JP2007132108A - Seismic response control brace structure - Google Patents

Seismic response control brace structure Download PDF

Info

Publication number
JP2007132108A
JP2007132108A JP2005327073A JP2005327073A JP2007132108A JP 2007132108 A JP2007132108 A JP 2007132108A JP 2005327073 A JP2005327073 A JP 2005327073A JP 2005327073 A JP2005327073 A JP 2005327073A JP 2007132108 A JP2007132108 A JP 2007132108A
Authority
JP
Japan
Prior art keywords
brace
fastening body
brace structure
curved surface
brace material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005327073A
Other languages
Japanese (ja)
Other versions
JP4861683B2 (en
Inventor
Toru Iwakawa
徹 岩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Eisei Center Co Ltd
Original Assignee
Nippon Eisei Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Eisei Center Co Ltd filed Critical Nippon Eisei Center Co Ltd
Priority to JP2005327073A priority Critical patent/JP4861683B2/en
Publication of JP2007132108A publication Critical patent/JP2007132108A/en
Application granted granted Critical
Publication of JP4861683B2 publication Critical patent/JP4861683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic response control brace structure which can be easily incorporated into a brace member, which has high structural safety, and which can efficiently absorb vibration energy. <P>SOLUTION: The seismic response control brace structure 1 is provided with the brace member 5 made of a tension material, a fastening body 6, a connecting body 9, and a viscoelastic material 10. The fastening body 6 connected to the brace member 5 rotates with the rotary movement of the brace member 5, and the connecting body 9 has a fixed part 8 and a retaining part 7. The fixed part 8 is fixed to a connection 4 of a building, and the retaining part 7 retains the fastening body 6 at intervals, and transfers a pulling force generated to the brace member 5 to the fixed part 8 through the medium of the fastening body 6. Then the viscoelastic material 10 is provided between the retaining part 7 of the connecting body 9 and the fastening body 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、制震ブレース構造に係り、特に、建造物の構面内に設けられる制震ブレース構造に関する。   The present invention relates to a seismic brace structure, and more particularly to a seismic brace structure provided in a building surface.

建造物の構面内に、例えば、地震動、強風等による水平力に抵抗する構造要素としてブレース構造が用いられる。また、既存の建造物の耐震性能を向上させるために、耐震補強材として、壁面に耐震補強ブレースが追加して取り付けられる。ここで、建造物とは、建築物、土木建造物、工作物、機械設備等の架台等を総称する。また、建造物の構造躯体は、木造、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造等、その種別を問わない。また、建造物の構面には、壁面の柱梁構面だけでなく、床面及び屋根面の梁と梁とから成る構面も含まれる。また、以下、地震動、強風等により生じる水平力を、「水平力」と略称する。   A brace structure is used as a structural element that resists a horizontal force caused by, for example, seismic motion, strong wind, or the like in a building surface. In addition, in order to improve the seismic performance of existing buildings, seismic reinforcement braces are additionally attached to the wall surface as seismic reinforcement. Here, the building is a generic term for a building, a civil engineering building, a work, a frame for a machine facility, or the like. The structural frame of the building may be of any type, such as a wooden structure, a steel structure, a reinforced concrete structure, or a steel reinforced concrete structure. Further, the construction surface of the building includes not only the column beam construction surface of the wall surface, but also the construction surface composed of beams and beams on the floor surface and the roof surface. Hereinafter, the horizontal force generated by earthquake motion, strong wind, etc. is abbreviated as “horizontal force”.

ブレース構造には、建造物の構面内に、対角上の仕口を交差して取り付ける、いわゆる「筋交い」といわれるX型ブレース構造がある。また、構面内に開口部がある場合や、意匠上の制約がある場合には、V型ブレース構造や菱形のブレース構造等の多様な構造形式が採用される。ここで、ブレース構造とは、これら地震等による水平力に抵抗する多様な構造形式を、総て含むものである。これらのブレース構造に用いられるブレース材は、通常、その材長が、部材幅に対して長く、両端の接合部において曲げモーメントへの固定度が低い。そのため軸力のみを伝達するピン接合部材となる。また、ブレース材は、圧縮力は負担せずに引張力のみを負担する引張材として用いられる。   The brace structure includes an X-type brace structure which is so-called “stitching”, in which diagonal joints are attached so as to cross a building surface. Further, when there is an opening in the composition surface or when there are design restrictions, various structural forms such as a V-type brace structure and a diamond-shaped brace structure are adopted. Here, the brace structure includes all the various structural forms that resist the horizontal force caused by such earthquakes. The brace material used for these brace structures is usually longer in material length than the member width, and has a low degree of fixation to bending moment at the joints at both ends. Therefore, it becomes a pin joint member that transmits only the axial force. The brace material is used as a tensile material that bears only a tensile force without bearing a compressive force.

ブレース材には、例えば、棒鋼、ケーブル、角形鋼管、アングル材やチャンネル材といった形鋼等が引張材として用いられる。ここで、棒鋼とは、中実の丸鋼をいい、PC鋼棒も含まれる。また、ケーブルとは、鋼線をより合わせたロープをいい、例えば、構造用ストランドロープや構造用スパイラルロープが含まれる。   As the brace material, for example, a steel bar, a cable, a square steel pipe, a shape steel such as an angle material or a channel material, or the like is used as a tensile material. Here, the steel bar refers to a solid round steel, and includes a PC steel bar. Moreover, a cable means the rope which united the steel wire more, for example, a structural strand rope and a structural spiral rope are contained.

ブレース構造は、一般的に、略直交する構造材からなる建造物の構面に対して、斜め材を付加することにより、水平力に対して建造物の構面に生じる過大な変形を抑えるものである。後述するように、水平力により、ブレース材の両端が取り付く上下の仕口には層間変形が生じる。このとき、ブレース材は、両端が接合部に固定されているため、この層間変形に追従する。その結果、ブレース材には、引張応力による伸びとともに、ブレース材自体の回転移動が発生する。このブレース材の回転移動方向は、主として建造物の構面内ではあるが、構面外へも変位し、捩れを伴いつつ回転移動する場合もある。   The brace structure generally suppresses excessive deformation that occurs in the building surface against horizontal force by adding slanting material to the building surface consisting of substantially orthogonal structural materials. It is. As will be described later, due to the horizontal force, interlayer deformation occurs in the upper and lower joints to which both ends of the brace material are attached. At this time, since both ends of the brace material are fixed to the joint portion, the brace material follows this interlayer deformation. As a result, the brace material undergoes rotational movement of the brace material itself along with the elongation due to the tensile stress. Although the rotational movement direction of the brace material is mainly within the construction surface of the building, it may be displaced to the outside of the construction surface and may be rotationally moved with twisting.

一方、建造物を、その構造体に制震ダンパーを配置し、制震構造とすることが行われる。これは、水平力のエネルギを吸収し、建造物全体の振動の応答を低減し、建造物の耐震安全性を確保するためである。この制震構造には、水平力により引張応力が発生するブレース材にこの制震ダンパーを取付けた制震ブレース構造がある。これらの制震ダンパーには、エネルギ吸収部材、例えば、粘弾性材、低降伏点鋼、鉛等が用いられる。   On the other hand, a building is made to have a damping structure by arranging damping dampers in the structure. This is to absorb the energy of the horizontal force, reduce the vibration response of the entire building, and ensure the seismic safety of the building. This seismic control structure includes a seismic control brace structure in which the seismic damper is attached to a brace material in which a tensile stress is generated by a horizontal force. For these damping dampers, energy absorbing members such as viscoelastic materials, low yield point steel, lead and the like are used.

また、制震構造の一種として、いわゆる仕口ダンパーがある。これは、建造物の構面は、水平力により略菱形に変形し、仕口における柱材と梁材のなす角度が変化するが、この角度変化を利用し、仕口に取付けられた制震ダンパーによりエネルギ吸収をするものである。   There is a so-called joint damper as a kind of damping structure. This is because the structure of the building is deformed into a roughly rhombus shape due to horizontal force, and the angle between the column and beam at the joint changes, but this angle change is used to control the vibration control attached to the joint. Energy is absorbed by a damper.

例えば、特許文献1には、粘弾性材を鋼板と交互に積層した耐震用ブレース装置が、特許文献2には、柱梁の仕口に取付けられ、粘弾性材が組み込まれた仕口ダンパーが開示されている。   For example, Patent Document 1 discloses an earthquake-resistant brace device in which viscoelastic materials are alternately laminated with steel plates, and Patent Document 2 includes a joint damper that is attached to a column beam joint and incorporates a viscoelastic material. It is disclosed.

特開2001−182359号公報JP 2001-182359 A 特開2005−220614号公報JP 2005-220614 A

特許文献1に開示されている、粘弾性材等のエネルギ吸収部材をサンドイッチ状に鋼板に挟み込んだ制震ブレース構造は、ブレース材に発生する引張力を、せん断応力に変換してエネルギ吸収部材に作用させ、さらに引張力に戻すという機構を採用する。そもそも、これらのエネルギ吸収部材は、応力度の低い段階から塑性化するという特性により、エネルギ吸収部材として用いられる。つまり、これらの部材は、鉄板と比較して、構造耐力は著しく低いが、変形能力は著しく高いという性質を有する。したがって、これらの部材と鉄板とを、直列的に接続させるには複雑な応力伝達機構を要し、部材及び接合方法の構造安全性を確保するのは難しい。   The vibration-damping brace structure disclosed in Patent Document 1, in which an energy absorbing member such as a viscoelastic material is sandwiched between steel plates in a sandwich shape, converts the tensile force generated in the brace material into a shear stress to form an energy absorbing member. Adopt a mechanism that allows it to act and return to tensile force. In the first place, these energy absorbing members are used as energy absorbing members due to the property of plasticizing from a low stress level. That is, these members have the property that the structural yield strength is significantly lower than that of the steel plate, but the deformation capacity is extremely high. Therefore, a complicated stress transmission mechanism is required to connect these members and the steel plate in series, and it is difficult to ensure the structural safety of the members and the joining method.

一方、特許文献2に開示されている、柱梁の仕口に設置される仕口ダンパーは、建造物の構造体とは別に設けられる専用のエネルギ吸収部材である。したがって、構造材とは別に、特殊な装置を各仕口に取付けなければならず、取付けの手間や建設コストがかかり経済的ではない。   On the other hand, the joint damper disclosed in Patent Document 2 is a dedicated energy absorbing member provided separately from the structure of the building. Therefore, a special device must be attached to each joint separately from the structural material, which is not economical because it requires installation work and construction costs.

本願の目的は、かかる課題を解決し、ブレース材への組み込みが容易で、構造安全性が高く、振動エネルギを効率よく吸収可能な制震ブレース構造を提供することである。   An object of the present application is to solve such problems, and to provide a damping brace structure that can be easily incorporated into a brace material, has high structural safety, and can efficiently absorb vibration energy.

上記目的を達成するため、本発明に係る制震ブレース構造は、建造物の構面内に設けられ、水平力が作用した際に、ブレース材が接続する両端の仕口の相対的な変位により、ブレース材に引張力による軸方向の伸びと、回転移動と、が生じるブレース構造であって、引張材からなるブレース材と、ブレース材に接続され、ブレース材の回転移動に伴って回転する締結体と、仕口に固定される固定部と、締結体を保持し、
ブレース材に生じる引張力を、締結体を介して固定部に伝達する保持部と、を有する連結体と、連結体の保持部と、締結体と、の間隙に設けられる粘弾性材とを備えることを特徴とする。
In order to achieve the above-mentioned object, the seismic brace structure according to the present invention is provided in the construction surface of a building, and when horizontal force is applied, the relative displacement of the joints at both ends to which the brace material is connected is used. A brace structure in which the brace material undergoes axial extension and rotational movement due to tensile force, and is connected to the brace material made of the tensile material, and is connected to the brace material and rotates with the rotational movement of the brace material. Holding the body, the fixed part fixed to the joint, and the fastening body,
A holding body that transmits a tensile force generated in the brace material to the fixing portion via the fastening body, and a viscoelastic material provided in a gap between the holding body of the coupling body and the fastening body. It is characterized by that.

また、制震ブレース構造は、締結体は、外形に曲面を有し、連結体の保持部は、締結体の曲面と回転自在に対向する曲面を有することが好ましい。   Further, in the seismic damping brace structure, it is preferable that the fastening body has a curved surface in its outer shape, and the holding portion of the coupling body has a curved surface that rotatably faces the curved surface of the fastening body.

また、制震ブレース構造は、相互に対向する締結体の曲面及び締結体の曲面は、筒状であることが好ましく、例えば、棒鋼であることが好ましい。また、制震ブレース構造は、相互に対向する締結体の曲面及び締結体の曲面は、球状であることが好ましく、例えば、鋼球であることが好ましい。   Further, in the damping brace structure, the curved surface of the fastening body and the curved surface of the fastening body that are opposed to each other are preferably cylindrical, and are preferably, for example, steel bars. Further, in the seismic damping brace structure, the curved surface of the fastening body and the curved surface of the fastening body facing each other are preferably spherical, and for example, a steel ball is preferred.

また、制震ブレース構造は、ブレース材は、棒鋼であることが好ましく、例えば、ブレース材は、締結体に設けられた貫通孔を貫通し、ナットにより締結体に接続されることが好ましい。   Further, in the seismic damping brace structure, the brace material is preferably a steel bar. For example, the brace material preferably passes through a through hole provided in the fastening body and is connected to the fastening body by a nut.

さらに、制震ブレース構造は、連結体の固定部は、梁を貫通し、建造物の基礎に締結されたアンカーボルトに固定されることが好ましい。   Further, in the seismic damping brace structure, it is preferable that the fixed portion of the coupling body is fixed to an anchor bolt that penetrates the beam and is fastened to the foundation of the building.

上記構成により、ブレース材に発生する回転移動の際に、固定部により仕口に固定された連結体の保持部と、ブレース材に接続され、ブレース材の回転移動に伴って回転する締結体との、互いに対向する相互の面にずれが発生する。この連結体の保持部は、間隙を置いて締結体を保持するが、その間隙には粘弾性材が設けられる。一方、ブレース材に生じる引張力は、固定部により仕口に固定された連結体の保持部に対し、締結体を介し圧縮力として作用する。したがって、粘弾性体は、圧縮応力を受けつつ、ずれによるせん断変形が発生し、塑性化による地震動等のエネルギ吸収が可能となる。   With the above configuration, when the rotational movement generated in the brace material is performed, the connecting body holding portion fixed to the joint by the fixing portion, and the fastening body connected to the brace material and rotating as the brace material rotates. A shift occurs between the mutually facing surfaces. The holding part of the coupling body holds the fastening body with a gap, and a viscoelastic material is provided in the gap. On the other hand, the tensile force generated in the brace material acts as a compressive force on the holding portion of the connection body fixed to the joint by the fixing portion via the fastening body. Therefore, the viscoelastic body is subjected to a compressive stress, undergoes shear deformation due to displacement, and can absorb energy such as earthquake motion due to plasticization.

また、上述の連結体の保持部と締結体との間に発生する圧縮応力により、粘弾性体に圧縮変形が発生し、塑性化による地震動等のエネルギ吸収が可能となる。   In addition, the compressive stress generated between the holding portion of the connecting body and the fastening body causes a compressive deformation in the viscoelastic body, and energy absorption such as seismic motion due to plasticization becomes possible.

また、相互に対向する連結体の保持部及び締結体の曲面が筒状の外形である場合には、ブレース材が、建造物の構面内に回転移動した場合に、この回転によるずれに追従したせん断変形が可能で、効率的なエネルギ吸収が可能となる。さらに、これらの曲面が球状の外形である場合には、ブレース材が、建造物の構面内及び構面外に捩れながら回転移動した場合にも、これら2方向の回転によるずれにも追従したせん断変形が可能で、さらに効率的なエネルギ吸収が可能となる。   In addition, when the holding part of the coupling body and the curved surface of the fastening body that are opposite to each other have a cylindrical outer shape, the brace material follows the deviation due to this rotation when it rotates and moves within the construction surface of the building. Shearing deformation is possible, and efficient energy absorption is possible. Furthermore, when these curved surfaces have a spherical outer shape, the brace material also follows the displacement due to the rotation in these two directions even when the brace material rotates while being twisted in and out of the construction surface of the building. Shear deformation is possible, and more efficient energy absorption is possible.

さらには、この圧縮応力により、粘弾性材と連結体の保持部との間、及び粘弾性材と締結体との間が密着し、粘弾性体のせん断変形に対して摩擦力が発生する。この摩擦力により、粘弾性材のせん断変形が確実に発生し、塑性化による地震動等のエネルギ吸収が効果的に可能となる。   Furthermore, the compressive stress causes the viscoelastic material and the holding portion of the coupling body to be in close contact with each other and the viscoelastic material and the fastening body to be in close contact with each other, and a frictional force is generated against shear deformation of the viscoelastic body. By this frictional force, shear deformation of the viscoelastic material is surely generated, and energy absorption such as earthquake motion due to plasticization can be effectively performed.

また、この粘弾性材は、板状の材料を、そのまま連結体の保持部又は締結体に設けるだけでよい。例えば、連結体の保持部又は締結体に粘弾性材を、接着などにより、一体として取付けた製品とすることができる。したがって、エネルギ吸収部材のブレース材への、手間がかからず簡易な組込みが可能となる。   Moreover, this viscoelastic material should just provide a plate-shaped material in the holding | maintenance part or fastening body of a connection body as it is. For example, it can be set as the product which attached the viscoelastic material to the holding | maintenance part or fastening body of the connection body integrally by adhesion | attachment etc. Therefore, it is possible to easily incorporate the energy absorbing member into the brace material without much time and effort.

さらに、上述のように、粘弾性材には、ブレース材に発生する引張力が、圧縮応力に変換されて作用し、引張応力は発生しない。粘弾性材の圧縮耐力は極めて高いことから、粘弾性体自体の構造安全性の確保が可能となる。また、粘弾性材には、ブレース材の回転移動に伴い、せん断応力が生じるが、このせん断応力は粘弾性体のせん断変形により熱エネルギとして消費され、仕口に応力を伝達する必要はない。すなわち、粘弾性体は、締結体と連結体との間で圧縮応力のみを伝達すればよく、複雑な応力伝達機構を要しない。したがって、構造安全性の高い制震ブレースが可能となる。   Furthermore, as described above, the tensile force generated in the brace material acts on the viscoelastic material after being converted into a compressive stress, and no tensile stress is generated. Since the compressive yield strength of the viscoelastic material is extremely high, it is possible to ensure the structural safety of the viscoelastic body itself. In addition, a shear stress is generated in the viscoelastic material with the rotational movement of the brace material, but this shear stress is consumed as thermal energy by the shear deformation of the viscoelastic body, and it is not necessary to transmit the stress to the joint. That is, the viscoelastic body only needs to transmit compressive stress between the fastening body and the coupling body, and does not require a complicated stress transmission mechanism. Therefore, a seismic bracing with high structural safety is possible.

以上のように、本発明に係る制震ブレース構造によれば、ブレース材への組み込みが容易で、構造安全性が高く、振動エネルギを確実に、かつ効率よく吸収することが可能となる。   As described above, according to the vibration control brace structure of the present invention, it is easy to incorporate into the brace material, the structural safety is high, and vibration energy can be absorbed reliably and efficiently.

以下に、図面を用いて本発明に係る実施の形態につき、詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

図1及び図2に、本発明に係る制震ブレース構造の一つの実施形態の概要を示す。図1は、制震ブレース構造を側面から見た概略断面図であり、図2は、図1をa−a方向から見た概略断面図である。制震ブレース1は、柱2及び梁3からなる構面内に設けられ、ブレース材5、締結体6、固定部8及び保持部7を有する連結体9、及び粘弾性体10により構成される。   1 and 2 show an outline of one embodiment of the vibration control brace structure according to the present invention. FIG. 1 is a schematic cross-sectional view of the vibration control brace structure as seen from the side, and FIG. 2 is a schematic cross-sectional view of FIG. 1 as seen from the aa direction. The vibration control brace 1 is provided in a construction surface composed of a column 2 and a beam 3, and includes a brace material 5, a fastening body 6, a connecting body 9 having a fixing part 8 and a holding part 7, and a viscoelastic body 10. .

ブレース材5は、水平力に抵抗する構造要素であり、引張材からなる。本実施形態では、ブレース材5は棒鋼からなり、両端はネジが切られナット13により締め込まれる。このブレース材5は、引張材であれば、例えば、ケーブル、角形鋼管、アングル材やチャンネル材といった形鋼等であっても良い。ここで、棒鋼とは、中実の丸鋼をいい、PC鋼棒も含まれる。また、ケーブルとは、鋼線をより合わせたロープをいい、例えば、構造用ストランドロープや構造用スパイラルロープが含まれる。   The brace material 5 is a structural element that resists horizontal force and is made of a tensile material. In the present embodiment, the brace material 5 is made of steel bar, and both ends are screwed and tightened with nuts 13. The brace material 5 may be, for example, a cable, a square steel pipe, a shape steel such as an angle material or a channel material, as long as it is a tensile material. Here, the steel bar refers to a solid round steel, and includes a PC steel bar. Moreover, a cable means the rope which united the steel wire more, for example, a structural strand rope and a structural spiral rope are contained.

締結体6は、ブレース材5の両端に取付けられ、ブレース材5の回転移動に伴い回転する。本実施形態では、締結体6は、棒鋼を所定の長さに切断したものであり、その軸に直交する方向に、ブレース材5が貫通する貫通孔12が設けられている。ブレース材5は、この貫通孔12を貫通し、ナット13により保持される。この締結体6と、ブレース材5との接合は、例えば、締結体6に切られたネジ孔に、端部にネジが切られたブレース材5を軸回りに回転しながら挿入しても良い。また、ブレース材5がケーブルである場合には、ケーブルの定着方法により接続する。   The fastening body 6 is attached to both ends of the brace material 5 and rotates as the brace material 5 rotates. In this embodiment, the fastening body 6 is obtained by cutting a steel bar into a predetermined length, and a through hole 12 through which the brace material 5 passes is provided in a direction orthogonal to the axis. The brace material 5 passes through the through hole 12 and is held by the nut 13. The joint between the fastening body 6 and the brace material 5 may be inserted, for example, into the screw hole cut in the fastening body 6 while rotating the brace material 5 having a screw threaded at the end thereof around the axis. . When the brace material 5 is a cable, the connection is made by a cable fixing method.

連結体9は、柱2及び梁3が交差する仕口4に設けられ、仕口4と、締結体6を介してブレース材5とを連結する。連結体9は、固定部8と、保持部7とを有する。固定部8は、仕口4の柱2又は梁3、或いは柱2及び梁3の双方に固定される。本実施形態では、木造の柱や梁へのボルトによる固定であるが、一般的に用いられる方法、例えば、溶接等であっても良い。保持部7は、ブレース材5に引張力が発生した場合に、締結体6を保持する。すなわち、ブレース材5に発生する引張力を、締結体6を介して受け、固定部8に伝達する。   The connecting body 9 is provided at the joint 4 where the pillar 2 and the beam 3 intersect, and connects the joint 4 and the brace material 5 via the fastening body 6. The connecting body 9 has a fixing part 8 and a holding part 7. The fixing portion 8 is fixed to the column 2 or the beam 3 of the joint 4 or both the column 2 and the beam 3. In this embodiment, the bolts are fixed to wooden pillars or beams, but a generally used method such as welding may be used. The holding part 7 holds the fastening body 6 when a tensile force is generated in the brace material 5. That is, the tensile force generated in the brace material 5 is received via the fastening body 6 and transmitted to the fixing portion 8.

保持部7には、貫通孔12が明けられ、ブレース材5が貫通する。この貫通孔12は、ブレース材5の回転移動が可能な範囲に明けられる。図3に、ブレース材5の締結体6への接合方法についての他の実施態様の概略断面図を示す。ブレース材5は、保持部7を貫通せずに、保持部7の側面を通過し、締結体6と接続しても良い。また、図3に示すように、2本のブレース材5が、保持部7を貫通せずに、保持部7の両側をそれぞれ通過し、締結体6と接続しても良い。これらの場合には、貫通孔12は不要である。   A through hole 12 is opened in the holding portion 7 and the brace material 5 penetrates. The through hole 12 is opened in a range where the brace material 5 can be rotated. In FIG. 3, the schematic sectional drawing of the other embodiment about the joining method to the fastening body 6 of the brace material 5 is shown. The brace material 5 may pass through the side surface of the holding part 7 without passing through the holding part 7 and may be connected to the fastening body 6. Further, as shown in FIG. 3, the two brace members 5 may pass through both sides of the holding part 7 without passing through the holding part 7, and may be connected to the fastening body 6. In these cases, the through hole 12 is not necessary.

粘弾性体10は、保持部7と締結体6との間隙に設けられる。ブレース材5に引張力が発生すると、ブレース材5に接続された締結体6は、保持部7の方向に変位する。したがって、粘弾性体10には、ブレース材5に発生した引張力の反力として、圧縮力が作用する。粘弾性体10は、ゴム系、アスファルト系、アクリル系等の高分子化合物であり、材料自体に減衰性能を有する。また、粘弾性体10は、一般的に、粘弾性材10として使用されるすべての材料を含む。粘弾性体10は、シート状のものを保持部7及び締結体6の形状に合わせて加工し、対向する保持部7又は締結体6の所定の位置に貼り付ける。この貼り付けは、接着材により固着する方法であっても良い。   The viscoelastic body 10 is provided in the gap between the holding portion 7 and the fastening body 6. When a tensile force is generated in the brace material 5, the fastening body 6 connected to the brace material 5 is displaced in the direction of the holding portion 7. Therefore, a compressive force acts on the viscoelastic body 10 as a reaction force of the tensile force generated in the brace material 5. The viscoelastic body 10 is a polymer compound such as rubber, asphalt, or acrylic, and the material itself has damping performance. The viscoelastic body 10 generally includes all materials used as the viscoelastic material 10. The viscoelastic body 10 is processed into a sheet-like shape according to the shape of the holding portion 7 and the fastening body 6 and is attached to a predetermined position of the holding portion 7 or the fastening body 6 facing each other. This affixing may be a method of fixing with an adhesive.

図4に、ブレース材5が設けられた建造物の構面内に水平力Fが作用した場合の、骨組の挙動についての説明図を示す。梁3が含まれる床面の水平剛性は、柱2と比較して極めて高いため、骨組にはせん断変形が発生する。上部の梁3の仕口4が、下部の梁3の仕口4に対して変位量Bが生じた場合、その変位量Bに追従して移動するブレース材5には、材長の伸び量Aが生じ、角度θの回転移動が生じる。このとき、ブレース材5には、この材長の伸びを与える引張力Tが発生している。水平力Fが、建造物の構面外から作用した場合は、ブレース材5には、構面外への回転移動が発生する。   FIG. 4 shows an explanatory diagram of the behavior of the frame when the horizontal force F acts on the construction surface of the building where the brace material 5 is provided. Since the horizontal rigidity of the floor surface including the beam 3 is extremely higher than that of the column 2, shear deformation occurs in the frame. When a displacement amount B is generated in the joint 4 of the upper beam 3 with respect to the joint 4 of the lower beam 3, the brace material 5 that moves following the displacement amount B has an elongation amount of the material length. A occurs and rotational movement of the angle θ occurs. At this time, the brace material 5 has a tensile force T that gives the elongation of the material length. When the horizontal force F acts from outside the construction surface of the building, the brace material 5 undergoes rotational movement outside the construction surface.

図5に、ブレース材5の回転移動による、粘弾性体10の変形を表す概略断面図を示す。図中、破線は変形前の位置を示し、実線は変形後の位置を示す。水平力Fにより、ブレース材5に引張力Tが加わり、ブレース材5が締結体6を中心として角度θだけ回転する。締結体6はブレース材5の回転移動に伴い回転する。上述したように、粘弾性体10は、引張力Tに略等しい圧縮力Cを受ける。この圧縮力Cにより粘弾性体10と保持部7との間、及び粘弾性体10と締結体6との間には、圧縮力Cによる摩擦力が発生する。この摩擦力は、粘弾性体10に対して、せん断力として作用する。このせん断力により、粘弾性体10は、図5の実線のようにせん断変形をする。また、粘弾性体10を、保持部7の面14、及び粘弾性体10と対向する連結体9の面15に、接着材により固着しても良い。その場合には、接着材のせん断抵抗が、面14及び面15に働き、粘弾性体10のせん断変形を発生させる。   FIG. 5 is a schematic sectional view showing the deformation of the viscoelastic body 10 due to the rotational movement of the brace material 5. In the figure, the broken line indicates the position before deformation, and the solid line indicates the position after deformation. By the horizontal force F, a tensile force T is applied to the brace material 5 and the brace material 5 rotates about the fastening body 6 by an angle θ. The fastening body 6 rotates as the brace material 5 rotates. As described above, the viscoelastic body 10 receives the compression force C substantially equal to the tensile force T. Due to this compressive force C, a frictional force due to the compressive force C is generated between the viscoelastic body 10 and the holding portion 7 and between the viscoelastic body 10 and the fastening body 6. This frictional force acts on the viscoelastic body 10 as a shearing force. Due to this shearing force, the viscoelastic body 10 undergoes shear deformation as shown by the solid line in FIG. The viscoelastic body 10 may be fixed to the surface 14 of the holding unit 7 and the surface 15 of the coupling body 9 facing the viscoelastic body 10 with an adhesive. In that case, the shear resistance of the adhesive acts on the surface 14 and the surface 15 to cause shear deformation of the viscoelastic body 10.

また、粘弾性体10には、圧縮力Cにより圧縮変形が発生する。粘弾性体10は、シート状の材料であり、その幅は、面14,15に貼り付けられた長さに対して極めて薄い。したがって、保持部7及び締結体6が、粘弾性体10の横方向へのはらみ出しを拘束し、粘弾性体10の圧縮方向の剛性が高くなる。したがって、粘弾性体10の圧縮変形は、せん断変形と比較して極めて小さい。一方、ブレース材5は引張材であり、初期張力が導入される。水平力が加わった場合に、粘弾性体10の圧縮変形により、ブレース材5の張力は抜けるが、初期張力の範囲内でありブレース材5の性能には影響しない。   Further, the viscoelastic body 10 is compressed and deformed by the compressive force C. The viscoelastic body 10 is a sheet-like material, and the width thereof is extremely thin with respect to the length attached to the surfaces 14 and 15. Therefore, the holding part 7 and the fastening body 6 restrain the viscoelastic body 10 from protruding in the lateral direction, and the rigidity of the viscoelastic body 10 in the compression direction is increased. Therefore, the compressive deformation of the viscoelastic body 10 is extremely small compared to the shear deformation. On the other hand, the brace material 5 is a tensile material, and an initial tension is introduced. When a horizontal force is applied, the tension of the brace material 5 is released due to the compression deformation of the viscoelastic body 10, but it is within the initial tension range and does not affect the performance of the brace material 5.

粘弾性体10は、主としてせん断力により変形し、塑性化することで減衰性能を発揮する。すなわち、水平力の運動エネルギを熱エネルギに変換することでエネルギを吸収する。この粘弾性体10を、建造物の各ブレース構造に設けることで、建造物全体として水平力に対する制震効果が発揮される。   The viscoelastic body 10 exhibits damping performance by being deformed mainly by shearing force and plasticizing. That is, energy is absorbed by converting the kinetic energy of the horizontal force into heat energy. By providing this viscoelastic body 10 in each brace structure of the building, the entire building can exert a seismic control effect on horizontal force.

本実施の形態では、締結体6は、円柱状の棒鋼であり、粘弾性体10と対向する保持部7の面14、及び粘弾性体10と対向する締結体6の面15は、ともに筒状の曲面である。この両面は、連結体9が保持部7に対して回転自在であれば、いずれの曲面であっても良く、また、相互に異なる曲面であっても良い。また、締結体6は、例えば、鋼球等の球体であっても良い。この場合、粘弾性体10と対向する保持部7の面14、及び粘弾性体10と対向する締結体6の面15は、ともに球状の曲面となる。この球状の曲面である場合には、ブレース材が、建造物の構面外に捩れながら回転移動した場合にも、粘弾性体10には、その方向への回転移動によるせん断変形が生じる。   In the present embodiment, the fastening body 6 is a columnar steel bar, and the surface 14 of the holding part 7 facing the viscoelastic body 10 and the surface 15 of the fastening body 6 facing the viscoelastic body 10 are both cylindrical. It is a curved surface. The two surfaces may be any curved surface as long as the connecting body 9 is rotatable with respect to the holding unit 7, or may be curved surfaces different from each other. Further, the fastening body 6 may be a sphere such as a steel ball, for example. In this case, the surface 14 of the holding part 7 facing the viscoelastic body 10 and the surface 15 of the fastening body 6 facing the viscoelastic body 10 are both spherical curved surfaces. In the case of this spherical curved surface, even when the brace material is rotationally moved while being twisted out of the construction surface of the building, the viscoelastic body 10 undergoes shear deformation due to rotational movement in that direction.

図6に、制震ブレース構造の他の実施形態の概略断面を示す。連結体9の保持部7が円筒状であり、円柱である締結体6と対向し、その間隙に粘弾性体10が設けられる。保持部7は、ナット13の締め込みを可能とするため、一部に開口を有している。また、連結体9の保持部7が球状であり、内部に球体である締結体6と対向し、その間隙に粘弾性体10が設けられていても良い。   FIG. 6 shows a schematic cross section of another embodiment of the vibration control brace structure. The holding part 7 of the coupling body 9 is cylindrical, faces the fastening body 6 that is a column, and a viscoelastic body 10 is provided in the gap. The holding part 7 has an opening in part in order to allow the nut 13 to be tightened. Moreover, the holding part 7 of the connection body 9 is spherical, the inside may oppose the fastening body 6 which is a spherical body, and the viscoelastic body 10 may be provided in the gap | interval.

連結体9の保持部7は、締結体6を回転可能に保持する。幅や高さの異なる建造物の構面の場合には、ブレース材5の取り付け角度が異なる。この制震ブレース構造によれば、保持部7に設けられる貫通孔12の位置が変化するだけで、同様の制震性能が得られる。   The holding part 7 of the coupling body 9 holds the fastening body 6 rotatably. In the case of building structures with different widths and heights, the mounting angles of the brace material 5 are different. According to this seismic control brace structure, the same seismic control performance can be obtained only by changing the position of the through hole 12 provided in the holding portion 7.

本発明に係る耐震ブレース構造の一つの実施形態の概略断面図である。It is a schematic sectional drawing of one embodiment of the earthquake-resistant brace structure based on this invention. 図1をa−a方向から見た概略断面図である。It is the schematic sectional drawing which looked at FIG. 1 from the aa direction. ブレース材の締結体への接合方法についての、他の実施態様の概略断面図である。It is a schematic sectional drawing of the other embodiment about the joining method to the fastening body of a brace material. ブレース材が設けられた建造物の骨組に水平力が作用した場合の、骨組の挙動についての説明図である。It is explanatory drawing about the behavior of a frame when a horizontal force acts on the frame of the building provided with the brace material. ブレース材の回転移動による粘弾性体の変形を表す概略断面図である。It is a schematic sectional drawing showing a deformation | transformation of the viscoelastic body by the rotational movement of a brace material. 耐震ブレース構造の他の実施形態の概略断面図である。It is a schematic sectional drawing of other embodiment of an earthquake-resistant brace structure.

符号の説明Explanation of symbols

1 制震ブレース、2 柱、3 梁、4 仕口、5 ブレース材、6 締結体、7 保持部、8 固定部、9 連結体、10 粘弾性体、11 ボルト、12 貫通孔、13 ナット、14 粘弾性体と保持部とが対向する面、15 粘弾性体と連結体とが対向する面。   1 seismic control brace, 2 columns, 3 beams, 4 joints, 5 brace material, 6 fastening body, 7 holding part, 8 fixing part, 9 coupling body, 10 viscoelastic body, 11 bolt, 12 through hole, 13 nut, 14 A surface where the viscoelastic body and the holding portion face each other, 15 A surface where the viscoelastic body and the coupling body face each other.

Claims (9)

建造物の構面内に設けられ、水平力が作用した際に、ブレース材が接続する両端の仕口の相対的な変位により、ブレース材に引張力による軸方向の伸びと、回転移動と、が生じるブレース構造であって、
引張材からなるブレース材と、
ブレース材に接続され、ブレース材の回転移動に伴い回転する締結体と、
仕口に固定される固定部と、締結体を保持し、ブレース材に生じる引張力を、締結体を介して固定部に伝達する保持部と、を有する連結体と、
連結体の保持部と、締結体と、の間隙に設けられる粘弾性材と、
を備えることを特徴とする制震ブレース構造。
When the horizontal force acts on the building surface of the building, the relative displacement of the joints at both ends to which the brace material is connected causes the axial extension of the brace material and the rotational movement due to the tensile force. A brace structure where
Brace material made of tensile material,
A fastening body connected to the brace material and rotating as the brace material rotates,
A coupling body having a fixing portion fixed to the joint, and a holding portion that holds the fastening body and transmits a tensile force generated in the brace material to the fixing portion via the fastening body,
A viscoelastic material provided in a gap between the connecting body holding portion and the fastening body;
An anti-seismic brace structure characterized by comprising
請求項1に記載の制震ブレース構造において、締結体は、外形に曲面を有し、連結体の保持部は、締結体の曲面と回転自在に対向する曲面を有することを特徴とする制震ブレース構造。   2. The vibration control brace structure according to claim 1, wherein the fastening body has a curved surface in its outer shape, and the holding portion of the coupling body has a curved surface that rotatably faces the curved surface of the fastening body. Brace structure. 請求項1又は2に記載の制震ブレース構造において、相互に対向する締結体の曲面及び締結体の曲面は、筒状であることを特徴とする制震ブレース構造。   3. The vibration control brace structure according to claim 1, wherein the curved surface of the fastening body and the curved surface of the fastening body facing each other are cylindrical. 請求項3に記載の制震ブレース構造において、締結体は、棒鋼であることを特徴とする制震ブレース構造。   4. The vibration control brace structure according to claim 3, wherein the fastening body is a steel bar. 請求項1又は2に記載の制震ブレース構造において、相互に対向する締結体の曲面及び締結体の曲面は、球状であることを特徴とする制震ブレース構造。   3. The vibration control brace structure according to claim 1, wherein a curved surface of the fastening body and a curved surface of the fastening body facing each other are spherical. 請求項5に記載の制震ブレース構造において、締結体は、鋼球であることを特徴とする制震ブレース構造。   6. The vibration control brace structure according to claim 5, wherein the fastening body is a steel ball. 請求項1ないし6のいずれか1に記載の制震ブレース構造において、ブレース材は、棒鋼であることを特徴とする制震ブレース構造。   The seismic brace structure according to any one of claims 1 to 6, wherein the brace material is a steel bar. 請求項7に記載の制震ブレース構造において、ブレース材は、締結体に設けられた貫通孔を貫通し、ナットにより締結体に接続されることを特徴とする制震ブレース構造。   The seismic damping brace structure according to claim 7, wherein the brace material passes through a through hole provided in the fastening body and is connected to the fastening body by a nut. 請求項1ないし8のいずれか1に記載の制震ブレース構造において、連結体の固定部は、梁を貫通し、建造物の基礎に締結されたアンカーボルトに固定されることを特徴とする制震ブレース構造。












9. The vibration control brace structure according to claim 1, wherein the fixed portion of the coupling body is fixed to an anchor bolt that penetrates the beam and is fastened to the foundation of the building. Seismic brace structure.












JP2005327073A 2005-11-11 2005-11-11 Damping brace structure Active JP4861683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327073A JP4861683B2 (en) 2005-11-11 2005-11-11 Damping brace structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327073A JP4861683B2 (en) 2005-11-11 2005-11-11 Damping brace structure

Publications (2)

Publication Number Publication Date
JP2007132108A true JP2007132108A (en) 2007-05-31
JP4861683B2 JP4861683B2 (en) 2012-01-25

Family

ID=38153988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327073A Active JP4861683B2 (en) 2005-11-11 2005-11-11 Damping brace structure

Country Status (1)

Country Link
JP (1) JP4861683B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034823A (en) * 2012-08-09 2014-02-24 Sekisui Chem Co Ltd Vibration control structure of building and shock-absorber
JP2017122336A (en) * 2016-01-06 2017-07-13 旭硝子株式会社 Device for window
IT201700099508A1 (en) * 2017-09-08 2019-03-08 Pier Luigi Pacitti Structural anti-seismic energy dissipation system with steel pre-tensioned bracing obtained with the adoption of an anti-seismic joint with elastomer.
JP2019157430A (en) * 2018-03-09 2019-09-19 未央 常山 Support unit and rope earthquake resistant unit
US20220403642A1 (en) * 2020-09-29 2022-12-22 Masaomi TESHIGAWARA Reinforced structure for column and beam frame

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101872754B1 (en) 2016-01-19 2018-06-29 (주)엔타이어세이프 Fixing device using wire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212742A (en) * 1975-07-21 1977-01-31 Kajima Corp Resistance construction against earthquake
JPH02157336A (en) * 1988-12-09 1990-06-18 Kajima Corp Variably rigid brace
JPH0649924A (en) * 1992-07-31 1994-02-22 Mitsui Constr Co Ltd Viscoelastic damper
JP2002180693A (en) * 2000-12-12 2002-06-26 Masa Kenchiku Kozo Sekkeishitsu:Kk Earthquake resistant structure and earthquake resistant connector
JP2003049556A (en) * 2001-08-06 2003-02-21 Toyo Tire & Rubber Co Ltd Vibration control structure for building
JP2005315019A (en) * 2004-04-30 2005-11-10 Sumitomo Rubber Ind Ltd Vibration control structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212742A (en) * 1975-07-21 1977-01-31 Kajima Corp Resistance construction against earthquake
JPH02157336A (en) * 1988-12-09 1990-06-18 Kajima Corp Variably rigid brace
JPH0649924A (en) * 1992-07-31 1994-02-22 Mitsui Constr Co Ltd Viscoelastic damper
JP2002180693A (en) * 2000-12-12 2002-06-26 Masa Kenchiku Kozo Sekkeishitsu:Kk Earthquake resistant structure and earthquake resistant connector
JP2003049556A (en) * 2001-08-06 2003-02-21 Toyo Tire & Rubber Co Ltd Vibration control structure for building
JP2005315019A (en) * 2004-04-30 2005-11-10 Sumitomo Rubber Ind Ltd Vibration control structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034823A (en) * 2012-08-09 2014-02-24 Sekisui Chem Co Ltd Vibration control structure of building and shock-absorber
JP2017122336A (en) * 2016-01-06 2017-07-13 旭硝子株式会社 Device for window
IT201700099508A1 (en) * 2017-09-08 2019-03-08 Pier Luigi Pacitti Structural anti-seismic energy dissipation system with steel pre-tensioned bracing obtained with the adoption of an anti-seismic joint with elastomer.
JP2019157430A (en) * 2018-03-09 2019-09-19 未央 常山 Support unit and rope earthquake resistant unit
JP7045010B2 (en) 2018-03-09 2022-03-31 未央 常山 Construction method of support unit, rope seismic unit, and rope seismic unit
US20220403642A1 (en) * 2020-09-29 2022-12-22 Masaomi TESHIGAWARA Reinforced structure for column and beam frame
US11746521B2 (en) * 2020-09-29 2023-09-05 The University Of Tokyo Reinforced structure for column and beam frame

Also Published As

Publication number Publication date
JP4861683B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5135034B2 (en) Exposed type column base structure
CN106522382B (en) Self-resetting energy-consumption connecting node of assembled concrete filled steel tubular column and H-shaped steel beam
KR101263078B1 (en) Connection metal fitting and building with the same
JP5123378B2 (en) Seismic joint device
JP4139901B2 (en) Damping structure of wooden building and damping method of wooden building
JP4861683B2 (en) Damping brace structure
KR102131132B1 (en) Seismic Load Attenuating Damper and Aseismatic Reinforcement Structure
WO1998036134A1 (en) Joint for steel structure, and combining structure using the same joints for steel structure
JP2005330802A (en) Frame with buckling-restrained brace
JP2003090089A (en) Boundary beam damper
JP4664997B2 (en) Buildings with joint hardware
JP4908039B2 (en) Structure for mounting vibration energy absorber of wooden building
JP3389521B2 (en) Vibration energy absorber for tension structure and its construction method
JP2006283408A (en) Vibration control structure
JPH10140873A (en) Vibration damping structure of building
KR102122028B1 (en) Column type vibration isolation apparatus
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP7017879B2 (en) A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
WO2017192107A1 (en) A hinge cell for beam to column connection
KR101378700B1 (en) Unit modular seismic absorbing apparatus for rahmen structures
KR102164350B1 (en) Tension Adjustable Damper and Aseismatic Reinforcement Structure
JP3856783B2 (en) Seismic frame using damper integrated brace and oil damper used for it
JP4553631B2 (en) Vibration control device
JP4896759B2 (en) Joints for bearing walls and damping structures
JPH10280727A (en) Damping frame by composite type damper and damping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Ref document number: 4861683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250