混合する工程(1)と、生分解性樹脂組成物のガラス転移温度(Tg)以上Tm未満の温度で熱処理する工程(2)とを有する生分解性樹脂成形体の製造方法。   A step (1) of mixing the biodegradable resin composition according to any one of claims 1 to 6 at a melting point (Tm) or higher of the biodegradable resin, and a glass transition temperature (Tg) or higher of the biodegradable resin composition A method for producing a biodegradable resin molded body, comprising a step (2) of heat-treating at a temperature lower than Tm. 工程(2)を金型内で行う請求項7記載の生分解性樹脂成形体の製造方法。   The manufacturing method of the biodegradable resin molding of Claim 7 which performs a process (2) in a metal mold | die. 工程(2)の温度が50〜90℃である請求項7又は8記載の生分解性樹脂成形体の製造方法。
The method for producing a biodegradable resin molded article according to claim 7 or 8, wherein the temperature in step (2) is 50 to 90 ° C.
JP2006014245A 2005-07-05 2006-01-23 Biodegradable resin composition Active JP4611214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014245A JP4611214B2 (en) 2005-07-05 2006-01-23 Biodegradable resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005195851 2005-07-05
JP2005326408 2005-11-10
JP2006014245A JP4611214B2 (en) 2005-07-05 2006-01-23 Biodegradable resin composition

Publications (2)

Publication Number Publication Date
JP2007154147A true JP2007154147A (en) 2007-06-21
JP4611214B2 JP4611214B2 (en) 2011-01-12

Family

ID=38238913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014245A Active JP4611214B2 (en) 2005-07-05 2006-01-23 Biodegradable resin composition

Country Status (1)

Country Link
JP (1) JP4611214B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062410A (en) * 2007-09-04 2009-03-26 Sekisui Seikei Ltd Manufacturing method of polylactic acid resin sheet and manufacturing device used for it
JP2009074082A (en) * 2007-08-31 2009-04-09 Unitika Ltd Environment-conscious thermoplastic resin composition
JP2009074081A (en) * 2007-08-31 2009-04-09 Unitika Ltd Flame-retardant environment-conscious thermoplastic resin composition
JP2009286813A (en) * 2008-05-27 2009-12-10 Kao Corp Production method of polylactic acid resin injection molded article
JP2010270289A (en) * 2008-07-22 2010-12-02 Kao Corp Biodegradable resin composition
JP2010270290A (en) * 2008-08-08 2010-12-02 Kao Corp Biodegradable resin composition
JP2011032417A (en) * 2009-08-05 2011-02-17 Unitika Ltd Resin composition, method for producing the resin composition, and molding obtained from the resin composition
JP2013018995A (en) * 2012-10-22 2013-01-31 Toray Ind Inc Molded article and manufacturing method therefor
JP2013122025A (en) * 2011-12-12 2013-06-20 Dai Ichi Kogyo Seiyaku Co Ltd Polylactic acid resin composition and resin molded article thereof
CN105440266A (en) * 2014-08-06 2016-03-30 中国石油化工股份有限公司 High-crystallization rate PBT resin and preparation method thereof
CN115926384A (en) * 2021-10-04 2023-04-07 长春工业大学 PBS (poly butylenes succinate)/EBHS (ethylene-bis-phenol-formaldehyde) composite material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135808A (en) * 1997-07-17 1999-02-09 Shimadzu Corp Lactic acid-based polymer composition and molding product therefrom
JPH11181262A (en) * 1997-12-25 1999-07-06 Shimadzu Corp Lactic acid-based polymer composition and its molded product
JP2000086877A (en) * 1998-09-08 2000-03-28 Shimadzu Corp Plasticized polylactic acid composition
JP2002146170A (en) * 2000-11-17 2002-05-22 Unitika Ltd Crystalline polylactic acid resin composition and film and sheet using the same
JP2003286396A (en) * 2002-01-24 2003-10-10 Toray Ind Inc Aliphatic polyester resin composition and molded article made therefrom
JP2004345150A (en) * 2003-05-21 2004-12-09 Kanebo Ltd Method for manufacturing heat-set molded product
JP2005023091A (en) * 2002-05-14 2005-01-27 Daihachi Chemical Industry Co Ltd Biodegradable resin composition
JP2005133039A (en) * 2003-10-31 2005-05-26 Toray Ind Inc Molded article of aliphatic polyester resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135808A (en) * 1997-07-17 1999-02-09 Shimadzu Corp Lactic acid-based polymer composition and molding product therefrom
JPH11181262A (en) * 1997-12-25 1999-07-06 Shimadzu Corp Lactic acid-based polymer composition and its molded product
JP2000086877A (en) * 1998-09-08 2000-03-28 Shimadzu Corp Plasticized polylactic acid composition
JP2002146170A (en) * 2000-11-17 2002-05-22 Unitika Ltd Crystalline polylactic acid resin composition and film and sheet using the same
JP2003286396A (en) * 2002-01-24 2003-10-10 Toray Ind Inc Aliphatic polyester resin composition and molded article made therefrom
JP2005023091A (en) * 2002-05-14 2005-01-27 Daihachi Chemical Industry Co Ltd Biodegradable resin composition
JP2004345150A (en) * 2003-05-21 2004-12-09 Kanebo Ltd Method for manufacturing heat-set molded product
JP2005133039A (en) * 2003-10-31 2005-05-26 Toray Ind Inc Molded article of aliphatic polyester resin composition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074082A (en) * 2007-08-31 2009-04-09 Unitika Ltd Environment-conscious thermoplastic resin composition
JP2009074081A (en) * 2007-08-31 2009-04-09 Unitika Ltd Flame-retardant environment-conscious thermoplastic resin composition
JP2009062410A (en) * 2007-09-04 2009-03-26 Sekisui Seikei Ltd Manufacturing method of polylactic acid resin sheet and manufacturing device used for it
JP2009286813A (en) * 2008-05-27 2009-12-10 Kao Corp Production method of polylactic acid resin injection molded article
JP2011006712A (en) * 2008-07-22 2011-01-13 Kao Corp Biodegradable resin composition
JP4612098B2 (en) * 2008-07-22 2011-01-12 花王株式会社 Biodegradable resin composition
JP2010270289A (en) * 2008-07-22 2010-12-02 Kao Corp Biodegradable resin composition
JP2010270290A (en) * 2008-08-08 2010-12-02 Kao Corp Biodegradable resin composition
JP4612730B2 (en) * 2008-08-08 2011-01-12 花王株式会社 Biodegradable resin composition
JP2011046954A (en) * 2008-08-08 2011-03-10 Kao Corp Biodegradable resin composition
US8716373B2 (en) 2008-08-08 2014-05-06 Kao Corporation Biodegradable resin composition
JP2011032417A (en) * 2009-08-05 2011-02-17 Unitika Ltd Resin composition, method for producing the resin composition, and molding obtained from the resin composition
JP2013122025A (en) * 2011-12-12 2013-06-20 Dai Ichi Kogyo Seiyaku Co Ltd Polylactic acid resin composition and resin molded article thereof
JP2013018995A (en) * 2012-10-22 2013-01-31 Toray Ind Inc Molded article and manufacturing method therefor
CN105440266A (en) * 2014-08-06 2016-03-30 中国石油化工股份有限公司 High-crystallization rate PBT resin and preparation method thereof
CN115926384A (en) * 2021-10-04 2023-04-07 长春工业大学 PBS (poly butylenes succinate)/EBHS (ethylene-bis-phenol-formaldehyde) composite material and preparation method thereof

Also Published As

Publication number Publication date
JP4611214B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4611214B2 (en) Biodegradable resin composition
JP4130695B2 (en) Biodegradable resin composition
JP4112568B2 (en) Biodegradable resin composition
JP4871892B2 (en) Biodegradable resin composition
US7652085B2 (en) Biodegradable resin composition
EP2067822B1 (en) Biodegradable resin composition
JP4871891B2 (en) Biodegradable resin composition
JP4260794B2 (en) Manufacturing method of biodegradable resin molded products
US10544301B2 (en) Biodegradable polyester resin composition and molded article formed from said resin composition
JP5143374B2 (en) Biodegradable resin composition
JP2013100553A (en) Polylactic acid-containing resin composition and molded body obtained from the same
JP4116015B2 (en) Plasticizer for biodegradable resin
JP2006249152A (en) Biodegradable resin composition, molded product and method for producing the same
JP2007131690A (en) Biodegradable resin composition
JP4252570B2 (en) Pellet manufacturing method
JP2004143203A (en) Injection molded product
JP2008247956A (en) Polyester composition
JP4870037B2 (en) Biodegradable resin composition
JP5225550B2 (en) Polylactic acid resin composition
JP5999686B2 (en) Heat-resistant polylactic acid-based molded body and method for producing the same
JP5305338B2 (en) Pellet manufacturing method
JP4800348B2 (en) Manufacturing method of biodegradable resin molded products.
JP2006111744A (en) Resin composition
JP4724737B2 (en) Injection molded body
WO2020066679A1 (en) Resin composition and molded body thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4611214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250