JP4800348B2 - Manufacturing method of biodegradable resin molded products. - Google Patents

Manufacturing method of biodegradable resin molded products. Download PDF

Info

Publication number
JP4800348B2
JP4800348B2 JP2008173160A JP2008173160A JP4800348B2 JP 4800348 B2 JP4800348 B2 JP 4800348B2 JP 2008173160 A JP2008173160 A JP 2008173160A JP 2008173160 A JP2008173160 A JP 2008173160A JP 4800348 B2 JP4800348 B2 JP 4800348B2
Authority
JP
Japan
Prior art keywords
sheet
biodegradable resin
film
acid
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008173160A
Other languages
Japanese (ja)
Other versions
JP2008230256A (en
Inventor
晃 武中
昌吾 野本
俊樹 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008173160A priority Critical patent/JP4800348B2/en
Publication of JP2008230256A publication Critical patent/JP2008230256A/en
Application granted granted Critical
Publication of JP4800348B2 publication Critical patent/JP4800348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、生分解性樹脂成形品の製造法及びその製造法により得られる生分解性樹脂成形品に関する。   The present invention relates to a method for producing a biodegradable resin molded article and a biodegradable resin molded article obtained by the production method.

生分解性樹脂の中でもポリ乳酸樹脂は、トウモロコシ、芋などからとれる糖分から、発酵法によりL−乳酸が大量に作られ安価になってきたこと、原料が自然農作物なので総酸化炭素排出量が極めて少ない、また得られた樹脂の性能として剛性が強く透明性が良いという特徴があるので、現在その利用が期待されている。しかしポリ乳酸樹脂の場合、脆く、硬く、可撓性に欠ける特性のためにいずれも硬質成形品分野に限られ、フィルムなどに成形した場合は、柔軟性が不足したり、折り曲げたとき白化などの問題があり、軟質又は半硬質分野に使用されていないのが現状である。また、ポリ乳酸樹脂は結晶化速度が遅く、延伸などの機械的工程を行わない限りは成形後は非晶状態である。しかし、ポリ乳酸のガラス転移温度(Tg)は60℃と低く耐熱性に劣るため、温度が55℃以上となる環境下では使用できない問題があった。   Among the biodegradable resins, polylactic acid resins are made from saccharides from corn, straw, etc., and a large amount of L-lactic acid is produced by fermentation. The use of the obtained resin is expected because it has a characteristic that it has little rigidity and has high rigidity and good transparency. However, in the case of polylactic acid resin, it is brittle, hard, and lacks flexibility, all of which are limited to the field of hard molded products. When molded into a film, the flexibility is insufficient, or whitening occurs when bent. The present situation is that it is not used in the soft or semi-rigid field. In addition, the polylactic acid resin has a slow crystallization rate and is in an amorphous state after molding unless a mechanical process such as stretching is performed. However, since the glass transition temperature (Tg) of polylactic acid is as low as 60 ° C. and poor in heat resistance, there is a problem that it cannot be used in an environment where the temperature is 55 ° C. or higher.

ポリ乳酸樹脂を軟質、半硬質分野に応用する技術として、可塑剤を添加する方法や、あるいは耐熱性を向上させるため結晶核剤を添加して結晶化させる方法が種々提案されており、例えば、特許文献1には、融点が40〜300℃の脂肪族カルボン酸アミドなどの透明核剤を含有する脂肪族ポリエステル組成物を成形し、成形時又は成形後に熱処理をすることを特徴とする、透明性及び結晶性を併有する脂肪族ポリエステル成形体の製造方法が開示されている。更に、特許文献2には、特定の構造を有するアミド系化合物、可塑剤、乳酸系ポリマーを含有する乳酸系ポリマー組成物及びその成形体の製造方法が開示されている。   Various techniques for applying a polylactic acid resin to soft and semi-rigid fields have been proposed, such as a method of adding a plasticizer or a method of crystallizing by adding a crystal nucleating agent to improve heat resistance. Patent Document 1 is characterized in that an aliphatic polyester composition containing a transparent nucleating agent such as an aliphatic carboxylic acid amide having a melting point of 40 to 300 ° C. is molded and heat-treated at the time of molding or after molding, A method for producing an aliphatic polyester molded article having both properties and crystallinity is disclosed. Furthermore, Patent Document 2 discloses a lactic acid polymer composition containing an amide compound having a specific structure, a plasticizer, and a lactic acid polymer, and a method for producing a molded body thereof.

ポリオレフィン等の汎用樹脂は、結晶化速度が高く、良好な加工性を有するので、押出成形が可能であるが、ポリ乳酸などの生分解性樹脂は、結晶化速度が遅い為に、押出成形ができていないのが現状である。
特許文献1及び2に記載の樹脂組成物を押出機によってシート又はフィルムに成形する際に結晶化させる場合、結晶化には樹脂組成物のガラス転移点以上に加熱することが必要であるが、これら特許文献記載の樹脂組成物では結晶化速度は遅いため、ロール表面で結晶化できずに非晶状態のままであるためにロールに粘着を起して剥離せず、張力をかけて無理に剥離させようとするとコシがないために簡単にシートやフィルムが変形してしまう問題があり、押出成形による結晶化シート又はフィルムの連続的な製造はできなかった。
特許第3411168号公報 国際公開2003/042302号パンフレット
General-purpose resins such as polyolefin have a high crystallization speed and good processability, so they can be extruded, but biodegradable resins such as polylactic acid have a low crystallization speed and can be extruded. The current situation is not done.
When crystallization is performed when the resin composition described in Patent Documents 1 and 2 is formed into a sheet or film by an extruder, the crystallization requires heating to a temperature higher than the glass transition point of the resin composition. Since the resin composition described in these patent documents has a low crystallization rate, it cannot be crystallized on the roll surface and remains in an amorphous state, so that it does not peel off due to sticking to the roll, forcing it with tension. Since there is no stiffness when peeled, there is a problem that the sheet or film is easily deformed, and continuous production of the crystallized sheet or film by extrusion molding has not been possible.
Japanese Patent No. 3411168 International Publication No. 2003/042302 Pamphlet

本発明の課題は、柔軟性、耐熱性、感温性が良好な、生分解性樹脂のシート及びフィルムを、押出成形法により生産性良く製造する方法を提供することにある。   The subject of this invention is providing the method of manufacturing the sheet | seat and film of biodegradable resin with favorable softness | flexibility, heat resistance, and temperature sensitivity with high productivity by an extrusion method.

本発明は、ポリ乳酸樹脂と、可塑剤と、結晶核剤とを含有する樹脂組成物から、シート又はフィルムを成形する生分解性樹脂成形品の製造法であって、押出成形法により、ダイから押し出されたシート又はフィルムを、表面温度60〜100℃の2つ以上の金属ロールに接触させ、及び/又はさらに60〜100℃の恒温層を通して熱処理する工程を含む方法によって、相対結晶化度30%以上に結晶化させてシート又はフィルムを得る、生分解性樹脂成形品の製造法、並びにこの製造法により得られる生分解性樹脂成形品を提供する。   The present invention relates to a method for producing a biodegradable resin molded article for forming a sheet or film from a resin composition containing a polylactic acid resin, a plasticizer, and a crystal nucleating agent. The relative crystallinity is obtained by a method comprising the step of contacting a sheet or film extruded from two or more metal rolls having a surface temperature of 60 to 100 ° C. and / or further heat-treating through a constant temperature layer of 60 to 100 ° C. Provided are a method for producing a biodegradable resin molded article obtained by crystallization to 30% or more to obtain a sheet or film, and a biodegradable resin molded article obtained by this production method.

本発明の生分解性樹脂成形品の製造法によって、相対結晶化度30%以上の柔軟性、感温性及び耐熱性に優れた生分解性樹脂のシート及びフィルムを、生産性良く製造することができ、さらに透明生分解性樹脂に応用した場合は優れた透明性を維持することができる。   Production of biodegradable resin sheets and films having a relative crystallinity of 30% or more and excellent in flexibility, temperature sensitivity and heat resistance by the production method of the biodegradable resin molded article of the present invention with high productivity. Furthermore, when applied to a transparent biodegradable resin, excellent transparency can be maintained.

[ポリ乳酸樹脂]
本発明で使用されるポリ乳酸樹脂とは、ポリ乳酸、又は乳酸とヒドロキシカルボン酸とのコポリマーである。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられ、グリコール酸、ヒドロキシカプロン酸が好ましい。好ましいポリ乳酸の分子構造は、L−乳酸又はD−乳酸いずれかの単位20〜100モル%とそれぞれの対掌体の乳酸単位0〜20モル%からなるものである。また、乳酸とヒドロキシカルボン酸とのコポリマーは、L−乳酸又はD−乳酸いずれかの単位85〜100モル%とヒドロキシカルボン酸単位0〜15モル%からなるものである。これらのポリ乳酸樹脂は、L−乳酸、D−乳酸及びヒドロキシカルボン酸の中から必要とする構造のものを選んで原料とし、脱水重縮合することにより得ることができる。好ましくは、乳酸の環状二量体であるラクチド、グリコール酸の環状二量体であるグリコリド及びカプロラクトン等から必要とする構造のものを選んで開環重合することにより得ることができる。ラクチドにはL−乳酸の環状二量体であるL−ラクチド、D−乳酸の環状二量体であるD−ラクチド、D−乳酸とL−乳酸とが環状二量化したメソ−ラクチド及びD−ラクチドとL−ラクチドとのラセミ混合物であるDL−ラクチドがある。本発明ではいずれのラクチドも用いることができる。但し、主原料は、D−ラクチド又はL−ラクチドが好ましい。
[Polylactic acid resin]
The polylactic acid resin used in the present invention is polylactic acid or a copolymer of lactic acid and hydroxycarboxylic acid. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid and the like, and glycolic acid and hydroxycaproic acid are preferable. A preferred molecular structure of polylactic acid is composed of 20 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 20 mol% of each enantiomer. The copolymer of lactic acid and hydroxycarboxylic acid is composed of 85 to 100 mol% of either L-lactic acid or D-lactic acid and 0 to 15 mol% of hydroxycarboxylic acid units. These polylactic acid resins can be obtained by dehydrating polycondensation using L-lactic acid, D-lactic acid and hydroxycarboxylic acid as a raw material by selecting those having the required structure. Preferably, it can be obtained by ring-opening polymerization by selecting a desired structure from lactide, which is a cyclic dimer of lactic acid, glycolide, which is a cyclic dimer of glycolic acid, and caprolactone. Lactide includes L-lactide which is a cyclic dimer of L-lactic acid, D-lactide which is a cyclic dimer of D-lactic acid, meso-lactide obtained by cyclic dimerization of D-lactic acid and L-lactic acid, and D-lactide. There is DL-lactide, which is a racemic mixture of lactide and L-lactide. Any lactide can be used in the present invention. However, the main raw material is preferably D-lactide or L-lactide.

市販されているポリ乳酸樹脂としては、例えば、三井化学(株)製、商品名レイシアシリーズ;ネイチャーワークス社製、商品名Nature worksシリーズ;トヨタ自動車(株)製、U’zシリーズ等が挙げられる。   Examples of commercially available polylactic acid resins include Mitsui Chemicals, Inc., trade name Lacia series; Nature Works, trade name Nature works series; Toyota Motor Corporation, U'z series, and the like. .

これらのポリ乳酸樹脂の中でも結晶化速度、物性の観点からL−乳酸高純度品である結晶グレードのもの、特に三井化学(株)製、LACEA H−400、LACEA H−100、LACEA H−440が好ましく、L−乳酸純度95%以上のポリ乳酸樹脂、特に三井化学(株)製、LACEA H−400、LACEA H−100がさらに好ましい。   Among these polylactic acid resins, from the viewpoint of crystallization speed and physical properties, L-lactic acid is a high-purity product, particularly a grade of L-lactic acid, particularly LACEA H-400, LACEA H-100, LACEA H-440, manufactured by Mitsui Chemicals. A polylactic acid resin having an L-lactic acid purity of 95% or more, particularly, LACEA H-400, LACEA H-100, manufactured by Mitsui Chemicals, Inc. is more preferable.

[可塑剤]
本発明に用いられる可塑剤としては、特に限定されず、一般の生分解性樹脂に用いられる可塑剤が挙げられるが、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が2〜9、特に3〜9の化合物が好ましい。このような化合物としては、多価カルボン酸とポリエチレングリコールモノアルキルエーテルとのエステル、多価アルコールのアルキルエーテルエステル等が挙げられる。
[Plasticizer]
The plasticizer used in the present invention is not particularly limited, and examples thereof include plasticizers used in general biodegradable resins. The plasticizer has two or more ester groups in the molecule and has an average addition mole of ethylene oxide. Compounds having 2 to 9, especially 3 to 9 are preferred. Examples of such compounds include esters of polyvalent carboxylic acids and polyethylene glycol monoalkyl ethers, alkyl ether esters of polyhydric alcohols, and the like.

本発明に用いられる可塑剤の平均分子量は耐ブリード性及び耐揮発性の観点から、好ましくは250〜700であり、より好ましくは300〜600であり、更に好ましくは350〜550であり、特に好ましくは400〜500である。尚、平均分子量は、JIS K0070に記載の方法で鹸化価を求め、次式より計算で求めることができる。   The average molecular weight of the plasticizer used in the present invention is preferably from 250 to 700, more preferably from 300 to 600, still more preferably from 350 to 550, particularly preferably from the viewpoint of bleed resistance and volatile resistance. Is 400-500. The average molecular weight can be obtained by calculating the saponification value by the method described in JIS K0070 and calculating from the following formula.

平均分子量=56108×(エステル基の数)/鹸化価     Average molecular weight = 56108 × (number of ester groups) / saponification value

このような可塑剤の中では、生分解性樹脂成形品の成形性、耐衝撃性に優れる観点から、コハク酸とエチレンオキサイドの平均付加モル数が2〜4のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル等の多価カルボン酸とポリエチレングリコールモノメチルエーテルとのエステル;酢酸とグリセリンのエチレンオキサイド平均3〜9モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜9のポリエチレングリコールとのエステル等の多価アルコールのアルキルエーテルエステルがより好ましい。生分解性樹脂成形品の成形性、耐衝撃性及び可塑剤の耐ブリード性に優れる観点から、コハク酸とエチレンオキサイドの平均付加モル数が2〜3のポリエチレングリコールモノメチルエーテルとのエステル、アジピン酸とジエチレングリコールモノメチルエーテルとのエステル、1,3,6−ヘキサントリカルボン酸とジエチレングリコールモノメチルエーテルとのエステル、酢酸とグリセリンのエチレンオキサイド平均3〜6モル付加物とのエステル、酢酸とエチレンオキサイドの平均付加モル数が4〜6のポリエチレングリコールとのエステルがさらに好ましい。生分解性樹脂成形品の成形性、耐衝撃性及び可塑剤の耐ブリード性、耐揮発性及び耐刺激臭の観点から、コハク酸とトリエチレングリコールモノメチルエーテルとのエステル、酢酸とグリセリンのエチレンオキサイド平均3〜6モル付加物とのエステルが特に好ましい。これらの可塑剤は単独又は2種以上組み合わせて用いてもよい。   Among such plasticizers, from the viewpoint of excellent moldability and impact resistance of the biodegradable resin molded product, an ester of succinic acid and polyethylene glycol monomethyl ether having an average added mole number of ethylene oxide of 2 to 4, Esters of adipic acid and polyethylene glycol monomethyl ether having an average addition mole number of ethylene oxide of 2 to 3, polyethylene glycol monomethyl ether of 1,3,6-hexanetricarboxylic acid and ethylene oxide having an average addition mole number of 2 to 3 Ester of polyvalent carboxylic acid such as ester of polyethylene glycol monomethyl ether; ester of acetic acid and glycerin in ethylene oxide average 3 to 9 mol adduct, polyethylene glycol having an average addition mole number of acetic acid and ethylene oxide in 4 to 9 Multivalent ester such as Alkyl ether esters of alcohol are more preferred. From the viewpoint of excellent moldability, impact resistance and bleed resistance of plasticizers of biodegradable resin molded products, esters of polyethylene glycol monomethyl ether having an average addition mole number of succinic acid and ethylene oxide of 2 to 3, adipic acid Esters of 1,3,6-hexanetricarboxylic acid and diethylene glycol monomethyl ether, esters of acetic acid and glycerol with an average of 3 to 6 moles of ethylene oxide adducts, average addition moles of acetic acid and ethylene oxide More preferred are esters with polyethylene glycol having a number of 4-6. From the viewpoints of moldability, impact resistance, plasticizer bleed resistance, volatilization resistance and pungent odor resistance of biodegradable resin molded products, esters of succinic acid and triethylene glycol monomethyl ether, ethylene oxide of acetic acid and glycerin Particularly preferred are esters with an average of 3-6 mole adducts. These plasticizers may be used alone or in combination of two or more.

尚、本発明のエステルは、可塑剤としての機能を十分発揮させる観点から、全てエステル化された飽和エステルであることが好ましい。   In addition, it is preferable that the ester of this invention is all the esterified saturated ester from a viewpoint of fully exhibiting the function as a plasticizer.

[結晶核剤]
本発明に用いられる結晶核剤は、結晶化速度と耐熱性、感温性、さらには透明性の観点から、結晶核剤分子中にエステル基、水酸基及びアミド基から選ばれる少なくとも1種の基を2つ以上有する脂肪族化合物が好ましく、水酸基を1つ以上有し、エステル基又はアミド基を1つ以上有する脂肪族化合物がより好ましく、水酸基を2つ以上有し、エステル基又はアミド基を1つ以上有する脂肪族化合物が更に好ましく、水酸基を2つ以上有し、エステル基又はアミド基を2つ以上有する脂肪族化合物が特に好ましい。
結晶核剤の融点は、65℃以上が好ましく、70℃〜220℃が好ましく、80〜190℃がより好ましい。
[Crystal nucleating agent]
The crystal nucleating agent used in the present invention is at least one group selected from an ester group, a hydroxyl group and an amide group in the crystal nucleating agent molecule from the viewpoint of crystallization speed, heat resistance, temperature sensitivity, and transparency. Are preferably aliphatic compounds having one or more hydroxyl groups, more preferably aliphatic compounds having one or more ester groups or amide groups, two or more hydroxyl groups, and ester groups or amide groups. An aliphatic compound having one or more is more preferable, and an aliphatic compound having two or more hydroxyl groups and two or more ester groups or amide groups is particularly preferable.
The melting point of the crystal nucleating agent is preferably 65 ° C or higher, preferably 70 ° C to 220 ° C, and more preferably 80 to 190 ° C.

上記脂肪族化合物によって、本発明の効果がより向上する理由は定かではないが、上記の官能基を2つ以上有すると、ポリ乳酸樹脂との相互作用が良好となり、相溶性が向上する結果、樹脂中で微分散することによるものと考えられ、恐らく、水酸基を1つ以上、好ましくは2つ以上有することによりポリ乳酸樹脂への分散性が良好となり、エステル基又はアミド基を1つ以上、好ましくは2つ以上有することによりポリ乳酸樹脂への相溶性が良好となるものと考えられる。結晶核剤の融点は、熱処理温度より高く、樹脂組成物の混練温度以下であると、混練時に結晶核剤が溶解することによってその分散性が向上し、熱処理温度より高いと結晶核生成の安定化や熱処理温度が上げられるため、結晶化速度向上の観点でも好ましい。また、上記好ましい結晶核剤は、樹脂溶融状態から冷却過程で速やかに微細な結晶を多数析出するものと考えられ、透明性、結晶化速度向上の観点でも好ましい。   The reason why the effect of the present invention is further improved by the aliphatic compound is not clear, but if it has two or more of the above functional groups, the interaction with the polylactic acid resin becomes good and the compatibility is improved. It is thought that this is due to fine dispersion in the resin, probably having one or more hydroxyl groups, preferably two or more, so that the dispersibility in the polylactic acid resin is improved, and one or more ester groups or amide groups are obtained. It is considered that the compatibility with the polylactic acid resin is preferably improved by having two or more. When the melting point of the crystal nucleating agent is higher than the heat treatment temperature and lower than or equal to the kneading temperature of the resin composition, the dispersibility is improved by dissolving the crystal nucleating agent during kneading. Since the crystallization and heat treatment temperature can be increased, it is preferable from the viewpoint of improving the crystallization speed. The preferred crystal nucleating agent is considered to precipitate a large number of fine crystals quickly in the cooling process from the resin melt state, and is also preferable from the viewpoint of improving transparency and crystallization speed.

本発明に用いられる結晶核剤としては、脂肪族エステル、脂肪族アミド等が挙げられ、脂肪族エステルとしては、ステアリン酸モノグリセライド、ベヘニン酸モノグリセライド等の脂肪酸エステル、12−ヒドロキシステアリン酸トリグリセライド等のヒドロキシ脂肪酸エステル;脂肪族アミドとしては12−ヒドロキシステアリン酸モノエタノールアミド等のヒドロキシ脂肪酸モノアミド、エチレンビスラウリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスカプリル酸アミド等の脂肪族ビスアミド、メチレンビス12−ヒドロキシステアリン酸アミド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド等のヒドロキシ脂肪酸ビスアミドなどが挙げられる。生分解性樹脂成形品の成形性、耐熱性、耐衝撃性及び結晶核剤の耐ブルーム性の観点から、12−ヒドロキシステアリン酸トリグリセライド、ベヘニン酸モノグリセライド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド、12−ヒドロキシステアリン酸モノエタノールアミド、エチレンビスカプリル酸アミド、エチレンビスカプリン酸アミドが好ましく、12−ヒドロキシステアリン酸トリグリセライド、エチレビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミド、12−ヒドロキシステアリン酸モノエタノールアミドがより好ましく、12−ヒドロキシステアリン酸トリグリセライド、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミドがさらに好ましく、エチレンビス12−ヒドロキシステアリン酸アミド、ヘキサメチレンビス12−ヒドロキシステアリン酸アミドが特に好ましい。   Examples of the crystal nucleating agent used in the present invention include aliphatic esters and aliphatic amides. Examples of aliphatic esters include fatty acid esters such as stearic acid monoglyceride and behenic acid monoglyceride, and hydroxy compounds such as 12-hydroxystearic acid triglyceride. Fatty acid esters; aliphatic fatty amides such as hydroxy fatty acid monoamides such as 12-hydroxystearic acid monoethanolamide, aliphatic bisamides such as ethylene bislauric acid amide, ethylene biscapric acid amide, ethylene biscaprylic acid amide, and methylene bis 12-hydroxystearic acid Hydroxy fatty acid bisamides such as acid amide, ethylene bis 12-hydroxy stearic acid amide, hexamethylene bis 12-hydroxy stearic acid amide, and the like. From the viewpoint of moldability, heat resistance, impact resistance, and bloom resistance of the crystal nucleating agent of biodegradable resin molded products, 12-hydroxystearic acid triglyceride, behenic acid monoglyceride, ethylenebis12-hydroxystearic acid amide, hexamethylene Bis 12-hydroxystearic acid amide, 12-hydroxystearic acid monoethanolamide, ethylene biscaprylic acid amide, ethylene biscapric acid amide are preferred, 12-hydroxystearic acid triglyceride, ethyl bis 12-hydroxystearic acid amide, hexamethylene bis 12 -Hydroxystearic acid amide, 12-hydroxystearic acid monoethanolamide are more preferable, 12-hydroxystearic acid triglyceride, ethylene bis 12-hydroxystearic acid Phosphoric acid amide, more preferably hexamethylene bis hydroxystearic acid amide, ethylenebis 12-hydroxystearic acid amide, hexamethylene bis hydroxystearic acid amide are particularly preferred.

本発明の結晶核剤を透明生分解性樹脂に添加する場合、優れた透明性を維持することができる。   When the crystal nucleating agent of the present invention is added to a transparent biodegradable resin, excellent transparency can be maintained.

[生分解性樹脂組成物]
本発明の生分解性樹脂組成物は、ポリ乳酸樹脂、可塑剤、及び結晶核剤を含有するものである。
[Biodegradable resin composition]
The biodegradable resin composition of the present invention contains a polylactic acid resin, a plasticizer, and a crystal nucleating agent.

本発明の生分解性樹脂組成物中の、ポリ乳酸樹脂の含有量は、本発明の目的を達成する観点から、好ましくは50重量%以上であり、より好ましくは70重量%以上である。
本発明の生分解性樹脂組成物における可塑剤の含有量は、十分な結晶化速度と耐衝撃性を得る観点から、ポリ乳酸樹脂100重量部に対し、5〜70重量部が好ましく、7〜50重量部がより好ましく、10〜40重量部がさらに好ましい。
本発明の生分解性樹脂組成物における結晶核剤の含有量は、ポリ乳酸樹脂100重量部に対し、0.1〜5重量部が好ましく、0.2〜4重量部が更に好ましく、0.3〜3重量部が特に好ましい。
The content of the polylactic acid resin in the biodegradable resin composition of the present invention is preferably 50% by weight or more, more preferably 70% by weight or more from the viewpoint of achieving the object of the present invention.
The content of the plasticizer in the biodegradable resin composition of the present invention is preferably 5 to 70 parts by weight with respect to 100 parts by weight of the polylactic acid resin, from the viewpoint of obtaining a sufficient crystallization speed and impact resistance. 50 parts by weight is more preferable, and 10 to 40 parts by weight is even more preferable.
The content of the crystal nucleating agent in the biodegradable resin composition of the present invention is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, with respect to 100 parts by weight of the polylactic acid resin. 3 to 3 parts by weight are particularly preferred.

本発明の樹脂組成物は、上記の成分以外に、タルク、スメクタイト、カオリン、マイカ、モンモリロナイト等のケイ酸塩、シリカ、酸化マグネシウム、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム等の無機化合物を含有することができる。これら無機化合物の平均粒径は、分散性の観点から0.1〜20μmが好ましく、0.1〜10μmがより好ましい。これらの無機化合物の中でも、生分解性樹脂成形品の成形性及び耐熱性の観点からケイ酸塩が好ましく、タルクがより好ましい。
これら無機化合物の含有量は、ポリ乳酸樹脂100重量部に対し、0.1〜2重量部が好ましく、0.3〜2重量部が更に好ましく、0.5〜1.5重量部が特に好ましい。
In addition to the above components, the resin composition of the present invention contains silicates such as talc, smectite, kaolin, mica, montmorillonite, inorganic compounds such as silica, magnesium oxide, calcium carbonate, magnesium hydroxide, and aluminum hydroxide. can do. The average particle size of these inorganic compounds is preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm from the viewpoint of dispersibility. Among these inorganic compounds, silicate is preferable and talc is more preferable from the viewpoint of moldability and heat resistance of the biodegradable resin molded product.
The content of these inorganic compounds is preferably 0.1 to 2 parts by weight, more preferably 0.3 to 2 parts by weight, and particularly preferably 0.5 to 1.5 parts by weight with respect to 100 parts by weight of the polylactic acid resin. .

本発明の生分解性樹脂組成物は、結晶核剤、可塑剤以外に、更に、加水分解抑制剤を含有することができる。加水分解抑制剤としては、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、生分解性樹脂成形品の成形性の観点からポリカルボジイミド化合物が好ましい。   The biodegradable resin composition of the present invention can further contain a hydrolysis inhibitor in addition to the crystal nucleating agent and the plasticizer. Examples of the hydrolysis inhibitor include carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds, and polycarbodiimide compounds are preferred from the viewpoint of moldability of biodegradable resin molded products.

ポリカルボジイミド化合物としてはポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられ、モノカルボジイミド化合物としては、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミド等が挙げられる。   Examples of the polycarbodiimide compound include poly (4,4′-diphenylmethanecarbodiimide), poly (4,4′-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, and poly (1,3,5). -Triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide and the like, and examples of the monocarbodiimide compound include N, N'-di-2,6-diisopropylphenylcarbodiimide.

上記カルボジイミド化合物は、生分解性樹脂成形品の成形性、耐熱性、耐衝撃性及び結晶核剤の耐ブルーム性を満たすために、単独又は2種以上組み合わせて用いてもよい。また、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA−1(日清紡績(株)製)を、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド及びポリ(1,3,5−トリイソプロピルベンゼン及び1,5−ジイソプロピルベンゼン)ポリカルボジイミドはスタバクゾールP及びスタバクゾールP−100(Rhein Chemie社製)を、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドはスタバクゾールI(Rhein Chemie社製)をそれぞれ購入して使用することができる。
本発明の生分解性樹脂組成物における加水分解抑制剤の含有量は、生分解性樹脂成形品の成形性の観点から、ポリ乳酸樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。
The carbodiimide compounds may be used alone or in combination of two or more in order to satisfy the moldability, heat resistance, impact resistance, and bloom resistance of the crystal nucleating agent of the biodegradable resin molded product. Poly (4,4′-dicyclohexylmethanecarbodiimide) is obtained from carbodilite LA-1 (Nisshinbo Co., Ltd.), poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5). -Triisopropylbenzene and 1,5-diisopropylbenzene) polycarbodiimide are stabuxol P and stabuxol P-100 (Rhein Chemie), N, N'-di-2,6-diisopropylphenylcarbodiimide is stabuxol I (Rhein Chemie) Can be purchased and used.
The content of the hydrolysis inhibitor in the biodegradable resin composition of the present invention is preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the polylactic acid resin from the viewpoint of moldability of the biodegradable resin molded product. 0.1 to 2 parts by weight is more preferable.

本発明の生分解性樹脂組成物は、上記以外に、更にヒンダードフェノール又はフォスファイト系の酸化防止剤、又は炭化水素系ワックス類やアニオン型界面活性剤である滑剤等の他の成分を含有することができる。酸化防止剤、滑剤のそれぞれの含有量は、ポリ乳酸樹脂100重量部に対し、0.05〜3重量部が好ましく、0.1〜2重量部が更に好ましい。   In addition to the above, the biodegradable resin composition of the present invention further contains other components such as a hindered phenol or phosphite antioxidant, or a hydrocarbon wax or a lubricant that is an anionic surfactant. can do. The content of each of the antioxidant and the lubricant is preferably 0.05 to 3 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the polylactic acid resin.

本発明の生分解性樹脂組成物は、上記以外の他の成分として、ポリ乳酸樹脂以外の生分解性樹脂、帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、無機充填剤、防カビ剤、抗菌剤、発泡剤、難燃剤等を、本発明の目的達成を妨げない範囲で含有することができる。   The biodegradable resin composition of the present invention includes, as components other than those described above, biodegradable resins other than polylactic acid resins, antistatic agents, antifogging agents, light stabilizers, ultraviolet absorbers, pigments, and inorganic fillers. An antifungal agent, an antibacterial agent, a foaming agent, a flame retardant, and the like can be contained within a range that does not hinder achievement of the object of the present invention.

[生分解性樹脂成形品の製造法]
本発明の生分解性樹脂成形品の製造法は、本発明に係わる生分解性樹脂組成物を、押出成形法により、ダイから押し出されたシート又はフィルムを、表面温度60〜100℃の2つ以上の金属ロールに接触させ、及び/又はさらに60〜100℃の恒温層を通して熱処理する工程を含む方法によって、相対結晶化度30%以上に結晶化させてシート又はフィルムを得る方法である。
[Production method of biodegradable resin molded product]
The method for producing a biodegradable resin molded article of the present invention is a method of producing a biodegradable resin composition according to the present invention by subjecting a sheet or film extruded from a die by an extrusion molding method to two surface temperatures of 60 to 100 ° C. It is a method of obtaining a sheet or film by crystallization to a relative crystallinity of 30% or more by a method including a step of contacting the metal roll and / or further heat-treating through a constant temperature layer of 60 to 100 ° C.

本発明において、押出成形法としては、本発明の生分解性樹脂組成物を、2軸押出機や加圧型ニーダー等で混合してペレット等の形状に整え、それを乾燥後に押出機でシート又はフィルムに成形するか、押出機で混合後、直接シート又はフィルムに成形する方法が挙げられる。   In the present invention, as an extrusion molding method, the biodegradable resin composition of the present invention is mixed with a twin screw extruder, a pressure kneader or the like to prepare a pellet or the like, and after drying, the sheet or the Examples include a method of forming into a film or mixing with an extruder and then directly forming into a sheet or film.

本発明において、生分解性樹脂組成物の混合は、通常の方法によって行う事ができ、例えば、押出し機等を用いてポリ乳酸樹脂を溶融させながら、結晶核剤及び可塑剤を混合する方法等が挙げられる。混合する際の温度は、結晶核剤、可塑剤の分散性の観点から、ポリ乳酸樹脂の融点(Tm)以上が好ましく、より好ましくはTm〜Tm+100℃の範囲であり、更に好ましくはTm〜Tm+50℃の範囲である。具体的には、好ましくは170〜240℃であり、より好ましくは170〜220℃である。   In the present invention, the biodegradable resin composition can be mixed by an ordinary method, for example, a method of mixing a crystal nucleating agent and a plasticizer while melting a polylactic acid resin using an extruder or the like. Is mentioned. The mixing temperature is preferably at least the melting point (Tm) of the polylactic acid resin from the viewpoint of dispersibility of the crystal nucleating agent and plasticizer, more preferably in the range of Tm to Tm + 100 ° C., and still more preferably Tm to Tm + 50. It is in the range of ° C. Specifically, it is preferably 170 to 240 ° C, more preferably 170 to 220 ° C.

尚、ポリ乳酸樹脂の融点(Tm)は、JIS−K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より求められる値である。   In addition, melting | fusing point (Tm) of a polylactic acid resin is a value calculated | required from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121.

本発明の方法において、ダイから押し出されたシート又はフィルムが最初に接触する金属ロール群を第1ロールと呼ぶ。第1ロールの役割を担う金属ロールは、1つまたは2つ以上でも良い。本発明の方法は、第1ロールの表面温度を60〜100℃に制御してシート形状を維持しロール剥離性が良好になる程度まで結晶化させた後に、それ以降の金属ロール(熱処理ロール)の表面温度又は恒温槽の温度を60〜100℃にして、相対結晶化度30%以上に結晶化させる方法である。   In the method of the present invention, a group of metal rolls with which a sheet or film extruded from a die first comes into contact is referred to as a first roll. One or more metal rolls may serve as the first roll. In the method of the present invention, the surface temperature of the first roll is controlled to 60 to 100 ° C. to crystallize to the extent that the sheet shape is maintained and the roll peelability is improved, and thereafter the metal roll (heat treated roll) In this method, the surface temperature or the temperature of the thermostat is set to 60 to 100 ° C., and the relative crystallinity is 30% or more.

本発明の方法においては、結晶化速度や生産性の観点から、第1ロールの表面温度が60〜90℃、熱処理ロールの表面温度又は恒温槽の温度が70〜90℃がより好ましく、第1ロールの表面温度が65〜85℃、熱処理ロールの表面温度又は恒温槽の温度が70〜90℃がさらに好ましく、第1ロールの表面温度が70〜80℃、熱処理ロールの表面温度又は恒温槽の温度が75〜85℃が特に好ましい。また、熱処理ロールは1つ又は2つ以上でも良く、シート及びフィルムが第1ロールと熱処理ロールに接触している時間の合計が5〜60秒が好ましく、8〜45秒が更に好ましく、10〜30秒が特に好ましい。
本発明の方法において、さらに透明性の観点から第1ロールと熱処理ロールの表面温度の関係は次式の関係にあることが好ましい。
In the method of the present invention, from the viewpoint of crystallization speed and productivity, the surface temperature of the first roll is preferably 60 to 90 ° C., the surface temperature of the heat treatment roll or the temperature of the thermostatic bath is more preferably 70 to 90 ° C., The surface temperature of the roll is 65 to 85 ° C, the surface temperature of the heat treatment roll or the temperature of the thermostat is more preferably 70 to 90 ° C, the surface temperature of the first roll is 70 to 80 ° C, the surface temperature of the heat treatment roll or the temperature of the thermostat The temperature is particularly preferably 75 to 85 ° C. Moreover, 1 or 2 or more heat processing rolls may be sufficient, and the sum total of the time for which a sheet | seat and a film are contacting the 1st roll and the heat processing roll is preferable, 5 to 60 second is more preferable, and 8 to 45 second is more preferable. 30 seconds is particularly preferred.
In the method of the present invention, it is preferable that the relationship between the surface temperatures of the first roll and the heat treatment roll is represented by the following formula from the viewpoint of transparency.

(熱処理ロール表面温度−20℃)≦(第1ロール表面温度)≦(熱処理ロール表面温度) (Heat treatment roll surface temperature-20 ° C) ≤ (first roll surface temperature) ≤ (heat treatment roll surface temperature)

さらに好ましくは(熱処理ロール表面温度−15℃)≦(第1ロール表面温度)≦(熱処理ロール表面温度−5℃)、特に好ましくは(熱処理ロール表面温度−10℃)≦(第1ロール表面温度)≦(熱処理ロール表面温度−5℃)の範囲である。具体的には、熱処理ロール表面温度70℃〜90℃で、第1ロール表面温度が60〜90℃が好ましく、65〜85℃がさらに好ましく、70〜85℃が特に好ましい。   More preferably (heat treatment roll surface temperature -15 ° C) ≤ (first roll surface temperature) ≤ (heat treatment roll surface temperature -5 ° C), particularly preferably (heat treatment roll surface temperature -10 ° C) ≤ (first roll surface temperature) ) ≦ (heat treatment roll surface temperature−5 ° C.). Specifically, the heat treatment roll surface temperature is 70 ° C to 90 ° C, the first roll surface temperature is preferably 60 to 90 ° C, more preferably 65 to 85 ° C, and particularly preferably 70 to 85 ° C.

本発明の製造法は、上記のような方法によって、耐ブロッキング性および耐熱性の観点から成形体の相対結晶化度が30%以上であり、好ましくは45%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上に結晶化させた成形体を得ることができる。   In the production method of the present invention, the relative crystallinity of the molded product is 30% or more, preferably 45% or more, more preferably 80% or more, from the viewpoint of blocking resistance and heat resistance, by the method described above. More preferably, a molded body crystallized to 90% or more, particularly preferably 95% or more can be obtained.

尚、本発明において、相対結晶化度とは以下の式で表される結晶化度を言う。下記式中、70℃×60時間処理とは、成形直後のシートを70℃で管理した恒温室に60時間放置した後、室温(好ましくは25℃)で放冷する処理を示す。   In the present invention, the relative crystallinity refers to the crystallinity represented by the following formula. In the following formula, “70 ° C. × 60 hour treatment” refers to a treatment in which a sheet immediately after molding is left in a temperature-controlled room controlled at 70 ° C. for 60 hours and then allowed to cool at room temperature (preferably 25 ° C.).

相対結晶化度(%)=(成形直後の結晶化度(%))/(さらに70℃×60時間処理後の結晶化度(%))×100   Relative crystallinity (%) = (crystallinity immediately after molding (%)) / (crystallinity after 70 ° C. × 60 hours treatment (%)) × 100

以上のように成形後の結晶化度を規定する理由は、本発明の効果が、ベース樹脂が結晶化することによって発揮されるものであり、耐熱性、感温性、耐ブロッキング性、耐溶剤性等の向上も結晶化による効果であるためである。また、可塑剤による柔軟性向上(弾性率の低下と破断点伸度の向上)や耐衝撃性の向上も、結晶化することによって十分に効果を発揮することができる。   The reason for prescribing the crystallinity after molding as described above is that the effect of the present invention is exhibited by crystallization of the base resin, heat resistance, temperature sensitivity, blocking resistance, solvent resistance. This is because the improvement in properties and the like is also an effect of crystallization. In addition, the improvement in flexibility (decrease in elastic modulus and improvement in elongation at break) and the improvement in impact resistance by the plasticizer can be sufficiently effective by crystallization.

本発明の製造方法は、本発明の樹脂組成物から延伸工程のない通常のT−ダイ押出成形機で生産性よく結晶化シートを成形することを可能とする。具体的にここでの生産性とは、成形速度が高く、金属ロールへの粘着、偏肉、シワ等のトラブルも極めて少なく、かつシート成形後に別の設備でのアニーリング処理(後熱処理工程)も必要のないインラインでの成形が可能であることを指す。   The production method of the present invention makes it possible to form a crystallized sheet from the resin composition of the present invention with high productivity using a normal T-die extrusion molding machine without a stretching step. Specifically, productivity here means high forming speed, extremely few troubles such as adhesion to metal rolls, uneven thickness, wrinkles, etc., and annealing treatment (post heat treatment process) in another facility after sheet forming It means that in-line molding that is not necessary is possible.

[生分解性樹脂成形品]
本発明の製造法によって成形した本発明のシートは、透明性を高度に維持した結晶化が可能であるため透明性に優れ、また結晶化によって耐溶剤性が飛躍的に向上する。また、本発明の生分解性樹脂成形品であるシートは、柔軟性と添加剤の効果によって未改質のポリ乳酸やポリエチレンテレフタレートシートに比べて耐傷性を顕著に向上させることができ、耐溶剤性の向上から、印刷インクに対してもほとんどの溶剤に対しても耐性があるため、適応性が拡大する。また本発明のシートは、ポリプロピレン製クリアホルダーでみられるような印刷直後の印刷物を接触させた際に起こるインクの溶剤が原因である反り(カーリング現象)なども起こらず、耐傷性、透明性も高いことから、クリアホルダーのベースシートとしても好適である。
[Biodegradable resin molded products]
The sheet of the present invention formed by the production method of the present invention is excellent in transparency because it can be crystallized with high transparency, and the solvent resistance is remarkably improved by crystallization. In addition, the sheet which is the biodegradable resin molded product of the present invention can significantly improve the scratch resistance as compared with the unmodified polylactic acid or polyethylene terephthalate sheet due to the effect of flexibility and additives, Due to the improved property, it is resistant to both printing inks and most solvents, thus expanding adaptability. In addition, the sheet of the present invention does not cause warping (curling phenomenon) caused by the solvent of the ink that occurs when the printed material just after printing as seen in a polypropylene clear holder is brought into contact, and has scratch resistance and transparency. Since it is high, it is also suitable as a base sheet for a clear holder.

また、本発明の製造方法によって成形したシートは、結晶化速度が高いために真空成形、圧空成形等の2次加工で行う熱成形用シートとして好適であり、特に透明を生かした耐熱性の容器、ブリスターパック、トレイ等の製品に使用することができる。   Further, since the sheet formed by the production method of the present invention has a high crystallization speed, it is suitable as a sheet for thermoforming performed by secondary processing such as vacuum forming and pressure forming, and is particularly a heat-resistant container utilizing transparency. It can be used for products such as blister packs and trays.

以下の実施例及び比較例で用いる生分解性樹脂組成物をまとめて表1に示す。   The biodegradable resin compositions used in the following examples and comparative examples are collectively shown in Table 1.

Figure 0004800348
Figure 0004800348

*1:ポリ乳酸樹脂(三井化学(株)製、LACEA H−400)
*2:グリセリンのエチレンオキサイド6モル付加物のトリ酢酸エステル
*3:エチレンビス12−ヒドロキシステアリン酸アミド(日本化成(株)製、スリパックス H)
*4:12−ヒドロキシステアリン酸トリグリセライド(花王(株)製、カオーワックス85P)
*5:コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
*6:ポリカルボジイミド(日清紡績(株)製、カルボジライトLA−1)
*7:日本タルク(株)製 、Micro Ace P-6
*8:ステアリン酸モノアミド(花王(株)製、脂肪酸アマイドS)
*9:アセチルクエン酸トリブチル(田岡化学工業(株)製 ATBC)
* 1: Polylactic acid resin (manufactured by Mitsui Chemicals, LACEA H-400)
* 2: Triacetate ester of 6 mol adduct of glycerin with ethylene oxide * 3: Ethylene bis 12-hydroxystearic acid amide (Nippon Kasei Co., Ltd., SLIPAX H)
* 4: 12-hydroxystearic acid triglyceride (manufactured by Kao Corporation, Kao Wax 85P)
* 5: Diester of succinic acid and triethylene glycol monomethyl ether * 6: Polycarbodiimide (Nisshinbo Co., Ltd., Carbodilite LA-1)
* 7: Nihon Talc Co., Ltd., Micro Ace P-6
* 8: Stearic acid monoamide (manufactured by Kao Corporation, fatty acid amide S)
* 9: Tributyl acetyl citrate (ATBC manufactured by Taoka Chemical Industry Co., Ltd.)

実施例1〜3、比較例1〜4
生分解性樹脂組成物として表1に示す本発明品(A〜B)及び比較品(E〜F)を、2軸押出機(ベルストルフ ZE40A)を使用して、シリンダーおよびダイの温度が190〜180℃の条件で溶融混練し、樹脂組成物のペレットを得た。
Examples 1-3, Comparative Examples 1-4
Using the biaxial extruder (Berstorf ZE40A) as the biodegradable resin composition of the present invention products (A to B) and comparative products (EF) shown in Table 1, the cylinder and die temperatures are 190 to The mixture was melt-kneaded under conditions of 180 ° C. to obtain resin composition pellets.

得られたペレットは、70℃、減圧下で1日乾燥し、水分量を500ppm以下とした。
そのペレットをT−ダイ押出機(プラスチック工学研究所製 UT−32−T 200mmTダイ)で、表2に示す表面温度に制御した第1ロールに接触させ、表2に示す表面温度を有する熱処理ロールにより熱処理を行い、フィルムを得た(ロールユニットは第1ロールと熱処理ロール3本で構成され、それぞれ冷水又は温水によって温度制御が可能である。)。
The obtained pellets were dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.
The pellet was brought into contact with the first roll controlled to the surface temperature shown in Table 2 with a T-die extruder (UT-32-T 200 mmT die manufactured by Plastic Engineering Laboratory), and the heat treatment roll having the surface temperature shown in Table 2 To obtain a film (the roll unit is composed of a first roll and three heat treatment rolls, each of which can be controlled with cold water or hot water).

各樹脂組成物の成形性と、得られたフィルムについて下記の方法で測定した結晶化度、透明性、耐ブロッキング性の評価結果を表2に示す。
また、実施例3、及び比較例3、4で得られたフィルムの柔軟性・感温性・耐熱性、及び耐ブリード性を下記の方法で評価した。これらの結果を表3に示す。
Table 2 shows the moldability of each resin composition and the evaluation results of the degree of crystallinity, transparency, and blocking resistance measured by the following method for the obtained film.
Further, the flexibility, temperature sensitivity, heat resistance, and bleed resistance of the films obtained in Example 3 and Comparative Examples 3 and 4 were evaluated by the following methods. These results are shown in Table 3.

<結晶化度>
成形後のフィルムについて、広角X線回折測定装置(理学電機製 RINT2500VPC,光源CuKα,管電圧40kV,管電流120mA)を使用し、2θ=5〜30°の範囲の非晶及び結晶の
ピーク面積を解析して結晶化度を求めた。
<Crystallinity>
Using the wide-angle X-ray diffractometer (RINT2500VPC manufactured by Rigaku Corporation, light source CuKα, tube voltage 40kV, tube current 120mA) for the film after molding, the amorphous and crystalline peak areas in the range of 2θ = 5-30 ° The crystallinity was determined by analysis.

<透明性>
成形後のフィルムについて、JIS−K7105規定の積分球式光線透過率測定装置(ヘイズメーター)を用い、ヘイズ値を測定した。数字の小さい方が透明性が良好であることを示す。
<Transparency>
About the film after shaping | molding, the haze value was measured using the integrating sphere type light transmittance measuring apparatus (haze meter) prescribed | regulated to JIS-K7105. Smaller numbers indicate better transparency.

<耐ブロッキング性>
成形後のフィルムを縦6cm×横6cmの大きさに切り取り、2枚のサンプルを貼り合わせて10cm×10cm×厚み5mmのガラス板2枚に挟み込み、ガラスの上から1kgの錘で荷重をかけ、80℃に管理したオーブンに入れて4時間処理し、室温で放冷した後に、サンプルの剥離試験を行い、下記の基準で評価した。
○:サンプル同士が粘着することなく、容易に剥離する。
×:サンプル同士が粘着してしまい、剥離できない。
<Blocking resistance>
The film after molding is cut into a size of 6 cm in length and 6 cm in width, and the two samples are bonded together and sandwiched between two 10 cm × 10 cm × 5 mm thick glass plates, and a weight of 1 kg is applied from above the glass, The sample was placed in an oven controlled at 80 ° C., treated for 4 hours, and allowed to cool at room temperature, and then a sample peel test was performed and evaluated according to the following criteria.
○: The samples peel easily without sticking to each other.
X: The samples stick to each other and cannot be peeled off.

<柔軟性・感温性・耐熱性>
成形後のフィルムについて、JIS−K7198に基づいて、動的粘弾性測定装置(アイティー計測制御製 DVA-200)にて、周波数50Hz、昇温速度2℃/minにおいて−20℃から150℃の温度領域における貯蔵弾性率(E’)の温度依存性、ならびに0℃、25℃、60℃及び80℃における貯蔵弾性率(E’)を測定した。
柔軟性は25℃におけるE’の数値が低いほど柔軟性は高く、感温性は0℃〜80℃の温度範囲でE’の変化が小さいほど良好であり、耐熱性は60℃または80℃のE’の数値で判断した。
<Flexibility, temperature sensitivity, heat resistance>
About the film after shaping | molding, based on JIS-K7198, with a dynamic viscoelasticity measuring apparatus (DVA-200 made by IT measurement control), a frequency of 50 Hz and a temperature rising rate of 2 ° C./min. The temperature dependence of the storage elastic modulus (E ′) in the temperature region and the storage elastic modulus (E ′) at 0 ° C., 25 ° C., 60 ° C. and 80 ° C. were measured.
The lower the E ′ value at 25 ° C., the higher the flexibility. The lower the change in E ′ in the temperature range of 0 ° C. to 80 ° C., the better. The heat resistance is 60 ° C. or 80 ° C. The value of E 'was judged.

<耐ブリード性>
成形後のフィルム(縦100mm×横100mm)について、70℃の恒温室に1週間放置し、その表面における可塑剤のブリードの有無を肉眼で観察した。
<Bleed resistance>
The molded film (length 100 mm × width 100 mm) was left in a thermostatic chamber at 70 ° C. for 1 week, and the presence or absence of a plasticizer bleed on the surface was observed with the naked eye.

Figure 0004800348
Figure 0004800348

表2のように本発明の樹脂組成物を、本発明の成形法でT−ダイ押出成形を行った結果、各金属ロールからのフィルムの剥離性も問題なく成形性が良好であり、実施例が示すように短い熱処理時間で相対結晶化度30%以上の結晶化フィルムが得られ、かつ透明性についても優れた透明性を維持したままの結晶化を達成できた。   As shown in Table 2, the resin composition of the present invention was subjected to T-die extrusion molding according to the molding method of the present invention. As a result, the moldability of the film from each metal roll was satisfactory and the moldability was good. As shown, a crystallized film having a relative crystallinity of 30% or more was obtained in a short heat treatment time, and crystallization with excellent transparency was maintained.

一方、比較例の樹脂組成物の場合、第1ロールで結晶化しないため、この時点でフィルムに粘着してしまい成形ができなかった。そこで本発明の製造方法に該当しない比較例3〜4の条件ではフィルム成形は可能であったが、非晶状態であった。   On the other hand, in the case of the resin composition of the comparative example, since it was not crystallized by the first roll, it adhered to the film at this point and could not be molded. Therefore, film formation was possible under the conditions of Comparative Examples 3 to 4 not corresponding to the production method of the present invention, but the film was in an amorphous state.

また、巻物でフィルムを在庫した場合の保存安定性を想定した耐ブロッキング性の評価では、本発明の実施例はいずれも耐ブロッキング性良好であるが、比較例の非晶シートではブロッキングを起こしてしまった。
本発明の樹脂組成物であっても第1ロールや熱処理ロールが100℃を超えてしまうと非晶フィルムをロールに接触させた時点でフィルムの張力が著しく低下して接触にムラが生じて不均一になり、また熱処理ロールが60℃より低くなると結晶化速度が著しく低下するため結晶化が進行しないどころか、さらにTg以上60℃未満の場合は、熱処理ロールに粘着する問題が生じる場合がある。
In addition, in the evaluation of blocking resistance assuming storage stability when the film is stocked in a roll, all the examples of the present invention have good blocking resistance, but the amorphous sheet of the comparative example caused blocking. Oops.
Even in the case of the resin composition of the present invention, if the first roll or the heat-treated roll exceeds 100 ° C., the tension of the film is remarkably lowered when the amorphous film is brought into contact with the roll, resulting in uneven contact. If the heat treatment roll becomes uniform and the heat treatment roll is lower than 60 ° C., the crystallization speed is remarkably lowered, so that crystallization does not proceed, and if it is Tg or more and less than 60 ° C., a problem of sticking to the heat treatment roll may occur.

Figure 0004800348
Figure 0004800348

表3に示すように本発明の実施例に示すフィルムは、0℃および25℃の貯蔵弾性率E’は、可塑剤を含有しない比較例3に比べて低くなり、柔軟性が向上した。また、実施例のシートは0℃から80℃のE’の変化が小さく感温性、耐熱性に優れているのに対し、非晶状態である比較例3、4は、それぞれ60℃、80℃で急激にE’の低下が起こり、感温性、耐熱性に劣る結果となった。また、耐ブリード性を評価した結果、本発明の樹脂組成物は耐ブリード性に優れているのに対し、比較例4の樹脂組成物は熱処理による促進試験でブリード現象がみられ、耐ブリード性に劣る結果となった。   As shown in Table 3, the storage elastic modulus E ′ at 0 ° C. and 25 ° C. of the films shown in the examples of the present invention was lower than that of Comparative Example 3 containing no plasticizer, and the flexibility was improved. In addition, the sheet of the example has a small change in E ′ from 0 ° C. to 80 ° C. and is excellent in temperature sensitivity and heat resistance, whereas Comparative Examples 3 and 4 which are in an amorphous state are 60 ° C. and 80 ° C., respectively. E 'suddenly decreased at 0 ° C, resulting in poor temperature sensitivity and heat resistance. In addition, as a result of evaluating the bleed resistance, the resin composition of the present invention is excellent in bleed resistance, whereas the resin composition of Comparative Example 4 shows a bleed phenomenon in an accelerated test by heat treatment. It became inferior result.

実施例4〜9、比較例5〜8
生分解性樹脂組成物として表1に示す本発明品(C〜D)および比較品(E〜F)を、2軸押出機(ベルストルフ ZE40A)を使用して、シリンダーおよびダイの温度が190〜180℃の条件で溶融混練し、樹脂組成物のペレットを得た。
Examples 4-9, Comparative Examples 5-8
The present invention products (C to D) and comparative products (E to F) shown in Table 1 as biodegradable resin compositions were used in a twin-screw extruder (Berstorf ZE40A), and the cylinder and die temperatures were 190 to The mixture was melt-kneaded under conditions of 180 ° C. to obtain resin composition pellets.

得られたペレットは、70℃、減圧下で1日乾燥し、水分量を500ppm以下とした。
そのペレットをT−ダイ押出機((株)創建製 250mmTダイ)で、表4に示す表面温度に制御した第1ロールに接触させ、表4に示す表面温度を有する熱処理ロールにより熱処理を行い、フィルムを得た(ロールユニットは第1ロールと熱処理ロール1本で構成され、それぞれオイルまたは温水によって温度制御が可能である。)。
The obtained pellets were dried at 70 ° C. under reduced pressure for 1 day, and the water content was adjusted to 500 ppm or less.
The pellet was brought into contact with the first roll controlled to the surface temperature shown in Table 4 with a T-die extruder (250 mm T die manufactured by Soken Co., Ltd.), and heat-treated with a heat treatment roll having the surface temperature shown in Table 4, A film was obtained (the roll unit was composed of a first roll and one heat treatment roll, and temperature control was possible with oil or hot water, respectively).

各樹脂組成物の成形性と、得られたシートについて結晶化度、透明性、耐ブロッキング性の評価を上記と同様の方法により行った。結果を表4に示す。   The moldability of each resin composition and the evaluation of the degree of crystallinity, transparency, and blocking resistance of the obtained sheet were performed in the same manner as described above. The results are shown in Table 4.

また、実施例5、8、及び比較例7、8で得られたシートの柔軟性・感温性・耐熱性、及び耐ブリード性を上記と同様の方法で評価した。また、引張物性を下記の方法で測定した。これらの結果を表5に示す。
また、実施例5、8、及び比較例7、8で得られたシートおよびPETシート(ポリエチレンテレフタレート製シート、シート厚200μm)について、下記の方法で耐溶剤性を評価した。これらの結果を表6に示す。
また、実施例5、8、及び比較例7、8で得られたシートおよび上記PETシートについて、下記の方法で耐傷性を評価した。これらの結果を表7に示す。
Further, the flexibility, temperature sensitivity, heat resistance, and bleed resistance of the sheets obtained in Examples 5 and 8 and Comparative Examples 7 and 8 were evaluated in the same manner as described above. Moreover, the tensile property was measured by the following method. These results are shown in Table 5.
Further, the solvent resistance of the sheets obtained in Examples 5 and 8 and Comparative Examples 7 and 8 and the PET sheet (polyethylene terephthalate sheet, sheet thickness 200 μm) was evaluated by the following method. These results are shown in Table 6.
Further, the scratch resistance of the sheets obtained in Examples 5 and 8 and Comparative Examples 7 and 8 and the PET sheet was evaluated by the following method. These results are shown in Table 7.

<引張物性>
各シートを3号ダンベルで打ち抜き、室温23℃、湿度60%の恒温室に24時間放置し、テンシロン引張速度50mm/minで引張試験を行い、引張弾性率及び破断点伸度を測定した。
<Tensile properties>
Each sheet was punched with a No. 3 dumbbell, left in a thermostatic chamber at room temperature of 23 ° C. and a humidity of 60% for 24 hours, and subjected to a tensile test at a tensilon tensile speed of 50 mm / min to measure the tensile modulus and elongation at break.

<耐溶剤性>
25℃に調整した表6に示す各溶剤に、各シートを30秒間浸漬し、取り出した後に自然乾燥を行い、各シートの状態を肉眼で観察し、下記基準で評価した。
○:光沢、透明性、表面状態に変化なし
△:光沢が低下し、表面が荒れる。
×:透明性が低下する。
××:溶解する。
<Solvent resistance>
Each sheet was immersed in each solvent shown in Table 6 adjusted to 25 ° C. for 30 seconds, taken out, then naturally dried, the state of each sheet was observed with the naked eye, and evaluated according to the following criteria.
○: No change in gloss, transparency, and surface condition Δ: Gloss is lowered and the surface is rough.
X: Transparency decreases.
XX: Dissolves.

<耐傷性>
各シートを水平な台の上に固定し、JIS―K5600-5-4に基づいて、表7に示す種々の硬さの鉛筆の芯でシート表面を引っかき、下記基準で耐傷性を評価した。
○:傷が付かない
×:傷が付く
<Scratch resistance>
Each sheet was fixed on a horizontal base, and based on JIS-K5600-5-4, the surface of the sheet was scratched with a pencil core having various hardnesses shown in Table 7, and scratch resistance was evaluated according to the following criteria.
○: Not scratched ×: Scratched

<180°折曲白化性>
各シートを25℃に管理した恒温室に24時間静置した後、180°折り曲げて、シートの状態を肉眼で観察し、折曲白化性を下記基準で評価した。
○:白化しない。
△:わずかに白い筋が付く。
×:激しく白化する。
<180 ° bending whitening>
Each sheet was allowed to stand in a temperature-controlled room controlled at 25 ° C. for 24 hours, then folded 180 °, the state of the sheet was observed with the naked eye, and the folding whitening property was evaluated according to the following criteria.
○: Whitening does not occur.
Δ: Slight white streaks appear.
X: Vigorously whitened.

Figure 0004800348
Figure 0004800348

表4のように本発明の樹脂組成物を、本発明の成形法でT−ダイ押出成形を行った結果、各金属ロールからのシートの剥離性も問題なく成形性が良好であり、実施例が示すように短い熱処理時間で相対結晶化度30%以上の結晶化シートが得られ、かつ透明性についても実施例4〜6で優れた透明性を維持したままの結晶化を達成できた。   As shown in Table 4, the resin composition of the present invention was subjected to T-die extrusion molding by the molding method of the present invention. As a result, the moldability of the sheet from each metal roll was satisfactory and the moldability was good. As shown in FIG. 4, a crystallization sheet having a relative crystallinity of 30% or more was obtained in a short heat treatment time, and the crystallization while maintaining excellent transparency in Examples 4 to 6 was also achieved.

一方、比較例の樹脂組成物の場合、第1ロールで結晶化しないため、この時点でシートが粘着してしまい成形ができなかった。そこで本発明の製造方法に該当しない比較例7、8の条件ではシート成形は可能であったが、非晶状態であった。   On the other hand, in the case of the resin composition of the comparative example, since it was not crystallized by the first roll, the sheet was stuck at this point and could not be molded. Therefore, sheet molding was possible under the conditions of Comparative Examples 7 and 8 that did not correspond to the production method of the present invention, but the sheet was in an amorphous state.

また、巻物でシートを在庫した場合の保存安定性を想定した耐ブロッキング性の評価では、本発明の実施例はいずれも耐ブロッキング性良好であるが、比較例7、8の非晶シートではブロッキングを起こしてしまった。   In addition, in the evaluation of blocking resistance assuming storage stability when sheets are stocked in a roll, all of the examples of the present invention have good blocking resistance, but the amorphous sheets of Comparative Examples 7 and 8 are blocking. I have caused.

本発明の樹脂組成物であっても第1ロールや熱処理ロールが100℃を超えてしまうと非晶シートをロールに接触させた時点でフィルムの張力が著しく低下して接触にムラが生じて不均一になり、また熱処理ロールが60℃より低くなると結晶化速度が著しく低下するため結晶化が進行しないどころか、さらにTg以上60℃未満の場合は、熱処理ロールに粘着する問題が生じる場合がある。   Even in the case of the resin composition of the present invention, if the first roll or the heat-treated roll exceeds 100 ° C., the tension of the film is remarkably lowered at the time when the amorphous sheet is brought into contact with the roll, resulting in uneven contact. If the heat treatment roll becomes uniform and the heat treatment roll is lower than 60 ° C., the crystallization speed is remarkably lowered, so that crystallization does not proceed, and if it is Tg or more and less than 60 ° C., a problem of sticking to the heat treatment roll may occur.

Figure 0004800348
Figure 0004800348

表5に示すように本発明の実施例に示すシートは、0℃および25℃の貯蔵弾性率E’は、可塑剤を含有しない比較例7に比べて低くなり、柔軟性が向上した。また、実施例のシートは0℃から80℃のE’の変化が小さく感温性、耐熱性に優れているのに対し、非晶状態である比較例7、8は、それぞれ60℃、80℃で急激にE’の低下が起こり、感温性、耐熱性に劣る結果となった。   As shown in Table 5, the storage elastic modulus E ′ at 0 ° C. and 25 ° C. of the sheet shown in the examples of the present invention was lower than that of Comparative Example 7 containing no plasticizer, and the flexibility was improved. Further, the sheet of the example has a small change in E ′ from 0 ° C. to 80 ° C. and is excellent in temperature sensitivity and heat resistance, whereas Comparative Examples 7 and 8 which are in an amorphous state are 60 ° C. and 80 ° C., respectively. E 'suddenly decreased at 0 ° C, resulting in poor temperature sensitivity and heat resistance.

また一般的に用いられる引張物性を測定すると、同じく可塑剤を含有する比較例8に対し、実施例のシートは弾性率が低く、かつ破断点伸度も著しく高く柔軟性に優れる結果となった。実施例のように結晶化することによって可塑剤の効果が十分に発揮されることがわかる。
一方、耐ブリード性を評価した結果、本発明の樹脂組成物は耐ブリード性に優れているのに対し、比較例8の樹脂組成物は熱処理による促進試験でブリード現象がみられ、耐ブリード性に劣る結果となった。
Further, when measuring the commonly used tensile physical properties, the sheet of the example has a low elastic modulus, a remarkably high elongation at break, and excellent flexibility as compared with Comparative Example 8 which also contains a plasticizer. . It turns out that the effect of a plasticizer is fully exhibited by crystallizing like an Example.
On the other hand, as a result of evaluating the bleed resistance, the resin composition of the present invention is excellent in bleed resistance, whereas the resin composition of Comparative Example 8 shows a bleed phenomenon in an accelerated test by heat treatment. It became inferior result.

Figure 0004800348
Figure 0004800348

表6が示すように比較例のポリ乳酸系シートは耐溶剤性が著しく劣る結果となった。これに対し、実施例のシートは耐溶剤性が顕著に優れ、PETシートに比べても良好な結果となった。この結果はポリ乳酸の結晶化によって耐溶剤性が向上した効果と考えられる。   As shown in Table 6, the polylactic acid-based sheet of the comparative example was significantly inferior in solvent resistance. On the other hand, the sheet of the example was remarkably excellent in solvent resistance, and the result was better than that of the PET sheet. This result is considered to be the effect of improving the solvent resistance by crystallization of polylactic acid.

Figure 0004800348
Figure 0004800348

表7が示すように実施例のシートは比較例のシートに対して、耐傷性に顕著に優れる結果となった。この結果は、実施例のシートが柔軟性に優れていることが主たる原因であると考えられるが、ポリ乳酸の結晶化や結晶核剤がシート表面へ何らかの改質効果を発現させている可能性も考えられる。   As shown in Table 7, the sheet of the example was significantly superior in scratch resistance compared to the sheet of the comparative example. This result is thought to be mainly due to the excellent flexibility of the sheets of the examples, but there is a possibility that polylactic acid crystallization and crystal nucleating agents have some modification effect on the sheet surface. Is also possible.

Claims (5)

ポリ乳酸樹脂と、可塑剤と、分子中に水酸基を1つ以上有し、エステル基又はアミド基を1つ以上有する脂肪族化合物から選ばれる結晶核剤とを含有する樹脂組成物から、シート又はフィルムを成形する生分解性樹脂成形品の製造法であって、押出成形法により、ダイから押し出されたシート又はフィルムを、表面温度60〜100℃の2つ以上の金属ロールに接触させる工程を含む方法によって、相対結晶化度30%以上に結晶化させてシート又はフィルムを得る、生分解性樹脂成形品の製造法。 From a resin composition containing a polylactic acid resin, a plasticizer, and a crystal nucleating agent selected from an aliphatic compound having one or more hydroxyl groups in the molecule and one or more ester groups or amide groups, film a method for producing a biodegradable resin molded article for molding the, by extrusion, sheet or film extruded from the die is contacted with two or more metal roll surface temperature of 60 to 100 [° C. step A method for producing a biodegradable resin molded article, in which a sheet or film is obtained by crystallization to a relative crystallinity of 30% or more by a method comprising: ポリ乳酸樹脂と、可塑剤と、分子中に水酸基を1つ以上有し、エステル基又はアミド基を1つ以上有する脂肪族化合物から選ばれる結晶核剤とを含有する樹脂組成物から、シート又はフィルムを成形する生分解性樹脂成形品の製造法であって、押出成形法により、ダイから押し出されたシート又はフィルムを、表面温度60〜100℃の2つ以上の金属ロールに接触させ、さらに60〜100℃の恒温層を通して熱処理する工程を含む方法によって、相対結晶化度30%以上に結晶化させてシート又はフィルムを得る、生分解性樹脂成形品の製造法。From a resin composition containing a polylactic acid resin, a plasticizer, and a crystal nucleating agent selected from an aliphatic compound having one or more hydroxyl groups in the molecule and one or more ester groups or amide groups, A method for producing a biodegradable resin molded article for forming a film, wherein a sheet or film extruded from a die is brought into contact with two or more metal rolls having a surface temperature of 60 to 100 ° C. by an extrusion method, A method for producing a biodegradable resin molded article, wherein a sheet or film is obtained by crystallization to a relative crystallinity of 30% or more by a method comprising a heat treatment through a constant temperature layer at 60 to 100 ° C. ポリ乳酸樹脂100重量部に対し、可塑剤の含有量が5〜70重量部、結晶核剤の含有量が0.1〜5重量部である、請求項1又は2記載の生分解性樹脂成形品の製造法。 The biodegradable resin molding according to claim 1 or 2 , wherein the content of the plasticizer is 5 to 70 parts by weight and the content of the crystal nucleating agent is 0.1 to 5 parts by weight with respect to 100 parts by weight of the polylactic acid resin. Product manufacturing method. 可塑剤が、分子中に2個以上のエステル基を有し、エチレンオキサイドの平均付加モル数が2〜9の化合物である請求項1〜3いずれか記載の生分解性樹脂成形品の製造法。 The method for producing a biodegradable resin molded article according to any one of claims 1 to 3 , wherein the plasticizer is a compound having 2 or more ester groups in the molecule and an average addition mole number of ethylene oxide of 2 to 9. . 請求項1〜4いずれか記載の製造法により得られる生分解性樹脂成形品。   A biodegradable resin molded product obtained by the production method according to claim 1.
JP2008173160A 2008-07-02 2008-07-02 Manufacturing method of biodegradable resin molded products. Active JP4800348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173160A JP4800348B2 (en) 2008-07-02 2008-07-02 Manufacturing method of biodegradable resin molded products.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173160A JP4800348B2 (en) 2008-07-02 2008-07-02 Manufacturing method of biodegradable resin molded products.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005326405A Division JP4246196B2 (en) 2005-11-10 2005-11-10 Manufacturing method of biodegradable resin molded products.

Publications (2)

Publication Number Publication Date
JP2008230256A JP2008230256A (en) 2008-10-02
JP4800348B2 true JP4800348B2 (en) 2011-10-26

Family

ID=39903586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173160A Active JP4800348B2 (en) 2008-07-02 2008-07-02 Manufacturing method of biodegradable resin molded products.

Country Status (1)

Country Link
JP (1) JP4800348B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2379307B1 (en) * 2008-12-29 2013-03-13 3M Innovative Properties Company Polylactide films having structured surface and methods for making the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003042302A1 (en) * 2001-11-15 2005-03-10 新日本理化株式会社 Lactic acid polymer composition and molded article thereof

Also Published As

Publication number Publication date
JP2008230256A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4246196B2 (en) Manufacturing method of biodegradable resin molded products.
JP4260794B2 (en) Manufacturing method of biodegradable resin molded products
JP4699180B2 (en) Manufacturing method of biodegradable resin molded products.
JP4112568B2 (en) Biodegradable resin composition
JP4611214B2 (en) Biodegradable resin composition
US9062199B2 (en) Molded product composed of polyester resin composition
JP2009062410A (en) Manufacturing method of polylactic acid resin sheet and manufacturing device used for it
US11299622B2 (en) Polylactic acid resin composition and polylactic acid resin molded article
JP4252570B2 (en) Pellet manufacturing method
JP5143374B2 (en) Biodegradable resin composition
JP2008173966A (en) Manufacturing method for polylactic acid resin molded body
JP5302476B1 (en) Thermoformed product comprising a polyester resin composition
JP4800348B2 (en) Manufacturing method of biodegradable resin molded products.
JP5999686B2 (en) Heat-resistant polylactic acid-based molded body and method for producing the same
JP2014105306A (en) Method for manufacturing biodegradable resin molded article
JP2010150385A (en) Polylactic acid resin composition
JP2016108511A (en) Sheet for thermoforming
JP4870037B2 (en) Biodegradable resin composition
JP4727706B2 (en) Manufacturing method of biodegradable resin molded products.
JP2006143829A (en) Polylactic acid-based resin molding and method for producing the same
JP2004345150A (en) Method for manufacturing heat-set molded product
JP6777889B2 (en) Polyester resin composition containing aminotriazine derivative and fatty acid
JP5225550B2 (en) Polylactic acid resin composition
JP6494086B2 (en) Manufacturing method of thermoforming sheet
JP2011046005A (en) Poly(lactic acid)-based heat-resistant container and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4800348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250