JP2007147534A - Radar system - Google Patents

Radar system Download PDF

Info

Publication number
JP2007147534A
JP2007147534A JP2005345007A JP2005345007A JP2007147534A JP 2007147534 A JP2007147534 A JP 2007147534A JP 2005345007 A JP2005345007 A JP 2005345007A JP 2005345007 A JP2005345007 A JP 2005345007A JP 2007147534 A JP2007147534 A JP 2007147534A
Authority
JP
Japan
Prior art keywords
transmission
obstacle
transmission beam
target
obstruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005345007A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
克彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005345007A priority Critical patent/JP2007147534A/en
Publication of JP2007147534A publication Critical patent/JP2007147534A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration in the detection precision of target azimuth, caused by interfering a reflected wave from obstructing on the reflected wave from a target, when the distance between the target and the obstruction is smaller than distance resolution of a radar, by allowing the target and the obstruction to mix in a transmission beam. <P>SOLUTION: A radar system comprises a transmission beam controller for controlling the orientation of a transmission beam generated in each aperture face, in response to azimuth of the obstruction, by dividing the aperture face of an antenna device into two, a receiving beam controller for controlling the orientation of a receiving beam, independently of the transmission beam controlled with the transmission beam controller, and an obstruction detector for transmitting an existence direction of the obstruction to each part, when the obstruction enters the transmission beam controlled with the transmission beam controller. Thereby the orientation of partly overlapped two transmission beams relieves detection precision deterioration of the target azimuth by suppressing radio wave reflection from the obstruction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、目標を追尾するレーダ装置に関するものである。   The present invention relates to a radar device that tracks a target.

従来のレーダ装置として、アレーアンテナの複数M個のアンテナ素子で受信された複数M個の受信信号と形成すべき所定の複数N個のビームの各主ビームの方向と、受信周波数とに基づいて複数N個のビーム電界値を演算し、それらの中でしきい値以上のビーム電界値のみを選択して出力し、出力されるビーム電界値に基づいて主ビームを希望波の到来方向に向けかつ不要波の到来方向の受信レベルを零にするような受信信号に対する複数N個のウエイトを演算し、各ウエイトと送信周波数とに基づいて主ビームを希望波の到来方向に向けかつ不要波の到来方向の送信レベルを零にするような送信信号に対する複数M個の移相量と複数M個の振幅量のうちの少なくとも一方を演算して設定することによって送信信号の放射パターンを制御するものは、既に開示されている(特許文献1参照。)。   As a conventional radar apparatus, based on a plurality of M received signals received by a plurality of M antenna elements of an array antenna, a direction of each main beam of a predetermined plurality of N beams to be formed, and a reception frequency Calculates N beam electric field values, selects and outputs only the beam electric field values above the threshold value, and directs the main beam in the direction of arrival of the desired wave based on the output beam electric field value In addition, a plurality of N weights are calculated for the received signal so that the reception level in the arrival direction of the unwanted wave is zero, and the main beam is directed to the arrival direction of the desired wave based on each weight and the transmission frequency. The radiation pattern of the transmission signal is controlled by calculating and setting at least one of a plurality of M phase shift amounts and a plurality of M amplitude amounts with respect to the transmission signal that makes the transmission level in the arrival direction zero. The have already been disclosed (see Patent Document 1.).

特開平6−196921号公報(第1図)JP-A-6-196921 (FIG. 1)

従来のレーダ装置は、例えば追尾中のヘリが着艦しようとして母艦に近づくような場合、ヘリの存在方向に送信された電波の一部が、母艦にも照射され、受信信号の中に、ヘリからの反射信号と母艦からの反射信号が混在することがあった。このような場合、レーダ反射面積の大きい母艦からの反射信号は、ヘリからの反射信号に比べて極めて強いため、ヘリからの反射信号が母艦からの反射信号に埋もれてしまい、ヘリの位置が検出できなくなってしまう。このように、受信信号中に目標からの反射信号と障害物からの反射信号が混在すると、目標の位置を正しく検出できないという問題があった。   For example, when a tracking helicopter approaches a mother ship trying to land, a conventional radar device irradiates a part of the radio wave transmitted in the direction of the helicopter to the mother ship, In some cases, the reflected signal from the aircraft and the reflected signal from the mothership were mixed. In such a case, the reflected signal from the mother ship with a large radar reflection area is much stronger than the reflected signal from the helicopter, so the reflected signal from the helicopter is buried in the reflected signal from the mother ship, and the position of the helicopter is detected. It becomes impossible. As described above, when the reflected signal from the target and the reflected signal from the obstacle are mixed in the received signal, there is a problem that the target position cannot be detected correctly.

この発明は、係る課題に鑑み、送信ビーム内に目標と障害物が混在し、かつ目標と障害物の距離がレーダの距離分解能よりも近接している場合、目標からの反射波に障害物からの反射波が干渉する場合でも、目標方位の検出精度の劣化を防ぐことを目的とするものである。   In view of such problems, the present invention provides a reflected wave from a target in the case where the target and the obstacle are mixed in the transmission beam and the distance between the target and the obstacle is closer than the distance resolution of the radar. The purpose is to prevent the deterioration of the detection accuracy of the target orientation even when the reflected wave of the interference occurs.

この発明のレーダ装置は、複数の素子アンテナと複数の送受信モジュールとで構成されるアンテナ装置と、障害物の位置情報を外部より入力し、自己の設置位置と基準方位に基づいて、障害物までの距離と障害物の存在方向を求め、障害物が送信ビーム内に入りかつ、目標と障害物がほぼ同じ距離にある場合、障害物の存在方向を、2個の送信ビーム制御器及び上記2個の受信ビーム制御器へ送る障害物検出器と、アンテナ装置の開口面を2分割して各々の開口面で生成する2個の送信ビームの指向方向を、障害物検出器から受けた障害物の存在方向を基に、本レーダ装置と障害物を結ぶ線を軸として、2個の送信ビームが常に線対称の方向に指向するように計算する2個の送信ビーム制御器と、追尾中の目標方位に受信ビームが指向するように、受信指向方位を計算する2個の受信ビーム制御器とを備えたものである。   The radar device according to the present invention inputs an antenna device configured by a plurality of element antennas and a plurality of transmission / reception modules, and obstacle position information from the outside, and based on its own installation position and reference orientation, If the obstacle is in the transmission beam and the target and the obstacle are at approximately the same distance, the obstacle existence direction is determined by the two transmission beam controllers and the above 2 Obstacle detectors that are sent from the obstacle detectors to the receiving beam controllers, and the direction in which the two transmission beams are generated at the respective aperture surfaces by dividing the aperture surface of the antenna device into two. Two transmit beam controllers that calculate the two transmit beams so that they always point in a line-symmetrical direction, with the line connecting the radar apparatus and the obstacle as the axis, The receive beam is directed to the target direction A, in which a two receive beam controller for calculating a reception directivity orientation.

この発明のレーダ装置では、障害物の存在する位置に照射される電波は、送信ビーム1と送信ビーム2とで強度が同じで逆相として、互いにうち消しあうようにすることによって、目標の位置を検出する際に、障害物が悪影響を及ぼすことがなくなるという効果が得られる。   In the radar apparatus according to the present invention, the radio wave applied to the position where the obstacle is present has the same intensity in the transmission beam 1 and the transmission beam 2 and has the opposite phase so as to be erased from each other. When detecting, there is an effect that the obstacle does not have an adverse effect.

実施の形態1.
図1は、この発明における実施の形態1を示すレーダ装置の構成図であり、1はアンテナ、 2は送受信モジュール、3は送信用ビーム制御器、4は送信用ビーム制御器、5は受信用ビーム制御器、6は受信用ビーム制御器、7は送信機、8は受信機、9は測角処理器、10は障害物位置検出器である。
Embodiment 1 FIG.
FIG. 1 is a block diagram of a radar apparatus according to Embodiment 1 of the present invention, in which 1 is an antenna, 2 is a transmission / reception module, 3 is a beam controller for transmission, 4 is a beam controller for transmission, and 5 is for reception. A beam controller, 6 is a receiving beam controller, 7 is a transmitter, 8 is a receiver, 9 is an angle measuring processor, and 10 is an obstacle position detector.

この発明は、目標を追尾するレーダ装置に関し、例えば、航空機に対して電波を照射し、航空機から反射された電波をもとに、航空機の位置を検出するものである。
図1において、レーダ装置は、例えば艦船や海辺などに設置されるものであり、アンテナ1と、複数の送受信モジュール2と、送信用ビーム制御器3と、送信用ビーム制御器4と、受信用ビーム制御器5と、受信用ビーム制御器6と、送信機7と、受信機8と、測角処理器9と、障害物位置検出器10とを備えて構成される。
The present invention relates to a radar device that tracks a target, and for example, irradiates an aircraft with radio waves and detects the position of the aircraft based on radio waves reflected from the aircraft.
In FIG. 1, a radar apparatus is installed on, for example, a ship or the seaside, and includes an antenna 1, a plurality of transmission / reception modules 2, a transmission beam controller 3, a transmission beam controller 4, and a reception unit. A beam controller 5, a receiving beam controller 6, a transmitter 7, a receiver 8, an angle measurement processor 9, and an obstacle position detector 10 are configured.

次に、図1のレーダ装置の動作を説明する。
障害物位置検出器10は、障害物の位置情報(緯度経度)を外部より入力し、自己の設置位置(緯度経度)と基準方位(例えば北方向を方位0、水平面方向を仰角0と設定)に基づいて、障害物までの距離と障害物の存在方向を求める。
Next, the operation of the radar apparatus of FIG. 1 will be described.
The obstacle position detector 10 inputs the position information (latitude and longitude) of the obstacle from the outside, and sets its own installation position (latitude and longitude) and reference orientation (for example, the north direction is set to azimuth 0 and the horizontal plane direction is set to elevation angle 0) Based on the above, the distance to the obstacle and the direction in which the obstacle exists are obtained.

追尾中の目標の存在方向に電波を送信した場合、障害物が送信ビーム内に入りかつ、同じ距離にある場合、障害物位置検出器10は、障害物の存在方向を、送信用ビーム制御器3と、送信用ビーム制御器4と、受信用ビーム制御器5と、受信用ビーム制御器6に送る。   When radio waves are transmitted in the direction of presence of the target being tracked, when the obstacle enters the transmission beam and is at the same distance, the obstacle position detector 10 determines the direction of presence of the obstacle by the beam controller for transmission. 3, the transmission beam controller 4, the reception beam controller 5, and the reception beam controller 6.

なお、レーダ装置が艦船に搭載される場合、艦船に搭載したGPS受信器や羅針盤や水準器(傾斜計)などによって、移動中の艦船の位置、基準方位や水平面傾斜度が計測されるので、予め自己の設置位置と基準方位とを容易に求めることができる。   In addition, when the radar device is mounted on a ship, the position, reference orientation, and horizontal plane inclination of the moving ship are measured by a GPS receiver, compass, level indicator (tilt meter), etc. mounted on the ship. The self installation position and the reference orientation can be easily obtained in advance.

障害物の位置は、障害物が協同して運用されている僚艦の場合、通信装置によって位置情報を得ることができる。また、障害物が島、半島などの場合、地図情報から位置情報を得ることができる。   As for the position of the obstacle, position information can be obtained by a communication device in the case of a consort ship in which the obstacle is operated in cooperation. Further, when the obstacle is an island or a peninsula, the position information can be obtained from the map information.

また、上記いずれでも無い場合は、本レーダ装置で捜索を実施することにより障害物の位置情報を得ることができる。   If none of the above is found, the position information of the obstacle can be obtained by performing a search with this radar apparatus.

送信時の動作について以下に説明する。
図2はこの発明の実施の形態1による送信ビーム1と送信ビーム2を示す図である。送信用ビーム制御器3は、入力された障害物の方位と追尾中の目標方位をもとに、送信ビーム1の指向方位を計算する。
The operation during transmission will be described below.
FIG. 2 is a diagram showing a transmission beam 1 and a transmission beam 2 according to Embodiment 1 of the present invention. The transmission beam controller 3 calculates the directional azimuth of the transmission beam 1 based on the input azimuth of the obstacle and the target azimuth being tracked.

ここで、送信ビーム1とは、図2に示すように、アンテナ1を左右に2分割し、正面からみて右側の開口面で形成するビームである。同様に、送信用ビーム制御器4は、入力された障害物の方位と追尾中の目標方位をもとに、送信ビーム2の指向方位を計算する。   Here, as shown in FIG. 2, the transmission beam 1 is a beam formed by dividing the antenna 1 into left and right parts and opening the right side when viewed from the front. Similarly, the transmission beam controller 4 calculates the directional direction of the transmission beam 2 based on the input azimuth direction of the obstacle and the target azimuth being tracked.

ここで、送信ビーム2とは、図2に示すように、アンテナ1を左右に2分割し、正面からみて左側の開口面で形成するビームである。   Here, as shown in FIG. 2, the transmission beam 2 is a beam formed by dividing the antenna 1 into left and right parts and forming an opening surface on the left side when viewed from the front.

図3はこの発明の実施の形態1によるレーダ装置、目標、障害物、ビーム指向方向の位置関係を説明する図である。
送信用ビーム制御器3と送信用ビーム制御器4による、送信ビーム1と送信ビーム2の指向方位の計算方法を以下に説明する。
FIG. 3 is a diagram for explaining the positional relationship among the radar apparatus, the target, the obstacle, and the beam pointing direction according to the first embodiment of the present invention.
A method of calculating the directivity directions of the transmission beam 1 and the transmission beam 2 by the transmission beam controller 3 and the transmission beam controller 4 will be described below.

本レーダ装置と目標、障害物が図3に示す位置関係にある場合を考える。
この時、送信用ビーム制御器3は、目標の存在する方位を送信ビーム1の送信指向方位とする。図3の方位1がこの送信指向方位である。
Consider a case where the radar apparatus, the target, and the obstacle are in the positional relationship shown in FIG.
At this time, the transmission beam controller 3 sets the direction in which the target exists as the transmission direction of the transmission beam 1. The direction 1 in FIG. 3 is this transmission direction direction.

また、送信用ビーム制御器4は、本レーダ装置と障害物を結ぶ線を軸として、目標と対称の位置を求め、この位置の方位を送信ビーム2の送信指向方位とする。図3の方位2がこの送信指向方位である。   Further, the transmission beam controller 4 obtains a position symmetrical to the target with the line connecting the radar apparatus and the obstacle as an axis, and sets the direction of this position as the transmission direction of the transmission beam 2. The direction 2 in FIG. 3 is this transmission direction direction.

すなわち、本レーダ装置と障害物を結ぶ線を軸として、常に送信ビーム1と送信ビーム2が線対称の方向に指向するよう、送信指向方位を計算する。   That is, the transmission azimuth is calculated so that the transmission beam 1 and the transmission beam 2 are always directed in a line-symmetrical direction with the line connecting the radar apparatus and the obstacle as an axis.

送信用ビーム制御器3と送信用ビーム制御器4は、以上のように送信ビーム1と送信ビーム2の送信指向方位を算出し、その送信指向方位を送受信モジュール2と測角処理器9へ送出する。   The transmission beam controller 3 and the transmission beam controller 4 calculate the transmission directional directions of the transmission beam 1 and the transmission beam 2 as described above, and send the transmission directional directions to the transmission / reception module 2 and the angle measurement processor 9. To do.

また送信機7は、高周波送信信号を発生し、送受信モジュール2へ送出する。送受信モジュール2は、各送受信モジュール2ごとに、入力された送信指向方位に送信ビームが指向するよう、入力された高周波送信信号の位相をシフトする。   The transmitter 7 generates a high-frequency transmission signal and sends it to the transmission / reception module 2. The transmission / reception module 2 shifts the phase of the input high-frequency transmission signal for each transmission / reception module 2 so that the transmission beam is directed in the input transmission direction.

その際、開口面1と開口面2とで、位相差が180度となるようにする。送信指向方位は、各送受信モジュール間の位相差によって決まるため、例えば初期位相を開口面1を0°、開口面2を180°とすることで、開口面1と開口面2とで、位相差を180度とすることができる。   At this time, the phase difference between the opening surface 1 and the opening surface 2 is set to 180 degrees. Since the transmission directivity is determined by the phase difference between the transmission / reception modules, the phase difference between the opening surface 1 and the opening surface 2 is set by setting the initial phase to 0 ° for the opening surface 1 and 180 ° for the opening surface 2, for example. Can be 180 degrees.

位相をシフトされた高周波送信信号は、電力増幅後にアンテナ1へ送出され、アンテナ1から空中へ放射される。   The high-frequency transmission signal whose phase is shifted is transmitted to the antenna 1 after power amplification and is radiated from the antenna 1 into the air.

図4は、この発明の実施の形態1による受信ビーム1と受信ビーム2を示す図である。
次に受信時の動作について説明する。受信用ビーム制御器5は、追尾中の目標方位に受信ビーム1が指向するように、受信指向方位を計算する。
FIG. 4 is a diagram showing the reception beam 1 and the reception beam 2 according to the first embodiment of the present invention.
Next, the operation during reception will be described. The reception beam controller 5 calculates the reception directivity so that the reception beam 1 is directed to the target direction being tracked.

ここで、受信ビーム1とは、図4に示すように、アンテナ1を左右に2分割し、正面からみて右側の開口面で形成するビームである。同様に、受信用ビーム制御器6は、追尾中の目標方位に受信ビーム2が指向するように、受信指向方位を計算する。   Here, the reception beam 1 is a beam formed by dividing the antenna 1 into left and right parts and opening the right side as viewed from the front, as shown in FIG. Similarly, the reception beam controller 6 calculates the reception directivity so that the reception beam 2 is directed to the target direction being tracked.

ここで、受信ビーム2とは、図4に示すように、アンテナ1を左右に2分割し、正面からみて左側の開口面で形成するビームである。   Here, the reception beam 2 is a beam formed by dividing the antenna 1 into left and right parts and opening the left side as viewed from the front, as shown in FIG.

アンテナ1は、目標からの反射電波を受信し、受信信号を送受信モジュール2へ送出する。送受信モジュール2は、受信信号を電力増幅後、各送受信モジュール2ごとに、入力された受信指向方位に受信ビームが指向するよう、受信信号の位相をシフトする。   The antenna 1 receives the reflected radio wave from the target and sends a received signal to the transmission / reception module 2. The transmission / reception module 2 power-amplifies the reception signal, and then shifts the phase of the reception signal for each transmission / reception module 2 so that the reception beam is directed to the input reception direction.

位相をシフトされた受信信号は、受信機8に送出される。
受信機8は、開口面1で受信された信号の合成結果から、開口面2で受信された信号の合成結果を減算し、差信号を生成する。また、開口面1で受信された信号の合成結果と開口面2で受信された信号の合成結果を加算し、和信号を生成する。
受信機8は、和信号と差信号それぞれに対して、増幅、周波数変換、位相検波を行い、測角処理器9へ送出する。
The received signal whose phase is shifted is sent to the receiver 8.
The receiver 8 subtracts the synthesis result of the signal received at the aperture surface 2 from the synthesis result of the signal received at the aperture surface 1 to generate a difference signal. Also, the sum of the signals received on the aperture plane 1 and the signal received on the aperture plane 2 are added to generate a sum signal.
The receiver 8 performs amplification, frequency conversion, and phase detection on each of the sum signal and the difference signal, and sends it to the angle measurement processor 9.

測角処理器9は、位相検波後の和信号と差信号を入力し、モノパルス角度誤差検出処理を行い、目標の方位を検出する。ここで、2個の送信ビームは障害物を中心に線対称であり、2個の受信ビームは目標の方位を向いている。   The angle measuring processor 9 receives the sum signal and the difference signal after phase detection, performs monopulse angle error detection processing, and detects the target azimuth. Here, the two transmission beams are axisymmetric about the obstacle, and the two reception beams are directed to the target direction.

図6は、モノパルス測角誤差検出処理における目標の方位と差信号/和信号の関係を示す図である。モノパルス角度誤差検出処理について以下に説明する。目標の方位と差信号/和信号には、例えば図6に示すような関係がある。   FIG. 6 is a diagram showing the relationship between the target orientation and the difference signal / sum signal in the monopulse angle measurement error detection process. The monopulse angle error detection process will be described below. The target orientation and the difference signal / sum signal have a relationship as shown in FIG. 6, for example.

横軸の方位は、受信ビームの中心方位を0°とした時の中心方位からのずれ量である。この関係を表す関数をF(θ)とした時、F(θ)をあらかじめ計測しておけば、差信号/和信号から目標方位を逆算することができる。ここでθは目標方位を表す記号である。   The direction of the horizontal axis is the amount of deviation from the center direction when the center direction of the received beam is 0 °. When the function representing this relationship is F (θ), if F (θ) is measured in advance, the target azimuth can be calculated backward from the difference signal / sum signal. Here, θ is a symbol representing the target orientation.

すなわち、追尾目標からの反射電波から差信号と和信号を生成し、差信号/和信号からF(θ)を用いて目標方位を検出することができる。この処理をモノパルス角度誤差検出処理と呼ぶ。   That is, a difference signal and a sum signal can be generated from the reflected radio wave from the tracking target, and the target direction can be detected from the difference signal / sum signal using F (θ). This processing is called monopulse angle error detection processing.

本レーダ装置では、あらかじめF(θ)を送信ビーム1と送信ビーム2の送信指向方位ごとに計測しておき、目標追尾中に送信ビーム1と送信ビーム2の送信指向方位を入力として、その時々のF(θ)を使用することによって、モノパルス角度誤差検出処理を行う。   In this radar apparatus, F (θ) is measured in advance for each of the transmission directivity directions of the transmission beam 1 and the transmission beam 2, and the transmission directivity directions of the transmission beam 1 and the transmission beam 2 are input during target tracking. Monopulse angle error detection processing is performed by using F (θ).

図5は、この発明の実施の形態1による送信ビーム1と送信ビーム2が障害物位置において互いにうち消すことを説明する図であり、図5(a)は本装置、障害物、送信ビーム1、送信ビーム2の位置関係を示す図、図5(b)は障害物位置の受信強度の時間変化を示す図である。   FIG. 5 is a diagram for explaining that the transmission beam 1 and the transmission beam 2 are erased from each other at the obstacle position according to the first embodiment of the present invention. FIG. FIG. 5B is a diagram showing the positional relationship of the transmission beam 2, and FIG.

本レーダ装置は、上記のように動作するため、図5(a)に示すように、障害物に対して、開口面1で生成した送信ビーム1と開口面2で生成した送信ビーム2を同時に照射することになる。   Since this radar apparatus operates as described above, as shown in FIG. 5A, the transmission beam 1 generated on the aperture surface 1 and the transmission beam 2 generated on the aperture surface 2 are simultaneously applied to the obstacle. Will be irradiated.

送信ビーム1と送信ビーム2の送信指向方位は、本レーダ装置と障害物を結ぶ線を軸として、常に線対称の方向に指向するよう制御されているため、障害物の存在する位置に照射される電波の強度は送信ビーム1と送信ビーム2では、同じである。   The transmission directivity directions of the transmission beam 1 and the transmission beam 2 are controlled so as to be always directed in a line-symmetrical direction around the line connecting the radar apparatus and the obstacle, so that the position where the obstacle exists is irradiated. The transmission beam 1 and the transmission beam 2 have the same intensity.

ただし、送信ビーム1、送信ビーム2ともにビーム中心に対して対称形のビームパターンであるとする。また、送信ビーム1と送信ビーム2の位相差は180度となるよう制御しているため、障害物の存在する位置に照射される電波の位相は送信ビーム1と送信ビーム2で互い逆相となる。   However, it is assumed that both the transmission beam 1 and the transmission beam 2 have a symmetrical beam pattern with respect to the beam center. Further, since the phase difference between the transmission beam 1 and the transmission beam 2 is controlled to be 180 degrees, the phase of the radio wave applied to the position where the obstacle is present is opposite to each other between the transmission beam 1 and the transmission beam 2. Become.

すなわち、障害物の存在する位置に照射される電波は、送信ビーム1と送信ビーム2とで強度が同じで逆相となり、互いにうち消しあうため、この位置には、電波が照射されない。
これを図5(b)に示す。
That is, the radio wave irradiated to the position where the obstacle exists has the same intensity and the opposite phase in the transmission beam 1 and the transmission beam 2 and disappears from each other. Therefore, the radio wave is not irradiated to this position.
This is shown in FIG.

従って、本レーダ装置では、障害物からの反射波を抑圧することができ、このため目標の位置を検出する際に、障害物が悪影響を及ぼすことがなくなるという効果がある。   Therefore, in the present radar apparatus, the reflected wave from the obstacle can be suppressed, so that there is an effect that the obstacle does not adversely affect the detection of the target position.

一方、目標にも送信ビーム1と送信ビーム2の両方で照射するものの、送信ビーム1が目標に指向しているのに対し、送信ビーム2は目標方向を指向しておらず、目標に照射される電波の強度は、送信ビーム1の方が送信ビーム2よりも大きくなる。   On the other hand, although the target is irradiated with both the transmission beam 1 and the transmission beam 2, the transmission beam 1 is directed to the target, whereas the transmission beam 2 is not directed to the target direction and is irradiated to the target. The intensity of the transmitted radio wave is larger in the transmission beam 1 than in the transmission beam 2.

このため障害物の場合と違って送信ビーム1と送信ビーム2とで互いにうち消しあうことがなく、目標からの反射波を受信することができる。
従って、モノパルス測角誤差検出処理によって、目標の方位を検出することができる。
For this reason, unlike the case of an obstacle, the transmission beam 1 and the transmission beam 2 are not erased from each other, and the reflected wave from the target can be received.
Therefore, the target azimuth can be detected by the monopulse angle measurement error detection process.

また、送信ビーム1と送信ビーム2の送信指向方位が変化するごとに、F(θ)をかえてモノパルス角度誤差検出処理を行うため、送信ビーム1と送信ビーム2の送信指向方位によって目標方位に検出誤差が生じることを防止できる。   In addition, every time the transmission direction azimuth of the transmission beam 1 and the transmission beam 2 changes, the monopulse angle error detection process is performed by changing F (θ), so that the transmission direction of the transmission beam 1 and the transmission beam 2 changes to the target direction. A detection error can be prevented from occurring.

この発明の実施の形態1によるレーダ装置を示す構成図である。It is a block diagram which shows the radar apparatus by Embodiment 1 of this invention. この発明の実施の形態1による送信ビーム1と送信ビーム2を示す図である。It is a figure which shows the transmission beam 1 and the transmission beam 2 by Embodiment 1 of this invention. この発明の実施の形態1によるレーダ装置、目標、障害物、ビーム指向方向の位置関係を説明する図である。It is a figure explaining the positional relationship of the radar apparatus by the Embodiment 1 of this invention, a target, an obstruction, and a beam directivity direction. この発明の実施の形態1による受信ビーム1と受信ビーム2を示す図である。It is a figure which shows the receiving beam 1 and the receiving beam 2 by Embodiment 1 of this invention. この発明の実施の形態1による送信ビーム1と送信ビーム2が障害物位置において互いにうち消すことを説明する図である。It is a figure explaining the transmission beam 1 and the transmission beam 2 by Embodiment 1 of this invention erasing each other in an obstacle position. モノパルス測角誤差検出処理における目標の方位と差信号/和信号の関係を示す図である。It is a figure which shows the relationship between the target azimuth | direction and a difference signal / sum signal in a monopulse angle measurement error detection process.

符号の説明Explanation of symbols

1 アンテナ、 2 送受信モジュール、 3 送信用ビーム制御器、 4 送信用ビーム制御器、 5 受信用ビーム制御器、 6 受信用ビーム制御器、 7 送信機、 8 受信機、 9 測角処理器、 10 障害物位置検出器。   DESCRIPTION OF SYMBOLS 1 Antenna, 2 Transmission / reception module, 3 Transmitting beam controller, 4 Transmitting beam controller, 5 Receiving beam controller, 6 Receiving beam controller, 7 Transmitter, 8 Receiver, 9 Angle measuring processor, 10 Obstacle position detector.

Claims (2)

複数の素子アンテナと複数の送受信モジュールとで構成されるアンテナ装置と、
障害物の位置情報を外部より入力し、自己の設置位置と基準方位に基づいて、障害物までの距離と障害物の存在方向を求め、障害物が送信ビーム内に入りかつ、目標と障害物がほぼ同じ距離にある場合、障害物の存在方向を、2個の送信ビーム制御器及び2個の受信ビーム制御器へ送る障害物検出器と、
上記アンテナ装置の開口面を2分割して各々の開口面で生成する2個の送信ビームの指向方向を、上記障害物検出器から受けた障害物の存在方向を基に、本レーダ装置と障害物を結ぶ線を軸として、2個の送信ビームが常に線対称の方向に指向するように計算する2個の送信ビーム制御器と、
追尾中の目標方位に受信ビームが指向するように、受信指向方位を計算する2個の受信ビーム制御器と、
を備えたことを特徴とするレーダ装置。
An antenna device including a plurality of element antennas and a plurality of transmission / reception modules;
Enter the obstacle position information from outside, find the distance to the obstacle and the direction of the obstacle based on its own installation position and reference direction, the obstacle enters the transmission beam, and the target and obstacle Are obstacle detectors that send the direction of obstacle presence to the two transmit beam controllers and the two receive beam controllers;
The antenna device is divided into two directions by dividing the aperture surface of the antenna device into two based on the direction of the obstacles received from the obstacle detector. Two transmit beam controllers for calculating so that the two transmit beams are always directed in the direction of line symmetry, with the line connecting the objects as axes;
Two receive beam controllers that calculate the receive orientation so that the receive beam is directed to the target orientation being tracked;
A radar apparatus comprising:
上記2個の送信ビーム制御器からの送信ビームを、強度が同じで逆相で、互いにうち消しあうように生成することを特徴とする請求項2記載のレーダ装置。 3. The radar apparatus according to claim 2, wherein the transmission beams from the two transmission beam controllers are generated so as to have the same intensity, opposite phase, and cancel each other.
JP2005345007A 2005-11-30 2005-11-30 Radar system Pending JP2007147534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005345007A JP2007147534A (en) 2005-11-30 2005-11-30 Radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005345007A JP2007147534A (en) 2005-11-30 2005-11-30 Radar system

Publications (1)

Publication Number Publication Date
JP2007147534A true JP2007147534A (en) 2007-06-14

Family

ID=38209098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005345007A Pending JP2007147534A (en) 2005-11-30 2005-11-30 Radar system

Country Status (1)

Country Link
JP (1) JP2007147534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166998A (en) * 2016-03-16 2017-09-21 株式会社デンソー Target detection device
CN113406615A (en) * 2021-05-25 2021-09-17 森思泰克河北科技有限公司 Target tracking method and device of binary phase modulation array radar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166998A (en) * 2016-03-16 2017-09-21 株式会社デンソー Target detection device
WO2017159735A1 (en) * 2016-03-16 2017-09-21 株式会社デンソー Object detection apparatus
CN113406615A (en) * 2021-05-25 2021-09-17 森思泰克河北科技有限公司 Target tracking method and device of binary phase modulation array radar

Similar Documents

Publication Publication Date Title
US10425910B1 (en) Localization using millimeter wave communication signals
EP1872149B1 (en) Positioning system with a sparse antenna array
EP1910864B1 (en) A system and method for positioning a transponder
EP1872148B1 (en) Positioning system with intentional multi-path signal
KR101057917B1 (en) System and Method for Improving Signal-to-Noise Ratio and Mitigating Multipath in Time Division Multiple Access (TGDA) Location Network
EP3123197B1 (en) Methods and apparatus for determining angle of arrival (aoa) in a radar warning receiver
US5615175A (en) Passive direction finding device
US11614532B2 (en) Multistatic radar utilizing 5G
RU2275649C2 (en) Method and passive radar for determination of location of radio-frequency radiation sources
CA3027835A1 (en) Light-weight radar system
US7088641B2 (en) Bistatic azimuth detection system and detection method
JP2007147534A (en) Radar system
RU2477497C2 (en) Hydroacoustic navigation system
JP2011019067A (en) Antenna device
Fabrizio Geolocation of HF skywave radar signals using multipath in an unknown ionosphere
KR101957291B1 (en) Apparatus and method for detecting direction of arrival signal in Warfare Support System
JP2005189107A (en) Radar system
JP2009244194A (en) Radar device
JP2008304329A (en) Measuring device
JP3753121B2 (en) Radar apparatus and radar system
JP2005291806A (en) Radar device
JP2005181237A (en) Radar system
JP7419025B2 (en) radar system
KR20190129282A (en) Target detection system to detect target using multiple electronic scanners
KR102489885B1 (en) Active guidance system and method