JP2007150053A - Stamper for optical inprint, and manufacturing method for light emitting device and using same stamper - Google Patents

Stamper for optical inprint, and manufacturing method for light emitting device and using same stamper Download PDF

Info

Publication number
JP2007150053A
JP2007150053A JP2005343736A JP2005343736A JP2007150053A JP 2007150053 A JP2007150053 A JP 2007150053A JP 2005343736 A JP2005343736 A JP 2005343736A JP 2005343736 A JP2005343736 A JP 2005343736A JP 2007150053 A JP2007150053 A JP 2007150053A
Authority
JP
Japan
Prior art keywords
stamper
optical
substrate
resist
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005343736A
Other languages
Japanese (ja)
Other versions
JP4925651B2 (en
Inventor
Kenichi Watanabe
健一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005343736A priority Critical patent/JP4925651B2/en
Publication of JP2007150053A publication Critical patent/JP2007150053A/en
Application granted granted Critical
Publication of JP4925651B2 publication Critical patent/JP4925651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Led Devices (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stamper and a manufacturing method using the stamper wherein the process for exfoliating the stamper from a substrate can be performed highly precisely and easily in the manufacturing process for semiconductor devices, with respect to an optical nano-printing method of a pattern transfer technique for forming the structure of a very fine shape. <P>SOLUTION: In the stamper for optical inprints, it is made of a transparent substance having a transmittance not smaller than 50% to ultraviolet rays and it has recesses and protrusions in its principal surface. At least the top surface of each protrusion comprises an opaque portion having a transmittance not larger than 10% to ultraviolet rays. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光インプリント法を用い、基板上に微細構造体を形成するナノインプリント転写法に関するものであり、半導体製造工程及びそれ以外のMEMSやバイオチップ、光学デバイス、記録媒体、ディスプレイデバイスなど光インプリントプロセスを用いることに関するものである。   The present invention relates to a nanoimprint transfer method in which a fine structure is formed on a substrate using an optical imprint method. The present invention relates to an optical imprint such as a semiconductor manufacturing process and other MEMS, biochips, optical devices, recording media, and display devices. It relates to using the printing process.

近年半導体集積回路の微細加工を実現するためのパターン転写技術としてフォトリソグラフィ装置の高精度化が進められてきた。そして、パターンの微細化に伴い、露光の波長も短波長化が進められてきたが、光源の波長の限界に近づき、リソグラフィ技術も限界に近づいてきた。そのため、さらなる微細化,高精度化を進めるために、リソグラフィ技術に代わり、荷電粒子線装置の一種である電子線描画装置が用いられるようになった。   In recent years, high precision of a photolithography apparatus has been promoted as a pattern transfer technique for realizing fine processing of a semiconductor integrated circuit. With the miniaturization of patterns, the exposure wavelength has been shortened, but the limit of the wavelength of the light source has been approached, and the lithography technology has also approached the limit. Therefore, in order to advance further miniaturization and higher accuracy, an electron beam drawing apparatus, which is a kind of charged particle beam apparatus, has been used in place of lithography technology.

この結果、パターンの微細化が進められる一方で、電子線描画装置を大型化せざるを得ないほか、マスク位置をより高精度に制御する機構が必要になるなど、装置コストが高くなるという欠点があった。   As a result, while miniaturization of the pattern is promoted, the electron beam lithography apparatus must be enlarged and a mechanism for controlling the mask position with higher accuracy is required. was there.

この為、微細なパターン形成を低コストで行うための新たな技術として、インプリント技術の開発が進められており、下記特許文献1〜3などにおいて開示されている。これは、基板上に形成したいパターンと同じパターンの凹凸を有するスタンパを、被転写基板表面に形成されたレジスト膜層に対して型押しすることで所定のパターンを転写するものであり、特に光硬化型のレジストを用いて紫外線を照射してパターンを転写する方法は光インプリント法と呼ばれ、微細パターンの転写に適していると考えられている。   For this reason, development of an imprint technique is being promoted as a new technique for forming a fine pattern at a low cost, which is disclosed in Patent Documents 1 to 3 listed below. In this method, a predetermined pattern is transferred by embossing a stamper having the same unevenness as the pattern to be formed on the substrate against the resist film layer formed on the surface of the substrate to be transferred. A method of transferring a pattern by irradiating ultraviolet rays using a curable resist is called a photoimprint method, and is considered suitable for transferring a fine pattern.

また、インプリント法を用いて、LEDの表面に規則的な凹凸を形成する事により、LEDからの光取り出し効率を改善する試みも報告されている(特許文献4)。
米国特許5,259,926号公報 米国特許5,772,905号公報 特開2004−288845号公報 特開2005―5679
There has also been reported an attempt to improve light extraction efficiency from an LED by forming regular irregularities on the surface of the LED using an imprint method (Patent Document 4).
US Pat. No. 5,259,926 US Pat. No. 5,772,905 JP 2004-288845 A JP 2005-5679

しかしながら、微細パターンを形成するインプリントプロセスにおいて、プレスした後、スタンパとレジストを引き離す場合、レジストとスタンパとの圧着や摩擦により、部分的にレジストがスタンパと共に剥離されると言う問題が有った。この為、基板上にプレスされたスタンパを、基板上に形成された微細な凹凸を崩すことなく、基板から高精度かつ容易に剥離することが困難であった。   However, in the imprint process for forming a fine pattern, when the stamper and the resist are separated after pressing, there is a problem that the resist is partially peeled off together with the stamper due to pressure bonding or friction between the resist and the stamper. . For this reason, it has been difficult to peel the stamper pressed on the substrate from the substrate with high accuracy without breaking the fine irregularities formed on the substrate.

このような技術課題に鑑み、本発明は、半導体デバイスなどの製造工程において、微細な形状の構造体を形成するためのパターン転写技術である光ナノプリント法において、基板からスタンパを剥離する工程を高精度かつ容易に行うことができるスタンパおよびこれを用いた製造方法を提供することを目的とする。   In view of such a technical problem, the present invention provides a process of peeling a stamper from a substrate in an optical nanoprint method, which is a pattern transfer technique for forming a fine-shaped structure in a manufacturing process of a semiconductor device or the like. It is an object of the present invention to provide a stamper that can be performed with high accuracy and easily and a manufacturing method using the same.

前記従来の課題を解決するため、本発明の光インプリント用スタンパは紫外線に対して透過率50%以上の透明体からなり、主面に凹部及び凸部を有する光インプリント用スタンパにおいて、前記凸部の少なくとも最表面が紫外線に対して透過率10%以下の不透明部であることを特徴とする。   In order to solve the conventional problems, the optical imprinting stamper of the present invention is made of a transparent body having a transmittance of 50% or more with respect to ultraviolet rays, and the optical imprinting stamper having a concave portion and a convex portion on a main surface thereof, At least the outermost surface of the convex portion is an opaque portion having a transmittance of 10% or less with respect to ultraviolet rays.

これによって、基板上にパターンを形成するプロセスにおいて、基板上に塗布した紫外線硬化型レジストに当該光インプリント用スタンパを適用することにより、当該スタンパの凹部を通してのみ紫外線が照射され、凹直下の紫外線硬化型レジストは硬化するが、当該スタンパの凸部を通しては紫外線が照射されず凸部直下の紫外線硬化型レジストは硬化しないので、基板上に形成された微細な凹凸を崩すことなく、基板上にプレスされたスタンパを基板から高精度かつ容易に剥離することが可能となる。   Thus, in the process of forming a pattern on the substrate, by applying the photoimprinting stamper to the ultraviolet curable resist applied on the substrate, the ultraviolet ray is irradiated only through the concave portion of the stamper, Although the curable resist is cured, ultraviolet rays are not irradiated through the convex portions of the stamper, and the ultraviolet curable resist immediately below the convex portions is not cured, so that the fine irregularities formed on the substrate are not destroyed. It is possible to peel the pressed stamper from the substrate with high accuracy and ease.

また、本発明の光インプリント用スタンパは、 前記凹部及び凸部を有する主面がサファイアまたは石英であることを特徴とする。   Moreover, the optical imprint stamper of the present invention is characterized in that a main surface having the concave portion and the convex portion is sapphire or quartz.

これによって剛性が高く、透明なスタンパを構成することが出来る。   This makes it possible to form a stamper having high rigidity and transparency.

また、本発明の光インプリント用スタンパは、前記主面を石英とし、背面にサファイアを接合したことを特徴とする。   The optical imprint stamper of the present invention is characterized in that the main surface is made of quartz and sapphire is bonded to the back surface.

これによって、石英はサファイアよりも微細加工が容易であるので、複雑な形状でサファイア単体では作成困難な形状のスタンパであっても容易に作成することができる。   As a result, quartz can be finely processed more easily than sapphire, so even a stamper having a complicated shape that is difficult to produce with sapphire alone can be easily produced.

また、本発明の光インプリント用スタンパは、前記凸部の表面にNi、Cr、TiC、TiNの何れかよりなる被覆膜を形成したことを特徴とする。   The optical imprint stamper of the present invention is characterized in that a coating film made of any one of Ni, Cr, TiC, and TiN is formed on the surface of the convex portion.

これによって、繰り返し使っても摩耗しにくく、耐久性の高いスタンパを構成することが出きる。   As a result, it is possible to form a stamper that is hard to wear even after repeated use and has high durability.

また、本発明の光インプリント用スタンパは、 前記主面に多孔質アルミナが被覆されたことを特徴とする。   The optical imprint stamper of the present invention is characterized in that the main surface is coated with porous alumina.

これにより、規則的な円柱状の貫通孔を持つハニカム体を基板上に比較的容易に形成することができるので、円柱状の規則的なパターンを転写するためのスタンパを容易に構成することができる。   As a result, a honeycomb body having regular cylindrical through-holes can be formed on the substrate relatively easily, so that a stamper for transferring a cylindrical regular pattern can be easily configured. it can.

また、本発明は、光インプリント法による半導体基板の製造方法に関するものであり、
前記の何れかの光インプリント用スタンパの一方の面を、半導体基板上に塗布した紫外線硬化型レジストに押圧した状態で、前記光インプリント用スタンパの他方の面側から紫外線硬化型レジストに対し紫外線を照射し、該紫外線硬化型レジストを硬化させることを特徴とする。
The present invention also relates to a method for manufacturing a semiconductor substrate by an optical imprint method,
With one surface of any of the optical imprint stampers pressed against the ultraviolet curable resist applied on the semiconductor substrate, the other surface side of the optical imprint stamper is exposed to the ultraviolet curable resist. The ultraviolet curable resist is cured by irradiating with ultraviolet rays.

これによって、基板上に形成された微細な凹凸を崩すことなく、基板上にプレスされたスタンパを基板から高精度かつ容易に剥離することが可能となる。   This makes it possible to peel the stamper pressed on the substrate from the substrate with high accuracy and without breaking the fine irregularities formed on the substrate.

本発明はこれにより、半導体製造工程における微細な形状の構造体を形成するためのパターン転写技術である光ナノプリント法において、基板上に形成された微細な凹凸を崩すことなく、基板上にプレスされたスタンパを基板から高精度かつ容易に剥離することが可能となる。なお、このプロセスは真空雰囲気中で行うことにより、より一層その効果を確実な物にすることが出来る。即ち、スタンパとパターン転写対象物とを大気圧下で処理する場合、スタンパとパターン転写対象物との間にレジストが介在する事により、スタンパを基板から剥離する際にスタンパとレジストとの間が真空状態になり、レジストが剥離し易くなる可能性があるが、真空雰囲気中で処理を行うことにより、このような問題を回避できるためである。   In this way, the present invention enables the optical nanoprint method, which is a pattern transfer technique for forming a finely shaped structure in a semiconductor manufacturing process, to be pressed on the substrate without breaking the fine irregularities formed on the substrate. It is possible to easily and easily peel the stamper from the substrate. It should be noted that this effect can be further ensured by performing this process in a vacuum atmosphere. That is, when the stamper and the pattern transfer object are processed under atmospheric pressure, the resist is interposed between the stamper and the pattern transfer object, so that the distance between the stamper and the resist is removed when the stamper is peeled from the substrate. This is because the resist is likely to be peeled off in a vacuum state, but such a problem can be avoided by performing the treatment in a vacuum atmosphere.

第1の発明は紫外線に対して透過率50%以上の透明体からなり、主面に凹部及び凸部を有する光インプリント用スタンパにおいて、前記凸部の少なくとも最表面が紫外線に対して透過率10%以下の不透明部であることを特徴とする光インプリント用スタンパである。   1st invention consists of a transparent body with the transmittance | permeability 50% or more with respect to an ultraviolet-ray, In the stamper for optical imprint which has a recessed part and a convex part in a main surface, the outermost surface of the said convex part is a transmittance | permeability with respect to an ultraviolet-ray. A stamper for optical imprinting, characterized by being an opaque portion of 10% or less.

図1に本発明のスタンパの例を示す。サファイア製の透明体1から成るスタンパの表面に凹凸が形成されており、凸部2もサファイア製の透明体1から成り、凸部2の最表面にNiから成る不透明部3が形成されている。これを用いて、基板上にパターンを形成するプロセスにおいて、図3に示すように、基板上に塗布した紫外線硬化型レジスト8に当該光インプリント用スタンパを適用することにより、スタンパに押圧10を加えた状態で当該スタンパの凹部を通してのみ紫外線9が照射されるので、凹部直下の紫外線硬化型レジストは硬化するが、当該スタンパの凸部6を通しては紫外線が照射されず凸部6直下の紫外線硬化型レジストは硬化しない。この為、スタンパを基板から引き離す際に、基板上に形成された微細な凹凸に対してかかる力を最小限に押さえることができるため、凹凸の形状を崩すことなく、スタンパを基板から引き離すことが可能である。   FIG. 1 shows an example of the stamper of the present invention. Concavities and convexities are formed on the surface of the stamper made of the transparent body 1 made of sapphire, the convex portion 2 is also made of the transparent body 1 made of sapphire, and the opaque portion 3 made of Ni is formed on the outermost surface of the convex portion 2. . By using this, in the process of forming a pattern on the substrate, as shown in FIG. 3, by applying the optical imprint stamper to the ultraviolet curable resist 8 applied on the substrate, the pressing 10 is applied to the stamper. Since the ultraviolet ray 9 is irradiated only through the concave portion of the stamper in the added state, the ultraviolet curable resist just under the concave portion is cured, but the ultraviolet ray is not irradiated through the convex portion 6 of the stamper and is cured under the convex portion 6. The mold resist is not cured. For this reason, when the stamper is separated from the substrate, the force applied to the fine irregularities formed on the substrate can be minimized, so that the stamper can be separated from the substrate without breaking the irregular shape. Is possible.

一方、図2に示す従来の光インプリント用スタンパすなわち、全体が透明で、不透明部を持たないスタンパを用いた場合は、図4に示すインプリント工程でスタンパ全体が紫外線を透過するため、スタンパの下のレジストが全て硬化してしまう。この為、スタンパを基板から引き離す際に、硬化した凹凸がスタンパに引っ張られて、形状が崩れてしまいやすい。これは、紫外線硬化型のレジストが硬化する際に、約6%程度の収縮が有るため、スタンパの凸部6直下のレジストまで硬化した場合は、レジストの収縮により、スタンパの凸部6がレジストに挟み込まれる形になるため、基板から引き離す際に、硬化したレジストがスタンパ側に引っ張られるためである。これに対して、本発明のスタンパでは、凸部6直下のレジストは硬化せず、スタンパの凹部直下のレジストのみが硬化するため、硬化したレジストは互いに独立であるので、スタンパの凸部6を挟み込む力は作用しない。この為、本発明のスタンパを用いるとレジストの剥がれや形状の崩れが起きにくいと言える。   On the other hand, when the conventional stamper for optical imprinting shown in FIG. 2, that is, a stamper which is entirely transparent and does not have an opaque portion, is used, the stamper transmits ultraviolet rays in the imprinting process shown in FIG. All the resist below is hardened. For this reason, when the stamper is pulled away from the substrate, the hardened irregularities are pulled by the stamper and the shape tends to collapse. This is because, when the UV curable resist is cured, there is a contraction of about 6%. Therefore, when the resist is cured even immediately below the convex portion 6 of the stamper, the convex portion 6 of the stamper becomes a resist due to the shrinkage of the resist. This is because the cured resist is pulled to the stamper side when being separated from the substrate. On the other hand, in the stamper of the present invention, the resist immediately below the convex portion 6 is not cured, and only the resist immediately below the concave portion of the stamper is cured, so the cured resists are independent from each other. The pinching force does not work. For this reason, it can be said that when the stamper of the present invention is used, the resist is not peeled off or the shape is not easily broken.

表1に本発明によるインプリント用スタンパを用いて実際にインプリントを行ったときのレジスト剥がれの発生率を示す。

Figure 2007150053
Table 1 shows the rate of occurrence of resist peeling when imprinting is actually performed using the imprinting stamper according to the present invention.
Figure 2007150053

表1のNo.1〜3は本発明の不透明部を持つスタンパによる実験結果である。透明体1の材質は石英を用い、不透明部3の材質はNiを用いた。厚さ10mmの石英の透過率は、波長320nmの紫外線9に対して約86%であり、不透明部3の透過率はほぼ0であった。   No. in Table 1 1-3 are the experimental results by the stamper having the opaque part of the present invention. Quartz is used as the material of the transparent body 1 and Ni is used as the material of the opaque portion 3. The transmittance of the quartz having a thickness of 10 mm was about 86% with respect to the ultraviolet ray 9 having a wavelength of 320 nm, and the transmittance of the opaque portion 3 was almost zero.

それぞれ、2μm、0.5μm、0.1μmの3種類のパタン幅に対して、レジストの剥がれが起きる割合を示すが、本発明に依れば、レジストの剥がれが非常に少ないことが分かる。これに対して、表1のNo.4は同じく石英を用いて不透明部3の無い場合を示すが、パターン幅0.5μmでも約5.1%の剥がれが発生し、問題があることがわかる。また、No.5〜6にはスタンパの材質としてパイレックス(登録商標)ガラスを用いた場合を示すが、何れも上記No.1〜4と同じ紫外線9の照射条件下ではレジストが硬化せず、光インプリントのスタンパとして機能しなかった。これは、厚さ10mmのパイレックス(登録商標)ガラスの紫外線9に対する透過率が波長320nmで約17%しかない為、紫外線9の照射量が不足したためであると考えられる。   Each of the three pattern widths of 2 μm, 0.5 μm, and 0.1 μm shows the ratio of resist peeling. According to the present invention, it can be seen that the resist peeling is very small. On the other hand, No. 4 shows a case where quartz is used and the opaque portion 3 is not present. However, even when the pattern width is 0.5 μm, peeling of about 5.1% occurs, which indicates that there is a problem. No. 5 to 6 show the case where Pyrex (registered trademark) glass is used as the stamper material. Under the same irradiation conditions of ultraviolet rays 9 as 1 to 4, the resist was not cured and did not function as a stamper for photoimprinting. This is probably because the Pyrex (registered trademark) glass having a thickness of 10 mm has a transmittance of only about 17% with respect to the ultraviolet ray 9 at a wavelength of 320 nm.

以上のように、本発明のスタンパとして、紫外線9に対して透明部体1の透過率が少なくとも50%以上、凸部2の少なくとも最表面の紫外線9の透過率が10%以下である事が望ましい。これは、紫外線硬化型のレジストを部分的に硬化させて、本発明の効果をもたらすためには少なくとも、透明体1と不透明部3の透過率の差が最低5倍以上の差が必要であるためである。透過率の差が5倍以上あれば、部分的に硬化した部分と未硬化の部分を意図的に作り出すことが可能であり、本発明の効果をもたらすことが可能になる。なお、ここで紫外線領域としては、少なくとも波長300〜400nmの範囲を言う。   As described above, as the stamper of the present invention, the transmittance of the transparent portion 1 with respect to the ultraviolet ray 9 is at least 50% or more, and the transmittance of the ultraviolet ray 9 at least on the outermost surface of the convex portion 2 is 10% or less. desirable. This is because at least a difference in transmittance between the transparent body 1 and the opaque portion 3 is required to be at least 5 times or more in order to partially cure the ultraviolet curable resist and bring about the effects of the present invention. Because. If the difference in transmittance is 5 times or more, a partially cured portion and an uncured portion can be intentionally created, and the effects of the present invention can be brought about. Here, the ultraviolet region refers to a wavelength range of at least 300 to 400 nm.

第2の発明は、前記凹部及び凸部9を有する主面がサファイアまたは石英である光インプリント用スタンパである。これによって剛性が高く、透明なスタンパを構成することが出きる。表1のNo.7はサファイアを用いた本発明による実験例であり、No.8はパイレックス(登録商標)ガラスを用いた比較例である。上記に説明したように、パイレックス(登録商標)ガラスは紫外線透過率が非常に低いため、サファイアを用いた場合と同じ紫外線照射条件ではレジストが硬化せず、レジストの剥がれ発成率を比較することが出来なかった。   The second invention is an optical imprint stamper in which a main surface having the concave portion and the convex portion 9 is sapphire or quartz. This makes it possible to construct a stamper having high rigidity and transparency. No. in Table 1 7 is an experimental example according to the present invention using sapphire. 8 is a comparative example using Pyrex (registered trademark) glass. As explained above, Pyrex (registered trademark) glass has a very low UV transmittance, so the resist does not cure under the same UV irradiation conditions as when sapphire is used, and the resist peeling rate is compared. I couldn't.

第3の発明は、前記主面を石英とし、背面にサファイアを接合した光インプリント用スタンパである。石英はサファイアよりも微細加工が容易であるので、これにより複雑な凹凸の作製が可能となる。また、背面に用いたサファイアは剛性が高いので、他の材質のスタンパと比較して、押圧時の撓みによる変形を少なくすることができた。表1のNo.9、No10はφ50mmのスタンパに98KPaの圧力をかけたとき撓み量を比較した物である。No.9は、9mmのサファイアと1mmの石英を貼り合わせた場合であり、No.10は10mmのパイレックス(登録商標)ガラスを使った場合の撓み量である。本発明の方が、約1/5の撓み量となっており、より正確なパターン転写が可能であることを示している。なお、ここでは貼り合わせでスタンパを作製した場合を例として上げたが、石英とサファイアを接着剤を介さず、直接接合する事も可能である。   A third invention is an optical imprint stamper in which the main surface is made of quartz and sapphire is bonded to the back surface. Quartz is easier to finely process than sapphire, and this makes it possible to produce complex irregularities. In addition, since sapphire used for the back surface has high rigidity, deformation due to bending during pressing can be reduced compared to stampers made of other materials. No. in Table 1 9, No. 10 is a comparison of the amount of deflection when a pressure of 98 KPa is applied to a φ50 mm stamper. No. No. 9 is a case where 9 mm of sapphire and 1 mm of quartz are bonded together. Reference numeral 10 denotes the amount of deflection when 10 mm Pyrex (registered trademark) glass is used. In the present invention, the amount of deflection is about 1/5, which indicates that more accurate pattern transfer is possible. Here, the case where the stamper is manufactured by bonding is taken as an example, but it is also possible to directly join quartz and sapphire without using an adhesive.

第4の発明は、前記凸部9の表面にNi、Cr、TiC、TiNの何れかよりなる被覆膜を形成した光インプリント用スタンパである。これによって、凸部9の不透明部3が繰り返し使っても摩耗しにくく、耐久性の高いスタンパを構成することができる。不透明部3の材料として、表1のNo.11にはNiを使った場合とNo.12にはAlを使った場合の不透明部3の膜剥がれを示している。それぞれ100回のインプリントを繰り返して比較し、Niでは膜剥がれが起きなかったが、Alの場合は30回で膜剥がれが起き、耐久性が無かった。   The fourth invention is an optical imprint stamper in which a coating film made of any one of Ni, Cr, TiC, and TiN is formed on the surface of the convex portion 9. Thereby, even if the opaque part 3 of the convex part 9 is used repeatedly, it is hard to be worn, and a highly durable stamper can be constituted. As the material of the opaque part 3, the No. 1 in Table 1 was used. No. 11 and Ni. 12 shows film peeling of the opaque portion 3 when Al is used. In each case, the imprint was repeated 100 times and compared, and no film peeling occurred in Ni, but in the case of Al, film peeling occurred 30 times and there was no durability.

第5の発明は、前記主面に多孔質アルミナが被覆されたことを特徴とする光インプリント用スタンパである。前記凸部9の不透明部3に陽極酸化法で多孔質アルミナ膜を形成し、透明体1まで円柱状の孔が貫通したハニカム状とした光インプリント用スタンパである。   A fifth invention is a stamper for optical imprint, wherein the main surface is coated with porous alumina. This is a stamper for optical imprinting in which a porous alumina film is formed on the opaque portion 3 of the convex portion 9 by an anodic oxidation method, and a cylindrical hole is penetrated to the transparent body 1.

これにより、円柱状の規則的なパターンを転写するためのスタンパを容易に構成することができる。具体的には、サファイア又は石英基板上にアルミニウムの膜を約2μmスパッタ法で蒸着した後、アルミニウムを陽極酸化すると、規則的な貫通孔を持つアルミナ膜を形成することができる。表1のNo.13このようにして作製したスタンパを、No.14に不透明部3にAlを用いた場合の膜剥がれの発生の比較例を示す。陽極酸化アルミナは100回のインプリントでも膜剥がれは起きなかったが、Alの場合は30回で膜剥がれが起き、耐久性が無かった。   Thereby, a stamper for transferring a cylindrical regular pattern can be easily configured. Specifically, an aluminum film having regular through-holes can be formed by depositing an aluminum film on a sapphire or quartz substrate by an about 2 μm sputtering method and then anodizing the aluminum. No. in Table 1 No. 13 The stamper produced in this way was 14 shows a comparative example of occurrence of film peeling when Al is used for the opaque portion 3. In the case of anodized alumina, film peeling did not occur even after imprinting 100 times, but in the case of Al, film peeling occurred 30 times and there was no durability.

第6の発明は、本発明による光インプリント用スタンパの一方の面を、半導体基板上に塗布した紫外線硬化型レジストに押圧した状態で、前記光インプリント用スタンパの他方の面側から紫外線硬化型レジストに対し紫外線9を照射し、該紫外線硬化型レジストを硬化させる発光装置の製造方法である。本発明により、基板上に形成された微細な凹凸を崩すことなく、基板上にプレスされたスタンパを基板から高精度かつ容易に剥離することが可能となる。表1のNo.15は本発明のスタンパを用いて作製した凹凸パターンレジストの剥がれを示し、剥がれの発生は無かった。No.16は従来の不透明部3を持たないスタンパを用いて作製した凹凸パターンのレジストの剥がれを示すが、5%以上の剥がれが発生した。また、この方法で作成した出射側に凹凸を持つLEDの例を示す構造図を図5に示す。このような構成で作製したLEDの外部への光取り出し効率は、従来例と比較して約2倍に改善された。   According to a sixth aspect of the present invention, ultraviolet curing is performed from the other surface side of the optical imprinting stamper while one surface of the optical imprinting stamper according to the present invention is pressed against the ultraviolet curing resist applied on the semiconductor substrate. This is a method for manufacturing a light-emitting device in which an ultraviolet ray 9 is irradiated to a mold resist and the ultraviolet curable resist is cured. According to the present invention, a stamper pressed on a substrate can be easily and accurately peeled off from the substrate without breaking fine irregularities formed on the substrate. No. in Table 1 15 shows peeling of the concavo-convex pattern resist produced using the stamper of the present invention, and no peeling occurred. No. No. 16 shows the peeling of the resist of the concavo-convex pattern produced using the conventional stamper which does not have the opaque part 3, but peeling of 5% or more occurred. Further, FIG. 5 shows a structural diagram showing an example of an LED having irregularities on the emission side created by this method. The light extraction efficiency to the outside of the LED manufactured with such a configuration was improved about twice as compared with the conventional example.

以下、本発明の実施例について、説明する。なお、この実施の形態によって本発明が限定されるものではない。   Examples of the present invention will be described below. Note that the present invention is not limited to the embodiments.

(実施例1)
図1は、本発明のインプリント用スタンパを示すものである。このインプリント用スタンパを次の様な手順で作製した。先ず、EFG法により、所定の大きさの板状のサファイアを引き上げた後、砥石を用いた研削加工により所定の大きさと厚みに加工した。次に、研磨剤としてダイヤモンドの砥粒を用いて、両面を鏡面加工した。次に、コロイダルシリカを用いてさらに両面のクロス研磨を行い、透明なサファイア基板1を作製した。
Example 1
FIG. 1 shows an imprint stamper according to the present invention. This imprint stamper was produced by the following procedure. First, a plate-like sapphire having a predetermined size was pulled up by the EFG method, and then processed into a predetermined size and thickness by grinding using a grindstone. Next, both surfaces were mirror-finished using diamond abrasive grains as an abrasive. Next, cross polishing was further performed on both sides using colloidal silica to produce a transparent sapphire substrate 1.

次に、その透明なサファイア基板1の片側にレジストを塗布し、電子線描画法で、所定のマスクパターンを形成した。このマスクパターンを形成した基板にTi、Cr、Niの少なくとも何れかの金属を所定の厚みにスパッタ法等で蒸着を行い、金属膜を形成した。その後レジストのマスクパターンをアセトン洗浄で除去し、当該金属膜をリフトオフし、サファイア基板上に金属膜のパターン3を形成した。このようにしてサファイア基板上に形成した金属膜をマスクとして、更にサファイア基板をフッ素系または塩素系のガスでドライエッチングを行い、サファイアのパターンを形成した。このようにしてサファイア基板のドライエッチングを行うと、サファイア基板がエッチングされて、凹部が形成されるが、同時にマスク材としての金属膜もエッチングされて、時間と共に金属膜も薄くなり、そのままでは最後に金属膜は全て除去されてしまう。しかし本発明に於いては、金属膜の厚みとドライエッチング時間を最適に調整することにより、サファイア基板に所定の凹部が形成されると同時に、凸部2の表面には金属膜3が残った状態にする事ができた。この時、凸部2に残った金属膜の厚みと同じ厚みの試験片を用いてその紫外線透過率を測定したところ、0%であり、目標の10%以下であった。   Next, a resist was applied to one side of the transparent sapphire substrate 1, and a predetermined mask pattern was formed by an electron beam drawing method. A metal film was formed on the substrate on which the mask pattern was formed by vapor-depositing at least one of Ti, Cr, and Ni to a predetermined thickness by sputtering or the like. Thereafter, the mask pattern of the resist was removed by washing with acetone, the metal film was lifted off, and a metal film pattern 3 was formed on the sapphire substrate. Using the metal film thus formed on the sapphire substrate as a mask, the sapphire substrate was further dry-etched with a fluorine-based or chlorine-based gas to form a sapphire pattern. When dry etching of the sapphire substrate is performed in this manner, the sapphire substrate is etched to form recesses, but at the same time, the metal film as a mask material is also etched, and the metal film becomes thinner with time. In addition, all the metal film is removed. However, in the present invention, by adjusting the thickness of the metal film and the dry etching time optimally, a predetermined recess is formed in the sapphire substrate, and at the same time, the metal film 3 remains on the surface of the protrusion 2. I was in a state. At this time, when the ultraviolet transmittance was measured using a test piece having the same thickness as that of the metal film remaining on the convex portion 2, it was 0%, which was 10% or less of the target.

このようにして作製したサファイア基板を所定の形状の透明石英基板に透明な接着剤で接着して、光インプリント用スタンパを作製した。このとき、パターンを形成していない透明なサファイア基板と透明な石英基板を透明接着剤で接着した試験片の紫外線透過率を測定したところ、約80%であり、目標の50%以上であった。   The sapphire substrate thus produced was bonded to a transparent quartz substrate having a predetermined shape with a transparent adhesive to produce an optical imprint stamper. At this time, when the ultraviolet transmittance of a test piece in which a transparent sapphire substrate on which a pattern was not formed and a transparent quartz substrate were bonded with a transparent adhesive was measured, it was about 80%, which was 50% or more of the target. .

表1には、本発明によるスタンパおよび比較例を示す。表1のNo.1〜3は本発明の不透明部3を持つスタンパによる実験結果である。透明体1の材質は石英を用い、不透明部3の材質はNiを用いた。厚さ10mmの石英の透過率は、波長320nmの紫外線に対して約86%であり、不透明部3の透過率はほぼ0であった。それぞれ、2μm、0.5μm、0.1μmの3種類のパターン幅に対して、レジストの剥がれが起きる割合を示すが、本発明に依れば、レジストの剥がれが非常に少ないことが分かる。これに対して、表1のNo.4は同じく石英を用いて不透明部3の無い場合を示すが、パターン幅0.5μmでも約5.1%の剥がれが発生し、問題があることがわかる。また、No.5〜6にはスタンパの材質としてパイレックス(登録商標)ガラスを用いた場合を示すが、何れも上記No.1〜4と同じ紫外線9の照射条件下ではレジストが硬化せず、光インプリントのスタンパとして機能しなかった。これは、厚さ10mmのパイレックス(登録商標)ガラスの紫外線9に対する透過率が波長320nmで約17%しかない為、紫外線9の照射量が不足したためであると考えられる。   Table 1 shows a stamper according to the present invention and a comparative example. No. in Table 1 1-3 are the experimental results by the stamper having the opaque portion 3 of the present invention. Quartz is used as the material of the transparent body 1 and Ni is used as the material of the opaque portion 3. The transmittance of quartz having a thickness of 10 mm was about 86% with respect to ultraviolet rays having a wavelength of 320 nm, and the transmittance of the opaque portion 3 was almost zero. The ratio of resist peeling is shown for three types of pattern widths of 2 μm, 0.5 μm, and 0.1 μm, respectively, but it can be seen that according to the present invention, resist peeling is very small. On the other hand, No. 4 shows the case where quartz is used and the opaque portion 3 is not present. About 5.1% of peeling occurs even when the pattern width is 0.5 μm, which indicates that there is a problem. No. 5 to 6 show the case where Pyrex (registered trademark) glass is used as the stamper material. Under the same irradiation conditions of ultraviolet rays 9 as 1 to 4, the resist was not cured and did not function as a stamper for photoimprinting. This is probably because the Pyrex (registered trademark) glass having a thickness of 10 mm has a transmittance of only about 17% with respect to the ultraviolet ray 9 at a wavelength of 320 nm, and therefore the irradiation amount of the ultraviolet ray 9 is insufficient.

(実施例2)
次に本発明の光インプリント用スタンパを用いて半導体基板上にパターンを形成するプロセスについて説明する。先ず、シリコン基板を用いた半導体素子を作製するプロセスにおいて、所定のシリコン基板に紫外線硬化型樹脂を均一に塗布した。
(Example 2)
Next, a process for forming a pattern on a semiconductor substrate using the optical imprint stamper of the present invention will be described. First, in a process for manufacturing a semiconductor element using a silicon substrate, an ultraviolet curable resin was uniformly applied to a predetermined silicon substrate.

次に、本発明による光インプリント用スタンパを真空雰囲気中で当該紫外線硬化型の樹脂を塗布した基板に押圧し、紫外線硬化型樹脂をパターン形状に倣って変形させた。押しつけ圧力は110Kgf/cm2であった。また、この工程は真空中で行ったので、樹脂内で大気中の泡が取り込まれてパターンが劣化するという問題は無かった。   Next, the optical imprinting stamper according to the present invention was pressed against the substrate coated with the ultraviolet curable resin in a vacuum atmosphere, and the ultraviolet curable resin was deformed following the pattern shape. The pressing pressure was 110 kgf / cm2. Moreover, since this process was performed in a vacuum, there was no problem that bubbles in the atmosphere were taken in the resin and the pattern deteriorated.

次に、本発明による光インプリント用スタンパの裏面から紫外線9を照射し、上記パターン形状に倣って変形させた紫外線硬化型樹脂を硬化させた。照射した紫外線9は300nm〜400nmの波長であり、照射条件は100J/cm2であった。その後、引き続き真空中で当該光インプリント用スタンパをパターンが転写されたシリコン基板からゆっくり引き離した。この時、当該光インプリント用スタンパの凸部2の表面は紫外線に対して不透明であるので、凸部2直下の樹脂は硬化せず、当該スタンパを引き離す工程において、パターンが当該スタンパに引っ張られて剥がれてしまう事も無く、微細なパターンを崩さず、正確に転写された。   Next, ultraviolet rays 9 were irradiated from the back surface of the optical imprint stamper according to the present invention, and the ultraviolet curable resin deformed following the pattern shape was cured. The irradiated ultraviolet ray 9 had a wavelength of 300 nm to 400 nm, and the irradiation condition was 100 J / cm2. Thereafter, the stamper for optical imprinting was slowly pulled away from the silicon substrate onto which the pattern was transferred in a vacuum. At this time, since the surface of the convex portion 2 of the optical imprint stamper is opaque to ultraviolet rays, the resin immediately below the convex portion 2 is not cured, and the pattern is pulled by the stamper in the step of separating the stamper. The film was not peeled off and transferred accurately without breaking the fine pattern.

(実施例3)
次に本発明のインプリント用スタンパを用いてLED表面に円柱状の凸部2を形成した例を示す。図5は、本発明のインプリント用スタンパを用いてLED表面に円柱状の凸部2を形成した物の模式図である。本実施例では、第4の発明にかかるインプリント用スタンパを用いて波長450nmの青色LEDの表面に円柱状の凸部2を作製した。
(Example 3)
Next, an example in which the columnar convex portion 2 is formed on the LED surface using the imprint stamper of the present invention will be described. FIG. 5 is a schematic view of a product in which columnar convex portions 2 are formed on the LED surface using the imprint stamper of the present invention. In this example, a cylindrical convex portion 2 was produced on the surface of a blue LED having a wavelength of 450 nm using the imprint stamper according to the fourth invention.

一般的に、青色LEDは、サファイア基板上11にGaNバッファ層とn型GaNコンタクト層12、n型AlGaNクラッド層14、GaN系半導体発光層(MQW構造)15、p型AlGaNクラッド層16、p型GaNコンタクト層17を順次積層して成長され、最表面には透明電極18が形成される。さらに、一部をエッチングで除去した後、n型電極13とp型電極19が形成される。   In general, a blue LED has a GaN buffer layer and an n-type GaN contact layer 12, an n-type AlGaN cladding layer 14, a GaN-based semiconductor light emitting layer (MQW structure) 15, a p-type AlGaN cladding layer 16, p on a sapphire substrate. The type GaN contact layers 17 are sequentially stacked and grown, and a transparent electrode 18 is formed on the outermost surface. Furthermore, after removing a part by etching, the n-type electrode 13 and the p-type electrode 19 are formed.

このようにして窒化ガリウム系の青色LEDを形成した基板の出射側の表面に光硬化型樹脂を塗布し、第4の発明によるスタンパを用いてインプリントを行い、LEDの表面に円柱状の凸部2を形成した。このようにして作製した円柱の凸部2の一辺の直径は平均約1μm、円柱間の平均距離は約1.0μmであった。このようにして、LEDの出射側表面に複数の円柱状の凸部2を形成したので、これにより、LEDから出射された光が円柱状の凸部2で前方に回折され、発光装置表面で全反射する事を防止でき、その結果、光取り出し効率を向上させることができた。その結果、従来の出射側に凹凸のない構造のLEDと比較して発光強度を約2倍にすることができた。   In this way, a photocurable resin is applied to the surface on the emission side of the substrate on which the gallium nitride blue LED is formed, and imprinting is performed using the stamper according to the fourth aspect of the invention. Part 2 was formed. The diameter of one side of the convex part 2 of the cylinder thus produced was about 1 μm on average, and the average distance between the cylinders was about 1.0 μm. In this way, since the plurality of columnar convex portions 2 are formed on the light emitting side surface of the LED, the light emitted from the LED is diffracted forward by the columnar convex portions 2, and the light emitting device surface It was possible to prevent total reflection, and as a result, the light extraction efficiency could be improved. As a result, it was possible to double the light emission intensity as compared with the conventional LED having a structure with no unevenness on the emission side.

本発明の凸部に不透明部を持つ光インプリント用スタンパを示す断面図である。It is sectional drawing which shows the stamper for optical imprint which has an opaque part in the convex part of this invention. 凸部に不透明部を持たない比較例を示す断面図である。It is sectional drawing which shows the comparative example which does not have an opaque part in a convex part. 本発明による光インプリント用スタンパを用いてインプリントを行う工程を示す断面図である。It is sectional drawing which shows the process of imprinting using the stamper for optical imprinting by this invention. 凹部に不透明部を持たない光インプリント用スタンパを用いてインプリントを行う工程を示す断面図である。It is sectional drawing which shows the process of imprinting using the stamper for optical imprint which does not have an opaque part in a recessed part. 本発明を用いてLEDに周期的な凸部を形成した物を示す断面図である。It is sectional drawing which shows the thing which formed the periodic convex part in LED using this invention.

符号の説明Explanation of symbols

1:透明体
2:凸部
3:不透明部
4:半導体基板
5:不透明部
6:凸部
7:透明体
8:紫外線硬化型レジスト
9:紫外線
10:押圧
11:サファイア基板
12:n型GaNコンタクト層
13:n型電極
14:n型AlGaNクラッド層
15:GaN系半導体発光層(MQW構造)
16:p型AlGaNクラッド層
17:p型GaNコンタクト層
18:p型透明電極
19:p型電極
20:凸部
1: Transparent body 2: Convex part 3: Opaque part 4: Semiconductor substrate 5: Opaque part 6: Convex part 7: Transparent body 8: Ultraviolet curing resist 9: Ultraviolet light 10: Press 11: Sapphire substrate 12: n-type GaN contact Layer 13: n-type electrode 14: n-type AlGaN cladding layer 15: GaN-based semiconductor light emitting layer (MQW structure)
16: p-type AlGaN cladding layer 17: p-type GaN contact layer 18: p-type transparent electrode 19: p-type electrode 20: convex portion

Claims (6)

紫外線に対して透過率50%以上の透明体からなり、主面に凹部及び凸部を有する光インプリント用スタンパにおいて、前記凸部の少なくとも最表面が紫外線に対して透過率10%以下の不透明部であることを特徴とする光インプリント用スタンパ。   In an optical imprint stamper made of a transparent body having a transmittance of 50% or more with respect to ultraviolet rays and having a concave portion and a convex portion on the main surface, at least the outermost surface of the convex portion is opaque with a transmittance of 10% or less with respect to ultraviolet rays. A stamper for optical imprinting, characterized by being a part. 前記凹部及び凸部を有する主面がサファイアまたは石英であることを特徴とする請求項1に記載の光インプリント用スタンパ。   2. The optical imprint stamper according to claim 1, wherein a main surface having the concave portion and the convex portion is sapphire or quartz. 前記主面を石英とし、背面にサファイアを接合したことを特徴とする請求項1または2に記載の光インプリント用スタンパ。   3. The optical imprint stamper according to claim 1, wherein the main surface is made of quartz and sapphire is bonded to the back surface. 前記凸部の表面にNi、Cr、TiC、TiNの何れかよりなる被覆膜を形成したことを特徴とする請求項1〜3の何れかに記載の光インプリント用スタンパ。   4. The optical imprint stamper according to claim 1, wherein a coating film made of any one of Ni, Cr, TiC, and TiN is formed on the surface of the convex portion. 前記主面に多孔質アルミナが被覆されたことを特徴とする請求項1〜3の何れかに記載の光インプリント用スタンパ。   The optical imprint stamper according to any one of claims 1 to 3, wherein the main surface is coated with porous alumina. 請求項1〜5の何れかに記載の光インプリント用スタンパの一方の面を、半導体基板上に塗布した紫外線硬化型レジストに押圧した状態で、前記光インプリント用スタンパの他方の面側から紫外線硬化型レジストに対し紫外線を照射し、該紫外線硬化型レジストを硬化させることを特徴とする発光装置の製造方法。   From the other surface side of the optical imprinting stamper, in a state where one surface of the optical imprinting stamper according to any one of claims 1 to 5 is pressed against an ultraviolet curable resist applied on a semiconductor substrate. A method for manufacturing a light emitting device, comprising irradiating an ultraviolet curable resist with ultraviolet rays to cure the ultraviolet curable resist.
JP2005343736A 2005-11-29 2005-11-29 Optical imprint stamper and light emitting device manufacturing method using the same Expired - Fee Related JP4925651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343736A JP4925651B2 (en) 2005-11-29 2005-11-29 Optical imprint stamper and light emitting device manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343736A JP4925651B2 (en) 2005-11-29 2005-11-29 Optical imprint stamper and light emitting device manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2007150053A true JP2007150053A (en) 2007-06-14
JP4925651B2 JP4925651B2 (en) 2012-05-09

Family

ID=38211078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343736A Expired - Fee Related JP4925651B2 (en) 2005-11-29 2005-11-29 Optical imprint stamper and light emitting device manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP4925651B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165679A (en) * 2005-12-15 2007-06-28 Dainippon Printing Co Ltd Method of manufacturing pattern-forming object
JP2009052066A (en) * 2007-08-24 2009-03-12 Kanagawa Acad Of Sci & Technol Imprinting mold and manufacturing method therefor
JP2011253965A (en) * 2010-06-02 2011-12-15 Dainippon Printing Co Ltd Manufacturing method of nanoimprint mold, manufacturing method of optical element, and forming method of resist pattern
JP2012048030A (en) * 2010-08-27 2012-03-08 Kanagawa Acad Of Sci & Technol Method for forming substrate
JP2014179630A (en) * 2014-04-16 2014-09-25 Hoya Corp Method of manufacturing imprint mold
WO2015041007A1 (en) * 2013-09-20 2015-03-26 並木精密宝石株式会社 Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having substrate or light-emitting element
WO2016148190A1 (en) * 2015-03-19 2016-09-22 並木精密宝石株式会社 Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having said substrate or said light-emitting element
JP2018536184A (en) * 2016-01-27 2018-12-06 エルジー・ケム・リミテッド Film mask, manufacturing method thereof, pattern forming method using the same, and pattern formed using the same
US10969677B2 (en) 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask
US11029596B2 (en) 2016-01-27 2021-06-08 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby
CN113299802A (en) * 2021-05-06 2021-08-24 深圳市思坦科技有限公司 Preparation method of LED chip structure and prepared LED chip structure
WO2022217954A1 (en) * 2021-04-16 2022-10-20 深圳先进技术研究院 Method and device for manufacturing micro-nano structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473650A (en) * 1990-07-13 1992-03-09 Fujikura Ltd Mask for fine working
JPH0580530A (en) * 1991-09-24 1993-04-02 Hitachi Ltd Production of thin film pattern
JPH0823108A (en) * 1994-07-06 1996-01-23 Nikon Corp Light receiving element and manufacture thereof
JPH09281689A (en) * 1996-04-17 1997-10-31 Hoya Corp Formation of mask pattern and production of x-ray mask
JP2003305700A (en) * 2002-04-12 2003-10-28 Canon Inc Nano-structure, and method for manufacturing the same
JP2004025647A (en) * 2002-06-26 2004-01-29 Seiko Epson Corp Insert, mold, and manufacturing method for them
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
JP2005136106A (en) * 2003-10-29 2005-05-26 Kyocera Corp Single crystal sapphire substrate and its manufacturing method, and semiconductor light emitting device
JP2005156695A (en) * 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol Anti-reflection coating and method for manufacturing the same, and stamper for preparing anti-reflection coating and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473650A (en) * 1990-07-13 1992-03-09 Fujikura Ltd Mask for fine working
JPH0580530A (en) * 1991-09-24 1993-04-02 Hitachi Ltd Production of thin film pattern
JPH0823108A (en) * 1994-07-06 1996-01-23 Nikon Corp Light receiving element and manufacture thereof
JPH09281689A (en) * 1996-04-17 1997-10-31 Hoya Corp Formation of mask pattern and production of x-ray mask
JP2003305700A (en) * 2002-04-12 2003-10-28 Canon Inc Nano-structure, and method for manufacturing the same
JP2004025647A (en) * 2002-06-26 2004-01-29 Seiko Epson Corp Insert, mold, and manufacturing method for them
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
JP2005136106A (en) * 2003-10-29 2005-05-26 Kyocera Corp Single crystal sapphire substrate and its manufacturing method, and semiconductor light emitting device
JP2005156695A (en) * 2003-11-21 2005-06-16 Kanagawa Acad Of Sci & Technol Anti-reflection coating and method for manufacturing the same, and stamper for preparing anti-reflection coating and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165679A (en) * 2005-12-15 2007-06-28 Dainippon Printing Co Ltd Method of manufacturing pattern-forming object
JP4717623B2 (en) * 2005-12-15 2011-07-06 大日本印刷株式会社 Method for producing pattern forming body
JP2009052066A (en) * 2007-08-24 2009-03-12 Kanagawa Acad Of Sci & Technol Imprinting mold and manufacturing method therefor
JP2011253965A (en) * 2010-06-02 2011-12-15 Dainippon Printing Co Ltd Manufacturing method of nanoimprint mold, manufacturing method of optical element, and forming method of resist pattern
JP2012048030A (en) * 2010-08-27 2012-03-08 Kanagawa Acad Of Sci & Technol Method for forming substrate
WO2015041007A1 (en) * 2013-09-20 2015-03-26 並木精密宝石株式会社 Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having substrate or light-emitting element
JP2014179630A (en) * 2014-04-16 2014-09-25 Hoya Corp Method of manufacturing imprint mold
WO2016148190A1 (en) * 2015-03-19 2016-09-22 並木精密宝石株式会社 Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having said substrate or said light-emitting element
JP2018536184A (en) * 2016-01-27 2018-12-06 エルジー・ケム・リミテッド Film mask, manufacturing method thereof, pattern forming method using the same, and pattern formed using the same
US10969677B2 (en) 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask
US10969686B2 (en) 2016-01-27 2021-04-06 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby
US11029596B2 (en) 2016-01-27 2021-06-08 Lg Chem, Ltd. Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby
WO2022217954A1 (en) * 2021-04-16 2022-10-20 深圳先进技术研究院 Method and device for manufacturing micro-nano structure
CN113299802A (en) * 2021-05-06 2021-08-24 深圳市思坦科技有限公司 Preparation method of LED chip structure and prepared LED chip structure
CN113299802B (en) * 2021-05-06 2022-09-09 深圳市思坦科技有限公司 Preparation method of LED chip structure and prepared LED chip structure

Also Published As

Publication number Publication date
JP4925651B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4925651B2 (en) Optical imprint stamper and light emitting device manufacturing method using the same
JP5117318B2 (en) Nanoimprinting stamper and fine structure transfer apparatus using the stamper
JP4939134B2 (en) Imprint apparatus and imprint method
JP4467611B2 (en) Optical imprint method
JP5935385B2 (en) Method of manufacturing replica template for nanoimprint and replica template
JP4478164B2 (en) MICROSTRUCTURE TRANSFER APPARATUS, STAMPER, AND MICROSTRUCTURE MANUFACTURING METHOD
JP4262267B2 (en) MOLD, IMPRINT APPARATUS AND DEVICE MANUFACTURING METHOD
US7767129B2 (en) Imprint templates for imprint lithography, and methods of patterning a plurality of substrates
KR101691157B1 (en) Method of manufacturing stamp for nanoimprint
JP5411557B2 (en) Microstructure transfer device
US20050084804A1 (en) Low surface energy templates
JP4448868B2 (en) Imprint stamper and manufacturing method thereof
WO2016051928A1 (en) Imprint template and method for manufacturing same
JP2008137387A (en) Soft template with alignment mark
JP2007266384A (en) Mold for imprinting and manufacturing method thereof
JP2012006219A (en) Mold for nanoimprint
JP2009158729A (en) Substrate for imprint
JP2011066273A (en) Method of forming fine mask pattern, nanoimprint lithography method, and method of manufacturing microstructure
JP2010005972A (en) Imprinting stamper and imprinting method
JP7060836B2 (en) Imprint mold manufacturing method
US20080217819A1 (en) Micro/Nano-Pattern Film Contact Transfer Process
JP2012204584A (en) Nanoimprint method
KR101208661B1 (en) Stamp for nano-imprint and manufacturing method thereof
JP2007035998A (en) Mold for imprint
JP2012236371A (en) Release method in imprint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees