JP2007138282A - Thermal spray material made from magnesium alloy having superior explosion proof in thermal spraying and imparting superior corrosion resistance to thermal-sprayed portion, and thermal spraying method using the same - Google Patents

Thermal spray material made from magnesium alloy having superior explosion proof in thermal spraying and imparting superior corrosion resistance to thermal-sprayed portion, and thermal spraying method using the same Download PDF

Info

Publication number
JP2007138282A
JP2007138282A JP2006103270A JP2006103270A JP2007138282A JP 2007138282 A JP2007138282 A JP 2007138282A JP 2006103270 A JP2006103270 A JP 2006103270A JP 2006103270 A JP2006103270 A JP 2006103270A JP 2007138282 A JP2007138282 A JP 2007138282A
Authority
JP
Japan
Prior art keywords
thermal
magnesium alloy
sprayed
corrosion resistance
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006103270A
Other languages
Japanese (ja)
Other versions
JP4757692B2 (en
Inventor
Hideki Hamaya
秀樹 濱谷
Shinji Kodama
真二 児玉
Masato Nakazawa
眞人 仲澤
Nobuyuki Shimoda
信之 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006103270A priority Critical patent/JP4757692B2/en
Publication of JP2007138282A publication Critical patent/JP2007138282A/en
Application granted granted Critical
Publication of JP4757692B2 publication Critical patent/JP4757692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal spray material made from a magnesium alloy, which has superior explosion proof in a thermal spraying period and imparts superior corrosion resistance to a thermal-sprayed portion. <P>SOLUTION: The thermal spray material made from a magnesium alloy, which has superior explosion proof in a thermal spraying period and imparts superior corrosion resistance to a thermal-sprayed portion, comprises, by mass%, 13-42% Al, 1-5% Ca, and the balance Mg with unavoidable impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車、鋼管、建材、家電、コンピューター、その他機器・機械用の部材表面を溶射法により改質するために使用される、溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料およびこれを用いた溶射方法に関するものである。   The present invention is a magnesium alloy that is used for modifying the surface of members for automobiles, steel pipes, building materials, home appliances, computers, and other equipment / machines by a thermal spraying method, and has excellent explosion resistance during thermal spraying and corrosion resistance of thermal sprayed parts. The present invention relates to a thermal spray material and a thermal spraying method using the same.

一般に、マグネシウムは比重が低く、耐食性に優れているため、軽量化および腐食性が要求される自動車、鋼管、建材、家電、コンピューター、その他機器の素材あるいは表面改質材として用いられている。   In general, since magnesium has a low specific gravity and excellent corrosion resistance, it is used as a material or a surface modifying material for automobiles, steel pipes, building materials, home appliances, computers, and other devices that are required to be lightweight and corrosive.

マグネシウムを用いた合金素材としては、一般に、Al:11%以下を含有したマグネシウム合金が多く使用されている(例えば非特許文献1及び2、参照)。   As an alloy material using magnesium, generally, a magnesium alloy containing Al: 11% or less is often used (for example, see Non-Patent Documents 1 and 2).

また、マグネシウム合金素材の鋳造性を維持しつつ耐熱性を向上されたマグネシウム合金素材として、例えばAl:6〜12%、Ca:0.05〜4%、希土類元素:0.5〜4%、Mn:0.05〜0.50%、Sn:0.1〜14%を含有したマグネシウム合金(例えば特許文献1、参照)や、Al:4〜25%、Ca:1〜15%を含有したマグネシウム合金(例えば特許文献2、参照)が提案されている。   Further, as a magnesium alloy material whose heat resistance is improved while maintaining the castability of the magnesium alloy material, for example, Al: 6 to 12%, Ca: 0.05 to 4%, rare earth element: 0.5 to 4%, Magnesium alloy containing Mn: 0.05 to 0.50%, Sn: 0.1 to 14% (see Patent Document 1, for example), Al: 4 to 25%, Ca: 1 to 15% A magnesium alloy (see, for example, Patent Document 2) has been proposed.

さらに、マグネシウム合金素材の機械的強度を維持しつつ難燃性を向上されたマグネシウム合金素材として、例えばCa:0.1〜15%、Al:Ca含有量の2倍以下を含有したマグネシウム合金が提案されている(例えば特許文献3、参照)。   Furthermore, as a magnesium alloy material whose flame retardancy is improved while maintaining the mechanical strength of the magnesium alloy material, for example, a magnesium alloy containing Ca: 0.1 to 15% and not more than twice the Al: Ca content is available. It has been proposed (for example, see Patent Document 3).

マグネシウムは、上記バルク状のマグネシウム合金素材として使用するほかに、マグネシウムの耐腐食性を利用し、部材表面の耐食性を向上させるための溶射材料としても使用されている。   In addition to being used as the bulk magnesium alloy material, magnesium is also used as a thermal spray material for improving the corrosion resistance of the member surface by utilizing the corrosion resistance of magnesium.

例えば、アーク溶射方法などで用いられるワイヤ形状の溶射材料として、被覆部(パイプ)中にAlとMgを含有し、被覆部(パイプ)内に充填材を内包した送給性に優れた溶射ワイヤ(例えば特許文献4、参照)が知られている。また、Mg:約5%含有したAl−Mg合金溶射ワイヤとZnからなる溶射ワイヤを用いて被溶射対象物表面にアーク溶射する耐食処理方法(例えば特許文献5、参照)や、Znめっき鋼板またはZn合金系めっき鋼板を用いて造管した後、溶接部にAl−Mg合金ワイヤとAlワイヤを用いてC22+O2のフレームにより溶射し、該溶接部表面にAl−Mg合金からなる溶射補修層を設けて耐食性を向上させる方法(例えば特許文献7および9、参照)が提案されている。 For example, as a wire-shaped spraying material used in arc spraying methods, etc., a coating wire (Al) containing Al and Mg in a coating part (pipe) and a coating material containing the filler in the coating part (pipe) is excellent in feedability. (For example, refer to Patent Document 4). Moreover, Mg: Corrosion-resistant treatment method (for example, see Patent Document 5) in which arc spraying is performed on the surface of the object to be sprayed using an Al—Mg alloy spray wire containing about 5% and a spray wire composed of Zn, After making a pipe using a Zn alloy-based plated steel sheet, the weld is sprayed with a frame of C 2 H 2 + O 2 using an Al—Mg alloy wire and an Al wire, and the surface of the weld is made of an Al—Mg alloy. A method for improving the corrosion resistance by providing a thermal spray repair layer (see, for example, Patent Documents 7 and 9) has been proposed.

また、プラズマ溶射法に用いられる粉末状の溶射材料として、Si:26〜80%、Mg:0.05〜10%及びCu:5〜10%の一種を含有し、残部がAlと不可避的不純物からなり、アトマイズ法により製造された平均粒径が1〜200μmの耐摩耗性部材用溶射アルミニウム合金粉末が提案されている(例えば特許文献6、参照)。   Moreover, as a powder-form spraying material used for the plasma spraying method, Si: 26-80%, Mg: 0.05-10% and Cu: 5-10% are contained, and the balance is Al and inevitable impurities. There has been proposed a sprayed aluminum alloy powder for wear-resistant members having an average particle size of 1 to 200 μm produced by an atomizing method (see, for example, Patent Document 6).

また、プラズマジェット、燃料の燃焼フレーム、電気アークなどの熱源を用い、Mg含有合金の粉末またはワイヤを溶融する溶射法により、基材表面に、Mg:0.2%〜60%未満を含有する膜厚:30〜500μmのAl−Mg合金皮膜を形成する耐ハロゲン皮膜被覆部材の製造方法が提案されている(例えば特許文献8、参照)。   Also, Mg: 0.2% to less than 60% is contained on the surface of the base material by a thermal spraying method in which a powder or wire of the Mg-containing alloy is melted using a heat source such as a plasma jet, a fuel combustion flame, or an electric arc. A method for producing a halogen-resistant film-coated member that forms an Al—Mg alloy film having a thickness of 30 to 500 μm has been proposed (for example, see Patent Document 8).

上記のように、溶射法により金属表面にAl−Mg合金表面の耐食性を向上させる目的で使用される、溶射ワイヤまたは溶射粉末などのAl−Mg合金溶射材料では、プラズマジェット、燃料の燃焼フレーム、電気アークなどの熱源を用いて高温で溶融する際に、爆発するのを防止するために、Al−Mg合金溶射材料中のMg含有量は20%以下に制限する必要があったのである(例えば、特許文献5及び6、参照)。   As described above, an Al-Mg alloy spray material such as a spray wire or spray powder used for the purpose of improving the corrosion resistance of the Al-Mg alloy surface on the metal surface by a thermal spraying method is a plasma jet, a fuel combustion frame, In order to prevent explosion when melting at a high temperature using a heat source such as an electric arc, the Mg content in the Al—Mg alloy sprayed material had to be limited to 20% or less (for example, And Patent Documents 5 and 6).

なお、上記特許文献8の耐ハロゲン皮膜被覆部材の製造方法では、当該文献の一部に、Al−Mg合金皮膜中のMg含有量は60%まで許容するように記載されているが、実際に実施した実施例で示されたAl−Mg合金皮膜中のMg含有量は最大で18.3%である。本発明者らは、Al−Mg合金皮膜中のMg含有量が18%程度でも、後記の表1に示すように爆発する場合があり、Mg含有量が20%を超える条件では、溶融する際の爆発が問題となり溶融膜は形成できないことを確認している。   In addition, in the manufacturing method of the halogen-resistant film coating | coated member of the said patent document 8, although it describes that some Mg content in an Al-Mg alloy film is accept | permitted to 60% in the said literature, actually The maximum Mg content in the Al—Mg alloy film shown in the implemented examples is 18.3%. The inventors may explode as shown in Table 1 below even when the Mg content in the Al—Mg alloy film is about 18%, and when the Mg content exceeds 20% As a result, it was confirmed that a molten film could not be formed.

特に、Al−Mg合金溶射材料の形状は、溶射ワイヤに比べて、溶射時の飛行粒子(溶融粉末)サイズが20〜400μm程度となる溶射粉末として使用する場合に、粉塵爆発が起こりやすい。   Particularly, the shape of the Al—Mg alloy sprayed material is likely to cause dust explosion when used as a sprayed powder having a flying particle (molten powder) size of about 20 to 400 μm at the time of spraying, as compared with a sprayed wire.

バルク状のマグネシウム合金でも、素材を切断や切削などの加工をする際にMg金属起因の粉塵爆発が生じる場合があり、この対策として、上述したように、難燃性を高めるためにCa:0.1〜15%、Al:Ca含有量の2倍以下を含有したマグネシウム合金素材が提案されている(例えば特許文献3)。しかしながら、マグネシウム合金を構造部材として用いる場合には、機械的強度を維持するためにAl含有量の上限に制約があり、Al含有量は最大でも10質量%程度である。しかし、本発明者らの検討の結果、マグネシウム合金中にAl含有量を10質量%程度添加するだけでは、マグネシウム合金素材の切断や切削などの加工時に発生する粉塵爆発を抑制するためには効果はあるが、Mg含有量が20%を超える条件下での溶射時の粉塵爆発を確実に防止することはできない。   Even in the case of bulk magnesium alloy, dust explosion caused by Mg metal may occur when processing such as cutting or cutting of the raw material. As a countermeasure against this, as described above, in order to enhance flame retardancy, Ca: 0 A magnesium alloy material containing 1 to 15% and not more than twice the Al: Ca content has been proposed (for example, Patent Document 3). However, when a magnesium alloy is used as a structural member, the upper limit of the Al content is limited in order to maintain mechanical strength, and the Al content is about 10% by mass at the maximum. However, as a result of the study by the present inventors, it is effective to suppress the dust explosion that occurs during processing such as cutting or cutting of the magnesium alloy material only by adding about 10% by mass of Al content in the magnesium alloy. However, it is not possible to reliably prevent dust explosion during thermal spraying under a condition where the Mg content exceeds 20%.

つまり、マグネシウムを溶射材として用いて溶射する場合には、飛行粒子サイズが20〜400μm程度の溶融粉末となり、比表面積が大きくなるため、Mg含有量が20%より高くなると、粉末の融点よりも発火点温度のほうが低くなる結果、溶融前に爆発が生じる可能性が飛躍的に高くなる。   That is, when spraying using magnesium as a thermal spray material, the flying particle size becomes a molten powder of about 20 to 400 μm, and the specific surface area is increased. Therefore, when the Mg content is higher than 20%, the melting point of the powder is higher than the melting point of the powder. As a result of the lower ignition point temperature, the possibility of explosion before melting is dramatically increased.

したがって、マグネシウムを溶射材として使用する場合には、溶射材中のMg含有量をバルク材中の含有量より低く制限する必要があるため、Mg金属による耐食性向上メリットを十分に享受することができなくなる。   Therefore, when using magnesium as the thermal spraying material, it is necessary to limit the Mg content in the thermal spraying material to be lower than the content in the bulk material, so that the corrosion resistance improvement merit of Mg metal can be fully enjoyed. Disappear.

そこで、溶射時に爆発を生じさせずに、溶射部の耐食性をより向上させることができる、Mg含有量が20%以上の溶射材料の開発が望まれていた。   Therefore, it has been desired to develop a thermal spray material having an Mg content of 20% or more, which can further improve the corrosion resistance of the thermal spray portion without causing an explosion during thermal spraying.

JIS H 5203JIS H 5203 JIS H 5303JIS H 5303 特開2005−68550JP 2005-68550 A 特開2004−232060JP2004-232060 特開2000−109963JP2000-109963 特開2002−4025JP2002-4025 特開2003−253419JP2003-253419 特開2003−286501JP 2003-286501 A 特開2003−328105JP 2003-328105 A 特開2004−269951JP 2004-269951 A 特開昭60−89559号公報JP-A-60-89559

本発明は、上記従来技術の現状に鑑みて、溶射部の耐食性に優れ、かつ溶射時の防爆性に優れたマグネシウム合金溶射材料を提供することを目的とする。   An object of the present invention is to provide a magnesium alloy thermal spray material that is excellent in corrosion resistance of a thermal sprayed part and excellent in explosion-proof property during thermal spraying in view of the current state of the prior art.

本発明は、上記技術的課題を解決するものであり、その発明は以下のとおりである。   The present invention solves the above technical problems, and the invention is as follows.

(1)質量%で、Al:13〜78%、Ca:1〜5%を含有し、かつAlおよびCaの合計量が79%以下であり、残部がMg及び不可避的不純物からなることを特徴とする溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。
(2)さらに、質量%で、Zn:65%以下を含有し、AlおよびZnの合計量が78%以下であり、かつAl、CaおよびZnの合計量が79%以下であることを特徴とする上記(1)記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。
(3)質量%で、Al:13〜42%、Ca:1〜5%を含有し、かつAlおよびCaの合計量が47%以下であり、残部がMg及び不可避的不純物からなることを特徴とする溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。
(1) By mass%, Al: 13 to 78%, Ca: 1 to 5%, and the total amount of Al and Ca is 79% or less, and the balance consists of Mg and inevitable impurities Magnesium alloy sprayed material with excellent explosion-proof properties during spraying and corrosion resistance of the sprayed part.
(2) Further, it is characterized by containing, by mass%, Zn: 65% or less, the total amount of Al and Zn being 78% or less, and the total amount of Al, Ca and Zn being 79% or less. The magnesium alloy thermal spray material excellent in the explosion-proof property at the time of thermal spraying and the corrosion resistance of the thermal spray part as described in the above (1).
(3) By mass%, Al: 13 to 42%, Ca: 1 to 5%, the total amount of Al and Ca is 47% or less, and the balance consists of Mg and inevitable impurities Magnesium alloy sprayed material with excellent explosion-proof properties during spraying and corrosion resistance of the sprayed part.

(4)さらに、質量%で、Zn:65%以下を含有し、AlおよびZnの合計量が42%以下であり、かつAl、CaおよびZnの合計量が47%以下であることを特徴とする上記(3)記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。
(5)質量%で、Al:42〜78%、Ca:1〜5%を含有し、かつAlおよびCaの合計量が79%以下であり、残部がMg及び不可避的不純物からなることを特徴とする溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。
(6)さらに、質量%で、Zn:65%以下を含有し、AlおよびZnの合計量が78%以下であり、かつAl、CaおよびZnの合計量が79%以下であることを特徴とする上記(1)〜(6)の何れかに記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。
(4) Further, it is characterized by containing, by mass%, Zn: 65% or less, the total amount of Al and Zn being 42% or less, and the total amount of Al, Ca and Zn being 47% or less. The magnesium alloy thermal spray material excellent in the explosion-proof property at the time of thermal spraying and the corrosion resistance of the thermal spray part as described in (3) above.
(5) By mass%, Al: 42 to 78%, Ca: 1 to 5%, the total amount of Al and Ca is 79% or less, and the balance consists of Mg and inevitable impurities Magnesium alloy sprayed material with excellent explosion-proof properties during spraying and corrosion resistance of the sprayed part.
(6) Further, it is characterized by containing, by mass%, Zn: 65% or less, the total amount of Al and Zn being 78% or less, and the total amount of Al, Ca and Zn being 79% or less. The magnesium alloy thermal spray material excellent in the explosion-proof property at the time of thermal spraying and the corrosion resistance of the thermal sprayed portion according to any one of the above (1) to (6).

(7)さらに、質量%で、Si:10%以下を含有する上記(1)〜(6)の何れかに記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   (7) The magnesium alloy thermal spray material excellent in the explosion-proof property at the time of thermal spraying and the corrosion resistance of the thermal sprayed portion according to any one of (1) to (6), further containing, by mass%, Si: 10% or less.

(8)さらに、質量%で、Mn:4%以下を含有する上記(1)〜(7)の何れかに記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   (8) The magnesium alloy thermal spray material excellent in the explosion-proof property at the time of thermal spraying and the corrosion resistance of the thermal sprayed part according to any one of (1) to (7), further comprising, in mass%, Mn: 4% or less.

(9)前記溶射材料が、ワイヤまたは粉末であることを特徴とする上記(1)〜(8)の何れかに記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   (9) The magnesium alloy thermal spray material excellent in explosion-proof property and thermal corrosion resistance during thermal spraying according to any one of the above (1) to (8), wherein the thermal spray material is a wire or powder.

(10)上記(1)〜(9)の何れかに記載のマグネシウム合金溶射材料を用いて被溶射材表面を溶射することを特徴とする溶射時の防爆性優れ、かつ溶射部の耐食性に優れた溶射方法。   (10) The thermal sprayed material surface is sprayed using the magnesium alloy sprayed material according to any one of (1) to (9) above, and the explosion resistance during spraying is excellent, and the corrosion resistance of the sprayed portion is excellent. Spraying method.

本発明によれば、溶射法により被溶射部材表面を溶射し表面を改質する際に、溶射時の防爆性に優れ、かつ、溶射部の耐食性に優れたマグネシウム合金溶射材料を提供するができる。また、その溶射材料を用いることにより、溶射時の防爆性優れ、かつ溶射部の耐食性に優れた溶射方法を提供することができる。   According to the present invention, when the surface of a member to be sprayed is sprayed by a spraying method to improve the surface, it is possible to provide a magnesium alloy sprayed material having excellent explosion resistance during spraying and excellent corrosion resistance of the sprayed portion. . Further, by using the thermal spray material, it is possible to provide a thermal spraying method that is excellent in explosion-proof property during thermal spraying and excellent in corrosion resistance of the thermal sprayed portion.

以下に本発明の詳細を説明する。   Details of the present invention will be described below.

本発明者らは、マグネシウム合金溶射材中のMg含有量を従来よりも増加した条件で、溶射時の爆発を防止するためのマグネシウム合金溶射材の成分組成を検討した。   The present inventors examined the component composition of the magnesium alloy thermal spray material for preventing explosion during thermal spraying under the condition that the Mg content in the magnesium alloy thermal spray material was increased as compared with the prior art.

従来、マグネシウム合金素材(バルク材)を切断または切削加工する際に、切子などによる粉塵爆発を防止するために、マグネシウム合金中にAlを添加することによりマグネシウム合金素材の難燃性を向上させる方法が知られている(例えば特許文献3)。   Conventionally, when cutting or cutting a magnesium alloy material (bulk material), in order to prevent dust explosion due to a face, etc., a method of improving the flame retardancy of the magnesium alloy material by adding Al to the magnesium alloy Is known (for example, Patent Document 3).

しかし、本発明らの確認試験による検討によれば、マグネシウム合金溶射材を用いた溶射時の爆発を抑制するためには、マグネシウム合金素材(バルク材)中に添加されている10%程度以下のAl含有量では顕著な効果は見られなかった。これは、マグネシウム合金の溶射材を用いて溶射する場合は、飛行粒子サイズが20〜400μm程度の溶融粉末となり、比表面積が大きくなるため、Mg合金粉末の融点よりも発火点温度のほうが低くなり、これが溶射時に溶射材が溶融する前に爆発する原因であることがわかった。   However, according to the examination by the confirmation test of the present invention, in order to suppress the explosion at the time of thermal spraying using the magnesium alloy thermal spray material, about 10% or less added to the magnesium alloy material (bulk material). No significant effect was observed with the Al content. This is because, when spraying using a thermal spray material of a magnesium alloy, the flying particle size becomes a molten powder having a size of about 20 to 400 μm, and the specific surface area is increased, so the ignition point temperature is lower than the melting point of the Mg alloy powder. It was found that this was the cause of the explosion before the sprayed material melted during spraying.

そこで、本発明者は、マグネシウム合金溶射材の融点を低下させるためにAlを3%以上含有させるとともに、その発火温度を高めるためにCaを所定量含有させ、溶射時に溶射材の融点を発火温度よりも低く維持できるためのマグネシウム合金溶射材料の成分組成について鋭意検討した。   Therefore, the present inventor contains 3% or more of Al in order to lower the melting point of the magnesium alloy spray material, and contains a predetermined amount of Ca in order to increase the ignition temperature. The component composition of the magnesium alloy sprayed material so that it can be maintained lower than the above was studied earnestly.

図1を用いて本発明の基本概念を説明する。図1は、マグネシウム合金溶射材料中のAl含有量と、マグネシウム合金溶射材料の発火温度及び融点との関係を示す。なお、マグネシウム合金溶射材料は、AlおよびCa以外の残部はMg及び不可避的不純物である。   The basic concept of the present invention will be described with reference to FIG. FIG. 1 shows the relationship between the Al content in the magnesium alloy sprayed material and the ignition temperature and melting point of the magnesium alloy sprayed material. In the magnesium alloy sprayed material, the balance other than Al and Ca is Mg and inevitable impurities.

一般に溶射法は、プラズマジェット、燃料の燃焼フレーム、電気アークなどの熱源を用い、溶射材料を融点よりも高い温度(できれば液相温度だが、溶射の下地処理条件においては固相温度)に昇温し、溶射材料を溶融しつつ被溶射部材表面に溶着させる必要がある。このため、溶射材料の発火温度(≒爆発が発生する温度)が融点よりも低い場合は、溶射を良好に行うことは難しくなる。   In general, the thermal spraying method uses a heat source such as a plasma jet, a fuel combustion flame, or an electric arc, and raises the temperature of the thermal spray material to a temperature higher than the melting point (preferably a liquid phase temperature, but a solid phase temperature under the thermal spraying pretreatment conditions). However, it is necessary to weld the sprayed material to the surface of the member to be sprayed while melting. For this reason, when the ignition temperature of the thermal spray material (≈the temperature at which explosion occurs) is lower than the melting point, it is difficult to perform thermal spraying satisfactorily.

図1に示されるように、マグネシウム合金溶射材料の融点は、マグネシウム合金溶射材料中のAl含有量が約50%以下の範囲ではAl含有量の増加とともに減少し、Al含有量が約50%を超える範囲ではAl含有量の増加とともに増加するする傾向にある。このマグネシウム合金溶射材の融点とそのAl含有量との関係曲線は、Ca:1〜5%の条件ではほとんど変わらない。   As shown in FIG. 1, the melting point of the magnesium alloy sprayed material decreases as the Al content increases in the range where the Al content in the magnesium alloy sprayed material is about 50% or less, and the Al content decreases to about 50%. In the exceeding range, it tends to increase as the Al content increases. The relationship curve between the melting point of the magnesium alloy sprayed material and its Al content hardly changes under the condition of Ca: 1 to 5%.

一方、マグネシウム合金溶射材料の発火温度は、マグネシウム合金溶射材料中のAl含有量が約50%以下の範囲ではAl含有量の増加し、Al含有量が約50%を超えて約80までの範囲ではAl含有量によらずほぼ一定になり、約80%を超える範囲ではAl含有量の増加とともに増加する傾向にある。   On the other hand, the ignition temperature of the magnesium alloy spray material is such that when the Al content in the magnesium alloy spray material is about 50% or less, the Al content increases, and the Al content exceeds about 50% to about 80. However, it becomes almost constant regardless of the Al content, and tends to increase as the Al content increases in a range exceeding about 80%.

また、このマグネシウム合金溶射材の発火温度とそのAl含有量との関係曲線はCa含有量の増加に伴い上方にシフトする。この結果、マグネシウム合金溶射材料中のCa含有量が1%未満の場合には、マグネシウム合金溶射材料の融点は、Al含有量に関らず発火温度よりも高くなり、溶射前(溶着前)にマグネシウム合金溶射材料が爆発する可能性が高くなる。   Further, the relationship curve between the ignition temperature of the magnesium alloy spray material and its Al content shifts upward as the Ca content increases. As a result, when the Ca content in the magnesium alloy sprayed material is less than 1%, the melting point of the magnesium alloy sprayed material becomes higher than the ignition temperature regardless of the Al content, and before the spraying (before the welding) The possibility that the magnesium alloy sprayed material will explode increases.

一方、マグネシウム合金溶射材料中のCa含有量が1%を越える場合には、マグネシウム合金溶射材料中のAl含有量が13%以上の条件で、マグネシウム合金溶射材料の融点を発火温度よりも低く維持でき、溶射時の爆発を防止しつつ良好な溶射を行うことが可能となる。   On the other hand, when the Ca content in the magnesium alloy sprayed material exceeds 1%, the melting point of the magnesium alloy sprayed material is kept lower than the ignition temperature under the condition that the Al content in the magnesium alloy sprayed material is 13% or more. It is possible to perform good thermal spraying while preventing explosion during thermal spraying.

Al含有量およびCa含有量の増加によりマグネシウム合金溶射材の融点の低下と、発火温度の増加により、溶射時の爆発を防止する効果は高まるが、AlおよびCaの過度の添加は、残部のMgによる耐食性を阻害させる原因となる。つまり、発明者らの検討結果によれば、マグネシウム合金溶射材中のCa含有量が5%を超える場合、または、Al含有量が78%を超える場合には、マグネシウム合金溶射材料の表面に酸化物層が形成され、溶射皮膜が酸化物と金属の混合体となるため、耐食性を低下させる原因となることがわかった。特に溶射材料の表面に形成された酸化物は金属よりも融点が高いため、溶射時に溶射粒子の溶融が不十分な状態で溶射部に被膜が形成されるため、緻密な被膜の形成を阻害することが溶射部の耐食性低下の原因であると考える。また、AlおよびCaの合計量が79%を越える場合には、残部のMg含有量が減少するため、Mgによる溶射部の耐食性向上効果も得られなくなる。   The increase in Al content and Ca content reduces the melting point of the magnesium alloy thermal spray material, and the increase in ignition temperature increases the effect of preventing explosion during spraying. However, excessive addition of Al and Ca is caused by the remaining Mg. Causes the corrosion resistance to be hindered. That is, according to the examination results of the inventors, when the Ca content in the magnesium alloy sprayed material exceeds 5% or when the Al content exceeds 78%, the surface of the magnesium alloy sprayed material is oxidized. It was found that a physical layer is formed and the sprayed coating becomes a mixture of oxide and metal, which causes a decrease in corrosion resistance. In particular, since the oxide formed on the surface of the thermal spray material has a melting point higher than that of the metal, a coating is formed on the thermal sprayed part in a state where the thermal spray particles are not sufficiently melted during thermal spraying, thereby inhibiting the formation of a dense coating. This is considered to be the cause of the decrease in the corrosion resistance of the sprayed part. Further, when the total amount of Al and Ca exceeds 79%, the remaining Mg content decreases, so that the effect of improving the corrosion resistance of the sprayed portion by Mg cannot be obtained.

本発明は、これらの知見を基になされたものであり、マグネシウム合金溶射材料は、質量%で、Al:13〜78%、Ca:1〜5%を含有し、かつAlおよびCaの合計量が79%以下であり、残部がMg及び不可避的不純物からなることを特徴とする。   The present invention has been made based on these findings, and the magnesium alloy sprayed material contains, by mass%, Al: 13 to 78%, Ca: 1 to 5%, and the total amount of Al and Ca. Is 79% or less, and the balance consists of Mg and inevitable impurities.

以下に本発明で規定するマグネシウム合金溶射材料中の成分組成の限定理由を説明する。なお、以下に示す「%」は特段の説明がない限り、「質量%」を意味するものとする。   The reason for limiting the component composition in the magnesium alloy sprayed material specified in the present invention will be described below. Note that “%” shown below means “% by mass” unless otherwise specified.

Al:Alは、マグネシウム合金の融点を下げる作用があり、この作用により溶射時の防爆性を十分に向上させるためにはマグネシウム合金溶射材料中のAl含有量を13%以上とする必要がある。一方、Al含有量が78%を超えると、マグネシウム合金溶射材料の表面に酸化物層が形成され、溶射皮膜が酸化物と金属の混合体となるため、溶射部の耐食性向上効果が低減する。目的とする溶射部の耐食性を維持するためには、Al含有量の上限を78%とする必要がある。
マグネシウム合金溶射材料の融点を最も低くするには、Al−Mgの共晶域となる、Al含有量が32〜34%の範囲とするのが好ましい。
Al: Al has an effect of lowering the melting point of the magnesium alloy. In order to sufficiently improve the explosion-proof property at the time of thermal spraying, the Al content in the magnesium alloy thermal spray material needs to be 13% or more. On the other hand, if the Al content exceeds 78%, an oxide layer is formed on the surface of the magnesium alloy sprayed material, and the sprayed coating becomes a mixture of oxide and metal, so the effect of improving the corrosion resistance of the sprayed portion is reduced. In order to maintain the corrosion resistance of the target sprayed part, the upper limit of the Al content needs to be 78%.
In order to make the melting point of the magnesium alloy sprayed material the lowest, it is preferable that the Al content is in the range of 32 to 34%, which is an eutectic region of Al-Mg.

また、マグネシウム合金溶射材中のAl含有量を増加するほど、マグネシウム合金溶射材料の融点は低下し、溶射時の爆発を防止する効果はより高まるが、残部の耐食性に寄与するMgは減少し、かつ溶射時の溶射部の耐食性が低下するため、溶射部の耐食性を最大に発揮し、かつ、ある程度の粉塵爆発性を確保するためには、Al含有量の上限を42%とし、Al含有量を13〜42%とするのが好ましい。   In addition, as the Al content in the magnesium alloy sprayed material increases, the melting point of the magnesium alloy sprayed material decreases, and the effect of preventing explosion during spraying increases more, but the Mg that contributes to the remaining corrosion resistance decreases, In addition, since the corrosion resistance of the sprayed portion during spraying is reduced, in order to maximize the corrosion resistance of the sprayed portion and to ensure a certain level of dust explosiveness, the upper limit of the Al content is 42%, the Al content Is preferably 13 to 42%.

なお、マグネシウム合金溶射材料中のAl含有量が増加すると金属間化合物が多くなるため硬くなり、加工性が劣化するおそれがある。マグネシウム合金溶射材料の形態が粉末の場合には問題は生じないが、ワイヤの場合には、ワイヤ製造時の加工性(線引き加工性)低下が懸念されるため、温間で加工するのが好ましい。
また、マグネシウム合金溶射材中のAl含有量を増加するほど、マグネシウム合金溶射材料の融点は低下し、溶射時の爆発を防止する効果はより高まるため、溶射時の粉塵爆発をより安定して防止するためには、Al含有量の下限を42%とし、Al含有量を42〜78とするのが好ましい。
In addition, when the Al content in the magnesium alloy sprayed material increases, the amount of intermetallic compounds increases, so that it becomes hard and the workability may deteriorate. When the form of the magnesium alloy sprayed material is powder, no problem arises. However, in the case of a wire, there is a concern about the workability (drawing workability) during wire production, so it is preferable to work warmly. .
In addition, the higher the Al content in the magnesium alloy spray material, the lower the melting point of the magnesium alloy spray material, and the more effective it is to prevent explosion during spraying, thus preventing dust explosion during spraying more stably. In order to do so, it is preferable that the lower limit of the Al content is 42% and the Al content is 42 to 78.

Ca:マグネシウム合金の発火温度を上げる作用があり、この作用により溶射時の防爆性を十分に向上させるためにはマグネシウム合金溶射材料中のCa含有量を1%以上とする必要がある。一方、Ca含有量が5%を超えると、マグネシウム合金溶射材料の表面に酸化物層が形成され、溶射皮膜が酸化物と金属の混合体となるため、溶射部の耐食性向上効果が低減する。目的とする溶射部の耐食性を維持するためには、Ca含有量の上限を5%にする必要がある。   Ca: It has the effect of raising the ignition temperature of the magnesium alloy, and in order to sufficiently improve the explosion-proof property at the time of thermal spraying, the Ca content in the magnesium alloy thermal spray material needs to be 1% or more. On the other hand, if the Ca content exceeds 5%, an oxide layer is formed on the surface of the magnesium alloy sprayed material, and the sprayed coating becomes a mixture of oxide and metal, so the effect of improving the corrosion resistance of the sprayed portion is reduced. In order to maintain the corrosion resistance of the target sprayed portion, the upper limit of the Ca content needs to be 5%.

AlおよびCaの合計量:
上記のようにAlおよびCaを含有させることで、マグネシウム合金溶射材の発火温度を融点よりも相対的に高くし、溶射前(溶着前)にマグネシウム合金が爆発することを防止できる。しかし、AlおよびCaの合計量が79%を超えると、残部のMgが減少し、後述するMgによる溶射部の耐食性向上効果が低下するため、AlおよびCaの合計量の上限を79%とする。
また、残部の耐食性に寄与するMgを増加させ、Mgにより溶射部の耐食性向上効果をより高めるためには、AlおよびCaの合計量の上限を47%とするのが好ましい。
Total amount of Al and Ca:
By containing Al and Ca as described above, the ignition temperature of the magnesium alloy sprayed material can be made relatively higher than the melting point, and the magnesium alloy can be prevented from exploding before spraying (before welding). However, if the total amount of Al and Ca exceeds 79%, the remaining Mg is reduced, and the effect of improving the corrosion resistance of the sprayed portion due to Mg described later is lowered. Therefore, the upper limit of the total amount of Al and Ca is 79%. .
Moreover, in order to increase Mg which contributes to the corrosion resistance of the remainder and further enhance the corrosion resistance improving effect of the sprayed portion with Mg, the upper limit of the total amount of Al and Ca is preferably 47%.

Mg:マグネシウム合金溶射材料中のMg含有量は耐食性を向上させる作用があり、マグネシウム合金溶射材料の残部金属である。本発明では、上記Al含有量およびCa含有量の上限限定、および、AlおよびCaの合計量の上限規定により、マグネシウム合金溶射材料の目的とする耐食性を維持することができるため、特に限定する必要はない。但し、上記AlおよびCa以外の成分を含有させる場合に耐食性を安定して維持するためには、残部のMg含有量が21%以上、さらに好ましくは53%以上となるように各成分含有量を調整することが好ましい。   Mg: Mg content in the magnesium alloy sprayed material has the effect of improving the corrosion resistance, and is the remaining metal of the magnesium alloy sprayed material. In the present invention, the upper limit of the Al content and the Ca content, and the upper limit of the total amount of Al and Ca can maintain the intended corrosion resistance of the magnesium alloy sprayed material, and therefore need to be particularly limited. There is no. However, in order to stably maintain the corrosion resistance when components other than Al and Ca are contained, the content of each component is set so that the remaining Mg content is 21% or more, more preferably 53% or more. It is preferable to adjust.

本発明のマグネシウム合金溶射材料は、上記Al、Caと残部Mgを基本成分とするが、さらに、用途によっては以下の目的で以下の成分元素を含有することができる。   The magnesium alloy thermal spray material of the present invention contains Al, Ca and the balance Mg as basic components, but may further contain the following component elements for the following purposes depending on the application.

Zn:ZnはMgやAlよりも酸化しにくいため、Znの含有により溶射部の密着性を高め、その強度を向上させる作用があり、65%以下で含有できる。マグネシウム合金溶射材料中のZn含有量が65%を超えると溶射部の耐食性劣化が無視できなくなる。溶射部の密着性を高め、その強度をより高めるためにはマグネシウム合金溶射材料中に0.5以上含有させることが好ましい。   Zn: Since Zn is less susceptible to oxidation than Mg and Al, the inclusion of Zn has the effect of improving the adhesion of the sprayed portion and improving its strength, and can be contained at 65% or less. If the Zn content in the magnesium alloy sprayed material exceeds 65%, the corrosion resistance deterioration of the sprayed portion cannot be ignored. In order to increase the adhesion of the sprayed part and further increase its strength, it is preferable to contain 0.5 or more in the magnesium alloy sprayed material.

AlおよびZnの合計量:
AlおよびZnの合計量が78%を超えると残部のMgが減少し、後述するMgによる溶射部の耐食性向上効果が低下する問題が生じるため、AlおよびZnの合計量の上限を78%とするのが好ましい。また、この点からより好ましくは、AlおよびZnの合計量の上限を42%とするのが好ましい。
Total amount of Al and Zn:
If the total amount of Al and Zn exceeds 78%, the remaining Mg is reduced, resulting in a problem that the effect of improving the corrosion resistance of the sprayed portion due to Mg, which will be described later, is reduced. Therefore, the upper limit of the total amount of Al and Zn is set to 78%. Is preferred. Further, from this point, it is more preferable that the upper limit of the total amount of Al and Zn is 42%.

Al、CaおよびZnの合計量:
Al、CaおよびZnの合計量が79%を超えると、残部のMgが減少し、後述するMgによる溶射部の耐食性向上効果が低下するため、Al、CaおよびZnの合計量の上限を79%とする。
また、残部の耐食性に寄与するMgを増加させ、Mgにより溶射部の耐食性向上効果をより高めるためには、Al、CaおよびZnの合計量の上限を47%とするのが好ましい。
Total amount of Al, Ca and Zn:
If the total amount of Al, Ca, and Zn exceeds 79%, the remaining Mg is reduced, and the effect of improving the corrosion resistance of the sprayed portion due to Mg, which will be described later, decreases, so the upper limit of the total amount of Al, Ca, and Zn is 79%. And
Moreover, in order to increase Mg which contributes to the corrosion resistance of the balance and further enhance the corrosion resistance improvement effect of the sprayed portion with Mg, the upper limit of the total amount of Al, Ca and Zn is preferably 47%.

Si:Siは溶射部の耐食性の向上、特に塩基度の高い腐食環境での耐食性を向上させる作用があり、10%以下で含有できる。含有量が10%を超えると、溶射部の延性の低下の程度が大きい。このSiの作用によりマグネシウム合金溶射材料の耐食性を飛躍的に向上させるためには、Si含有量を2.0以上とするのが好ましい。一方、マグネシウム合金溶射材料中のSi含有量が8%を超えると、溶射部の脆弱性が無視できなくなるためその含有量の上限は8%とするのが好ましい。   Si: Si has an effect of improving the corrosion resistance of the sprayed portion, particularly in a corrosive environment having a high basicity, and can be contained at 10% or less. When the content exceeds 10%, the degree of decrease in ductility of the sprayed portion is large. In order to dramatically improve the corrosion resistance of the magnesium alloy sprayed material by the action of Si, the Si content is preferably set to 2.0 or more. On the other hand, if the Si content in the magnesium alloy sprayed material exceeds 8%, the brittleness of the sprayed portion cannot be ignored, so the upper limit of the content is preferably 8%.

Mn:Mnは、被溶射物や溶射材料に鉄が含まれる場合、例えば、マグネシウム合金溶射材料により鉄鋼材料表面に耐腐食性被膜を形成する場合に、拡散などで進入してくるFeなどの除去に有効な元素であり、4%以下で含有できる。含有量が4%を超えると、溶射部の延性の低下の程度が大きい。マグネシウム合金溶射材料中にMnを0.1以上含有させるとこの効果が顕著となるため、Mn含有量を0.1%以上とするのが好ましい。一方、マグネシウム合金溶射材料中にMnが2%を超えて含有すると溶射部の脆弱性が無視できなくなるため、Mn含有量の上限を2%とするのが好ましい。   Mn: Mn removes Fe or the like that enters by diffusion or the like when iron is contained in the material to be sprayed or the material to be sprayed, for example, when a corrosion resistant coating is formed on the surface of the steel material with a magnesium alloy sprayed material. It is an effective element and can be contained at 4% or less. When the content exceeds 4%, the degree of decrease in ductility of the sprayed portion is large. This effect becomes remarkable when 0.1 or more Mn is contained in the magnesium alloy sprayed material. Therefore, the Mn content is preferably 0.1% or more. On the other hand, if the Mn content exceeds 2% in the magnesium alloy sprayed material, the brittleness of the sprayed part cannot be ignored, so the upper limit of the Mn content is preferably 2%.

本発明のマグネシウム合金溶射材料の形態(形状)は、一般的に溶射材料として用いられる、ワイヤまたは粉末が好ましい。   The form (shape) of the magnesium alloy sprayed material of the present invention is preferably a wire or powder generally used as a sprayed material.

マグネシウム合金溶射材料の形態がワイヤの場合は、溶射ワイヤの線径は、溶射機のノズル径を変更することなく、通常のワイヤ溶射機を用いて溶射するために、φ0.8〜2.0mmであることが好ましい。   When the form of the magnesium alloy thermal spray material is a wire, the wire diameter of the thermal spray wire is φ0.8 to 2.0 mm in order to perform thermal spraying using a normal wire thermal sprayer without changing the nozzle diameter of the thermal sprayer. It is preferable that

溶射ワイヤを製造する場合には、Al添加量の増加とともに素材強度が高くなるため、ワイヤ加工性が低下するため、ワイヤ加工性を改善するために温間で加工を行うのが好ましい。   In the case of producing a thermal spray wire, since the strength of the material increases as the amount of Al added increases, the wire workability decreases. Therefore, it is preferable to perform warm processing in order to improve the wire workability.

マグネシウム合金素材から溶射ワイヤを製造する方法は、特に限定する必要がないが、例えば、φ30〜50mmのバルク材を一旦押し出しによって、φ4〜12mmに成形し、ついで温間(300℃以下)で線引き加工をすることでφ0.8〜2.0mmのマグネシウム合金溶射ワイヤを製造することができる。   The method for producing the thermal spray wire from the magnesium alloy material is not particularly limited. For example, a bulk material having a diameter of 30 to 50 mm is once extruded to be formed into a diameter of 4 to 12 mm, and then drawn warmly (300 ° C. or less). By processing, a magnesium alloy spray wire of φ0.8 to 2.0 mm can be produced.

マグネシウム合金溶射材料の形態が粉末の場合は、溶射粉末の粒径は、溶射粉末の粒径が20μm未満では溶射時の粉末の供給性が低下するとともに、溶射時の粉塵爆発が発生しやすくなるため、20μm以上とすることが好ましい。一方、溶射粉末の粒径が400μmを超えると、溶射粉末の熱容量が大きくなり、粒子内部まで溶融することが困難になるので溶射粉末の粒径の上限は400μmとするのが好ましい。   When the magnesium alloy thermal spray material is in the form of powder, if the particle size of the thermal spray powder is less than 20 μm, the supply of the powder during thermal spraying is reduced and dust explosion during thermal spraying is likely to occur. Therefore, it is preferable to set it as 20 micrometers or more. On the other hand, if the particle size of the thermal spray powder exceeds 400 μm, the thermal capacity of the thermal spray powder becomes large and it becomes difficult to melt to the inside of the particle, so the upper limit of the particle size of the thermal spray powder is preferably 400 μm.

マグネシウム合金素材から溶射粉末を製造する方法は、特に限定されるものではないが、例えば、真空中の溶湯中で溶融した原料をφ数mmの孔から排出し、ここにノズルから不活性ガスを噴射し微粒化する方法(ガスアトマイズ)などが用いられる。   The method for producing the thermal spray powder from the magnesium alloy material is not particularly limited. For example, the raw material melted in the molten metal in a vacuum is discharged from a hole having a diameter of several millimeters, and an inert gas is discharged from the nozzle here. A method of spraying and atomizing (gas atomization) or the like is used.

本発明のマグネシウム合金溶射材料が上記ワイヤおよび粉末の何れの場合でもこれを用いて被溶射材表面を溶射することで、被溶射材の表面に耐腐食性に優れた溶射層を、溶射時の爆発の危険がなく形成することが可能となる。   In the case where the magnesium alloy spray material of the present invention is any of the above-mentioned wire and powder, the surface of the sprayed material is sprayed using this to form a sprayed layer having excellent corrosion resistance on the surface of the sprayed material. It can be formed without the danger of explosion.

溶接性、加工性、鋳造性が良好な素材を用いて溶接構造物、成形加工品、鋳造品などを製造後、本発明のマグネシウム合金溶射材料を用いた溶射方法によりこれらの表面に耐腐食性に優れた溶射層を形成することにより、素材特性と耐腐食性が両立できる溶接構造物、成形加工品、鋳造品を、低コストかつ高い生産性の下で製造できる。   After manufacturing welded structures, molded products, cast products, etc. using materials with good weldability, workability, and castability, corrosion resistance is applied to these surfaces by the thermal spraying method using the magnesium alloy thermal spray material of the present invention. By forming an excellent thermal sprayed layer, it is possible to manufacture welded structures, molded products, and cast products that are compatible with material properties and corrosion resistance at low cost and high productivity.

特にZnめっき鋼板またはZn合金系めっき鋼板を用いて造管した後の溶接部は、溶接入熱によりめっき層が消失または劣化するため、この溶接部を本発明のマグネシウム合金溶射材料を用いて溶射し、溶接部の表面に耐腐食性に優れた溶射層を形成することにより溶接鋼管製品の耐腐食性を向上することができる。   In particular, since the plated layer disappears or deteriorates due to welding heat input in the welded part after pipe forming using a Zn-plated steel sheet or a Zn alloy-based plated steel sheet, the welded part is sprayed using the magnesium alloy sprayed material of the present invention. In addition, the corrosion resistance of the welded steel pipe product can be improved by forming a sprayed layer having excellent corrosion resistance on the surface of the welded portion.

また、Znめっき鋼板またはZn合金系めっき鋼板を用いた溶接構造物または成形加工品の表面が使用環境下で劣化し、または、損傷した場合、劣化や損傷した部位の耐腐食性を向上させるための補修方法としても、本発明のマグネシウム合金溶射材料を用いた溶射方法は適用できる。   In addition, when the surface of a welded structure or molded product using a Zn-plated steel sheet or a Zn alloy-based plated steel sheet deteriorates or is damaged in the usage environment, the corrosion resistance of the deteriorated or damaged part is improved. As the repair method, the thermal spraying method using the magnesium alloy thermal spray material of the present invention can be applied.

本発明のマグネシウム合金溶射材料を用いて被溶射材の表面を溶射する方法の実施形態は、例えば以下のように行うことができる。   An embodiment of a method for spraying the surface of a sprayed material using the magnesium alloy sprayed material of the present invention can be performed as follows, for example.

例えば、プラズマ溶射ガン(PRAXAIR社製、MODEL2086A、アルゴン+水素プラズマ+アルゴンシールドガス)を用い、溶射材料の供給速度を5〜30g/min、溶射距離を100〜300mmとし、基板表面上でプラズマ溶射ガンを走査することによって所定の厚みの被膜を形成することが可能である。本発明の溶射方法は、一般に用いられる、プラズマジェット、燃料の燃焼フレーム、電気アークなどの熱源を用い、溶射ワイヤまたは溶射粉末を溶融する溶射方法が適用できる。   For example, using a plasma spray gun (made by PRAXAIR, MODEL2086A, argon + hydrogen plasma + argon shield gas), the spraying material supply rate is 5-30 g / min, the spraying distance is 100-300 mm, and plasma spraying is performed on the substrate surface. A film having a predetermined thickness can be formed by scanning the gun. As the thermal spraying method of the present invention, a thermal spraying method for melting a thermal spray wire or thermal spray powder using a heat source such as a plasma jet, a fuel combustion flame, or an electric arc can be applied.

また、特殊な溶射方法としては、上記溶射ワイヤや溶射粉末以外に溶融したマグネシウム合金浴槽(以下、溶湯)中の溶融状態の金属を直接被溶射体に溶射することも可能である(オスプレータイプ)。このほうが材料の加工費が低くなるのでワイヤや粉末材料よりもランニングコストは抑制できる(但し、設備費は高くなる)。   In addition, as a special spraying method, it is also possible to spray the molten metal in the magnesium alloy bath (hereinafter referred to as molten metal) in addition to the above-mentioned sprayed wire and sprayed powder directly onto the sprayed body (Ospray type). . This lowers the processing cost of the material, so the running cost can be suppressed compared to the wire or powder material (however, the equipment cost becomes higher).

次に、実施例を用いて本発明の効果について説明する。なお、以下に示す実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件であり、以下の条件のみに限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, the effects of the present invention will be described using examples. In addition, the conditions of the Example shown below are one conditions employ | adopted in order to confirm the feasibility and effect of this invention, and are not limited only to the following conditions. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

溶射は、プラズマ溶射ガン(PRAXAIR社製、MODEL2086A、アルゴン+水素プラズマ+アルゴンシールドガス)を用い、溶射材料の供給速度を15g/min、溶射距離を200mmとし、基板表面上でプラズマ溶射ガンを走査することによって被膜形成厚み:500μm程度で溶射を行った。基板はSS400またはAZ612合金(6%Al、1%Zn、2%Ca、残Mg)の板材を用い、20mm厚さ×500mm長さ×100mm幅の大きさに切断し、基板の配置は横向きとした。   Spraying is performed using a plasma spray gun (PRAXAIR, MODEL 2086A, argon + hydrogen plasma + argon shield gas), the spraying material supply rate is 15 g / min, the spraying distance is 200 mm, and the plasma spray gun is scanned over the substrate surface. As a result, thermal spraying was performed at a film formation thickness of about 500 μm. The substrate is made of SS400 or AZ612 alloy (6% Al, 1% Zn, 2% Ca, remaining Mg), and is cut into a size of 20 mm thickness x 500 mm length x 100 mm width. did.

溶射材料には粒子径20〜80μmの溶射粉末を用い、示差熱計により溶射粉末の融点(固相線、液相線)および発火温度を測定、評価し、粉塵爆発(溶射可否)を検討した。粉塵爆発(溶射可否)の評価は、溶射材料の発火温度の測定値が融点の測定値よりも低い場合は溶射不可能、融点よりも高い時は溶射可能となる。但し、合金の固相線と液相線は異なるため、ここでは、発火温度の測定値が液相線よりも高い場合を溶射容易(◎)、発火温度の測定値が液相線と固相線の間の場合は、溶射材料の一部が溶融した状態で溶射が可能であることから溶射は可能(○)、発火温度の測定値が固相線より低い場合は、溶射は不可能(×)と評価した。   Thermal spray powder with a particle size of 20 to 80 μm was used as the thermal spray material, and the melting point (solid phase line, liquid phase line) and ignition temperature of the thermal spray powder were measured and evaluated with a differential thermometer to examine dust explosion (sprayability). . In the evaluation of dust explosion (sprayability), spraying is impossible when the measured value of the ignition temperature of the sprayed material is lower than the measured value of the melting point, and spraying is possible when the measured value is higher than the melting point. However, since the solidus line and liquidus line of the alloy are different, here, when the measured value of the ignition temperature is higher than the liquidus line, thermal spraying is easy (◎), and the measured value of the ignition temperature is the liquidus line and solid phase. In the case of between the lines, thermal spraying is possible because the thermal spray material can be partially melted (○), and when the ignition temperature is lower than the solidus, thermal spraying is not possible ( X).

被膜の延性評価は板厚2mmのSS400材に被膜を0.5mm形成し、ここからJIS13号B試験片の1/5サイズの試験片を作製し、これを用いて引張試験を行うことによって評価した。   The ductility of the coating is evaluated by forming a coating of 0.5 mm on a SS400 material having a thickness of 2 mm, producing a test piece of 1/5 size of a JIS No. 13 B test piece, and conducting a tensile test using this. did.

また、溶射皮膜の耐食性の評価は、塩水噴霧試験(SST試験:JIS規格Z2371)においてAZ612合金の耐食性の80%以上を保有するものを◎(マグネシウム合金の補修用途や鉄鋼材料の表面改質用途があるため必ずしも100%以上の耐食性を示す必要はない)、同50%以上を○、同30%以上を△、同30%未満を×とした(全ての被膜はSS400材の保護被膜としては耐食性の効果はあったが効果代はこの◎〜×の順序とほぼ同一)。   In addition, the corrosion resistance of the sprayed coating is evaluated with a salt spray test (SST test: JIS standard Z2371) that has 80% or more of the corrosion resistance of AZ612 alloy (for repairing magnesium alloy or for surface modification of steel materials) Therefore, it is not always necessary to show corrosion resistance of 100% or more), 50% or more is ○, 30% or more is △, and less than 30% is × (all coatings are protective coatings of SS400 material) Although there was an effect of corrosion resistance, the effect cost was almost the same as the order of ◎ to ×).

表1に、マグネシウム合金溶射材料の成分含有量とこれを用いて溶射する際の粉塵爆発(溶射可否)および溶射皮膜の評価結果を示す。   Table 1 shows the component content of the magnesium alloy spray material, the dust explosion (sprayability) and the evaluation results of the sprayed coating when spraying using this.

Figure 2007138282
Figure 2007138282

表中、1〜7が比較例、8〜28が発明例である。   In the table, 1 to 7 are comparative examples, and 8 to 28 are invention examples.

No.1の比較例は純Mgであり、Al含有量およびCa含有量が本発明で規定する下限から外れるため、粉塵爆発が発生し溶射不可能の結果となった。   No. The comparative example 1 was pure Mg, and the Al content and the Ca content deviated from the lower limits specified in the present invention, so that a dust explosion occurred and thermal spraying was impossible.

No.2の比較例はAl含有量およびCa含有量が本発明で規定する下限から外れるため、粉塵爆発が発生し溶射不可能の結果となった。   No. In Comparative Example 2, since the Al content and the Ca content deviate from the lower limits defined in the present invention, a dust explosion occurred and the result was that spraying was impossible.

No.3の比較例はAl含有量が32%であり、本発明で規定する範囲内であるが、Ca含有量が0.5%であり、本発明で規定する下限から外れるため、粉塵爆発が発生し溶射不可能の結果となった。   No. In Comparative Example 3, the Al content is 32%, which is within the range defined by the present invention, but the Ca content is 0.5%, which deviates from the lower limit defined by the present invention. As a result, thermal spraying was impossible.

No.4の比較例は、Ca含有量が21%であり、本発明で規定する上限から外れるため、耐食性が不適格な結果となった。   No. In Comparative Example 4, since the Ca content was 21% and deviated from the upper limit specified in the present invention, the corrosion resistance was not suitable.

No.5の比較例は、Mg含有量が18%であるが、Ca含有量が本発明で規定する下限から外れる(Caを含有していない)ため、粉塵爆発が発生した。
No. In Comparative Example 5, the Mg content was 18%, but the Ca content deviated from the lower limit defined in the present invention (Ca was not contained), so a dust explosion occurred.

No.6、7の比較例は、Al+Zn+Caの合計量が82%と本発明で規定する上限を超えており、耐食性が不適格な結果であった。   No. In Comparative Examples 6 and 7, the total amount of Al + Zn + Ca was 82%, exceeding the upper limit defined in the present invention, and the corrosion resistance was unacceptable.

No.8〜14の発明例は、Ca含有量が5%あり、本発明で規定する範囲内であり、各Al含有量も本発明で規定する範囲内であるため、溶射時の防爆性は向上し、良好な溶射が可能であり、溶射被膜の耐食性も良好である。特にAl含有量が74%のNo.8の発明例では、Al-Mgの共晶域の組成範囲であり液相線が最も低く、粉塵爆発の危険性が最も低い。但し、Al含有量の増加に伴って耐食性が徐々に低下している。   No. The invention examples of 8 to 14 have a Ca content of 5% and are within the range defined by the present invention, and each Al content is also within the range defined by the present invention, so the explosion resistance during thermal spraying is improved. Good thermal spraying is possible and the corrosion resistance of the thermal spray coating is also good. In particular, no. In the invention example of 8, the composition range of the eutectic region of Al—Mg is the lowest, the liquidus is the lowest, and the risk of dust explosion is the lowest. However, the corrosion resistance gradually decreases as the Al content increases.

No.15の発明例はCa含有量が1%、Al含有量が33%であり、何れも本発明で規定する範囲内であるため、溶射時の防爆性は向上し、良好な溶射が可能で、溶射被膜の耐食性も良好である。   No. 15 invention examples have a Ca content of 1% and an Al content of 33%, both of which are within the range specified in the present invention, so that the explosion resistance during thermal spraying is improved and good thermal spraying is possible. The corrosion resistance of the thermal spray coating is also good.

No.16の発明例は、No.11の発明例に対して溶射材料中にZnを4%含有させた例であり、溶射時の防爆性および溶射被膜の耐食性は良好である。   No. Inventive Example No. 16 In contrast to the eleventh invention example, 4% of Zn is contained in the thermal spray material, and the explosion resistance during thermal spraying and the corrosion resistance of the thermal spray coating are good.

No.17の発明例は、No.11の発明例に対して溶射材料中にZnを40%含有させた例であり、溶射時の防爆性、密着性が良好で、溶射被膜の耐食性は比較的良好である。   No. The invention example of No. This is an example in which 40% of Zn is contained in the thermal spray material with respect to the eleventh invention example, the explosion-proof property and adhesion at the time of thermal spraying are good, and the corrosion resistance of the thermal spray coating is relatively good.

No.18の発明例は、No.8の発明例に対して溶射材料中のAlの一部をZn代替し、Znを59%含有させた例であり、溶射時の防爆性、密着性が良好で、溶射被膜の耐食性は比較的良好である。   No. The 18th invention example is No. 8 is an example in which a part of Al in the thermal spray material is replaced with Zn and 59% of Zn is contained, and the explosion resistance and adhesion at the time of thermal spraying are good, and the corrosion resistance of the thermal spray coating is relatively It is good.

No.19の発明例は、No.10の発明例に対して溶射材料中にSiを1%含有させた例であるが、好ましいSi含有量の下限から外れるため、溶射被膜の耐食性はNo.10と同程度であった。   No. The 19th invention example is No. Although it is an example in which 1% of Si is contained in the thermal spray material with respect to the invention example of 10, the corrosion resistance of the thermal spray coating is No. 1 because it deviates from the lower limit of the preferable Si content. It was about the same as 10.

No.20はSi量が10%であり、好ましいSi含有量の上限から外れ、溶射被膜の延性は低下したが、溶射時の防爆性および溶射被膜の耐食性は良好である。   No. No. 20 has a Si content of 10%, which deviates from the preferable upper limit of the Si content, and the ductility of the sprayed coating is reduced, but the explosion-proof property during spraying and the corrosion resistance of the sprayed coating are good.

No.21はMn量が4%であり、好ましいMn含有量の上限から外れるため、溶射被膜の延性は低下したが、溶射時の防爆性および溶射被膜の耐食性は良好である。   No. No. 21 has a Mn content of 4% and deviates from the preferable upper limit of the Mn content. Therefore, the ductility of the sprayed coating is lowered, but the explosion resistance during spraying and the corrosion resistance of the sprayed coating are good.

No.22〜23はZn量が本発明で規定する範囲であり、No.10よりも被膜強度が向上できる。   No. 22-23 is the range which Zn quantity prescribes | regulates by this invention, and a film strength can improve rather than No. 10.

No.24〜25はSi量が本発明で規定する範囲内であり、No.10よりも塩基度の高い環境下での耐食性が高くできる。   No. Nos. 24 to 25 are within the range defined by the present invention in the amount of Si. Corrosion resistance in an environment having a basicity higher than 10 can be increased.

No.26〜27はMn量が本発明で規定する範囲内であり、不純物が含有する場合の耐食性がNo.10よりも高くできる。   Nos. 26 to 27 have a Mn content within the range defined in the present invention, and the corrosion resistance when impurities are contained is No. 26. Can be higher than 10.

No.28はZn、Si、Mn全ての元素を含み、かつこれが全て本発明の好ましい範囲内であるので、耐食性がNo.10の材料よりも向上することが期待できる。   No. No. 28 contains all elements of Zn, Si and Mn, and these are all within the preferred range of the present invention, so that the corrosion resistance is No. 28. It can be expected to improve over 10 materials.

前述したように、本発明によれば、マグネシウム合金の補修、各種ハロゲンガス環境での鉄鋼素材の表面改質を安価に提供することができる。
したがって、本発明は、自動車、鋼管、建材、家電、コンピューター、その他機器・機械用の素材としての用途を拡大するもので、産業上の利用可能性が大きいものである。
As described above, according to the present invention, repair of a magnesium alloy and surface modification of a steel material in various halogen gas environments can be provided at low cost.
Therefore, this invention expands the use as a raw material for motor vehicles, steel pipes, building materials, home appliances, computers, and other equipment / machines, and has great industrial applicability.

本発明のAlおよびCaの添加量概念図を示す。The addition amount conceptual diagram of Al and Ca of this invention is shown.

Claims (10)

質量%で、Al:13〜78%、Ca:1〜5%を含有し、かつAlおよびCaの合計量が79%以下であり、残部がMg及び不可避的不純物からなることを特徴とする溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   Thermal spraying characterized by containing Al: 13 to 78% and Ca: 1 to 5% in mass%, the total amount of Al and Ca being 79% or less, and the balance being composed of Mg and inevitable impurities Magnesium alloy sprayed material with excellent explosion resistance and corrosion resistance of the sprayed part. さらに、質量%で、Zn:65%以下を含有し、AlおよびZnの合計量が78%以下であり、かつAl、CaおよびZnの合計量が79%以下であることを特徴とする請求項1記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   Further, the composition contains, by mass%, Zn: 65% or less, the total amount of Al and Zn is 78% or less, and the total amount of Al, Ca and Zn is 79% or less. 1. Magnesium alloy sprayed material having excellent explosion-proof properties during spraying and corrosion resistance of the sprayed portion. 質量%で、Al:13〜42%、Ca:1〜5%を含有し、かつAlおよびCaの合計量が47%以下であり、残部がMg及び不可避的不純物からなることを特徴とする溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   Thermal spraying characterized by containing Al: 13 to 42% and Ca: 1 to 5% by mass%, the total amount of Al and Ca being 47% or less, and the balance being composed of Mg and inevitable impurities Magnesium alloy sprayed material with excellent explosion resistance and corrosion resistance of the sprayed part. さらに、質量%で、Zn:65%以下を含有し、AlおよびZnの合計量が42%以下であり、かつAl、CaおよびZnの合計量が47%以下であることを特徴とする請求項3記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   Further, the composition contains, in mass%, Zn: 65% or less, the total amount of Al and Zn is 42% or less, and the total amount of Al, Ca, and Zn is 47% or less. 3. Magnesium alloy spray material excellent in explosion-proof property during spraying and corrosion resistance of the sprayed portion. 質量%で、Al:42〜78%、Ca:1〜5%を含有し、かつAlおよびCaの合計量が79%以下であり、残部がMg及び不可避的不純物からなることを特徴とする溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   Thermal spraying characterized by containing Al: 42 to 78% and Ca: 1 to 5% in mass%, the total amount of Al and Ca being 79% or less, and the balance being Mg and inevitable impurities Magnesium alloy sprayed material with excellent explosion resistance and corrosion resistance of the sprayed part. さらに、質量%で、Zn:65%以下を含有し、AlおよびZnの合計量が78%以下であり、かつAl、CaおよびZnの合計量が79%以下であることを特徴とする請求項5記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   Further, the composition contains, by mass%, Zn: 65% or less, the total amount of Al and Zn is 78% or less, and the total amount of Al, Ca and Zn is 79% or less. 5. A magnesium alloy sprayed material having excellent explosion-proof properties during spraying and corrosion resistance of the sprayed portion. さらに、質量%で、Si:10%以下を含有することを特徴とする請求項1〜6の何れかに記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   Furthermore, the magnesium alloy thermal spray material excellent in the explosion-proof property at the time of thermal spraying and the corrosion resistance of the thermal spray part according to any one of claims 1 to 6, characterized by containing Si: 10% or less in mass%. さらに、質量%で、Mn:4%以下を含有することを特徴とする請求項1〜7の何れかに記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   Furthermore, the magnesium alloy thermal spray material excellent in the explosion-proof property at the time of thermal spraying and the corrosion resistance of the thermal spray part according to any one of claims 1 to 7, characterized by containing Mn: 4% or less. 前記溶射材料が、ワイヤまたは粉末であることを特徴とする請求項1〜8の何れかに記載の溶射時の防爆性及び溶射部の耐食性に優れたマグネシウム合金溶射材料。   The said thermal spray material is a wire or powder, The magnesium alloy thermal spray material excellent in the explosion-proof property at the time of thermal spraying, and the corrosion resistance of the thermal spray part. 請求項1〜9の何れかに記載のマグネシウム合金溶射材料を用いて被溶射材表面を溶射することを特徴とする溶射時の防爆性優れ、かつ溶射部の耐食性に優れた溶射方法。   A thermal spraying method having excellent explosion resistance at the time of thermal spraying and excellent corrosion resistance of the thermal sprayed portion, wherein the surface of the thermal sprayed material is thermally sprayed using the magnesium alloy thermal spray material according to any one of claims 1 to 9.
JP2006103270A 2005-10-21 2006-04-04 Thermal spray material excellent in explosion-proof property during spraying and corrosion resistance of sprayed part, and thermal spraying method using the same Active JP4757692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103270A JP4757692B2 (en) 2005-10-21 2006-04-04 Thermal spray material excellent in explosion-proof property during spraying and corrosion resistance of sprayed part, and thermal spraying method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005307039 2005-10-21
JP2005307039 2005-10-21
JP2006103270A JP4757692B2 (en) 2005-10-21 2006-04-04 Thermal spray material excellent in explosion-proof property during spraying and corrosion resistance of sprayed part, and thermal spraying method using the same

Publications (2)

Publication Number Publication Date
JP2007138282A true JP2007138282A (en) 2007-06-07
JP4757692B2 JP4757692B2 (en) 2011-08-24

Family

ID=38201509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103270A Active JP4757692B2 (en) 2005-10-21 2006-04-04 Thermal spray material excellent in explosion-proof property during spraying and corrosion resistance of sprayed part, and thermal spraying method using the same

Country Status (1)

Country Link
JP (1) JP4757692B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106720A (en) * 2009-11-16 2011-06-02 Mitsubishi Heavy Ind Ltd Circulating fluidized bed boiler
JP2012197490A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp High thermal conductivity magnesium alloy
JP2012197486A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp Magnesium alloy
JP2014162970A (en) * 2013-02-27 2014-09-08 Nippon Chutetsukan Kk Thermal spray wire feeding device
JP2016076701A (en) * 2014-10-07 2016-05-12 ジャパンファインスチール株式会社 Electromagnetic wave shield film and compact including the same
WO2017022597A1 (en) * 2015-08-03 2017-02-09 公立大学法人大阪府立大学 Aluminum alloy thermal spray material and thermal spray film
CN113373398A (en) * 2021-06-24 2021-09-10 重庆大学 Flame-retardant magnesium alloy part

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671648B1 (en) 2014-08-08 2015-02-18 黒崎播磨株式会社 Thermal spray material
KR102059048B1 (en) 2015-09-29 2019-12-24 닛폰세이테츠 가부시키가이샤 Zn alloy clad steel containing Mg

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102322A (en) * 1977-02-18 1978-09-06 Kogyo Gijutsuin Magnesiummbase light composite material and its manufacturing method
JP2000109963A (en) * 1998-10-05 2000-04-18 Agency Of Ind Science & Technol Production of high strength flame retardant magnesium alloy
JP2002157979A (en) * 2000-11-20 2002-05-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2006283188A (en) * 2005-03-10 2006-10-19 Nippon Steel Corp Zn PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND WORKABILITY, AND METHOD FOR PRODUCING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102322A (en) * 1977-02-18 1978-09-06 Kogyo Gijutsuin Magnesiummbase light composite material and its manufacturing method
JP2000109963A (en) * 1998-10-05 2000-04-18 Agency Of Ind Science & Technol Production of high strength flame retardant magnesium alloy
JP2002157979A (en) * 2000-11-20 2002-05-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2006283188A (en) * 2005-03-10 2006-10-19 Nippon Steel Corp Zn PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND WORKABILITY, AND METHOD FOR PRODUCING THE SAME

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106720A (en) * 2009-11-16 2011-06-02 Mitsubishi Heavy Ind Ltd Circulating fluidized bed boiler
JP2012197490A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp High thermal conductivity magnesium alloy
JP2012197486A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp Magnesium alloy
JP2014162970A (en) * 2013-02-27 2014-09-08 Nippon Chutetsukan Kk Thermal spray wire feeding device
JP2016076701A (en) * 2014-10-07 2016-05-12 ジャパンファインスチール株式会社 Electromagnetic wave shield film and compact including the same
WO2017022597A1 (en) * 2015-08-03 2017-02-09 公立大学法人大阪府立大学 Aluminum alloy thermal spray material and thermal spray film
CN113373398A (en) * 2021-06-24 2021-09-10 重庆大学 Flame-retardant magnesium alloy part

Also Published As

Publication number Publication date
JP4757692B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4757692B2 (en) Thermal spray material excellent in explosion-proof property during spraying and corrosion resistance of sprayed part, and thermal spraying method using the same
JP7312142B2 (en) Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts, and method for producing the same
JP5372217B2 (en) Manufacturing method of arc-welded structural members
JP6865832B2 (en) Hot-dip galvanized steel with excellent weldability and press workability and its manufacturing method
JP6080391B2 (en) Method for producing Zn-Al-Mg plated steel sheet arc welded structural member
JP6023156B2 (en) Arc welding method for Zn-plated steel sheet
JP5980128B2 (en) Manufacturing method of arc-welded structural members
MXPA01004916A (en) Weld wire with enhanced slag removal.
JP2010229483A (en) Zn-Al BASED PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND METHOD FOR MANUFACTURING THE SAME
JP2014133259A (en) Manufacturing method of arc welding structural member
CN113784815A (en) Flux-cored wire and welding method
JP2009274132A (en) Coated arc welding electrode for galvanized steel sheet
JP6893989B2 (en) High manganese molten aluminum plated steel sheet with excellent sacrificial corrosion resistance and plating properties and its manufacturing method
JPS62142736A (en) Zn alloy for hot dipping having high corrosion resistance, high workability, and high heat resistance
WO2015198627A1 (en) METHOD FOR ARC WELDING OF HOT-DIP Zn-Al-Mg COATED STEEL SHEET, AND WELDED MEMBER
JPH04135088A (en) Wire for welding galvernized steel plate and welding method
JP6226642B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure
EP4306253A1 (en) Arc welded joint and arc welding method
JP2005118797A (en) WELDING PROCESS FOR Zn-Al-Mg ALLOY-PLATED STEEL SHEET
KR102190331B1 (en) Arc welding method of hot-dip Zn-based plated steel sheet with excellent weld appearance and welding strength, and method of manufacturing welded members
JP4388501B2 (en) Steel material with excellent corrosion resistance against molten Zn alloy
JP2009019218A (en) Wire rod for thermal spraying and thermal-sprayed coating formed by using the same
JP2022165315A (en) welding wire
JP2016168612A (en) ARC WELDING METHOD AND WELDING MEMBER FOR MOLTEN Zn BASED PLATED STEEL PLATE EXCELLENT IN WELDING APPEARANCE AND WELDING STRENGTH
JP2011230173A (en) Aluminum alloy brazing filler metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R151 Written notification of patent or utility model registration

Ref document number: 4757692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350