JP5225550B2 - Polylactic acid resin composition - Google Patents
Polylactic acid resin composition Download PDFInfo
- Publication number
- JP5225550B2 JP5225550B2 JP2006091444A JP2006091444A JP5225550B2 JP 5225550 B2 JP5225550 B2 JP 5225550B2 JP 2006091444 A JP2006091444 A JP 2006091444A JP 2006091444 A JP2006091444 A JP 2006091444A JP 5225550 B2 JP5225550 B2 JP 5225550B2
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- acid resin
- nucleating agent
- resin composition
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Description
本発明は、ポリ乳酸樹脂組成物、及び該ポリ乳酸樹脂組成物を用いたポリ乳酸樹脂成形体の製造方法に関する。 The present invention relates to a polylactic acid resin composition and a method for producing a polylactic acid resin molded article using the polylactic acid resin composition.
生分解性樹脂の中でポリ乳酸樹脂は、トウモロコシ、芋などからとれる糖分から、発酵法によりL−乳酸が大量に作られ安価になってきたこと、原料が自然農作物なので総酸化炭素排出量が極めて少ない、また得られた樹脂の性能として剛性が強く透明性が良いという特徴があるので、現在その利用が期待されている。しかしポリ乳酸樹脂の場合、脆く、硬く、可撓性に欠ける特性のためにいずれも硬質成形品分野に限られ、フィルムなどに成形した場合は、柔軟性が不足したり、折り曲げたとき白化などの問題があり、軟質又は半硬質分野に使用されていないのが現状である。また、ポリ乳酸樹脂は結晶化速度が遅く、延伸などの機械的工程を行わない限り成形後は非晶状態である。しかし、ポリ乳酸樹脂のガラス転移温度(Tg)は60℃と低く耐熱性に劣るため、温度が55℃以上となる環境下では使用できない問題があった。 Among the biodegradable resins, polylactic acid resins are made from saccharides from corn, straw, etc., and a large amount of L-lactic acid is produced by fermentation. The use of the obtained resin is expected because it is extremely rare and has the characteristics that the obtained resin has high rigidity and good transparency. However, in the case of polylactic acid resin, it is brittle, hard, and lacks flexibility, all of which are limited to the field of hard molded products. When molded into a film, the flexibility is insufficient, or whitening occurs when bent. The present situation is that it is not used in the soft or semi-rigid field. In addition, the polylactic acid resin has a slow crystallization rate and is in an amorphous state after molding unless a mechanical process such as stretching is performed. However, since the glass transition temperature (Tg) of polylactic acid resin is as low as 60 ° C. and poor in heat resistance, there is a problem that it cannot be used in an environment where the temperature is 55 ° C. or higher.
ポリ乳酸樹脂を軟質、半硬質分野に応用する技術として、可塑剤を添加する方法や、あるいは耐熱性を向上させるため結晶核剤を添加して結晶化させる方法が種々提案されている(例えば特許文献1)が、更なる成形性、耐熱性、耐衝撃性、柔軟性が良好なポリ乳酸樹脂組成物の開発が求められている。
本発明の課題は、成形性、耐熱性、耐衝撃性、柔軟性が良好なポリ乳酸樹脂組成物を提供することにある。 An object of the present invention is to provide a polylactic acid resin composition having good moldability, heat resistance, impact resistance, and flexibility.
本発明は、ポリ乳酸樹脂と、可塑剤と、ヒドロキシ脂肪酸エステルである有機核剤と、無機核剤とを含むポリ乳酸樹脂組成物を提供する。 The present invention provides a polylactic acid resin composition comprising a polylactic acid resin, a plasticizer, an organic nucleating agent that is a hydroxy fatty acid ester, and an inorganic nucleating agent.
また、本発明は、上記ポリ乳酸樹脂組成物を、ポリ乳酸樹脂の融点(Tm)以上で混合する工程(1)と、ポリ乳酸樹脂組成物のガラス転移温度(Tg)以上Tm未満の温度で熱処理する工程(2)とを有するポリ乳酸樹脂成形体の製造方法を提供する。 The present invention also includes a step (1) of mixing the polylactic acid resin composition at a melting point (Tm) or higher of the polylactic acid resin, and a glass transition temperature (Tg) or higher and lower than Tm of the polylactic acid resin composition. There is provided a method for producing a polylactic acid resin molded body having a heat treatment step (2).
本発明のポリ乳酸樹脂組成物は、成形性が良好で、耐熱性、耐衝撃性及び柔軟性に優れている。また、本発明の製造方法によると、成形性が良好で、優れた耐熱性、耐衝撃性及び柔軟性を有するポリ乳酸樹脂成形体を得ることができる。 The polylactic acid resin composition of the present invention has good moldability and is excellent in heat resistance, impact resistance and flexibility. Further, according to the production method of the present invention, a polylactic acid resin molded article having good moldability and excellent heat resistance, impact resistance and flexibility can be obtained.
[ポリ乳酸樹脂]
本発明に用いられるポリ乳酸樹脂としては、ポリ乳酸、又は乳酸とヒドロキシカルボン酸とのコポリマーが挙げられる。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられ、グリコール酸、ヒドロキシカプロン酸が好ましい。
[Polylactic acid resin]
Examples of the polylactic acid resin used in the present invention include polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid and the like, and glycolic acid and hydroxycaproic acid are preferable.
好ましいポリ乳酸の分子構造は、L−乳酸又はD−乳酸いずれかの単位20〜100モル%とそれぞれの対掌体の乳酸単位0〜20モル%からなるものである。また、好ましい乳酸とヒドロキシカルボン酸とのコポリマーは、L−乳酸又はD−乳酸いずれかの単位85〜100モル%とヒドロキシカルボン酸単位0〜15モル%からなるものである。 A preferred molecular structure of polylactic acid is composed of 20 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 20 mol% of each enantiomer. A preferred copolymer of lactic acid and hydroxycarboxylic acid is composed of 85 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 15 mol% of hydroxycarboxylic acid units.
これらのポリ乳酸樹脂は、L−乳酸、D−乳酸及びヒドロキシカルボン酸の中から必要とする構造のものを選んで原料とし、脱水重縮合することにより得ることができる。好ましくは、乳酸の環状二量体であるラクチド、グリコール酸の環状二量体であるグリコリド及びカプロラクトン等から必要とする構造のものを選んで開環重合することにより得ることができる。ラクチドにはL−乳酸の環状二量体であるL−ラクチド、D−乳酸の環状二量体であるD−ラクチド、D−乳酸とL−乳酸とが環状二量化したメソ−ラクチド及びD−ラクチドとL−ラクチドとのラセミ混合物であるDL−ラクチドがある。本発明ではいずれのラクチドも用いることができる。但し、主原料は、D−ラクチド又はL−ラクチドが好ましい。 These polylactic acid resins can be obtained by dehydrating polycondensation using L-lactic acid, D-lactic acid and hydroxycarboxylic acid as a raw material by selecting those having the required structure. Preferably, it can be obtained by ring-opening polymerization by selecting a desired structure from lactide, which is a cyclic dimer of lactic acid, glycolide, which is a cyclic dimer of glycolic acid, and caprolactone. Lactide includes L-lactide which is a cyclic dimer of L-lactic acid, D-lactide which is a cyclic dimer of D-lactic acid, meso-lactide obtained by cyclic dimerization of D-lactic acid and L-lactic acid, and D-lactide. There is DL-lactide, which is a racemic mixture of lactide and L-lactide. Any lactide can be used in the present invention. However, the main raw material is preferably D-lactide or L-lactide.
市販されているポリ乳酸樹脂としては、例えば、三井化学(株)製、商品名レイシア;ネイチャーワークス社製、商品名Nature works;トヨタ自動車(株)製、U’s等が挙げられる。
これらのポリ乳酸樹脂の中でも結晶化速度、物性の観点からL−乳酸高純度品である結晶グレードのもの、特に三井化学(株)製、LACEA H−400、LACEA H−100、LACEA H−440が好ましく、L−乳酸純度95%以上のポリ乳酸樹脂、特に三井化学(株)製、LACEA H−400、LACEA H−100がさらに好ましい。
Examples of the commercially available polylactic acid resin include Mitsui Chemicals, Inc., trade name Lacia; Nature Works, trade name Nature works; Toyota Motor Corporation, U's, and the like.
Among these polylactic acid resins, from the viewpoint of crystallization speed and physical properties, L-lactic acid is a high-purity product, particularly a grade of L-lactic acid, particularly LACEA H-400, LACEA H-100, LACEA H-440, manufactured by Mitsui Chemicals. A polylactic acid resin having an L-lactic acid purity of 95% or more, particularly, LACEA H-400, LACEA H-100, manufactured by Mitsui Chemicals, Inc. is more preferable.
[可塑剤]
本発明に用いられる可塑剤としては、グリセリンジアセトモノラウレート、ジグリセリンテトラアセテート、アセチルクエン酸トリブチル等や、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が3〜9の化合物などが挙げられるが、ポリ乳酸樹脂成形体の成形性、耐衝撃性に優れる観点から、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が3〜9の化合物が好ましい。尚、エチレンオキサイドの平均付加モル数は、1H−NMR法によって測定することができる。
[Plasticizer]
Examples of the plasticizer used in the present invention include glycerin diacetomonolaurate, diglycerin tetraacetate, tributyl acetylcitrate, etc., and having two or more ester groups in the molecule, and an average added mole number of ethylene oxide of 3 From the viewpoint of excellent moldability and impact resistance of the polylactic acid resin molded product, the compound has two or more ester groups in the molecule, and the average added mole number of ethylene oxide is 3 to 9. Nine compounds are preferred. The average added mole number of ethylene oxide can be measured by 1 H-NMR method.
本発明に用いられる可塑剤の平均分子量は耐ブリード性及び耐揮発性の観点から、好ましくは250〜700であり、より好ましくは300〜600であり、更に好ましくは350〜550であり、特に好ましくは400〜500である。尚、平均分子量は、JIS K0070に記載の方法で鹸化価を求め、次式より計算で求めることができる。
平均分子量=56108×(エステル基の数)/鹸化価
The average molecular weight of the plasticizer used in the present invention is preferably from 250 to 700, more preferably from 300 to 600, still more preferably from 350 to 550, particularly preferably from the viewpoint of bleed resistance and volatile resistance. Is 400-500. The average molecular weight can be obtained by calculating the saponification value by the method described in JIS K0070 and calculating from the following formula.
Average molecular weight = 56108 × (number of ester groups) / saponification value
本発明に用いられる分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が3〜9の化合物としては、ポリ乳酸樹脂成形体の成形性、耐衝撃性に優れる観点から、酢酸とグリセリンのエチレンオキサイド平均3〜9モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜9のポリエチレングリコールとのエステル等の多価アルコールのアルキルエーテルエステル、コハク酸とエチレンオキサイドの平均付加モル数が2〜4のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル等の多価カルボン酸とポリエチレングリコールモノメチルエーテルとのエステル等が挙げられ、ポリ乳酸樹脂成形体の成形性、耐衝撃性及び可塑剤の耐ブリード性に優れる観点から、コハク酸、アジピン酸又は1,3,6−ヘキサントリカルボン酸とポリエチレングリコールモノメチルエーテルとのエステル、及び酢酸とグリセリン又はエチレングリコールのエチレンオキサイド付加物とのエステルからなる群より選ばれる少なくとも1種が好ましく、酢酸とグリセリンのエチレンオキサイド平均3〜6モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜6のポリエチレングリコールとのエステル、コハク酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とジエチレングリコールモノメチルエーテルとのエステルがさらに好ましい。ポリ乳酸樹脂成形体の成形性、耐衝撃性及び可塑剤の耐ブリード性、耐揮発性及び耐刺激臭の観点から、コハク酸とトリエチレングリコールモノメチルエーテルとのエステルが特に好ましい。 As a compound having two or more ester groups in the molecule used in the present invention and having an average addition mole number of ethylene oxide of 3 to 9, from the viewpoint of excellent moldability and impact resistance of a polylactic acid resin molded product An alkyl ether ester of a polyhydric alcohol such as an ester of acetic acid and glycerin with an average of 3 to 9 moles of ethylene oxide adduct, an ester of acetic acid with ethylene glycol having an average number of moles of addition of 4 to 9; An ester of ethylene oxide with polyethylene glycol monomethyl ether having an average addition mole number of 2 to 4, an ester of adipic acid and polyethylene glycol monomethyl ether with an average addition mole number of ethylene oxide of 2 to 3, 1,3,6-hexane The average added mole number of tricarboxylic acid and ethylene oxide is 2-3 Examples include esters of polyethylene glycol monomethyl ether and polyvalent carboxylic acids such as esters with reethylene glycol monomethyl ether, from the viewpoint of excellent moldability of polylactic acid resin molded article, impact resistance and bleed resistance of plasticizers, Preferred is at least one selected from the group consisting of succinic acid, adipic acid or ester of 1,3,6-hexanetricarboxylic acid and polyethylene glycol monomethyl ether, and acetic acid and ester of glycerin or ethylene glycol with an ethylene oxide adduct. An ester of acetic acid and glycerin with an average of 3 to 6 moles of ethylene oxide adduct, an ester of acetic acid and ethylene oxide with an average addition mole number of polyethylene glycol of 4 to 6, and an average addition mole number of succinic acid and ethylene oxide of 2 ~ 3 Esters of polyethylene glycol monomethyl ether, ester of adipic acid and diethylene glycol monomethyl ether, esters of 1,3,6-hexane tricarboxylic acid and diethylene glycol monomethyl ether further preferred. From the viewpoints of moldability of the polylactic acid resin molded article, impact resistance, bleed resistance of plasticizers, volatilization resistance and irritating odor, an ester of succinic acid and triethylene glycol monomethyl ether is particularly preferable.
尚、上記のエステルは、可塑剤としての機能を十分発揮させる観点から、全てエステル化された飽和エステルであることが好ましい。 In addition, it is preferable that said ester is all the esterified saturated ester from a viewpoint of fully exhibiting the function as a plasticizer.
[結晶核剤]
本発明は、結晶核剤として、有機核剤と無機核剤とを用いる。
本発明に用いられる有機核剤は、ポリ乳酸樹脂成形体の成形性、耐熱性、耐衝撃性及び有機核剤の耐ブルーム性の観点から、ヒドロキシ脂肪酸エステルである。有機核剤の融点は熱処理温度より高く、樹脂組成物の混練温度以下であると、混練時に有機核剤が溶解することによってその分散性が向上し、熱処理温度より高いと結晶核生成の安定化や熱処理温度が上げられるため、結晶化速度向上の観点でも好ましい。具体的には有機核剤の融点は、65℃以上が好ましく、70℃〜200℃がより好ましい。尚、有機核剤の融点は、JIS−K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より求められる。
[Crystal nucleating agent]
In the present invention, an organic nucleating agent and an inorganic nucleating agent are used as the crystal nucleating agent.
The organic nucleating agent used in the present invention is a hydroxy fatty acid ester from the viewpoint of moldability, heat resistance, impact resistance and bloom resistance of the organic nucleating agent. When the melting point of the organic nucleating agent is higher than the heat treatment temperature and below the kneading temperature of the resin composition, the dispersibility is improved by dissolving the organic nucleating agent at the time of kneading. And the heat treatment temperature is increased, which is preferable from the viewpoint of improving the crystallization speed. Specifically, the melting point of the organic nucleating agent is preferably 65 ° C or higher, and more preferably 70 ° C to 200 ° C. The melting point of the organic nucleating agent is obtained from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121.
ヒドロキシ脂肪酸エステルから選ばれる有機核剤によって、本発明の効果が向上する理由は定かではないが、水酸基、エステル基を有すると、ポリ乳酸樹脂との相互作用が良好となり、相溶性が向上する結果、樹脂中で微分散することによるものと考えられ、恐らく、水酸基を1つ以上、好ましくは2つ以上有することによりポリ乳酸樹脂への分散性が良好となり、エステル基を1つ以上、好ましくは2つ以上有することによりポリ乳酸樹脂への相溶性が良好となるものと考えられる。また、ヒドロキシ脂肪酸エステルから選ばれる有機核剤は、樹脂溶融状態から冷却過程で速やかに微細な結晶を多数析出するものと考えられ、結晶化速度向上の観点でも好ましい。 The reason why the effect of the present invention is improved by an organic nucleating agent selected from hydroxy fatty acid esters is not clear, but if it has a hydroxyl group or an ester group, the interaction with the polylactic acid resin is improved and the compatibility is improved. It is thought that this is due to fine dispersion in the resin. Perhaps by having one or more, preferably two or more hydroxyl groups, the dispersibility in the polylactic acid resin is good, and one or more ester groups, preferably By having two or more, it is considered that the compatibility with the polylactic acid resin is improved. In addition, an organic nucleating agent selected from hydroxy fatty acid esters is considered to precipitate a large number of fine crystals quickly in the cooling process from the resin molten state, and is also preferable from the viewpoint of improving the crystallization speed.
本発明の有機核剤の具体例としては、12−ヒドロキシステアリン酸トリグリセライド、12−ヒドロキシステアリン酸ジグリセライド、12−ヒドロキシステアリン酸モノグリセライド、ペンタエリスリトール−モノ−12−ヒドロキシステアレート、ペンタエリスリトール−ジ−12−ヒドロキシステアレート、ペンタエリスリトール−トリ−12−ヒドロキシステアレート等のヒドロキシ脂肪酸エステルが挙げられる。ポリ乳酸樹脂成形体の成形性、耐熱性、耐衝撃性及び有機核剤の耐ブルーム性の観点から、12−ヒドロキシステアリン酸トリグリセライドが好ましい。 Specific examples of the organic nucleating agent of the present invention include 12-hydroxystearic acid triglyceride, 12-hydroxystearic acid diglyceride, 12-hydroxystearic acid monoglyceride, pentaerythritol mono-12-hydroxystearate, pentaerythritol di-12. -Hydroxy fatty acid esters such as hydroxy stearate and pentaerythritol-tri-12-hydroxy stearate. From the viewpoints of moldability, heat resistance, impact resistance of the polylactic acid resin molded article, and bloom resistance of the organic nucleating agent, 12-hydroxystearic acid triglyceride is preferable.
本発明に用いられる無機核剤としては、タルク、スメクタイト、カオリン、マイカ、モンモリロナイト等のケイ酸塩、シリカ、酸化マグネシウム等の無機化合物が挙げられる。無機核剤の平均粒径は、良好な分散性を得る観点から、0.1〜20μmが好ましく、0.1〜10μmがより好ましい。無機核剤の中でも、ポリ乳酸樹脂成形体の成形性及び耐熱性の観点からケイ酸塩が好ましく、タルク又はマイカがより好ましく、タルクが特に好ましい。また、ポリ乳酸樹脂成形体の成形性及び透明性の観点からは、シリカが好ましい。
尚、無機核剤の平均粒径は、回折・散乱法によって体積基準のメジアン系を測定することにより求めることができる。例えば市販の装置としてはコールター社製レーザー回折・光散乱法粒度測定装置LS230等が挙げられる。
Examples of the inorganic nucleating agent used in the present invention include silicates such as talc, smectite, kaolin, mica, and montmorillonite, and inorganic compounds such as silica and magnesium oxide. The average particle size of the inorganic nucleating agent is preferably from 0.1 to 20 μm, more preferably from 0.1 to 10 μm, from the viewpoint of obtaining good dispersibility. Among the inorganic nucleating agents, silicates are preferable, talc or mica is more preferable, and talc is particularly preferable from the viewpoint of moldability and heat resistance of the polylactic acid resin molded body. Silica is preferable from the viewpoint of moldability and transparency of the polylactic acid resin molded body.
The average particle size of the inorganic nucleating agent can be determined by measuring a volume-based median system by a diffraction / scattering method. For example, as a commercially available apparatus, a laser diffraction / light scattering particle size measuring apparatus LS230 manufactured by Coulter, Inc. can be mentioned.
本発明では、ヒドロキシ脂肪酸エステルから選ばれる有機核剤と無機核剤とを併用することにより、ポリ乳酸樹脂成形体の成形性、耐熱性及び耐衝撃性が良好となり、有機核剤の耐ブルーム性も良好となる。本発明の効果が向上する理由は定かではないが、無機核剤を単独で使用すると分散性が悪くなるところ、ヒドロキシ脂肪酸エステルから選ばれる有機核剤を併用することにより、樹脂中における無機核剤の分散性が向上することによって、ポリ乳酸樹脂が結晶化する起点が増加して微結晶化するものと考えられる。その結果、結晶化速度が向上するため、短い金型保持時間でポリ乳酸樹脂の結晶化が進んで 良好な成形性を示し、また、その成形体は結晶が緻密であるため、耐熱性及び耐衝撃性が良好となるものと考えられる。また、無機核剤の親水面とヒドロキシ脂肪酸エステルの極性基が相互作用することによって、ヒドロキシ脂肪酸エステルから選ばれる有機核剤が樹脂表面に析出(ブルーム)することを抑制しているため、金型汚染の防止にも有効であると考えられる。 In the present invention, by using an organic nucleating agent selected from hydroxy fatty acid esters and an inorganic nucleating agent in combination, the moldability, heat resistance and impact resistance of the polylactic acid resin molded article are improved, and the bloom resistance of the organic nucleating agent is improved. Will also be good. The reason why the effect of the present invention is improved is not clear, but when an inorganic nucleating agent is used alone, dispersibility deteriorates. By using an organic nucleating agent selected from hydroxy fatty acid esters in combination, an inorganic nucleating agent in the resin is used. By improving the dispersibility of the polylactic acid resin, it is considered that the starting point for crystallization of the polylactic acid resin increases and microcrystallization occurs. As a result, since the crystallization speed is improved, crystallization of the polylactic acid resin progresses with a short mold holding time and shows good moldability, and since the molded body is dense, the heat resistance and resistance It is considered that the impact property is improved. In addition, since the hydrophilic surface of the inorganic nucleating agent and the polar group of the hydroxy fatty acid ester interact, the organic nucleating agent selected from the hydroxy fatty acid ester is prevented from precipitating (blooming) on the resin surface. It is thought to be effective in preventing contamination.
[ポリ乳酸樹脂組成物]
本発明のポリ乳酸樹脂組成物は、ポリ乳酸樹脂、可塑剤、ヒドロキシ脂肪酸エステルである有機核剤及び無機核剤を含有するものである。本発明のポリ乳酸樹脂組成物における可塑剤、有機核剤及び無機核剤の特に好ましい組合せとしては、本発明の効果を発現する観点から、可塑剤がコハク酸とトリエチレングリコールモノメチルエーテルとのエステル、有機核剤が12−ヒドロキシステアリン酸トリグリセライド、無機核剤がタルクである。
[Polylactic acid resin composition]
The polylactic acid resin composition of the present invention contains a polylactic acid resin, a plasticizer, an organic nucleating agent that is a hydroxy fatty acid ester, and an inorganic nucleating agent. As a particularly preferred combination of a plasticizer, an organic nucleating agent and an inorganic nucleating agent in the polylactic acid resin composition of the present invention, the plasticizer is an ester of succinic acid and triethylene glycol monomethyl ether from the viewpoint of expressing the effects of the present invention. The organic nucleating agent is 12-hydroxystearic acid triglyceride, and the inorganic nucleating agent is talc.
本発明のポリ乳酸樹脂組成物中の、ポリ乳酸樹脂の含有量は、本発明の目的を達成する観点から、好ましくは50重量%以上であり、より好ましくは70重量%以上である。 The content of the polylactic acid resin in the polylactic acid resin composition of the present invention is preferably 50% by weight or more, more preferably 70% by weight or more from the viewpoint of achieving the object of the present invention.
本発明のポリ乳酸樹脂組成物における可塑剤の含有量は、十分な結晶化速度と耐衝撃性を得る観点から、ポリ乳酸樹脂100重量部に対し、5〜30重量部が好ましく、7〜30重量部より好ましく、10〜30重量部がさらに好ましい。 The content of the plasticizer in the polylactic acid resin composition of the present invention is preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polylactic acid resin from the viewpoint of obtaining a sufficient crystallization speed and impact resistance, and 7 to 30. More preferred is 10 parts by weight and even more preferred.
本発明のポリ乳酸樹脂組成物における有機核剤の含有量は、十分な結晶化速度を得る観点から、ポリ乳酸樹脂100重量部に対し、0.1〜5重量部が好ましく、0.3〜3重量部が更に好ましく、0.5〜2重量部が特に好ましい。 The content of the organic nucleating agent in the polylactic acid resin composition of the present invention is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the polylactic acid resin, from the viewpoint of obtaining a sufficient crystallization rate, and 0.3 to 3 parts by weight is more preferable, and 0.5 to 2 parts by weight is particularly preferable.
本発明のポリ乳酸樹脂組成物における無機核剤の含有量は、十分な結晶化速度、成形性と耐熱性及び耐衝撃性を得る観点から、ポリ乳酸樹脂100重量部に対し、0.1〜60重量部が好ましく、1〜40重量部が更に好ましく、1〜30重量部が特に好ましい。 The content of the inorganic nucleating agent in the polylactic acid resin composition of the present invention is 0.1 to 100 parts by weight of the polylactic acid resin from the viewpoint of obtaining a sufficient crystallization speed, moldability, heat resistance and impact resistance. 60 parts by weight is preferable, 1 to 40 parts by weight is more preferable, and 1 to 30 parts by weight is particularly preferable.
本発明のポリ乳酸樹脂組成物中における有機核剤と無機核剤との重量比は、十分な結晶化速度、成形性と耐熱性及び耐衝撃性を得る観点から、有機核剤/無機核剤=1/60〜5/1が好ましく、1/40〜3/1がより好ましく、1/30〜2/1が更に好ましい。 The weight ratio of the organic nucleating agent to the inorganic nucleating agent in the polylactic acid resin composition of the present invention is determined from the viewpoint of obtaining a sufficient crystallization speed, moldability, heat resistance and impact resistance. = 1/60 to 5/1 is preferable, 1/40 to 3/1 is more preferable, and 1/30 to 2/1 is still more preferable.
本発明のポリ乳酸樹脂組成物は、上記の本発明の結晶核剤、可塑剤以外に、更に、加水分解抑制剤を含有することができる。加水分解抑制剤としては、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、ポリ乳酸樹脂成形体の成形性の観点からポリカルボジイミド化合物が好ましく、ポリ乳酸樹脂成形体の耐熱性、耐衝撃性及び有機核剤の耐ブルーム性の観点から、モノカルボジイミド化合物が好ましい。 The polylactic acid resin composition of the present invention can further contain a hydrolysis inhibitor in addition to the crystal nucleating agent and the plasticizer of the present invention. Examples of the hydrolysis inhibitor include carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds, and polycarbodiimide compounds are preferred from the viewpoint of moldability of polylactic acid resin molded products, and heat resistance and impact resistance of polylactic acid resin molded products. Monocarbodiimide compounds are preferable from the viewpoints of the property and the bloom resistance of the organic nucleating agent.
ポリカルボジイミド化合物としては、ポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられ、モノカルボジイミド化合物としては、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミド等が挙げられる。 Examples of the polycarbodiimide compound include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, poly (1,3,3). 5-triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide and the like, and examples of the monocarbodiimide compound include N, N′-di-2,6-diisopropylphenylcarbodiimide.
上記カルボジイミド化合物は、ポリ乳酸樹脂成形体の成形性、耐熱性、耐衝撃性及び有機核剤の耐ブルーム性を満たすために、単独又は2種以上組み合わせて用いてもよい。また、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA−1(日清紡績(株)製)を、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド及びポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミドはスタバクゾールP及びスタバクゾールP−100(Rhein Chemie社製)を、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドはスタバクゾールI(Rhein Chemie社製)をそれぞれ購入して使用することができる。 The carbodiimide compounds may be used alone or in combination of two or more in order to satisfy the moldability, heat resistance, impact resistance and bloom resistance of the organic nucleating agent of the polylactic acid resin molded product. Poly (4,4′-dicyclohexylmethanecarbodiimide) is obtained from carbodilite LA-1 (Nisshinbo Co., Ltd.), poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5). -Triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide are stabuxol P and stabuxol P-100 (Rhein Chemie), N, N'-di-2,6-diisopropylphenylcarbodiimide is stabuxol I (Rhein Chemie) Can be purchased and used.
本発明のポリ乳酸樹脂組成物における加水分解抑制剤の含有量は、ポリ乳酸樹脂成形体の成形性の観点から、ポリ乳酸樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。 The content of the hydrolysis inhibitor in the polylactic acid resin composition of the present invention is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the polylactic acid resin, from the viewpoint of moldability of the polylactic acid resin molded article. More preferably, it is 1 to 2 parts by weight.
本発明のポリ乳酸樹脂組成物は、上記以外に、更にヒンダードフェノール又はフォスファイト系の酸化防止剤、又は炭化水素系ワックス類やアニオン型界面活性剤である滑剤等の他の成分を含有することができる。酸化防止剤、滑剤のそれぞれの含有量は、ポリ乳酸樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。 In addition to the above, the polylactic acid resin composition of the present invention further contains other components such as a hindered phenol or a phosphite antioxidant, or a hydrocarbon wax or a lubricant that is an anionic surfactant. be able to. The content of each of the antioxidant and the lubricant is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the polylactic acid resin.
本発明のポリ乳酸樹脂組成物は、上記以外の他の成分として、帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、無機充填剤、防カビ剤、抗菌剤、発泡剤、難燃剤等を、本発明の目的達成を妨げない範囲で含有することができる。 The polylactic acid resin composition of the present invention includes an antistatic agent, an antifogging agent, a light stabilizer, an ultraviolet absorber, a pigment, an inorganic filler, an antifungal agent, an antibacterial agent, a foaming agent, as components other than those described above. A flame retardant etc. can be contained in the range which does not prevent achievement of the objective of this invention.
本発明のポリ乳酸樹脂組成物の結晶化度は、本発明の効果を発現する観点から、30%以上であることが好ましく、30〜99%がより好ましく、40〜95%が更に好ましく、50〜90%が特に好ましい。また、本発明のポリ乳酸樹脂組成物の80℃における半結晶化時間(t1/2)は、十分な結晶化速度を得る観点から、好ましくは0.01〜1分、更に好ましくは0.01〜0.7分であり、95℃における半結晶化時間(t1/2)は、好ましくは0.01〜0.5分、更に好ましくは0.01〜0.4分であり、110℃における半結晶化時間(t1/2)は、好ましくは0.01〜1分、更に好ましくは0.01〜0.6分である。
尚、結晶化度及び半結晶化時間は実施例記載の方法により求めることができる。
The degree of crystallinity of the polylactic acid resin composition of the present invention is preferably 30% or more, more preferably 30 to 99%, still more preferably 40 to 95%, from the viewpoint of manifesting the effects of the present invention. -90% is particularly preferred. In addition, the half crystallization time (t 1/2 ) at 80 ° C. of the polylactic acid resin composition of the present invention is preferably 0.01 to 1 minute, more preferably 0.8, from the viewpoint of obtaining a sufficient crystallization rate. The half crystallization time (t 1/2 ) at 95 ° C. is preferably 0.01 to 0.5 minutes, more preferably 0.01 to 0.4 minutes. The half crystallization time (t 1/2 ) at ° C. is preferably 0.01 to 1 minute, more preferably 0.01 to 0.6 minute.
The crystallinity and the semi-crystallization time can be determined by the methods described in the examples.
本発明のポリ乳酸樹脂組成物は、加工性が良好で、例えば200℃以下の低温で加工することができるため、可塑剤の分解が起こり難い利点もあり、フィルムやシートに成形して、各種用途に用いることができる。 Since the polylactic acid resin composition of the present invention has good processability and can be processed at a low temperature of, for example, 200 ° C. or less, there is also an advantage that the plasticizer is hardly decomposed. Can be used for applications.
[ポリ乳酸樹脂成形体の製造法]
本発明のポリ乳酸樹脂成形体の製造法は、本発明のポリ乳酸樹脂組成物を、ポリ乳酸樹脂の融点(Tm)以上で混合する工程(1)と、ポリ乳酸樹脂組成物のガラス転移温度(Tg)以上Tm未満の温度で熱処理する工程(2)とを有する。
[Production method of polylactic acid resin molding]
The method for producing a polylactic acid resin molded article of the present invention comprises the step (1) of mixing the polylactic acid resin composition of the present invention at a melting point (Tm) or higher of the polylactic acid resin, and the glass transition temperature of the polylactic acid resin composition. (Tg) and a step (2) of heat-treating at a temperature lower than Tm.
また、工程(1)を経た後、冷却して非晶状態(すなわち広角X線回折法で測定される結晶化度が1%以下となる条件)とした後、工程(2)を行う方法や、工程(1)を経た後、冷却して直ちに工程(2)を行う方法が好ましく、本発明の結晶化速度向上効果発現の観点から、工程(1)を経た後、冷却して直ちに工程(2)を行う方法がより好ましい。 In addition, after passing through the step (1), after cooling to an amorphous state (that is, a condition that the crystallinity measured by the wide angle X-ray diffraction method is 1% or less), the method of performing the step (2) or After the step (1), the method of cooling and immediately performing the step (2) is preferable. From the viewpoint of the crystallization speed improvement effect of the present invention, the step (1) is followed by cooling and the step (1). The method of performing 2) is more preferable.
本発明のポリ乳酸樹脂成形体の製造法における、工程(1)の具体例としては、例えば、押出し機等を用いてポリ乳酸樹脂を溶融させながら、可塑剤、ヒドロキシ脂肪酸エステルである有機核剤及び無機核剤を混合する方法等が挙げられる。工程(1)の温度は、可塑剤、有機核剤及び無機核剤の分散性の観点から、ポリ乳酸樹脂の融点(Tm)以上であり、好ましくはTm〜Tm+100℃の範囲であり、より好ましくはTm〜Tm+50℃の範囲である。例えば、ポリ乳酸樹脂がレイシアH−400(三井化学(株)製)の場合のようなL−乳酸純度95%以上のポリ乳酸樹脂を用いた場合は、170〜250℃が好ましく、170〜230℃がより好ましく、170〜210℃がさらに好ましい。 Specific examples of step (1) in the method for producing a polylactic acid resin molded body of the present invention include, for example, an organic nucleating agent that is a plasticizer and a hydroxy fatty acid ester while melting the polylactic acid resin using an extruder or the like. And a method of mixing an inorganic nucleating agent. From the viewpoint of dispersibility of the plasticizer, organic nucleating agent and inorganic nucleating agent, the temperature in step (1) is not less than the melting point (Tm) of the polylactic acid resin, preferably in the range of Tm to Tm + 100 ° C., more preferably. Is in the range of Tm to Tm + 50 ° C. For example, when a polylactic acid resin having an L-lactic acid purity of 95% or more as in the case where the polylactic acid resin is Lacia H-400 (manufactured by Mitsui Chemicals, Inc.), 170 to 250 ° C. is preferable, and 170 to 230 ° C is more preferable, and 170-210 ° C is still more preferable.
本発明の成形体の製造法における、工程(2)の具体例としては、例えば、押出し機等により押し出されたポリ乳酸樹脂組成物を熱処理する方法や射出成形機等によりポリ乳酸樹脂組成物を金型に充填し、ポリ乳酸樹脂組成物を熱処理する方法等が挙げられる。工程(2)の温度は、結晶化速度向上の観点から、ポリ乳酸樹脂組成物のガラス転移温度(Tg)以上Tm未満であり、好ましくはTg〜Tg+100℃の範囲であり、より好ましくはTg+10〜Tg+80℃の範囲であり、特に好ましくはTg+20〜Tg+70℃の範囲である。例えば、ポリ乳酸樹脂がレイシアH−400(三井化学(株)製)のようなL−乳酸純度95%以上のポリ乳酸樹脂であるポリ乳酸樹脂組成物の場合は、50〜140℃が好ましく、60〜120℃がより好ましく、70〜110℃が特に好ましい。 Specific examples of step (2) in the method for producing a molded article of the present invention include, for example, a method of heat-treating a polylactic acid resin composition extruded by an extruder or the like, a polylactic acid resin composition by an injection molding machine or the like. Examples include a method of filling a mold and heat-treating the polylactic acid resin composition. From the viewpoint of improving the crystallization rate, the temperature in the step (2) is not less than the glass transition temperature (Tg) of the polylactic acid resin composition and less than Tm, preferably in the range of Tg to Tg + 100 ° C., more preferably Tg + 10 to It is the range of Tg + 80 degreeC, Most preferably, it is the range of Tg + 20-Tg + 70 degreeC. For example, in the case of a polylactic acid resin composition in which the polylactic acid resin is a polylactic acid resin having an L-lactic acid purity of 95% or more, such as Lacia H-400 (manufactured by Mitsui Chemicals, Inc.), 50 to 140 ° C. is preferable. 60-120 degreeC is more preferable, and 70-110 degreeC is especially preferable.
尚、ポリ乳酸樹脂の融点(Tm)は、JIS−K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より求められる値である。また、ポリ乳酸樹脂組成物のガラス転移温度(Tg)は、JIS−K7198に基づいた動的粘弾性測定における損失弾性率(E'')のピーク温度より求められる値である。 In addition, melting | fusing point (Tm) of a polylactic acid resin is a value calculated | required from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121. Moreover, the glass transition temperature (Tg) of a polylactic acid resin composition is a value calculated | required from the peak temperature of the loss elastic modulus (E '') in the dynamic viscoelasticity measurement based on JIS-K7198.
本発明のポリ乳酸樹脂成形体の熱変形温度は、ポリ乳酸樹脂、可塑剤、結晶核剤の種類や添加量などによって適宜選定され、特にポリ乳酸の場合、本発明の効果を発現する観点から、70℃以上が好ましく、75℃以上がより好ましく、80℃以上が更に好ましい。尚、ここで本発明のポリ乳酸樹脂成形体の熱変形温度は、実施例に記載された測定法により測定される値である。 The heat distortion temperature of the polylactic acid resin molded article of the present invention is appropriately selected depending on the type and amount of polylactic acid resin, plasticizer, and crystal nucleating agent, and in particular, in the case of polylactic acid, from the viewpoint of expressing the effects of the present invention 70 ° C. or higher, preferably 75 ° C. or higher, and more preferably 80 ° C. or higher. In addition, the heat distortion temperature of the polylactic acid resin molding of this invention here is a value measured by the measuring method described in the Example.
本発明のポリ乳酸樹脂成形体の耐衝撃性は、ポリ乳酸樹脂、可塑剤、結晶核剤の種類や添加量などによって適宜選定され、特にポリ乳酸の場合、本発明の効果を発現する観点から、60(J/m)以上が好ましく、70(J/m)以上がより好ましく、80(J/m)以上が更に好ましい。尚、ここで本発明のポリ乳酸樹脂成形体の耐衝撃性は、実施例に記載された測定法により測定される値である。 The impact resistance of the polylactic acid resin molded article of the present invention is appropriately selected depending on the type and amount of polylactic acid resin, plasticizer, and crystal nucleating agent, and particularly in the case of polylactic acid, from the viewpoint of expressing the effects of the present invention. 60 (J / m) or more, preferably 70 (J / m) or more, and more preferably 80 (J / m) or more. In addition, the impact resistance of the polylactic acid resin molding of this invention is a value measured by the measuring method described in the Example here.
例中の部は、特記しない限り重量部である。 The parts in the examples are parts by weight unless otherwise specified.
実施例1〜5
ポリ乳酸樹脂(三井化学(株)製、LACEA H−400)(以下PLAという)と、可塑剤(コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル)と、有機核剤[12−ヒドロキシステアリン酸トリグリセライド(花王(株)製、カオーワックス85P)]と、無機核剤[タルク(日本タルク(株)製 、Micro Ace P−6)]、更に必要により加水分解抑制剤[カルボジライトLA−1(日清紡績(株)製)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)]を、表1に示す割合で、5L加圧型ニーダー((株)森山製作所製 DS3−20MWB−E)を用い、180〜200℃にて、10分間溶融混合し、その後直ちに80℃の8インチロール(日本ロール製造(株)製)で約5mm厚さに引き延ばし、裁断した後、粉砕して、ポリ乳酸樹脂組成物のフレークを得た。
Examples 1-5
A polylactic acid resin (LACEA H-400, manufactured by Mitsui Chemicals, Inc.) (hereinafter referred to as PLA), a plasticizer (a diester of succinic acid and triethylene glycol monomethyl ether), and an organic nucleating agent [12-hydroxystearic acid triglyceride. (Kao Co., Ltd., Kao Wax 85P)], inorganic nucleating agent [talc (Nihon Talc Co., Ltd., Micro Ace P-6)], and hydrolysis inhibitor [Carbodilite LA-1 (Nisshinbo Industries, Inc.) if necessary. (Made by Co., Ltd.), poly (4,4′-dicyclohexylmethanecarbodiimide)] at a ratio shown in Table 1, using a 5 L pressure type kneader (DS3-20MWB-E made by Moriyama Seisakusho), 180-200 Melt and mix at 10 ° C. for 10 minutes, then immediately pull it to about 5 mm thickness with an 8-inch roll (manufactured by Nippon Roll Manufacturing Co., Ltd.) Bridge, was cut, and pulverized to obtain a flake of polylactic acid resin composition.
比較例1〜2
PLA、可塑剤、有機核剤、無機核剤、加水分解抑制剤を、表1に示す割合で用いる以外は実施例1〜5と同様にしてポリ乳酸樹脂組成物のフレークを得た。
Comparative Examples 1-2
Flakes of a polylactic acid resin composition were obtained in the same manner as in Examples 1 to 5 except that PLA, plasticizer, organic nucleating agent, inorganic nucleating agent, and hydrolysis inhibitor were used in the proportions shown in Table 1.
実施例及び比較例で得られたフレークは、70℃減圧下で1日乾燥し、水分量を500ppm以下とした。そのフレークを射出成形機(日本製鋼所製J75E型射出成形機)を用いて、スクリュー温度200〜160℃で射出成形し、生分解性樹脂成形体を作製した。 The flakes obtained in Examples and Comparative Examples were dried for 1 day under reduced pressure at 70 ° C., and the water content was adjusted to 500 ppm or less. The flakes were injection molded at a screw temperature of 200 to 160 ° C. using an injection molding machine (J75E type injection molding machine manufactured by Nippon Steel) to produce a biodegradable resin molded body.
それぞれの生分解性樹脂成形体に対し、下記の方法で半結晶化時間、曲げ弾性率、熱変形温度、アイゾット衝撃強度、結晶化度を測定した。また、下記方法で射出成形性を評価した。これらの結果を表1に示す。 For each biodegradable resin molded product, the half crystallization time, flexural modulus, thermal deformation temperature, Izod impact strength, and crystallinity were measured by the following methods. Moreover, the injection moldability was evaluated by the following method. These results are shown in Table 1.
<半結晶化時間>
500μmのシート状にしたポリ乳酸樹脂組成物の試験片から7〜8mg秤量し、アルミパンに封入後、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、200℃で5分間溶融し、−500℃/分の速度で保持温度(80℃、95℃、110℃)まで降温し、結晶飽和となる半分の時間(半結晶化時間;t1/2)を求めた。t1/2は、サンプル温度が保持温度に達したときの時間を0分として算出した。
<Semi-crystallization time>
7 to 8 mg was weighed from a test piece of a polylactic acid resin composition in the form of a 500 μm sheet, sealed in an aluminum pan, then melted at 200 ° C. for 5 minutes using a DSC apparatus (Perkin Elmer Diamond DSC), −500 The temperature was lowered to a holding temperature (80 ° C., 95 ° C., 110 ° C.) at a rate of ° C./minute, and half time (half crystallization time; t 1/2 ) for crystal saturation was obtained. t 1/2 was calculated by setting the time when the sample temperature reached the holding temperature as 0 minutes.
<曲げ弾性率>
JIS K7171に基づいて、長さ80mm×幅10mm×厚さ4mmの試験片を作製し、テンシロン(オリエンテック製テンシロン万能試験機RTC−1210A)を用いて曲げ弾性率を測定した。
<Bending elastic modulus>
Based on JIS K7171, the test piece of length 80mm * width 10mm * thickness 4mm was produced, and the bending elastic modulus was measured using Tensilon (Orientec Tensilon universal testing machine RTC-1210A).
<熱変形温度>
JIS K7191に基づいて、長さ80mm×幅10mm×厚さ4mmの試験片を作製し、熱変形温度測定装置(東洋精機製ヒートディステーションテスター)を用いて荷重たわみ温度を、荷重0.45MPaで測定した。
<Heat deformation temperature>
Based on JIS K7191, a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was prepared, and the deflection temperature under load was measured at a load of 0.45 MPa using a thermal deformation temperature measuring device (a heat dissipation tester manufactured by Toyo Seiki Co., Ltd.). It was measured.
<アイゾット衝撃強度>
JIS K7110に基づいて、2号A(幅5mm)試験片を作製し、衝撃試験機(上島製作所製U−F INPACT TESTER)を用いてアイゾット衝撃強度を測定した。
<Izod impact strength>
Based on JIS K7110, a No. 2A (width 5 mm) test piece was prepared, and Izod impact strength was measured using an impact tester (U-F INPACT TESTER manufactured by Ueshima Seisakusho).
<結晶化度>
成形後の試験片について、広角X線回折測定装置(理学電機製RINT2500VPC,光源CuKα,管電圧40kV,管電流120mA)を使用し、2θ=5〜30°の範囲の非晶及び結晶のピーク面積を解析して結晶化度を求めた。
<Crystallinity>
About the test piece after shaping | molding, using the wide angle X-ray-diffraction measuring apparatus (RINT2500VPC by Rigaku Corporation, light source CuK (alpha), tube voltage 40kV, tube current 120mA), the peak area of the amorphous and crystal | crystallization of the range of 2 (theta) = 5-30 degrees Were analyzed to determine the crystallinity.
<射出成形性>
射出成形機(日本製鋼所製J75E型射出成形機)にて、保圧時間15秒、冷却時間30秒で、温度80℃の金型での射出成形を行い、成形体の金型からの離型性を以下の基準で評価した。
○:変形もなく容易に離型できる
△:離型するが、変形する
×:離型しない(成形できない)
<Injection moldability>
Using an injection molding machine (J75E type injection molding machine manufactured by Nippon Steel), injection molding is performed with a mold at a temperature of 80 ° C. with a holding time of 15 seconds and a cooling time of 30 seconds, and the molded body is separated from the mold. The moldability was evaluated according to the following criteria.
○: Can be easily released without deformation △: Demolded but deformed ×: Not released (cannot be molded)
尚、比較例1〜2においては、得られた生分解性樹脂成形体は、半溶融状態のままであり金型から離型しなかった。これは、生分解性樹脂成形体の結晶化が十分でないことを意味する。物性比較を行うために、試験片を得る必要があるので、これらについては温度30℃の金型での射出を行い、非晶状態での試験片を得た。 In Comparative Examples 1 and 2, the obtained biodegradable resin molded bodies remained in a semi-molten state and were not released from the mold. This means that the crystallization of the biodegradable resin molding is not sufficient. Since it is necessary to obtain test pieces in order to compare the physical properties, these were injected with a mold at a temperature of 30 ° C. to obtain test pieces in an amorphous state.
*1:ポリ乳酸樹脂(三井化学(株)製、LACEA H−400)
*2:コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
*3:12−ヒドロキシステアリン酸トリグリセライド(花王(株)製、カオーワックス85P)
*4:タルク(日本タルク(株)製 、Micro Ace P-6)
*5:ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)(日清紡績(株)製、カルボジライトLA−1)
* 1: Polylactic acid resin (manufactured by Mitsui Chemicals, LACEA H-400)
* 2: Diester of succinic acid and triethylene glycol monomethyl ether * 3: 12-hydroxystearic acid triglyceride (Kao wax, Kao wax 85P)
* 4: Talc (Nihon Talc Co., Ltd., Micro Ace P-6)
* 5: Poly (4,4′-dicyclohexylmethanecarbodiimide) (Nisshinbo Co., Ltd., Carbodilite LA-1)
以上の結果から、本発明のポリ乳酸樹脂組成物は、広い温度領域で優れた結晶化速度を有し、結果として低い金型温度で優れた成形性を示し、また、優れた耐熱性、耐衝撃性及び柔軟性を有することが分かる。
From the above results, the polylactic acid resin composition of the present invention has an excellent crystallization rate in a wide temperature range, and as a result, exhibits excellent moldability at a low mold temperature, and has excellent heat resistance and resistance. It can be seen that it has impact and flexibility.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006091444A JP5225550B2 (en) | 2006-03-29 | 2006-03-29 | Polylactic acid resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006091444A JP5225550B2 (en) | 2006-03-29 | 2006-03-29 | Polylactic acid resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007262306A JP2007262306A (en) | 2007-10-11 |
JP5225550B2 true JP5225550B2 (en) | 2013-07-03 |
Family
ID=38635593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006091444A Expired - Fee Related JP5225550B2 (en) | 2006-03-29 | 2006-03-29 | Polylactic acid resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5225550B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5821021B2 (en) * | 2010-09-28 | 2015-11-24 | パナソニックIpマネジメント株式会社 | Manufacturing method of molded products |
CN115449202A (en) * | 2022-10-21 | 2022-12-09 | 合肥工业大学 | Polylactic acid composite material with high heat deformation resistance and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3410075B2 (en) * | 2000-11-17 | 2003-05-26 | ユニチカ株式会社 | Crystalline polylactic acid resin composition, film and sheet using the same |
JP3773501B2 (en) * | 2003-04-25 | 2006-05-10 | 旭電化工業株式会社 | Polylactic acid-based resin composition, molded article and method for producing the same |
US7652085B2 (en) * | 2004-05-11 | 2010-01-26 | Kao Corporation | Biodegradable resin composition |
-
2006
- 2006-03-29 JP JP2006091444A patent/JP5225550B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007262306A (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4130695B2 (en) | Biodegradable resin composition | |
JP4260794B2 (en) | Manufacturing method of biodegradable resin molded products | |
JP5107873B2 (en) | Polylactic acid resin composition | |
JP4130696B2 (en) | Biodegradable resin composition | |
JP4611214B2 (en) | Biodegradable resin composition | |
US8722813B2 (en) | Resin composition | |
JP2008174735A (en) | Polylactic acid resin composition | |
JP5627255B2 (en) | Method for promoting crystallization of biodegradable resin composition | |
JP2008156660A (en) | Biodegradable resin composition | |
JP5143374B2 (en) | Biodegradable resin composition | |
JP4252570B2 (en) | Pellet manufacturing method | |
JP4297510B2 (en) | Method for producing polylactic acid resin molded body | |
JP5107793B2 (en) | Method for producing polylactic acid resin injection molded body | |
JP5882710B2 (en) | Polylactic acid resin composition and resin molded body thereof | |
JP4530426B2 (en) | Method for producing polylactic acid resin injection molded body | |
JP5225550B2 (en) | Polylactic acid resin composition | |
JP5107792B2 (en) | Method for producing polylactic acid resin injection molded body | |
JP2010037438A (en) | Polylactic acid resin composition | |
JP5882711B2 (en) | Polylactic acid resin composition and resin molded body thereof | |
JP5305338B2 (en) | Pellet manufacturing method | |
JP2009083485A (en) | Manufacturing method of injection-molded article of polylactic acid resin | |
JP4727706B2 (en) | Manufacturing method of biodegradable resin molded products. | |
JP4800348B2 (en) | Manufacturing method of biodegradable resin molded products. | |
JP2010037439A (en) | Polylactic acid resin composition | |
JP2010037437A (en) | Polylactic acid resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130313 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5225550 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |