JP2009083485A - Manufacturing method of injection-molded article of polylactic acid resin - Google Patents

Manufacturing method of injection-molded article of polylactic acid resin Download PDF

Info

Publication number
JP2009083485A
JP2009083485A JP2008235259A JP2008235259A JP2009083485A JP 2009083485 A JP2009083485 A JP 2009083485A JP 2008235259 A JP2008235259 A JP 2008235259A JP 2008235259 A JP2008235259 A JP 2008235259A JP 2009083485 A JP2009083485 A JP 2009083485A
Authority
JP
Japan
Prior art keywords
polylactic acid
acid resin
resin composition
injection
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008235259A
Other languages
Japanese (ja)
Other versions
JP4530427B2 (en
Inventor
Akira Takenaka
晃 武中
Hiroaki Kishimoto
洋昭 岸本
Hirobumi Moriwaka
博文 森若
Haruomi Enomoto
晴臣 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008235259A priority Critical patent/JP4530427B2/en
Publication of JP2009083485A publication Critical patent/JP2009083485A/en
Application granted granted Critical
Publication of JP4530427B2 publication Critical patent/JP4530427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of efficiently obtaining an injection-molded article of polylactic acid resin excellent in heat resistance with excellent molding performance even without plasticizer. <P>SOLUTION: The manufacturing method of injection-molded article of polylactic acid resin comprises the following process (1) and process (2). In the process (1), a polylactic acid resin composition including a polylactic acid resin and an organic crystal nucleating agent comprising phenyl phosphonic acid metal salt is meltingly kneaded while being brought into contact with a supercritical fluid. In the process (2), a molten material obtained in the process (1) is charged into a mold and to injection-mold. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ポリ乳酸樹脂射出成形体の製造方法に関する。   The present invention relates to a method for producing a polylactic acid resin injection-molded article.

生分解性樹脂の中でポリ乳酸樹脂は、トウモロコシ、芋などからとれる糖分から、発酵法によりL−乳酸が大量に作られ安価になってきたこと、原料が自然農作物なので総酸化炭素排出量が極めて少ない、また得られた樹脂の性能として剛性が強く透明性が良いという特徴があるので、現在その利用が期待されている。しかし、ポリ乳酸樹脂は結晶化速度が非常に遅く、延伸などの機械的工程を行わない限り成形後は非晶状態であり、かつポリ乳酸樹脂のガラス転移温度(Tg)は約60℃と低いために耐熱性に劣り、温度が55℃以上となる環境下では使用できない問題があった。   Among the biodegradable resins, polylactic acid resin is a low-cost product of L-lactic acid made from saccharides obtained from corn, straw, etc. by fermentation. The use of the obtained resin is expected because it is extremely rare and has the characteristics of high rigidity and good transparency. However, the polylactic acid resin has a very low crystallization rate, is in an amorphous state after molding unless a mechanical process such as stretching is performed, and the glass transition temperature (Tg) of the polylactic acid resin is as low as about 60 ° C. Therefore, there is a problem that the heat resistance is inferior and it cannot be used in an environment where the temperature is 55 ° C. or higher.

ポリ乳酸樹脂の耐熱性を向上させるためには、成形加工時に結晶化させることが重要であり、例えば、射出成形において超臨界流体を用いてポリ乳酸を結晶化させる製造方法が提案されている(例えば特許文献1)。しかし、この方法でも、結晶化速度が低いために結晶化が進行しにくく、早く脱型すると発泡と変形が生じるという問題がある。これを防ぐためには金型保持時間を長くし、かつ樹脂のガラス転移温度以下まで冷却しなければならず、成形時間が長くなるという課題があった。また、結晶化速度が低いことによる金型内での発泡を防止するため、金型内に窒素ガス等で超臨界の圧力以上で加圧する工程が必ず必要となり、設備や装置の面で制約があった。一方、生分解性樹脂と、可塑剤と、水酸基及びアミド基から選ばれる少なくとも1種の基を2つ以上有する脂肪族化合物である結晶核剤とを用いて、結晶化速度が良好な生分解性樹脂組成物を製造する方法が提案されている(例えば特許文献2)。しかし、この方法では可塑剤を用いることが必須要件となっている。
特開2003−236944号公報 特開2006−176747号公報
In order to improve the heat resistance of the polylactic acid resin, it is important to crystallize at the time of molding. For example, a production method in which polylactic acid is crystallized using a supercritical fluid in injection molding has been proposed ( For example, Patent Document 1). However, even this method has a problem that crystallization is difficult to proceed due to a low crystallization rate, and foaming and deformation occur when the mold is removed quickly. In order to prevent this, the mold holding time must be lengthened and the glass must be cooled to a temperature lower than the glass transition temperature, resulting in a problem that the molding time becomes long. In addition, in order to prevent foaming in the mold due to low crystallization speed, it is necessary to pressurize the mold with nitrogen gas or the like above the supercritical pressure, and there are restrictions in terms of equipment and equipment. there were. On the other hand, using a biodegradable resin, a plasticizer, and a crystal nucleating agent that is an aliphatic compound having at least one group selected from a hydroxyl group and an amide group, a biodegradation with a good crystallization rate A method for producing a conductive resin composition has been proposed (for example, Patent Document 2). However, in this method, it is an essential requirement to use a plasticizer.
JP 2003-236944 A JP 2006-176747 A

本発明の課題は、可塑剤を用いなくても、優れた耐熱性を有するポリ乳酸樹脂射出成形体を、優れた成形性で効率的に得ることができる製造方法を提供することにある。   The subject of this invention is providing the manufacturing method which can obtain efficiently the polylactic acid resin injection molding which has the outstanding heat resistance, without using a plasticizer by the outstanding moldability.

本発明は、下記工程(1)及び工程(2)を有するポリ乳酸樹脂射出成形体の製造方法を提供する。
工程(1):ポリ乳酸樹脂と、フェニルホスホン酸金属塩からなる有機結晶核剤とを含有するポリ乳酸樹脂組成物を、超臨界流体と接触させながら溶融混練する工程
工程(2):工程(1)で得られた溶融物を金型内に充填し、射出成形する工程
The present invention provides a method for producing a polylactic acid resin injection-molded article having the following steps (1) and (2).
Step (1): Step (2) of melting and kneading a polylactic acid resin composition containing a polylactic acid resin and an organic crystal nucleating agent composed of a metal salt of phenylphosphonic acid while being in contact with a supercritical fluid (Step (2): Step of filling the melt obtained in 1) into a mold and injection molding

本発明の製造方法は、可塑剤を用いなくても、優れた耐熱性を有するポリ乳酸樹脂射出成形体を、短い成形時間で効率的に得ることができ、更に低い金型温度でも優れた成形性を示す。   The production method of the present invention can efficiently obtain a polylactic acid resin injection-molded article having excellent heat resistance in a short molding time without using a plasticizer, and excellent molding even at a lower mold temperature. Showing gender.

[ポリ乳酸樹脂組成物]
本発明の工程(1)で用いるポリ乳酸樹脂組成物は、ポリ乳酸樹脂と、フェニルホスホン酸金属塩からなる有機結晶核剤とを含有する。
[Polylactic acid resin composition]
The polylactic acid resin composition used in step (1) of the present invention contains a polylactic acid resin and an organic crystal nucleating agent composed of a metal salt of phenylphosphonic acid.

本発明においてポリ乳酸樹脂とは、ポリ乳酸、又は乳酸とヒドロキシカルボン酸とのコポリマーである。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられ、グリコール酸、ヒドロキシカプロン酸が好ましい。好ましいポリ乳酸の分子構造は、L−乳酸又はD−乳酸いずれかの単位80〜100モル%とそれぞれの対掌体の乳酸単位0〜20モル%からなるものである。また、乳酸とヒドロキシカルボン酸とのコポリマーは、L−乳酸又はD−乳酸いずれかの単位85〜100モル%とヒドロキシカルボン酸単位0〜15モル%からなるものである。これらのポリ乳酸樹脂は、L−乳酸、D−乳酸及びヒドロキシカルボン酸の中から必要とする構造のものを選んで原料とし、脱水重縮合することにより得ることができる。好ましくは、乳酸の環状二量体であるラクチド、グリコール酸の環状二量体であるグリコリド及びカプロラクトン等から必要とする構造のものを選んで開環重合することにより得ることができる。ラクチドにはL−乳酸の環状二量体であるL−ラクチド、D−乳酸の環状二量体であるD−ラクチド、D−乳酸とL−乳酸とが環状二量化したメソ−ラクチド及びD−ラクチドとL−ラクチドとのラセミ混合物であるDL−ラクチドがある。本発明ではいずれのラクチドも用いることができる。但し、主原料は、D−ラクチド又はL−ラクチドが好ましい。   In the present invention, the polylactic acid resin is polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid and the like, and glycolic acid and hydroxycaproic acid are preferable. The molecular structure of polylactic acid is preferably composed of 80 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 20 mol% of each enantiomer. The copolymer of lactic acid and hydroxycarboxylic acid is composed of 85 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 15 mol% of hydroxycarboxylic acid units. These polylactic acid resins can be obtained by dehydrating polycondensation using L-lactic acid, D-lactic acid and hydroxycarboxylic acid as a raw material by selecting those having the required structure. Preferably, it can be obtained by ring-opening polymerization by selecting a desired structure from lactide, which is a cyclic dimer of lactic acid, glycolide, which is a cyclic dimer of glycolic acid, and caprolactone. Lactide includes L-lactide which is a cyclic dimer of L-lactic acid, D-lactide which is a cyclic dimer of D-lactic acid, meso-lactide obtained by cyclic dimerization of D-lactic acid and L-lactic acid, and D-lactide. There is DL-lactide, which is a racemic mixture of lactide and L-lactide. Any lactide can be used in the present invention. However, the main raw material is preferably D-lactide or L-lactide.

また、本発明において、ポリ乳酸として、ポリ乳酸樹脂組成物の成形性、可撓性及び剛性の両立の観点から、異なる異性体を主成分とする乳酸成分を用いて得られた2種類のポリ乳酸からなるステレオコンプレックスポリ乳酸を用いてもよい。具体的には、2種類のポリ乳酸を予め溶融混練し、その溶融混練物をポリ乳酸樹脂として、本発明の工程(1)に供すれば良い。なお、ポリ乳酸のみを別途溶融混練して用いてもよいが、2種類のポリ乳酸、及び前記ポリ乳酸以外の原料を併せて同時に溶融混練してもよい。   In the present invention, as polylactic acid, two types of polylactic acid obtained using lactic acid components mainly composed of different isomers from the viewpoint of compatibility between moldability, flexibility and rigidity of the polylactic acid resin composition. Stereocomplex polylactic acid made of lactic acid may be used. Specifically, two types of polylactic acid may be melt-kneaded in advance, and the melt-kneaded product may be used as a polylactic acid resin for the step (1) of the present invention. Only polylactic acid may be separately melt-kneaded and used, but two types of polylactic acid and raw materials other than the polylactic acid may be melt-kneaded at the same time.

ステレオコンプレックスポリ乳酸を構成する一方のポリ乳酸〔以降、ポリ乳酸(A)と記載する〕は、L体90〜100モル%、D体を含むその他の成分0〜10モル%を含有する。他方のポリ乳酸〔以降、ポリ乳酸(B)と記載する〕は、D体90〜100モル%、L体を含むその他の成分0〜10モル%を含有する。なお、L体及びD体以外のその他の成分としては、2個以上のエステル結合を形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等が挙げられ、また、未反応の前記官能基を分子内に2つ以上有するポリエステル、ポリエーテル、ポリカーボネート等であってもよい。   One polylactic acid constituting the stereocomplex polylactic acid (hereinafter referred to as polylactic acid (A)) contains 90 to 100 mol% of L isomer and 0 to 10 mol% of other components including D isomer. The other polylactic acid (hereinafter referred to as polylactic acid (B)) contains 90 to 100 mol% of D isomer and 0 to 10 mol% of other components including L isomer. In addition, as other components other than L-form and D-form, dicarboxylic acid, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc. having a functional group capable of forming two or more ester bonds are exemplified, and unreacted Polyester, polyether, polycarbonate or the like having two or more of the functional groups in the molecule may be used.

ステレオコンプレックスポリ乳酸における、ポリ乳酸(A)とポリ乳酸(B)の重量比〔ポリ乳酸(A)/ポリ乳酸(B)〕は、ポリ乳酸樹脂組成物の成形性、ならびに、可撓性と、剛性及び耐熱性との両立の観点から、10/90〜90/10が好ましく、20/80〜80/20がより好ましい。   In the stereocomplex polylactic acid, the weight ratio of polylactic acid (A) to polylactic acid (B) [polylactic acid (A) / polylactic acid (B)] is determined by the moldability and flexibility of the polylactic acid resin composition. From the viewpoint of achieving both rigidity and heat resistance, 10/90 to 90/10 is preferable, and 20/80 to 80/20 is more preferable.

市販されているポリ乳酸樹脂としては、トヨタ自動車(株)製、商品名エコプラスチックU’zS;三井化学(株)製、商品名レイシア(LACEA);カーギル・ダウ・ポリマーズ社製、商品名Nature works等が挙げられる。具体的には、例えば、レイシアH−100、H−280、H−400、H−440等の「レイシアシリーズ」(三井化学社製)、3001D、3051D、4032D、4042D、6201D、6251D、7000D、7032D等の「Nature Works」(ネイチャーワークス社製)、エコプラスチックU'z S−09、S−12、S−17等の「エコプラスチックU'zシリーズ」(トヨタ自動車社製)が挙げられる。これらのなかでも、ポリ乳酸樹脂組成物の耐熱性の観点から、レイシアH−100、H−400(三井化学社製)、3001D、3051D、4032D、6201D、6251D、7000D、7032D(ネイチャーワークス社製)、エコプラスチックU'z S−09、S−12、S−17(トヨタ自動車社製)が好ましい。   Examples of commercially available polylactic acid resins include Toyota Motor Corporation, trade name Eco Plastic U'zS; Mitsui Chemicals, trade name LACEA; Cargill Dow Polymers, trade name Nature. works and the like. Specifically, for example, “Lacia Series” (manufactured by Mitsui Chemicals) such as Lacia H-100, H-280, H-400, H-440, 3001D, 3051D, 4032D, 4042D, 6201D, 6251D, 7000D, “Nature Works” (manufactured by Nature Works) such as 7032D, and “ecoplastic U′z series” (manufactured by Toyota Motor Corporation) such as ecoplastic U′z S-09, S-12, and S-17. Among these, from the viewpoint of the heat resistance of the polylactic acid resin composition, Lacia H-100, H-400 (manufactured by Mitsui Chemicals), 3001D, 3051D, 4032D, 6201D, 6251D, 7000D, 7032D (manufactured by Nature Works) Ecoplastics U'z S-09, S-12, and S-17 (manufactured by Toyota Motor Corporation) are preferable.

本発明におけるポリ乳酸樹脂組成物は、剛性、柔軟性、耐熱性、耐久性等の物性向上の観点から、前記ポリ乳酸樹脂以外に、その他の樹脂を含んでもよい。その他の樹脂の具体例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリアセタール、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミドなど、あるいはエチレン/グリシジルメタクリレート共重合体、ポリエステルエラストマー、ポリアミドエラストマー、エチレン/プロピレンターポリマー、エチレン/ブテン−1共重合体などの軟質熱可塑性樹脂などの熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂などの熱硬化性樹脂などが挙げられるが、中でもポリ乳酸樹脂との相溶性の観点からアミド結合、エステル結合、カーボネート結合等のカルボニル基を含む結合を有する樹脂が、構造的にポリ乳酸樹脂と親和性が高い傾向があるため好ましい。好ましい樹脂の例としてはポリカーボネート、アクリル樹脂(PMMA)、ポリアミド、ポリエステル(ポリエチレンテレフタレート、ポリブチレンサクシネート等)が挙げられる。   The polylactic acid resin composition in the present invention may contain other resins in addition to the polylactic acid resin from the viewpoint of improving physical properties such as rigidity, flexibility, heat resistance, and durability. Specific examples of other resins include polyethylene, polypropylene, polystyrene, ABS resin, AS resin, acrylic resin, polyamide, polyphenylene sulfide, polyether ether ketone, polyester, polyacetal, polysulfone, polyphenylene oxide, polyimide, polyetherimide, Or thermoplastic resins such as ethylene / glycidyl methacrylate copolymers, polyester elastomers, polyamide elastomers, soft thermoplastic resins such as ethylene / propylene terpolymers, ethylene / butene-1 copolymers, phenol resins, melamine resins, unsaturated Thermosetting resins such as polyester resins, silicone resins, and epoxy resins can be mentioned. Among them, amide bonds and S are preferred from the viewpoint of compatibility with polylactic acid resins. Le coupling, the resin having a bond containing a carbonyl group of a carbonate bond or the like are preferred because structurally polylactic acid resin and affinity tends to be high. Examples of preferable resins include polycarbonate, acrylic resin (PMMA), polyamide, and polyester (polyethylene terephthalate, polybutylene succinate, and the like).

また、本発明において、ポリ乳酸として、ポリ乳酸樹脂組成物の成形性、可撓性及び剛性の両立、耐熱性、耐摩耗性の観点から、ポリ乳酸と上記樹脂とのブレンドによるポリマーアロイを使用してもよい。具体的には、ポリ乳酸と上記樹脂を予め溶融混練し、その溶融混練物をポリ乳酸樹脂として、本発明の工程(1)に供すれば良い。なお、ポリ乳酸と上記樹脂を、別途溶融混練して調製したものを用いてもよいが、ポリ乳酸、上記樹脂、及びその他の原料を併せて同時に溶融混練してもよい。   Also, in the present invention, as the polylactic acid, a polymer alloy by blending polylactic acid and the above resin is used from the viewpoints of compatibility of moldability, flexibility and rigidity, heat resistance, and wear resistance of the polylactic acid resin composition. May be. Specifically, polylactic acid and the above resin may be previously melt-kneaded, and the melt-kneaded product may be used as the polylactic acid resin for the step (1) of the present invention. In addition, you may use what was prepared by melt-kneading polylactic acid and the said resin separately, but you may melt-knead polylactic acid, the said resin, and another raw material simultaneously.

ポリ乳酸と他の樹脂とのブレンド比(ポリ乳酸/他の樹脂)は、ポリ乳酸樹脂組成物の成形性、可撓性及び剛性の両立、耐熱性、耐摩耗性の観点から、95/5〜20/80が好ましく、95/5〜50/50がより好ましく、90/10〜60/40がさらに好ましい。   The blend ratio of polylactic acid and other resin (polylactic acid / other resin) is 95/5 from the viewpoint of compatibility of moldability, flexibility and rigidity, heat resistance, and abrasion resistance of the polylactic acid resin composition. -20/80 is preferable, 95 / 5-50 / 50 is more preferable, and 90 / 10-60 / 40 is more preferable.

ポリ乳酸樹脂、即ち、ポリ乳酸、又は乳酸とヒドロキシカルボン酸とのコポリマーの含有量は、ポリ乳酸樹脂組成物の強度と可撓性の両立、耐熱性、及び、生産性の観点から、樹脂組成物に含有される全樹脂中、50重量%以上が好ましく、80重量%以上がより好ましく、90重量%以上がさらに好ましく、実質的に100重量%であることがさらに好ましい。なお、ここでいうポリ乳酸樹脂には、ステレオコンプレックスポリ乳酸、及び、ポリ乳酸とポリ乳酸樹脂以外の樹脂とのブレンドによるポリマーアロイも含まれる。   The content of the polylactic acid resin, that is, the polylactic acid or the copolymer of lactic acid and hydroxycarboxylic acid is selected from the viewpoints of compatibility between strength and flexibility of the polylactic acid resin composition, heat resistance, and productivity. The total resin contained in the product is preferably 50% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, and still more preferably substantially 100% by weight. The polylactic acid resin referred to here includes stereocomplex polylactic acid and a polymer alloy obtained by blending polylactic acid and a resin other than polylactic acid resin.

ポリ乳酸樹脂の含有量は、ポリ乳酸樹脂組成物中、50重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上がさらに好ましい。   The content of the polylactic acid resin is preferably 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more in the polylactic acid resin composition.

本発明において、有機結晶核剤として用いられるフェニルホスホン酸金属塩は、置換基を有しても良いフェニル基とホスホン基(−PO(OH)2)を有するフェニルホスホン酸の金属塩であり、フェニル基の置換基としては、炭素数1〜10のアルキル基、アルコキシ基の炭素数が1〜10のアルコキシカルボニル基等が挙げられる。フェニルホスホン酸の具体例としては、無置換のフェニルホスホン酸、メチルフェニルホスホン酸、エチルフェニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ジメトキシカルボニルフェニルホスホン酸、ジエトキシカルボニルフェニルホスホン酸等が挙げられ、無置換のフェニルホスホン酸が好ましい。 In the present invention, the phenylphosphonic acid metal salt used as the organic crystal nucleating agent is a phenylphosphonic acid metal salt having a phenyl group which may have a substituent and a phosphonic group (—PO (OH) 2 ), Examples of the substituent of the phenyl group include an alkyl group having 1 to 10 carbon atoms and an alkoxycarbonyl group having 1 to 10 carbon atoms in an alkoxy group. Specific examples of phenylphosphonic acid include unsubstituted phenylphosphonic acid, methylphenylphosphonic acid, ethylphenylphosphonic acid, propylphenylphosphonic acid, butylphenylphosphonic acid, dimethoxycarbonylphenylphosphonic acid, and diethoxycarbonylphenylphosphonic acid. And unsubstituted phenylphosphonic acid is preferred.

フェニルホスホン酸の金属塩としては、リチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、バリウム、銅、亜鉛、鉄、コバルト、ニッケル等の塩が挙げられ、亜鉛塩が好ましい。   Examples of the metal salt of phenylphosphonic acid include salts of lithium, sodium, magnesium, aluminum, potassium, calcium, barium, copper, zinc, iron, cobalt, nickel, and the like, and zinc salts are preferable.

本発明においては、有機結晶核剤として、更に分子中に水酸基を少なくとも1つ有する脂肪族アミド化合物及び分子中に水酸基を少なくとも1つ有する脂肪族エステル化合物からなる群から選ばれる少なくとも1種の有機結晶核剤(以下第2有機結晶核剤という)を含有することができる。その場合、フェニルホスホン酸金属塩と第2有機結晶核剤との割合は、本発明の効果を発現する観点から、フェニルホスホン酸金属塩/第2有機結晶核剤(重量比)=20/80〜80/20が好ましく、30/70〜70/30がより好ましく、40/60〜60/40が更に好ましい。   In the present invention, the organic crystal nucleating agent is at least one organic compound selected from the group consisting of an aliphatic amide compound having at least one hydroxyl group in the molecule and an aliphatic ester compound having at least one hydroxyl group in the molecule. A crystal nucleating agent (hereinafter referred to as a second organic crystal nucleating agent) can be contained. In that case, the ratio of the phenylphosphonic acid metal salt to the second organic crystal nucleating agent is, from the viewpoint of expressing the effect of the present invention, phenylphosphonic acid metal salt / second organic crystal nucleating agent (weight ratio) = 20/80. -80/20 is preferable, 30 / 70-70 / 30 is more preferable, and 40 / 60-60 / 40 is still more preferable.

本発明に用いられる第2有機結晶核剤としては、結晶化速度とポリ乳酸樹脂の相溶性を向上させる観点から、分子中に水酸基を2つ以上有し、アミド基を2つ以上有する脂肪族アミド化合物又は分子中に水酸基を2つ以上有し、エステル基を2つ以上有する脂肪族エステル化合物が好ましく、分子中に水酸基を2つ以上有し、アミド基を2つ以上有する脂肪族アミド化合物が更に好ましい。また、第2有機結晶核剤の融点は、混練時の有機結晶核剤の分散性を向上させ、また結晶化速度を向上させる観点から、65℃以上が好ましく、70〜220℃がより好ましく、80〜190℃が更に好ましい。   The second organic crystal nucleating agent used in the present invention is an aliphatic compound having two or more hydroxyl groups and two or more amide groups in the molecule from the viewpoint of improving the crystallization speed and the compatibility of the polylactic acid resin. Preferred is an amide compound or an aliphatic ester compound having two or more hydroxyl groups in the molecule and two or more ester groups, and an aliphatic amide compound having two or more hydroxyl groups in the molecule and two or more amide groups Is more preferable. In addition, the melting point of the second organic crystal nucleating agent is preferably 65 ° C. or higher, more preferably 70 to 220 ° C. from the viewpoint of improving the dispersibility of the organic crystal nucleating agent during kneading and improving the crystallization speed. 80-190 degreeC is still more preferable.

分子中に水酸基を少なくとも1つ有する脂肪族アミド化合物の具体例としては、12−ヒドロキシステアリン酸モノエタノールアミド等のヒドロキシ脂肪酸モノアミド、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等のヒドロキシ脂肪酸ビスアミド等が挙げられ、分子中に水酸基を少なくとも1つ有する脂肪族エステル化合物の具体例としては、12−ヒドロキシステアリン酸トリグリセライド等のヒドロキシ脂肪酸エステル等が挙げられる。   Specific examples of the aliphatic amide compound having at least one hydroxyl group in the molecule include hydroxy fatty acid monoamides such as 12-hydroxy stearic acid monoethanolamide, methylene bis 12-hydroxy stearic acid amide, ethylene bis 12-hydroxy stearic acid amide, Examples thereof include hydroxy fatty acid bisamides such as hexamethylene bis 12-hydroxystearic acid amide, and specific examples of aliphatic ester compounds having at least one hydroxyl group in the molecule include hydroxy fatty acid esters such as 12-hydroxystearic acid triglyceride Is mentioned.

第2有機結晶核剤としては、ポリ乳酸樹脂組成物の成形性、耐熱性、耐衝撃性及び耐ブルーム性の観点から、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等のアルキレンビスヒドロキシステアリン酸アミド、12−ヒドロキシステアリン酸トリグリセライド等のヒドロキシステアリン酸エステルが好ましく、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド、12−ヒドロキシステアリン酸トリグリセライドがより好ましく、エチレンビス12−ヒドロキシステアリン酸アミドが更に好ましい。   Examples of the second organic crystal nucleating agent include methylene bis 12-hydroxystearic acid amide, ethylene bis 12-hydroxystearic acid amide, hexaxane from the viewpoint of moldability, heat resistance, impact resistance, and bloom resistance of the polylactic acid resin composition. Preferred are alkylene bishydroxystearic acid amides such as methylene bis 12-hydroxystearic acid amide, and hydroxystearic acid esters such as 12-hydroxystearic acid triglyceride, ethylene bis 12-hydroxystearic acid amide, hexamethylene bis 12-hydroxystearic acid amide 12-hydroxystearic acid triglyceride is more preferable, and ethylene bis 12-hydroxystearic acid amide is still more preferable.

本発明で使用する有機結晶核剤は、1種のみでもよくまた2種以上の併用を行ってもよい。   The organic crystal nucleating agent used in the present invention may be used alone or in combination of two or more.

また、本発明においては、本発明の効果を損なわない範囲で、上記有機結晶核剤以外の公知の有機結晶核剤を用いてもよいが、上記有機結晶核剤の含有量は、有機結晶核剤中、好ましくは80重量%以上、より好ましくは90重量%以上、実質的に100重量%であることが望ましい。   In the present invention, a known organic crystal nucleating agent other than the above organic crystal nucleating agent may be used as long as the effects of the present invention are not impaired. In the agent, it is preferably 80% by weight or more, more preferably 90% by weight or more, and substantially 100% by weight.

本発明におけるポリ乳酸樹脂組成物中の有機結晶核剤の総含有量は、結晶化速度の観点から、ポリ乳酸樹脂100重量部に対して、0.01〜5重量部が好ましく、0.05〜4重量部がより好ましく、0.10〜3重量部がさらに好ましく、0.2〜3重量部がさらにより好ましく、0.3〜2重量部がさらにより好ましい。   From the viewpoint of crystallization speed, the total content of the organic crystal nucleating agent in the polylactic acid resin composition in the present invention is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the polylactic acid resin. -4 parts by weight is more preferred, 0.10-3 parts by weight is more preferred, 0.2-3 parts by weight is even more preferred, and 0.3-2 parts by weight is even more preferred.

本発明におけるポリ乳酸樹脂組成物は、可塑剤を含有しなくても良好な成形性を得ることができるが、可塑剤を含有することにより更に良好な結晶化速度を得ることができ、効率的に成形することができる。   The polylactic acid resin composition in the present invention can obtain good moldability without containing a plasticizer, but can contain a better plasticization rate by containing a plasticizer, which is efficient. Can be molded.

本発明に用いられる可塑剤としては特に限定されないが、ヒドロキシ安息香酸2−エチルヘキシル等のヒドロキシ安息香酸エステル、グリセリンのエチレンオキサイド付加物の酢酸エステル等の多価アルコールエステル、フタル酸ジ−2−エチルヘキシル等のフタル酸エステル、アジピン酸ジオクチル等のアジピン酸エステル、マレイン酸ジ−n−ブチル等のマレイン酸エステル、アセチルクエン酸トリブチル等のクエン酸エステル、リン酸トリクレジル等のアルキルリン酸エステル、コハク酸とトリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステル、トリメリット酸トリオクチル等のトリカルボン酸エステル、1,3,6−ヘキサトリカルボン酸とブチルジグリコールとのエステル等の多価カルボン酸のアルキルエーテルエステル、アセチル化ポリオキシエチレンヘキシルエーテル等のアセチル化ポリオキシエチレンアルキル(アルキル基の炭素数2〜15)エーテル、エチレンオキサイドの付加モル数が3〜20のポリエチレングリコールジアセテート、ポリオキシエチレン1,4−ブタンジオールエーテルジアセテート等が挙げられる。ポリ乳酸樹脂の柔軟性、透明性、結晶化速度に優れる観点から、グリセリンのエチレンオキサイド付加物の酢酸エステル等の多価アルコールエステル、エチレンオキサイドの付加モル数が3〜10のポリエチレングリコールジアセテート、コハク酸とトリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサトリカルボン酸とブチルジグリコールとのエステル等の多価カルボン酸のアルキルエーテルエステルがより好ましい。柔軟性、透明性、結晶化速度及び耐ブリード性に優れる観点から、グリセリンのエチレンオキサイド3から6モル付加物の酢酸エステル、エチレンオキサイドの付加モル数が5〜10のポリエチレングリコールジアセテート、コハク酸とトリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステルがさらに好ましい。   Although it does not specifically limit as a plasticizer used for this invention, Polyhydric alcohol esters, such as hydroxybenzoic acid ester, such as 2-ethylhexyl hydroxybenzoic acid, the ethylene oxide adduct of glycerol, Di-2-ethylhexyl phthalate Phthalic acid esters such as dioctyl adipate, maleic acid esters such as di-n-butyl maleate, citrate esters such as acetyl tributyl citrate, alkyl phosphate esters such as tricresyl phosphate, succinic acid Ester of triethylene glycol monomethyl ether, ester of adipic acid and diethylene glycol monomethyl ether, tricarboxylic acid ester such as trioctyl trimellitic acid, 1,3,6-hexatricarboxylic acid and butyl diglycol Alkyl ether ester of polyvalent carboxylic acid such as ester with ruthenium, acetylated polyoxyethylene alkyl (alkyl group having 2 to 15 carbon atoms) ether such as acetylated polyoxyethylene hexyl ether, ethylene oxide addition mole number 3 -20 polyethylene glycol diacetate, polyoxyethylene 1,4-butanediol ether diacetate and the like. From the viewpoint of excellent flexibility, transparency, and crystallization speed of polylactic acid resin, polyhydric alcohol ester such as acetic acid ester of glycerin ethylene oxide adduct, polyethylene glycol diacetate having 3-10 addition moles of ethylene oxide, Alkyl ether esters of polyvalent carboxylic acids such as esters of succinic acid and triethylene glycol monomethyl ether, esters of adipic acid and diethylene glycol monomethyl ether, and esters of 1,3,6-hexatricarboxylic acid and butyl diglycol preferable. From the viewpoint of excellent flexibility, transparency, crystallization speed, and bleed resistance, acetic acid ester of 3 to 6 mol adduct of glycerin, polyethylene glycol diacetate having 5 to 10 mol of ethylene oxide, and succinic acid More preferred are esters of triethylene glycol monomethyl ether and esters of adipic acid and diethylene glycol monomethyl ether.

本発明におけるポリ乳酸樹脂組成物中の可塑剤の含有量は、ポリ乳酸樹脂100重量部に対し、1〜50重量部が好ましく、5〜20重量部がより好ましい。   1-50 weight part is preferable with respect to 100 weight part of polylactic acid resin, and, as for content of the plasticizer in the polylactic acid resin composition in this invention, 5-20 weight part is more preferable.

本発明におけるポリ乳酸樹脂組成物は、耐久性、耐湿熱性の観点から、加水分解抑制剤、すなわちカルボキシル基反応性末端封鎖剤を含有することが好ましい。本発明で使用するカルボキシル基反応性末端封鎖剤としては、ポリマーのカルボキシル末端基を封鎖することのできる化合物であれば特に制限はなく、ポリマーのカルボキシル末端の封鎖剤として用いられているものを用いることができる。本発明においてかかるカルボキシル基反応性末端封鎖剤は、ポリ乳酸樹脂の末端を封鎖するのみではなく、ポリ乳酸樹脂や天然由来の有機充填剤の熱分解や加水分解などで生成する酸性低分子化合物のカルボキシル基も封鎖することができる。また、上記末端封鎖剤は、熱分解により酸性低分子化合物が生成する水酸基末端も封鎖できる化合物であることがさらに好ましい。   The polylactic acid resin composition in the present invention preferably contains a hydrolysis inhibitor, that is, a carboxyl group-reactive end capping agent, from the viewpoints of durability and heat and humidity resistance. The carboxyl group-reactive end-blocking agent used in the present invention is not particularly limited as long as it is a compound that can block the carboxyl end group of the polymer, and those used as the carboxyl-terminal blocking agent of the polymer are used. be able to. In the present invention, such a carboxyl group-reactive end-blocking agent not only blocks the end of the polylactic acid resin but also an acidic low-molecular compound produced by thermal decomposition or hydrolysis of a polylactic acid resin or a natural organic filler. Carboxyl groups can also be blocked. Further, the end-capping agent is more preferably a compound that can also block the hydroxyl end where an acidic low molecular weight compound is generated by thermal decomposition.

このようなカルボキシル基反応性末端封鎖剤としては、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、カルボジイミド化合物から選ばれる少なくとも1種の化合物を使用することが好ましく、なかでもエポキシ化合物及び/又はカルボジイミド化合物が好ましい。   As such a carboxyl group-reactive end-blocking agent, it is preferable to use at least one compound selected from an epoxy compound, an oxazoline compound, an oxazine compound, and a carbodiimide compound, and among them, an epoxy compound and / or a carbodiimide compound are preferable. .

カルボジイミド化合物としては、芳香族及び又は脂肪族のポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、ポリ乳酸樹脂成形品の成形性の観点からポリカルボジイミド化合物が好ましい。   Examples of the carbodiimide compound include carbodiimide compounds such as aromatic and / or aliphatic polycarbodiimide compounds and monocarbodiimide compounds, and a polycarbodiimide compound is preferable from the viewpoint of moldability of a polylactic acid resin molded article.

ポリカルボジイミド化合物としては、ポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられ、モノカルボジイミド化合物としては、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミド等が挙げられる。   Examples of the polycarbodiimide compound include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, and poly (1,3,3). 5-triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide and the like, and examples of the monocarbodiimide compound include N, N′-di-2,6-diisopropylphenylcarbodiimide.

上記カルボジイミド化合物は、ポリ乳酸樹脂組成物の成形性、耐熱性、耐衝撃性、及び有機結晶核剤の耐ブルーム性を満たすために、単独又は2種以上組み合わせて用いてもよい。また、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA−1(日清紡績社製)を、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド及びポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミドは、スタバクゾールP及びスタバクゾールP−100(Rhein Chemie社製)を、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドはスタバクゾール1、スタバクゾール1−LF(Rhein Chemie社製)をそれぞれ購入して使用することができる。   The carbodiimide compounds may be used alone or in combination of two or more in order to satisfy the moldability, heat resistance, impact resistance, and bloom resistance of the organic crystal nucleating agent of the polylactic acid resin composition. Poly (4,4′-dicyclohexylmethane carbodiimide) is obtained from carbodilite LA-1 (manufactured by Nisshinbo Industries, Inc.), poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5-trimethyl). (Isopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide are stabuxol P and stabuxol P-100 (manufactured by Rhein Chemie), N, N'-di-2,6-diisopropylphenylcarbodiimide is stabuxol 1, stabuxol 1- LF (manufactured by Rhein Chemie) can be purchased and used.

本発明におけるポリ乳酸樹脂組成物中の加水分解抑制剤の含有量は、ポリ乳酸樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部がより好ましい。   0.05-3 weight part is preferable with respect to 100 weight part of polylactic acid resin, and, as for content of the hydrolysis inhibitor in the polylactic acid resin composition in this invention, 0.1-2 weight part is more preferable.

本発明におけるポリ乳酸樹脂組成物は、更に剛性等の物性向上の観点から、無機充填剤を含有することが好ましい。本発明で使用する無機充填剤としては、通常熱可塑性樹脂の強化に用いられる繊維状、板状、粒状、粉末状のものを用いることができる。具体的には、ガラス繊維、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、アスベスト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維などの繊維状無機充填剤、ガラスフレーク、非膨潤性雲母、膨潤性雲母、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、有機変性ベントナイト、有機変性モンモリロナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、ケイ酸アルミニウム、酸化ケイ素、石膏、ノバキュライト、ドーソナイト及び白土などの板状や粒状の無機充填剤が挙げられる。これらの無機充填剤の中では、特に炭素繊維、ガラス繊維、ワラステナイト、マイカ、タルク及びカオリンが好ましい。また、繊維状充填剤のアスペクト比は5以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましい。   The polylactic acid resin composition in the present invention preferably further contains an inorganic filler from the viewpoint of improving physical properties such as rigidity. As the inorganic filler used in the present invention, fibers, plates, granules, and powders that are usually used for reinforcing thermoplastic resins can be used. Specifically, glass fiber, asbestos fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, asbestos, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber and other fibrous inorganic fillers, glass flakes, non-swellable mica, swellable mica, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, organic modified bentonite, organic modified montmorillonite, dolomite, kaolin, fine powder silicic acid, feldspar powder, potassium titanate, shirasu balloon, calcium carbonate Magnesium carbonate, barium sulfate, calcium oxide, aluminum oxide, titanium oxide, aluminum silicate, silicon oxide, gypsum, novaculite, include plate-like or granular inorganic fillers such as dawsonite and white clay. Among these inorganic fillers, carbon fiber, glass fiber, wollastonite, mica, talc and kaolin are particularly preferable. The aspect ratio of the fibrous filler is preferably 5 or more, more preferably 10 or more, and further preferably 20 or more.

上記の無機充填剤は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆又は集束処理されていてもよく、アミノシランやエポキシシランなどのカップリング剤などで処理されていても良い。また、無機充填剤の配合量は、ポリ乳酸樹脂100重量部に対して、1〜100重量部が好ましく、5〜50重量部がより好ましい。   The inorganic filler may be coated or focused with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin, or a coupling agent such as aminosilane or epoxysilane. May be processed. Moreover, 1-100 weight part is preferable with respect to 100 weight part of polylactic acid resins, and, as for the compounding quantity of an inorganic filler, 5-50 weight part is more preferable.

本発明におけるポリ乳酸樹脂組成物は、更に強度、耐熱性、耐衝撃性等の物性向上の観点から、高強度有機合成繊維を含有することができる。高強度有機合成繊維の具体例としては、アラミド繊維、ポリアリレート繊維、PBO繊維等が挙げられ、耐熱性の観点からアラミド繊維が好ましい。   The polylactic acid resin composition in the present invention can further contain high-strength organic synthetic fibers from the viewpoint of improving physical properties such as strength, heat resistance and impact resistance. Specific examples of the high-strength organic synthetic fibers include aramid fibers, polyarylate fibers, PBO fibers, and the like, and aramid fibers are preferable from the viewpoint of heat resistance.

本発明におけるポリ乳酸樹脂組成物は、更に難燃化剤を含有することができる。難燃化剤の具体例としては、臭素又は塩素を含有するハロゲン系化合物、三酸化アンチモンなどのアンチモン化合物、無機水和物(水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物)及びリン化合物などが挙げられる。安全性の観点から、無機水和物が好ましい。難燃化剤は表面をシランカップリング剤等で表面処理されたものであってもよい。難燃化剤の含有量は、難燃剤の効果を確認しながら決められるが、良好な難燃効果を得、また加工時の流動特性や、成形体の強度、組成物の可撓性、及び耐熱性の低下を抑制する観点から、ポリ乳酸樹脂100重量部に対して、30〜150重量部が好ましく、50〜140重量部がより好ましく、60〜130重量部がさらに好ましい。   The polylactic acid resin composition in the present invention can further contain a flame retardant. Specific examples of flame retardants include halogen compounds containing bromine or chlorine, antimony compounds such as antimony trioxide, inorganic hydrates (metal hydroxides such as aluminum hydroxide and magnesium hydroxide) and phosphorus compounds Etc. From the viewpoint of safety, inorganic hydrates are preferred. The flame retardant may have a surface treated with a silane coupling agent or the like. The content of the flame retardant is determined while confirming the effect of the flame retardant, but a good flame retardant effect is obtained, and the flow characteristics during processing, the strength of the molded body, the flexibility of the composition, and From the viewpoint of suppressing a decrease in heat resistance, the amount is preferably 30 to 150 parts by weight, more preferably 50 to 140 parts by weight, and still more preferably 60 to 130 parts by weight with respect to 100 parts by weight of the polylactic acid resin.

本発明におけるポリ乳酸樹脂組成物は、本発明の目的を損なわない範囲で、通常の添加剤、例えば紫外線吸収剤(ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、芳香族ベンゾエート系化合物、蓚酸アニリド系化合物、シアノアクリレート系化合物及びヒンダードアミン系化合物)、熱安定剤(ヒンダードフェノール系化合物、ホスファイト系化合物、チオエーテル系化合物)、帯電防止剤、滑剤、発泡剤、離形剤、染料及び顔料を含む着色剤などの1種又は2種以上をさらに含有することができる。   The polylactic acid resin composition in the present invention is an ordinary additive such as an ultraviolet absorber (benzophenone compound, benzotriazole compound, aromatic benzoate compound, oxalic acid anilide compound, as long as the object of the present invention is not impaired. Colorants including cyanoacrylate compounds and hindered amine compounds), heat stabilizers (hindered phenol compounds, phosphite compounds, thioether compounds), antistatic agents, lubricants, foaming agents, mold release agents, dyes and pigments 1 type, or 2 or more types, such as these, can further be contained.

[工程(1)]
本発明の工程(1)は、ポリ乳酸樹脂、第1有機結晶核剤、更に必要によりその他成分を含有するポリ乳酸樹脂組成物を、超臨界流体と接触させながら溶融混練する工程である。
[Step (1)]
Step (1) of the present invention is a step of melt-kneading a polylactic acid resin composition containing a polylactic acid resin, a first organic crystal nucleating agent, and, if necessary, other components as necessary, in contact with a supercritical fluid.

超臨界流体とは、超臨界状態の気体を圧縮し液体化したものであり、具体的には二酸化炭素、水、炭化水素等が挙げられ、二酸化炭素が好ましい。二酸化炭素の臨界温度は31.2℃であり、これ以上の温度では圧力による相変化を生じない超臨界状態を呈する。超臨界状態の気体を圧縮し密度が液体に近づくと溶解力が高まり、ポリ乳酸樹脂組成物への溶解度が急激に上昇する。そのため、実用的には7MPa以上の圧力で圧縮した二酸化炭素がより好ましい。   The supercritical fluid is a liquid obtained by compressing a gas in a supercritical state, and specifically includes carbon dioxide, water, hydrocarbons, etc. Carbon dioxide is preferred. Carbon dioxide has a critical temperature of 31.2 ° C., and at a temperature higher than that, it exhibits a supercritical state in which no phase change occurs due to pressure. When a gas in a supercritical state is compressed and the density approaches a liquid, the dissolving power increases and the solubility in the polylactic acid resin composition increases rapidly. Therefore, practically, carbon dioxide compressed at a pressure of 7 MPa or more is more preferable.

工程(1)において、ポリ乳酸樹脂組成物を超臨界流体と接触させながら溶融混練する方法としては、例えば、超臨界流体の導入口を有する押出し機や射出成形機等を用い、二酸化炭素等の超臨界流体を圧入しながらポリ乳酸樹脂組成物を溶融混練する方法が挙げられる。ポリ乳酸樹脂組成物の結晶化速度を向上させる観点から、超臨界流体は、ポリ乳酸樹脂組成物に対し0.1〜10重量%の割合で圧入させることが好ましく、0.5〜8重量%の割合で圧入させることがより好ましい。   In the step (1), as a method of melt-kneading the polylactic acid resin composition in contact with the supercritical fluid, for example, using an extruder or an injection molding machine having a supercritical fluid inlet, carbon dioxide or the like is used. Examples thereof include a method of melt-kneading the polylactic acid resin composition while press-fitting a supercritical fluid. From the viewpoint of improving the crystallization speed of the polylactic acid resin composition, the supercritical fluid is preferably pressed into the polylactic acid resin composition at a ratio of 0.1 to 10% by weight, preferably 0.5 to 8% by weight. It is more preferable to press-fit at a ratio of

工程(1)における溶融混練温度は、本発明の有機結晶核剤等の分散性の観点から、好ましくは170〜240℃であり、より好ましくは170〜220℃である。圧入された二酸化炭素等の超臨界流体は溶融状態のポリ乳酸樹脂組成物と機械的に混練されることが好ましく、これにより溶融状態のポリ乳酸樹脂組成物に均一に高濃度の超臨界流体が溶解する。   The melt kneading temperature in the step (1) is preferably 170 to 240 ° C, more preferably 170 to 220 ° C, from the viewpoint of dispersibility of the organic crystal nucleating agent and the like of the present invention. The injected supercritical fluid such as carbon dioxide is preferably mechanically kneaded with the molten polylactic acid resin composition, so that a highly concentrated supercritical fluid is uniformly added to the molten polylactic acid resin composition. Dissolve.

[工程(2)]
本発明の工程(2)は、工程(1)で得られた溶融物を金型内に充填し、成形する工程である。本発明のポリ乳酸樹脂射出成形体は、物性を維持する観点から無発泡であることが好ましい。従って、本発明のポリ乳酸樹脂射出成形体の発泡倍率は、1.5倍以下が好ましく、1.2倍以下がより好ましく、1.1倍以下がさらに好ましく、1.05倍以下がさらにより好ましい。本発明のポリ乳酸樹脂射出成形体の発泡倍率を低く抑える方法としては、得られる射出成形体の形状を薄肉に設計したり、射出速度を上げたり、或いは、金型内を超臨界流体の超臨界状態を保つために予め窒素ガスなどの気体で加圧しておくことが好ましく、金型内の圧力は超臨界流体の臨界圧力以上が好ましい。
[Step (2)]
The step (2) of the present invention is a step of filling the mold with the melt obtained in the step (1) and molding it. The polylactic acid resin injection-molded article of the present invention is preferably non-foamed from the viewpoint of maintaining physical properties. Therefore, the expansion ratio of the polylactic acid resin injection-molded article of the present invention is preferably 1.5 times or less, more preferably 1.2 times or less, further preferably 1.1 times or less, and even more preferably 1.05 times or less. preferable. As a method for suppressing the foaming ratio of the polylactic acid resin injection-molded product of the present invention to be low, the shape of the resulting injection-molded product is designed to be thin, the injection speed is increased, or the inside of the mold is supercritical fluid supercritical fluid. In order to maintain a critical state, it is preferable to pressurize in advance with a gas such as nitrogen gas, and the pressure in the mold is preferably equal to or higher than the critical pressure of the supercritical fluid.

工程(2)における金型温度は、ポリ乳酸樹脂組成物の結晶化速度向上の観点から、10〜90℃が好ましく、20〜85℃がより好ましく、50〜85℃が更に好ましい。   The mold temperature in the step (2) is preferably 10 to 90 ° C, more preferably 20 to 85 ° C, and still more preferably 50 to 85 ° C, from the viewpoint of improving the crystallization speed of the polylactic acid resin composition.

本発明は、特定のポリ乳酸樹脂組成物に超臨界流体を接触させることにより、可塑剤を用いなくても、優れた耐熱性を有するポリ乳酸樹脂射出成形体を、短い成形時間で効率的に得ることができ、更に低い金型温度でも優れた成形性を示すという格別優れた効果を有する。本発明の格別優れた効果が発現できる理由は定かではないが、特定のポリ乳酸樹脂組成物に含有される有機結晶核剤と超臨界流体との相乗的な作用によるものと考えられる。   The present invention allows a polylactic acid resin injection molded article having excellent heat resistance to be efficiently produced in a short molding time without using a plasticizer by bringing a supercritical fluid into contact with a specific polylactic acid resin composition. It can be obtained and has a particularly excellent effect of exhibiting excellent moldability even at a lower mold temperature. The reason why the exceptional effect of the present invention can be manifested is not clear, but is considered to be due to the synergistic action of the organic crystal nucleating agent contained in the specific polylactic acid resin composition and the supercritical fluid.

ポリ乳酸樹脂組成物の合成例1
ポリ乳酸樹脂組成物として、表1に示す本発明品(A〜D)及び比較品(a)の原料を、2軸押出機((株)池貝製 PCM-45)にて190℃で溶融混練し、ストランドカットを行い、ポリ乳酸樹脂組成物のペレットを得た。得られたペレットは、70℃、減圧下で1日乾燥し、水分量を500ppm以下とした。
Synthesis example 1 of polylactic acid resin composition
As the polylactic acid resin composition, the raw materials of the products of the present invention (AD) and comparative product (a) shown in Table 1 are melt-kneaded at 190 ° C. with a twin-screw extruder (PCM-45 manufactured by Ikegai Co., Ltd.). Then, strand cutting was performed to obtain pellets of the polylactic acid resin composition. The obtained pellets were dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.

Figure 2009083485
Figure 2009083485

なお、表1における原料は以下のものを示す。
<ポリ乳酸樹脂>
*1:ポリ乳酸樹脂(トヨタ自動車(株)製、エコプラスチックU’zS−12)
(光学純度99.6%、重量平均分子量112000、残存モノマー173ppm)
*2:ポリ乳酸樹脂(三井化学(株)製、LACEA H−400)
(光学純度98.5%、重量平均分子量142000、残存モノマー1200ppm)
<フェニルホスホン酸金属塩>
*3:無置換のフェニルホスホン酸亜鉛塩(日産化学工業(株)製、品番:PPA−Zn)
<第2有機結晶核剤>
*4:エチレンビス12−ヒドロキシステアリン酸アミド(日本化成(株)製、スリパックス H)
<可塑剤>
*5:下記可塑剤の合成例1で得られたコハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
<加水分解抑制剤>
*6:スタバクゾール1−LF(ラインケミージャパン(株)製)
<無機充填剤>
*7:ガラス繊維(日本電気硝子(株)製、ECS03T−187)
<難燃化剤>
*8:水酸化アルミニウム(日本軽金属(株)、BT703ST)
In addition, the raw material in Table 1 shows the following.
<Polylactic acid resin>
* 1: Polylactic acid resin (manufactured by Toyota Motor Corporation, Eco-Plastic U'zS-12)
(Optical purity 99.6%, weight average molecular weight 112000, residual monomer 173 ppm)
* 2: Polylactic acid resin (manufactured by Mitsui Chemicals, LACEA H-400)
(Optical purity 98.5%, weight average molecular weight 142000, residual monomer 1200 ppm)
<Phenylphosphonic acid metal salt>
* 3: Unsubstituted zinc phenylphosphonic acid salt (manufactured by Nissan Chemical Industries, product number: PPA-Zn)
<Second organic crystal nucleating agent>
* 4: Ethylene bis 12-hydroxystearic acid amide (Nippon Kasei Co., Ltd., SLIPAX H)
<Plasticizer>
* 5: Diester of succinic acid and triethylene glycol monomethyl ether obtained in Synthesis Example 1 of the following plasticizer <Hydrolysis inhibitor>
* 6: Starvacol 1-LF (manufactured by Rhein Chemie Japan)
<Inorganic filler>
* 7: Glass fiber (manufactured by Nippon Electric Glass Co., Ltd., ECS03T-187)
<Flame retardant>
* 8: Aluminum hydroxide (Nippon Light Metal Co., Ltd., BT703ST)

可塑剤の合成例1
攪拌機、温度計、脱水管を備えた3Lフラスコに無水コハク酸500g、トリエチレングリコールモノメチルエーテル2463g、パラトルエンスルホン酸一水和物9.5gを仕込み、空間部に窒素(500mL/分)を吹き込みながら、減圧下4〜10.7kPa、110℃で15時間反応させた。反応液の酸価は1.6(KOHmg/g)であった。反応液に吸着剤キョワード500SH(協和化学工業(株)製)27gを添加して80℃、2.7kPaで45分間攪拌してろ過した後、液温115〜200℃、圧力0.03kPaでトリエチレングリコールモノメチルエーテルを留去し、80℃に冷却後、残液を減圧ろ過して、ろ液として、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステルを得た。得られたジエステルは、酸価0.2(KOHmg/g)、鹸化価276(KOHmg/g)、水酸基価1以下(KOHmg/g)、色相APHA200であった。
Synthesis example 1 of plasticizer
A 3 L flask equipped with a stirrer, thermometer and dehydration tube was charged with 500 g of succinic anhydride, 2463 g of triethylene glycol monomethyl ether, and 9.5 g of paratoluenesulfonic acid monohydrate, and nitrogen (500 mL / min) was blown into the space. The reaction was carried out at 4 to 10.7 kPa and 110 ° C. for 15 hours under reduced pressure. The acid value of the reaction solution was 1.6 (KOH mg / g). After adding 27 g of adsorbent Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) to the reaction solution and stirring and filtering at 80 ° C. and 2.7 kPa for 45 minutes, the solution temperature was 115 to 200 ° C. and the pressure was 0.03 kPa. After distilling off ethylene glycol monomethyl ether and cooling to 80 ° C., the remaining liquid was filtered under reduced pressure to obtain a diester of succinic acid and triethylene glycol monomethyl ether as a filtrate. The obtained diester had an acid value of 0.2 (KOHmg / g), a saponification value of 276 (KOHmg / g), a hydroxyl value of 1 or less (KOHmg / g), and a hue of APHA200.

実施例1〜4、比較例1
合成例1で得られたポリ乳酸樹脂組成物(本発明品A〜D及び比較品a)のペレットを、シリンダー温度を200℃とした射出成形機((株)日本製鋼所製 Mucell 85トン)に供給して溶融するとともに、射出成形機のシリンダー部に設けられたガス導入口から、8MPaの圧力の超臨界流体(超臨界状態の二酸化炭素)を、表2に示す濃度で圧入し、スクリューで混練して溶融状態のポリ乳酸樹脂組成物と接触させた。射出成形機の先端に取り付けられた金型内の温度を表2に示す温度に保ち、この金型内に、超臨界状態の二酸化炭素と接触させた溶融ポリ乳酸樹脂組成物を、表2に示すような成形に必要な射出圧で射出成形し、結晶化が終了するまで保持してテストピース(150mm×30mm×厚み1mm)を得た。得られたテストピースの離型に必要な金型保持時間を下記の基準で評価した。これらの結果を表2に示す。
Examples 1-4, Comparative Example 1
An injection molding machine with a cylinder temperature of 200 ° C. (mucell 85 tons, manufactured by Nippon Steel), which is a pellet of the polylactic acid resin composition (invention products A to D and comparative product a) obtained in Synthesis Example 1 The supercritical fluid (supercritical carbon dioxide) at a pressure of 8 MPa is press-fitted at a concentration shown in Table 2 from a gas inlet provided in the cylinder part of the injection molding machine, and screwed. And kneaded with a polylactic acid resin composition in a molten state. The temperature in the mold attached to the tip of the injection molding machine is maintained at the temperature shown in Table 2, and the molten polylactic acid resin composition brought into contact with carbon dioxide in a supercritical state in this mold is shown in Table 2. The test piece (150 mm × 30 mm × thickness 1 mm) was obtained by injection molding at the injection pressure required for molding as shown and held until crystallization was completed. The mold holding time required for releasing the obtained test piece was evaluated according to the following criteria. These results are shown in Table 2.

<離型に必要な金型保持時間の評価基準>
表2に示す成形条件において、各テストピースの変形がなく、取り出しが容易と判断されるまでに有する時間を、離型に必要な金型保持時間とした。尚、金型内部及びランナー部分でテストピースの溶融結晶化速度が速いほど、離型に必要な金型保持時間は短くなる。
<Evaluation criteria for mold holding time required for mold release>
Under the molding conditions shown in Table 2, the time required until each test piece was not deformed and taken out was determined to be the mold holding time required for mold release. Note that the higher the melt crystallization speed of the test piece in the mold and the runner part, the shorter the mold holding time required for mold release.

比較例2〜3
合成例1で得られたポリ乳酸樹脂組成物(本発明品A,B)のペレットを用い、超臨界状態の二酸化炭素を圧入せず、表2に示す金型温度で、表2に示すような成形に必要な射出圧で射出成形すること以外は、実施例1と同様にしてテストピースを得、同様に離型に必要な金型保持時間を評価した。これらの結果を表2に示す。
Comparative Examples 2-3
As shown in Table 2, the pellets of the polylactic acid resin composition (the products A and B of the present invention) obtained in Synthesis Example 1 were used, and carbon dioxide in a supercritical state was not injected, and the mold temperatures shown in Table 2 were used. A test piece was obtained in the same manner as in Example 1 except that injection molding was performed at an injection pressure required for proper molding, and the mold holding time required for mold release was evaluated in the same manner. These results are shown in Table 2.

Figure 2009083485
Figure 2009083485

表2の結果から、フェニルホスホン酸金属塩を含有しない比較例1、又はポリ乳酸樹脂組成物の溶融混練時に超臨界流体と接触させなかった比較例2〜3に対し、本発明の製造方法は、フェニルホスホン酸金属塩と超臨界流体の相乗効果によって著しく金型保持時間を短縮することができ、成形性が飛躍的に向上することがわかった。その効果は金型温度が低くなるほど顕著であった。また、ポリ乳酸樹脂組成物の溶融混練時に超臨界流体と接触させることによって成形時の射出圧も低減することがわかった。   From the results of Table 2, the production method of the present invention is compared to Comparative Example 1 that does not contain a phenylphosphonic acid metal salt, or Comparative Examples 2 to 3 that were not brought into contact with the supercritical fluid during melt kneading of the polylactic acid resin composition. It was found that the mold holding time can be remarkably shortened by the synergistic effect of phenylphosphonic acid metal salt and supercritical fluid, and the moldability is remarkably improved. The effect became more remarkable as the mold temperature was lowered. It has also been found that the injection pressure during molding is reduced by bringing the polylactic acid resin composition into contact with a supercritical fluid during melt kneading.

実施例5〜6
合成例1で得られたポリ乳酸樹脂組成物(本発明品B〜C)のペレットを用い、表3に示す金型温度、超臨界二酸化炭素濃度及び金型保持時間とすること以外は実施例1と同様にして射出成形した。得られたテストピース〔平板(70mm×40mm×3mm)及び角柱状試験片(125mm×12mm×6mm)〕について、角柱状試験片(125mm×12mm×6mm)は曲げ試験及び熱変形温度を、平板(70mm×40mm×3mm)は相対結晶化度、耐ブリード性及び発泡倍率を、それぞれ下記の方法で評価した。これらの結果を表3に示す。
Examples 5-6
Example using the pellets of the polylactic acid resin composition (the products B to C of the present invention) obtained in Synthesis Example 1 except that the mold temperature, supercritical carbon dioxide concentration and mold holding time shown in Table 3 are used. Injection molding was carried out in the same manner as in 1. About the obtained test piece [flat plate (70 mm × 40 mm × 3 mm) and prismatic test piece (125 mm × 12 mm × 6 mm)], the prismatic test piece (125 mm × 12 mm × 6 mm) is subjected to a bending test and a thermal deformation temperature. (70 mm × 40 mm × 3 mm) was evaluated for relative crystallinity, bleed resistance and expansion ratio by the following methods. These results are shown in Table 3.

<金型離型性の評価基準>
○:非常に離れ易い(テストピースの変形がなく、取り出しが容易。)
△:若干離れ難い(テストピースの変形が若干あり、取り出しが困難。)
×:離れない(テストピースの変形が大きく、ランナー部から離れない。)
尚、金型離型性は、金型内部及びランナー部分でテストピースの溶融結晶化速度が速いほど成形性が良好となる。
<Evaluation criteria for mold releasability>
○: Very easy to leave (the test piece is not deformed and can be taken out easily)
Δ: Slightly difficult to separate (test piece is slightly deformed and difficult to remove)
X: Not separated (the test piece is greatly deformed and does not leave the runner)
The mold releasability becomes better as the melt crystallization speed of the test piece increases in the mold and in the runner portion.

<曲げ試験>
角柱状試験片(125mm×12mm×6mm)について、JIS K7203に基づいて、テンシロン(オリエンテック製テンシロン万能試験機RTC−1210A)を用いて曲げ試験を行い、曲げ弾性率を求めた。クロスヘッド速度は3mm/min。
<Bending test>
The prismatic test piece (125 mm × 12 mm × 6 mm) was subjected to a bending test using Tensilon (Orientec Tensilon Universal Testing Machine RTC-1210A) based on JIS K7203 to obtain the flexural modulus. Crosshead speed is 3mm / min.

<熱変形温度(耐熱性)>
角柱状試験片(125mm×12mm×6mm)について、JIS-K7207に基づいて、熱変形温度測定機(東洋精機製作所製 B-32)を使用して、荷重0.45MPaにおいて0.025mmたわむときの温度を測定した。この温度が高い方が耐熱性に優れていることを示す。
<Heat deformation temperature (heat resistance)>
For a prismatic test piece (125 mm x 12 mm x 6 mm), the temperature at which the heat deflection temperature measuring machine (B-32 manufactured by Toyo Seiki Seisakusho Co., Ltd.) is deflected by 0.025 mm at a load of 0.45 MPa, based on JIS-K7207. It was measured. The higher this temperature, the better the heat resistance.

<相対結晶化度>
射出成形後の平板(70mm×40mm×3mm)のテストピースを粉砕し、7.0〜8.0mg精秤し、アルミパンに封入後、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、1stRUNとして、昇温速度20℃/分で20℃から200℃まで昇温し、200℃で5分間保持した後、降温速度−20℃/分で200℃から20℃まで降温し、20℃で1分間保持した後、さらに2ndRUNとして、昇温速度20℃/分で20℃から200℃まで昇温した。1stRUNに観測されるポリ乳酸樹脂の冷結晶化エンタルピーの絶対値ΔHcc、2ndRUNに観測される結晶融解エンタルピーΔHmを求め、得られた値から、下記式により相対結晶化度(%)を求めた。
相対結晶化度(%)={(ΔHm−ΔHcc)/ΔHm}×100
<Relative crystallinity>
A flat test piece (70 mm x 40 mm x 3 mm) after injection molding is pulverized, precisely weighed 7.0-8.0 mg, sealed in an aluminum pan, and then used with a DSC device (Perkin Elmer Diamond DSC). The temperature is increased from 20 ° C. to 200 ° C. at a temperature increase rate of 20 ° C./min, held at 200 ° C. for 5 minutes, and then the temperature is decreased from 200 ° C. to 20 ° C. at a temperature decrease rate of −20 ° C./min. After maintaining for a minute, the temperature was further increased from 20 ° C. to 200 ° C. at a rate of temperature increase of 20 ° C./min as 2nd RUN. The absolute value ΔHcc of the cold crystallization enthalpy of the polylactic acid resin observed at 1st RUN was obtained, and the crystal melting enthalpy ΔHm observed at 2nd RUN was obtained. From the obtained value, the relative crystallinity (%) was obtained by the following formula.
Relative crystallinity (%) = {(ΔHm−ΔHcc) / ΔHm} × 100

<耐ブリード性>
射出成形後の平板(70mm×40mm×3mm)について、80℃のオーブンの中に1ヶ月間放置し、その表面における有機結晶核剤及び/又は可塑剤のブリードの有無を肉眼で観察した。
<Bleed resistance>
The injection-molded flat plate (70 mm × 40 mm × 3 mm) was left in an oven at 80 ° C. for 1 month, and the presence or absence of organic crystal nucleating agent and / or plasticizer bleed on the surface was observed with the naked eye.

<発泡倍率>
発泡倍率は下記式により求めた。
<Foaming ratio>
The expansion ratio was determined by the following formula.

Figure 2009083485
Figure 2009083485

なお、成形体の密度は、JIS K−7112(B法:ピクノメーター法)に基づいて測定した。   In addition, the density of the molded object was measured based on JIS K-7112 (B method: pycnometer method).

Figure 2009083485
Figure 2009083485

表3の結果から、本発明の製造方法は、フェニルホスホン酸金属塩と超臨界流体の相乗効果によって、高い結晶化度を達成することができ、優れた耐熱性を有するポリ乳酸樹脂射出成形体が得られることがわかった。   From the results shown in Table 3, the production method of the present invention can achieve a high crystallinity by the synergistic effect of the phenylphosphonic acid metal salt and the supercritical fluid, and has excellent heat resistance. Was found to be obtained.

また、本発明の製造方法は、可塑剤を含有しなくても良好な成形性を得ることができる。これは、本発明の製造方法は、可塑剤を含有すると剛性が低下するところ、可塑剤を含有しなくても良好な成形性を得ることができるので、剛性(曲げ弾性率)の高いポリ乳酸樹脂成形体を得ることができる(実施例5と実施例6との対比で、剛性の高いポリ乳酸樹脂成形体を得られていることからわかる。)。   Moreover, the manufacturing method of this invention can acquire favorable moldability, even if it does not contain a plasticizer. This is because when the production method of the present invention contains a plasticizer, the rigidity is lowered, but good moldability can be obtained without containing a plasticizer, so that polylactic acid having a high rigidity (flexural modulus) is obtained. A resin molded body can be obtained (as can be seen from the comparison between Example 5 and Example 6 that a highly rigid polylactic acid resin molded body is obtained).

従って、本発明の製造方法は、剛性の高いポリ乳酸樹脂成形体を要求される分野においては、可塑剤を含有して良好な成形性を得る技術に比べて、有利な技術であることがわかる。   Therefore, it can be seen that the production method of the present invention is an advantageous technique compared to a technique for obtaining good moldability by containing a plasticizer in a field where a highly rigid polylactic acid resin molded body is required. .

ポリ乳酸樹脂組成物の合成例2
ポリ乳酸樹脂組成物として、表4に示す本発明品(E〜H)及び比較品(b)の原料を、2軸押出機((株)池貝製 PCM-45)にて230℃で溶融混練し、ストランドカットを行い、ポリ乳酸樹脂組成物のペレットを得た。得られたペレットは、80℃、除湿乾燥機で5時間乾燥し、水分量を500ppm以下とした。
Synthesis example 2 of polylactic acid resin composition
As the polylactic acid resin composition, the raw materials of the products of the present invention (E to H) and the comparative product (b) shown in Table 4 are melt-kneaded at 230 ° C. with a twin-screw extruder (PCM-45 manufactured by Ikegai Co., Ltd.). Then, strand cutting was performed to obtain pellets of the polylactic acid resin composition. The obtained pellets were dried at 80 ° C. with a dehumidifying dryer for 5 hours, and the water content was adjusted to 500 ppm or less.

Figure 2009083485
Figure 2009083485

なお、表4における原料は、表1における原料と同じものを示し、それ以外のものは以下に示す。
<ポリ乳酸樹脂>
*9:下記ポリ乳酸樹脂の合成例1で得られたポリ乳酸樹脂(ポリ−L−乳酸樹脂)
*10:下記ポリ乳酸樹脂の合成例2で得られたポリ乳酸樹脂(ポリ−D−乳酸樹脂)
In addition, the raw material in Table 4 shows the same thing as the raw material in Table 1, and other things are shown below.
<Polylactic acid resin>
* 9: Polylactic acid resin (poly-L-lactic acid resin) obtained in Synthesis Example 1 of the following polylactic acid resin
* 10: Polylactic acid resin (poly-D-lactic acid resin) obtained in Synthesis Example 2 of the following polylactic acid resin

ポリ乳酸樹脂の合成例1(ポリ−L−乳酸樹脂の製造)
L―ラクチド(株式会社武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸すずを0.005重量部加え、窒素雰囲気下攪拌翼のついた反応機中にて、180℃で2時間反応し、その後、減圧して残存するラクチドを除去し、チップ化し、ポリ−L−乳酸を得た。得られたポリ−L−乳酸の重量平均分子量は11万、ガラス転移点(Tg)60℃、融点は166℃であった。
Synthesis example 1 of polylactic acid resin (production of poly-L-lactic acid resin)
To 100 parts by weight of L-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity: 100%), 0.005 part by weight of octylic acid tin was added, and 180 ° C. in a reactor equipped with a stirring blade in a nitrogen atmosphere. And then reduced pressure to remove the remaining lactide, and chipped to obtain poly-L-lactic acid. The obtained poly-L-lactic acid had a weight average molecular weight of 110,000, a glass transition point (Tg) of 60 ° C., and a melting point of 166 ° C.

ポリ乳酸樹脂の合成例2(ポリ−D−乳酸樹脂の製造)
D―ラクチド(株式会社武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸すずを0.005重量部加え、窒素雰囲気下攪拌翼のついた反応機中にて、180℃で2時間反応し、その後、減圧して残存するラクチドを除去し、チップ化し、ポリ−D−乳酸を得た。得られたポリ−D−乳酸の重量平均分子量は11万、ガラス転移点(Tg)60℃、融点は167℃であった。
Synthesis example 2 of polylactic acid resin (production of poly-D-lactic acid resin)
To 100 parts by weight of D-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%), 0.005 part by weight of octylic acid tin was added, and 180 ° C. in a reactor equipped with a stirring blade under a nitrogen atmosphere. The mixture was then reacted for 2 hours and then reduced in pressure to remove the remaining lactide and chipped to obtain poly-D-lactic acid. The obtained poly-D-lactic acid had a weight average molecular weight of 110,000, a glass transition point (Tg) of 60 ° C., and a melting point of 167 ° C.

実施例7〜10、及び比較例4
合成例2で得られたポリ乳酸樹脂組成物(本発明品E〜H及び比較品b)のペレットを、シリンダー温度を230℃とした射出成形機((株)日本製鋼所製 Mucell 85トン)に供給して溶融するとともに、射出成形機のシリンダー部に設けられたガス導入口から、8MPaの圧力の超臨界流体(超臨界状態の二酸化炭素)を、表5に示す濃度で圧入し、スクリューで混練して溶融状態のポリ乳酸樹脂組成物と接触させた。射出成形機の先端に取り付けられた金型内の温度を表5に示す温度に保ち、この金型内に、超臨界状態の二酸化炭素と接触させた溶融ポリ乳酸樹脂組成物を、表5に示すような成形に必要な射出圧で射出成形し、結晶化が終了するまで保持してテストピース(150mm×30mm×厚み1mm)を得た。得られたテストピースの離型に必要な金型保持時間を実施例1と同様にして評価した。これらの結果を表5に示す。
Examples 7 to 10 and Comparative Example 4
An injection molding machine having a cylinder temperature of 230 ° C. (mucell 85 tons, manufactured by Nippon Steel), which is a pellet of the polylactic acid resin composition (present products E to H and comparative product b) obtained in Synthesis Example 2 Is supplied and melted, and a supercritical fluid (carbon dioxide in a supercritical state) with a pressure of 8 MPa is press-fitted at a concentration shown in Table 5 from a gas inlet provided in a cylinder portion of an injection molding machine. And kneaded with a polylactic acid resin composition in a molten state. The temperature in the mold attached to the tip of the injection molding machine was maintained at the temperature shown in Table 5, and the molten polylactic acid resin composition brought into contact with carbon dioxide in a supercritical state in this mold is shown in Table 5. The test piece (150 mm × 30 mm × thickness 1 mm) was obtained by injection molding at the injection pressure required for molding as shown and held until crystallization was completed. The mold holding time required for releasing the obtained test piece was evaluated in the same manner as in Example 1. These results are shown in Table 5.

比較例5〜6
合成例2で得られたポリ乳酸樹脂組成物(本発明品E,F)のペレットを用い、超臨界状態の二酸化炭素を圧入せず、表5に示す金型温度で、表5に示すような成形に必要な射出圧で射出成形すること以外は、実施例9と同様にしてテストピースを得、同様に離型に必要な金型保持時間を評価した。これらの結果を表5に示す。
Comparative Examples 5-6
As shown in Table 5, the pellets of the polylactic acid resin composition (Products E and F of the present invention) obtained in Synthesis Example 2 were used, and carbon dioxide in a supercritical state was not injected, and the mold temperatures shown in Table 5 were used. A test piece was obtained in the same manner as in Example 9 except that injection molding was performed at an injection pressure required for proper molding, and the mold holding time required for mold release was evaluated in the same manner. These results are shown in Table 5.

Figure 2009083485
Figure 2009083485

表5の結果から、ステレオコンプレックスポリ乳酸樹脂においても、フェニルホスホン酸金属塩を含有しない比較例4、又はポリ乳酸樹脂組成物の溶融混練時に超臨界流体と接触させなかった比較例5〜6に対し、本発明の製造方法は、フェニルホスホン酸金属塩と超臨界流体の相乗効果によって著しく金型保持時間を短縮することができ、成形性が飛躍的に向上することがわかった。その効果は金型温度が低くなるほど顕著であった。また、ポリ乳酸樹脂組成物の溶融混練時に超臨界
流体と接触させることによって成形時の射出圧も低減することがわかった。
From the result of Table 5, also in the stereocomplex polylactic acid resin, it is comparative example 4 which does not contain phenylphosphonic acid metal salt, or comparative examples 5-6 which were not made to contact with a supercritical fluid at the time of melt kneading of a polylactic acid resin composition. On the other hand, it was found that the production method of the present invention can remarkably shorten the mold holding time due to the synergistic effect of the phenylphosphonic acid metal salt and the supercritical fluid, and dramatically improve the moldability. The effect became more remarkable as the mold temperature was lowered. It has also been found that the injection pressure during molding is reduced by bringing the polylactic acid resin composition into contact with a supercritical fluid during melt kneading.

実施例11〜12、比較例7
合成例2で得られたポリ乳酸樹脂組成物(本発明品G〜H、比較品b)のペレットを用い、表6に示す金型温度、超臨界二酸化炭素濃度及び金型保持時間とすること以外は実施例7と同様にして射出成形した。得られたテストピース〔平板(70mm×40mm×3mm)及び角柱状試験片(125mm×12mm×6mm)〕について、角柱状試験片(125mm×12mm×6mm)は曲げ試験及び熱変形温度を、平板(70mm×40mm×3mm)は相対結晶化度、耐ブリード性及び発泡倍率を、それぞれ実施例5と同様にして評価した。これらの結果を表6に示す。
Examples 11-12, Comparative Example 7
Using the pellets of the polylactic acid resin composition obtained in Synthesis Example 2 (products G to H of the present invention, comparative product b), the mold temperature, supercritical carbon dioxide concentration and mold holding time shown in Table 6 are set. Except that, injection molding was carried out in the same manner as in Example 7. About the obtained test piece [flat plate (70 mm × 40 mm × 3 mm) and prismatic test piece (125 mm × 12 mm × 6 mm)], the prismatic test piece (125 mm × 12 mm × 6 mm) is subjected to a bending test and a thermal deformation temperature. (70 mm × 40 mm × 3 mm) was evaluated in the same manner as in Example 5 in terms of relative crystallinity, bleed resistance and expansion ratio. These results are shown in Table 6.

Figure 2009083485
Figure 2009083485

表6の結果から、本発明の製造方法は、フェニルホスホン酸金属塩と超臨界流体の相乗効果によって、高い結晶化度を達成することができ、優れた耐熱性を有するポリ乳酸樹脂射出成形体が得られることがわかった。   From the results of Table 6, the production method of the present invention can achieve a high crystallinity by the synergistic effect of the phenylphosphonic acid metal salt and the supercritical fluid, and has excellent heat resistance. Was found to be obtained.

また、本発明の製造方法は、ステレオコンプレックスポリ乳酸樹脂においても、可塑剤を含有しなくても良好な成形性を得ることができる。これは、本発明の製造方法は、可塑剤を含有すると剛性が低下するところ、可塑剤を含有しなくても良好な成形性を得ることができるので、剛性(曲げ弾性率)の高いステレオコンプレックスポリ乳酸樹脂成形体を得ることができる(実施例11と実施例12との対比で、剛性の高いポリ乳酸樹脂成形体を得られていることからわかる。)。   In addition, the production method of the present invention can obtain good moldability even in a stereocomplex polylactic acid resin without containing a plasticizer. This is because the manufacturing method of the present invention reduces the rigidity when a plasticizer is contained, and can obtain good moldability without containing a plasticizer, so that a stereo complex having a high rigidity (flexural modulus) is obtained. A polylactic acid resin molded body can be obtained (as can be seen from the comparison between Example 11 and Example 12 that a highly rigid polylactic acid resin molded body is obtained).

従って、本発明の製造方法は、剛性の高いステレオコンプレックスポリ乳酸樹脂成形体を要求される分野においては、可塑剤を含有して良好な成形性を得る技術に比べて、有利な技術であることがわかる。   Therefore, the production method of the present invention is an advantageous technique in a field where a stereocomplex polylactic acid resin molded body having high rigidity is required, as compared with a technique for obtaining good moldability by containing a plasticizer. I understand.

ポリ乳酸樹脂組成物の合成例3
ポリ乳酸樹脂組成物として、表7に示す本発明品(I〜L)及び比較品(c)の原料を、2軸押出機((株)池貝製 PCM-45)にて240℃で溶融混練し、ストランドカットを行い、ポリ乳酸樹脂組成物のペレットを得た。得られたペレットは、80℃、除湿乾燥機で5時間乾燥し、水分量を500ppm以下とした。
Synthesis example 3 of polylactic acid resin composition
As the polylactic acid resin composition, the raw materials of the products of the present invention (I to L) and the comparative product (c) shown in Table 7 are melt-kneaded at 240 ° C. with a twin-screw extruder (PCM-45 manufactured by Ikegai Co., Ltd.). The strand was cut to obtain a pellet of the polylactic acid resin composition. The obtained pellets were dried at 80 ° C. with a dehumidifying dryer for 5 hours, and the water content was adjusted to 500 ppm or less.

Figure 2009083485
Figure 2009083485

なお、表7における原料は、表1における原料と同じものを示し、それ以外のものは以下に示す。
<樹脂>
*11:ポリ乳酸樹脂(ネイチャーワークス社製、Nature Works 4032D)
(光学純度98.5%、重量平均分子量141000、残存モノマー1200ppm)
*12:ポリカーボネート樹脂(帝人化成(株)製、パンライト L−1250Y)
(結晶化度0%、ガラス転移点120℃)
In addition, the raw material in Table 7 shows the same thing as the raw material in Table 1, and other things are shown below.
<Resin>
* 11: Polylactic acid resin (Nature Works, Nature Works 4032D)
(Optical purity 98.5%, weight average molecular weight 141000, residual monomer 1200 ppm)
* 12: Polycarbonate resin (manufactured by Teijin Chemicals Ltd., Panlite L-1250Y)
(0% crystallinity, 120 ° C glass transition point)

実施例13〜16、及び比較例8
合成例3で得られたポリ乳酸樹脂組成物(本発明品I〜L及び比較品c)のペレットを、シリンダー温度を220℃とした射出成形機((株)日本製鋼所製 Mucell 85トン)に供給して溶融するとともに、射出成形機のシリンダー部に設けられたガス導入口から、8MPaの圧力の超臨界流体(超臨界状態の二酸化炭素)を、表8に示す濃度で圧入し、スクリューで混練して溶融状態のポリ乳酸樹脂組成物と接触させた。射出成形機の先端に取り付けられた金型内の温度を表8に示す温度に保ち、この金型内に、超臨界状態の二酸化炭素と接触させた溶融ポリ乳酸樹脂組成物を、表8に示すような成形に必要な射出圧で射出成形し、結晶化が終了するまで保持してテストピース(150mm×30mm×厚み1mm)を得た。得られたテストピースの離型に必要な金型保持時間を実施例1と同様にして評価した。これらの結果を表8に示す。
Examples 13 to 16 and Comparative Example 8
An injection molding machine having a cylinder temperature of 220 ° C. (mucell 85 tons, manufactured by Nippon Steel Works) with pellets of the polylactic acid resin composition (invention products I to L and comparative product c) obtained in Synthesis Example 3 The supercritical fluid (supercritical carbon dioxide) having a pressure of 8 MPa is press-fitted at a concentration shown in Table 8 from a gas inlet provided in the cylinder part of the injection molding machine, and then screwed. And kneaded with a polylactic acid resin composition in a molten state. The temperature in the mold attached to the tip of the injection molding machine was maintained at the temperature shown in Table 8, and the molten polylactic acid resin composition brought into contact with carbon dioxide in a supercritical state was stored in Table 8 in Table 8. The test piece (150 mm × 30 mm × thickness 1 mm) was obtained by injection molding at the injection pressure required for molding as shown and held until crystallization was completed. The mold holding time required for releasing the obtained test piece was evaluated in the same manner as in Example 1. These results are shown in Table 8.

比較例9〜12
合成例3で得られたポリ乳酸樹脂組成物(本発明品I〜L)のペレットを用い、超臨界状態の二酸化炭素を圧入せず、表8に示す金型温度で、表8に示すような成形に必要な射出圧で射出成形すること以外は、実施例13と同様にしてテストピースを得、同様に離型に必要な金型保持時間を評価した。これらの結果を表8に示す。
Comparative Examples 9-12
As shown in Table 8, at the mold temperature shown in Table 8, without using supercritical carbon dioxide, using the pellets of the polylactic acid resin composition (Products I to L of the present invention) obtained in Synthesis Example 3. A test piece was obtained in the same manner as in Example 13 except that injection molding was performed at an injection pressure necessary for proper molding, and the mold holding time necessary for mold release was evaluated in the same manner. These results are shown in Table 8.

Figure 2009083485
Figure 2009083485

表8の結果から、ポリ乳酸樹脂と他の熱可塑性樹脂との混合系においても、フェニルホスホン酸金属塩を含有しない比較例8、又はポリ乳酸樹脂組成物の溶融混練時に超臨界流体と接触させなかった比較例9〜12に対し、本発明の製造方法は、フェニルホスホン酸金属塩と超臨界流体の相乗効果によって著しく金型保持時間を短縮することができ、成形性が飛躍的に向上することがわかった。その効果は金型温度が低くなるほど顕著であった。また、ポリ乳酸樹脂組成物の溶融混練時に超臨界流体と接触させることによって成形時の射出圧も低減することがわかった。   From the results of Table 8, even in a mixed system of polylactic acid resin and other thermoplastic resin, it was brought into contact with a supercritical fluid at the time of melt kneading of Comparative Example 8 which does not contain a phenylphosphonic acid metal salt or a polylactic acid resin composition. Compared with Comparative Examples 9 to 12, the production method of the present invention can remarkably shorten the mold holding time due to the synergistic effect of the phenylphosphonic acid metal salt and the supercritical fluid, and the moldability is remarkably improved. I understood it. The effect became more remarkable as the mold temperature was lowered. It has also been found that the injection pressure during molding is reduced by bringing the polylactic acid resin composition into contact with a supercritical fluid during melt kneading.

実施例17〜20、比較例13
合成例3で得られたポリ乳酸樹脂組成物(本発明品I〜L、比較品c)のペレットを用い、表9に示す金型温度、超臨界二酸化炭素濃度及び金型保持時間とすること以外は実施例13と同様にして射出成形した。得られたテストピース〔平板(70mm×40mm×3mm)及び角柱状試験片(125mm×12mm×6mm)〕について、角柱状試験片(125mm×12mm×6mm)は曲げ試験及び熱変形温度を、平板(70mm×40mm×3mm)は相対結晶化度、耐ブリード性及び発泡倍率を、それぞれ実施例5と同様にして評価した。これらの結果を表9に示す。
Examples 17-20, Comparative Example 13
Using the pellets of the polylactic acid resin composition (invention products I to L and comparative product c) obtained in Synthesis Example 3, the mold temperature, supercritical carbon dioxide concentration, and mold holding time shown in Table 9 are set. Except that, injection molding was carried out in the same manner as in Example 13. About the obtained test piece [flat plate (70 mm × 40 mm × 3 mm) and prismatic test piece (125 mm × 12 mm × 6 mm)], the prismatic test piece (125 mm × 12 mm × 6 mm) is subjected to a bending test and a thermal deformation temperature. (70 mm × 40 mm × 3 mm) was evaluated in the same manner as in Example 5 in terms of relative crystallinity, bleed resistance and expansion ratio. These results are shown in Table 9.

Figure 2009083485
Figure 2009083485

表9の結果から、本発明の製造方法は、フェニルホスホン酸金属塩と超臨界流体の相乗効果によって、高い結晶化度を達成することができ、優れた耐熱性を有するポリ乳酸樹脂射出成形体が得られることがわかった。   From the results of Table 9, the production method of the present invention can achieve a high crystallinity by the synergistic effect of the phenylphosphonic acid metal salt and the supercritical fluid, and is a polylactic acid resin injection molded article having excellent heat resistance. Was found to be obtained.

また、本発明の製造方法は、ポリ乳酸樹脂と他の熱可塑性樹脂との混合系においても、可塑剤を含有しなくても良好な成形性を得ることができ、かつ結晶化度の高いポリ乳酸とTgの高い他の熱可塑性樹脂とのブレンドによって、高い耐熱性が得られる。これは、本発明の製造方法は、可塑剤を含有すると剛性が低下するところ、可塑剤を含有しなくても、ポリ乳酸の結晶化を行いつつ良好な成形性を得ることができるので、剛性(曲げ弾性率)の高いポリ乳酸樹脂成形体を得ることができる(実施例17〜19と実施例20との対比で、剛性の高いポリ乳酸樹脂成形体を得られていることからわかる。)。   Further, the production method of the present invention can obtain a good moldability even in a mixed system of a polylactic acid resin and another thermoplastic resin without containing a plasticizer and has a high crystallinity. High heat resistance is obtained by blending lactic acid with another thermoplastic resin having a high Tg. This is because when the production method of the present invention contains a plasticizer, the rigidity is lowered, and even if it does not contain a plasticizer, good formability can be obtained while crystallizing polylactic acid. A polylactic acid resin molded article having a high (flexural modulus) can be obtained (as can be seen from the comparison between Examples 17 to 19 and Example 20, a highly rigid polylactic acid resin molded article is obtained.) .

従って、本発明の製造方法は、他の高剛性、高Tgの熱可塑性樹脂を含有するポリ乳酸樹脂成形体で、より高い耐熱性、剛性が要求される分野においては、可塑剤を含有してポリ乳酸を結晶化しつつ良好な成形性を得る技術に比べて、有利な技術であることがわかる。   Accordingly, the production method of the present invention is a polylactic acid resin molded article containing another high-rigidity, high-Tg thermoplastic resin, and contains a plasticizer in a field where higher heat resistance and rigidity are required. It can be seen that this is an advantageous technique compared to a technique for obtaining good moldability while crystallizing polylactic acid.

ポリ乳酸樹脂組成物の合成例4
ポリ乳酸樹脂組成物として、表10に示す本発明品(M〜N)の原料を、2軸押出機((株)池貝製 PCM-45)にて190℃で溶融混練し、ストランドカットを行い、ポリ乳酸樹脂組成物のペレットを得た。得られたペレットは、70℃、減圧下で1日乾燥し、水分量を500ppm以下とした。
Synthesis example 4 of polylactic acid resin composition
As a polylactic acid resin composition, the raw material of the product of the present invention (MN) shown in Table 10 is melt-kneaded at 190 ° C. with a twin-screw extruder (PCM-45, manufactured by Ikegai Co., Ltd.), and strand cutting is performed. The pellet of the polylactic acid resin composition was obtained. The obtained pellets were dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.

Figure 2009083485
Figure 2009083485

なお、表10における原料は、表1における原料と同じものを示す。   The raw materials in Table 10 are the same as the raw materials in Table 1.

実施例21〜22
合成例4で得られたポリ乳酸樹脂組成物(本発明品M〜N)のペレットを、シリンダー温度を200℃とした射出成形機((株)日本製鋼所製 Mucell 85トン)に供給して溶融するとともに、射出成形機のシリンダー部に設けられたガス導入口から、8MPaの圧力の超臨界流体(超臨界状態の二酸化炭素)を、表11に示す濃度で圧入し、スクリューで混練して溶融状態のポリ乳酸樹脂組成物と接触させた。射出成形機の先端に取り付けられた金型内の温度を表11に示す温度に保ち、この金型内に、超臨界状態の二酸化炭素と接触させた溶融ポリ乳酸樹脂組成物を、表11に示すような成形に必要な射出圧で射出成形し、結晶化が終了するまで保持してテストピース(150mm×30mm×厚み1mm)を得た。得られたテストピースの離型に必要な金型保持時間を実施例1と同様にして評価した。これらの結果を表11に示す。
Examples 21-22
The pellets of the polylactic acid resin composition (the products MN of the present invention) obtained in Synthesis Example 4 were supplied to an injection molding machine (Mucell 85 tons, manufactured by Nippon Steel) with a cylinder temperature of 200 ° C. While melting, a supercritical fluid (supercritical carbon dioxide) with a pressure of 8 MPa is injected at a concentration shown in Table 11 from a gas inlet provided in a cylinder portion of an injection molding machine, and kneaded with a screw. It was made to contact with the molten polylactic acid resin composition. The temperature in the mold attached to the tip of the injection molding machine was maintained at the temperature shown in Table 11, and the molten polylactic acid resin composition brought into contact with carbon dioxide in a supercritical state in this mold is shown in Table 11. The test piece (150 mm × 30 mm × thickness 1 mm) was obtained by injection molding at the injection pressure required for molding as shown and held until crystallization was completed. The mold holding time required for releasing the obtained test piece was evaluated in the same manner as in Example 1. These results are shown in Table 11.

Figure 2009083485
Figure 2009083485

表11の結果から、本発明の製造方法は、フェニルホスホン酸金属塩と超臨界流体の相乗効果によって著しく金型保持時間を短縮することができ、成形性が飛躍的に向上することがわかった。その効果は金型温度が低くなるほど顕著であった。また、ポリ乳酸樹脂組成物の溶融混練時に超臨界流体と接触させることによって成形時の射出圧も低減することがわかった。   From the results of Table 11, it was found that the production method of the present invention can remarkably shorten the mold holding time due to the synergistic effect of the phenylphosphonic acid metal salt and the supercritical fluid, and dramatically improve the moldability. . The effect became more remarkable as the mold temperature was lowered. It has also been found that the injection pressure during molding is reduced by bringing the polylactic acid resin composition into contact with a supercritical fluid during melt kneading.

本発明におけるポリ乳酸樹脂組成物は、日用雑貨品、家電部品、自動車部品等の様々な工業用途に好適に使用することができる。   The polylactic acid resin composition in the present invention can be suitably used for various industrial applications such as daily goods, household appliance parts, automobile parts and the like.

Claims (5)

下記工程(1)及び工程(2)を有するポリ乳酸樹脂射出成形体の製造方法。
工程(1):ポリ乳酸樹脂と、フェニルホスホン酸金属塩からなる有機結晶核剤とを含有するポリ乳酸樹脂組成物を、超臨界流体と接触させながら溶融混練する工程
工程(2):工程(1)で得られた溶融物を金型内に充填し、射出成形する工程
The manufacturing method of the polylactic acid resin injection molding which has the following process (1) and process (2).
Step (1): Step (2) of melting and kneading a polylactic acid resin composition containing a polylactic acid resin and an organic crystal nucleating agent composed of a metal salt of phenylphosphonic acid while being in contact with a supercritical fluid (Step (2): Step of filling the melt obtained in 1) into a mold and injection molding
フェニルホスホン酸金属塩が、フェニルホスホン酸の亜鉛塩である請求項1記載のポリ乳酸樹脂射出成形体の製造方法。   The method for producing an injection-molded polylactic acid resin according to claim 1, wherein the phenylphosphonic acid metal salt is a zinc salt of phenylphosphonic acid. ポリ乳酸樹脂組成物が、ポリ乳酸樹脂100重量部に対し、有機結晶核剤を0.01〜5重量部含有する請求項1又は2記載のポリ乳酸樹脂射出成形体の製造方法。   The method for producing a polylactic acid resin injection-molded article according to claim 1 or 2, wherein the polylactic acid resin composition contains 0.01 to 5 parts by weight of an organic crystal nucleating agent with respect to 100 parts by weight of the polylactic acid resin. 超臨界流体を、ポリ乳酸樹脂組成物に対し0.1〜10重量%の割合で接触させる請求項1〜3いずれかに記載のポリ乳酸樹脂射出成形体の製造方法。   The method for producing a polylactic acid resin injection-molded article according to any one of claims 1 to 3, wherein the supercritical fluid is brought into contact with the polylactic acid resin composition at a ratio of 0.1 to 10% by weight. 工程(2)における金型温度が10〜90℃である請求項1〜4いずれか記載のポリ乳酸樹脂射出成形体の製造方法。   The method for producing a polylactic acid resin injection-molded article according to any one of claims 1 to 4, wherein the mold temperature in the step (2) is 10 to 90 ° C.
JP2008235259A 2007-09-12 2008-09-12 Method for producing polylactic acid resin injection molded body Expired - Fee Related JP4530427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235259A JP4530427B2 (en) 2007-09-12 2008-09-12 Method for producing polylactic acid resin injection molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007236148 2007-09-12
JP2008235259A JP4530427B2 (en) 2007-09-12 2008-09-12 Method for producing polylactic acid resin injection molded body

Publications (2)

Publication Number Publication Date
JP2009083485A true JP2009083485A (en) 2009-04-23
JP4530427B2 JP4530427B2 (en) 2010-08-25

Family

ID=40657524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235259A Expired - Fee Related JP4530427B2 (en) 2007-09-12 2008-09-12 Method for producing polylactic acid resin injection molded body

Country Status (1)

Country Link
JP (1) JP4530427B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001090A (en) * 2009-06-18 2011-01-06 Michio Komatsu Thin-walled container and injection molding method for the same
JP2011105889A (en) * 2009-11-20 2011-06-02 Unitika Ltd Polylactic acid resin composition
CN103772751A (en) * 2014-01-15 2014-05-07 南通烟滤嘴有限责任公司 Filtering tip material made of porous foam for cigarettes and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236944A (en) * 2002-02-15 2003-08-26 Fuji Photo Film Co Ltd Method for manufacturing resin molded product
WO2005097894A1 (en) * 2004-03-30 2005-10-20 Nissan Chemical Industries, Ltd. Polylactic acid resin composition
JP2006089587A (en) * 2004-09-24 2006-04-06 Toyo Ink Mfg Co Ltd Resin composition for lactic acid-based resin and its utilization
JP2006328369A (en) * 2005-04-26 2006-12-07 Toray Ind Inc Polylactic acid-based molded article
JP2007191549A (en) * 2006-01-18 2007-08-02 Teijin Chem Ltd Oa equipment exterior part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236944A (en) * 2002-02-15 2003-08-26 Fuji Photo Film Co Ltd Method for manufacturing resin molded product
WO2005097894A1 (en) * 2004-03-30 2005-10-20 Nissan Chemical Industries, Ltd. Polylactic acid resin composition
JP2006089587A (en) * 2004-09-24 2006-04-06 Toyo Ink Mfg Co Ltd Resin composition for lactic acid-based resin and its utilization
JP2006328369A (en) * 2005-04-26 2006-12-07 Toray Ind Inc Polylactic acid-based molded article
JP2007191549A (en) * 2006-01-18 2007-08-02 Teijin Chem Ltd Oa equipment exterior part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001090A (en) * 2009-06-18 2011-01-06 Michio Komatsu Thin-walled container and injection molding method for the same
JP2011105889A (en) * 2009-11-20 2011-06-02 Unitika Ltd Polylactic acid resin composition
CN103772751A (en) * 2014-01-15 2014-05-07 南通烟滤嘴有限责任公司 Filtering tip material made of porous foam for cigarettes and preparation method thereof
CN103772751B (en) * 2014-01-15 2016-04-13 南通烟滤嘴有限责任公司 Porous foamed body cigarette filter tip material and preparation method thereof

Also Published As

Publication number Publication date
JP4530427B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4130695B2 (en) Biodegradable resin composition
US8722813B2 (en) Resin composition
JP4130696B2 (en) Biodegradable resin composition
JP5107873B2 (en) Polylactic acid resin composition
WO2008044796A1 (en) Biodegradable resin composition
JP2008174735A (en) Polylactic acid resin composition
US8455579B2 (en) Method for promoting crystallization of biodegradable resin composition
JP2008156660A (en) Biodegradable resin composition
JP2009270087A (en) Polylactic acid resin composition
JP4530426B2 (en) Method for producing polylactic acid resin injection molded body
JP5107793B2 (en) Method for producing polylactic acid resin injection molded body
KR20100131482A (en) Polylactic acid resin composite
JP4297510B2 (en) Method for producing polylactic acid resin molded body
JP4530427B2 (en) Method for producing polylactic acid resin injection molded body
JP5107792B2 (en) Method for producing polylactic acid resin injection molded body
JP5154352B2 (en) Method for producing polylactic acid resin injection molded body
JP2009270089A (en) Polylactic acid resin composition
JP5197260B2 (en) Method for producing polylactic acid resin injection molded body
JP5256068B2 (en) Polylactic acid resin composition
JP5225550B2 (en) Polylactic acid resin composition
JP5273847B2 (en) Polylactic acid resin composition
JP2014047286A (en) Polylactic acid composition and method for manufacturing the same
JP2014070215A (en) Polylactic acid composition and method for producing the same
JP5188791B2 (en) Polylactic acid resin composition
JP5261007B2 (en) Polylactic acid resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

R151 Written notification of patent or utility model registration

Ref document number: 4530427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees