JP2007120577A - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP2007120577A
JP2007120577A JP2005311659A JP2005311659A JP2007120577A JP 2007120577 A JP2007120577 A JP 2007120577A JP 2005311659 A JP2005311659 A JP 2005311659A JP 2005311659 A JP2005311659 A JP 2005311659A JP 2007120577 A JP2007120577 A JP 2007120577A
Authority
JP
Japan
Prior art keywords
tapered
tapered roller
cage
rollers
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005311659A
Other languages
Japanese (ja)
Inventor
Takashi Tsujimoto
崇 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005311659A priority Critical patent/JP2007120577A/en
Priority to PCT/JP2006/320186 priority patent/WO2007046263A1/en
Publication of JP2007120577A publication Critical patent/JP2007120577A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/42Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
    • F16H2048/423Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement

Abstract

<P>PROBLEM TO BE SOLVED: To prevent increase in the load capacity and damage of a raceway surface due to excess surface pressure by increasing the number of rollers, substantialize low torque without deteriorating the rigidity of a bearing, and suppress the occurrence of dragging torque. <P>SOLUTION: The tapered roller bearing comprises an inner ring 2, an outer ring 3, a plurality of tapered rollers 4 which are disposed between the inner ring 2 and the outer ring 3 and is capable of freely rolling the between those rings, and a retainer 5 circumferentially holding the tapered rollers 4 thereon at specified intervals. The retainer 5 is composed of an engineering plastic excellent in oil resistance and heat resistance. A tapered face 5d where the external-diameter face of the tapered rollers 4 slidingly contacts on both side of the inner-diameter face of a column part 5c formed between pockets 5e is provided. A length L of the tapered face 5d in the width direction is set to 5% or more and less than 11% of the average diameter of the tapered rollers 4. A window angle of the pockets 5e which is an angle formed by the tapered faces 5d, 5d facing each other is set to 55° or more and 80° or less. The roller factor γ is set to 0.94 or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は円すいころ軸受に関し、たとえば自走車両のデファレンシャルやトランスミッション等の動力伝達軸を支持する軸受に適用することができる。   The present invention relates to a tapered roller bearing and can be applied to a bearing that supports a power transmission shaft such as a differential of a self-propelled vehicle or a transmission.

図5は、自動車 のトランスミッションの一構成例を示している。このトランスミッションは同期噛合式のもので、同図で左方向がエンジン側、右方向が駆動車輪側である。メインシャフト41とメインドライブギヤ42との間に円すいころ軸受 43が介装される。この例では、メインドライブギヤ42の内周に円すいころ軸受 43の外輪軌道面が直接形成されている。メインドライブギヤ42は、円すいころ軸受 44でケーシング45に対して回転自在に支持される。メインドライブギヤ42にクラッチギヤ46が係合連結され、クラッチギヤ46に近接してシンクロ機構47が配設される。   FIG. 5 shows an example of the configuration of an automobile transmission. This transmission is of a synchronous mesh type, and in the figure the left direction is the engine side and the right direction is the drive wheel side. A tapered roller bearing 43 is interposed between the main shaft 41 and the main drive gear 42. In this example, the outer ring raceway surface of the tapered roller bearing 43 is directly formed on the inner periphery of the main drive gear 42. The main drive gear 42 is rotatably supported with respect to the casing 45 by a tapered roller bearing 44. A clutch gear 46 is engaged and connected to the main drive gear 42, and a synchronization mechanism 47 is disposed in the vicinity of the clutch gear 46.

シンクロ機構47は、セレクタ(図示省略)の作動によって軸方向(同図で左右方向)に移動するスリーブ48と、スリーブ48の内周に軸方向移動自在に装着されたシンクロナイザーキー49と、メインシャフト41の外周に係合連結されたハブ50と、クラッチギヤ46の外周(コーン部)に摺動自在に装着されたシンクロナイザーリング51と、シンクロナイザーキー49をスリーブ48の内周に弾性的に押圧する押さえピン52及びスプリング53とを備えている。   The synchronizer 47 includes a sleeve 48 that moves in the axial direction (left and right in the figure) by the operation of a selector (not shown), a synchronizer key 49 that is mounted on the inner periphery of the sleeve 48 so as to be axially movable, A hub 50 engaged and connected to the outer periphery of the shaft 41, a synchronizer ring 51 slidably mounted on the outer periphery (cone portion) of the clutch gear 46, and a synchronizer key 49 are elastically attached to the inner periphery of the sleeve 48. A pressing pin 52 and a spring 53 are provided.

同図に示す状態では、スリーブ48及びシンクロナイザーキー49が押さえピン52によって中立位置に保持されている。この時、メインドライブギヤ42はメインシャフト41に対して空転する。一方、セレクタの作動により、スリーブ48が同図に示す状態から例えば軸方向左側に移動すると、スリーブ48に従動してシンクロナイザーキー49が軸方向左側に移動し、シンクロナイザーリング51をクラッチギヤ46のコーン部の傾斜面に押し付ける。これにより、クラッチギヤ46の回転速度が落ち、逆にシンクロ機構47側の回転速度が高められる。そして、両者の回転速度が同期した頃、スリーブ48がさらに軸方向左側に移動して、クラッチギヤ46と噛み合い、メインシャフト41とメインドライブギヤ42との間がシンクロ機構47を介して連結される。これにより、メインシャフト41とメインドライブギヤ42とが同期回転する。   In the state shown in the figure, the sleeve 48 and the synchronizer key 49 are held in the neutral position by the pressing pin 52. At this time, the main drive gear 42 idles with respect to the main shaft 41. On the other hand, when the sleeve 48 is moved to the left side in the axial direction, for example, by the operation of the selector, the synchronizer key 49 is moved to the left side in the axial direction following the sleeve 48, and the synchronizer ring 51 is moved to the clutch gear 46. Press against the inclined surface of the cone. As a result, the rotational speed of the clutch gear 46 decreases, and conversely, the rotational speed on the synchro mechanism 47 side is increased. When the rotational speeds of the two are synchronized, the sleeve 48 further moves to the left in the axial direction, meshes with the clutch gear 46, and the main shaft 41 and the main drive gear 42 are connected via the sync mechanism 47. . Thereby, the main shaft 41 and the main drive gear 42 rotate synchronously.

図6は、自動車のデファレンシャルの構成を例示したものである。このデファレンシャルは、プロペラシャフト(図示省略)に連結され、デファレンシャルケース21内に挿入したドライブピニオン22が差動歯車ケース23に取り付けたリングギヤ24とかみ合い、差動歯車ケース23の内部に取り付けたピニオンギヤ25が、差動歯車ケース23に左右から挿入されるドライブシャフト(図示省略)と結合するサイドギヤ26とかみ合って、エンジンの駆動力をプロペラシャフトから左右のドライブシャフトに伝達するようになっている。このデファレンシャルでは、動力伝達軸であるドライブピニオン22と差動歯車ケース23が、それぞれ一対の円すいころ軸受1a,1bで支持してある。そして、デファレンシャルケース21はシール部材27a、27b、27cで密封され、内部にており潤滑油が貯留される。各円すいころ軸受1a、1bはこの潤滑油の油浴に下部が漬かった状態で回転する。   FIG. 6 shows an example of the configuration of the automobile differential. This differential is connected to a propeller shaft (not shown), and a drive pinion 22 inserted into the differential case 21 meshes with a ring gear 24 attached to the differential gear case 23, and a pinion gear 25 attached to the inside of the differential gear case 23. However, the drive gear of the engine is transmitted from the propeller shaft to the left and right drive shafts by meshing with the side gear 26 coupled to the drive shaft (not shown) inserted into the differential gear case 23 from the left and right. In this differential, a drive pinion 22 that is a power transmission shaft and a differential gear case 23 are supported by a pair of tapered roller bearings 1a and 1b, respectively. The differential case 21 is sealed with seal members 27a, 27b, and 27c, and the lubricating oil is stored inside. Each tapered roller bearing 1a, 1b rotates with its lower part immersed in this lubricating oil bath.

前記トランスミッションやデファレンシャルに使用し得る円すいころ軸受は、円すい状の軌道面を有する外輪と、円すい状の軌道面を有し、この軌道面の小径側端部に小鍔部、大径側端部に大鍔部を有する内輪と、外輪の軌道面と内輪の軌道面との間に転動自在に配された複数の円すいころと、円すいころを円周方向等間隔に保持する保持器とを備えている。   The tapered roller bearing that can be used in the transmission and the differential has an outer ring having a conical raceway surface, a conical raceway surface, and a small flange portion and a large diameter side end portion at a small diameter side end portion of the raceway surface. An inner ring having a large collar portion, a plurality of tapered rollers arranged to roll between the raceway surface of the outer ring and the raceway surface of the inner ring, and a cage for holding the tapered rollers at equal intervals in the circumferential direction. I have.

このような円すいころ軸受では、柱部の内径面の両側に前記円すいころの外径面が摺接するテーパ面を設け、円すいころの外径面に接触疵が生じないようにしている。従来では、このテーパ面の幅方向の長さ寸法を、前記円すいころの平均直径の11%〜20%としている。   In such a tapered roller bearing, tapered surfaces on which the outer diameter surfaces of the tapered rollers are slidably contacted are provided on both sides of the inner diameter surface of the column portion, so that contact wrinkles are not generated on the outer diameter surface of the tapered rollers. Conventionally, the length of the tapered surface in the width direction is 11% to 20% of the average diameter of the tapered rollers.

前記したように、デファレンシャルやトランスミッションでは、円すいころ軸受はこの潤滑油の油浴に下部が漬かった状態で回転する。このように、油浴潤滑状態で使用される円すいころ軸受では、円すいころ4の外径面と保持器5の柱部内径面のテーパ面との間も、これらの面で形成されるくさび空間に入り込む潤滑油で潤滑される。   As described above, in the differential and the transmission, the tapered roller bearing rotates with the lower part immersed in the oil bath of this lubricating oil. As described above, in the tapered roller bearing used in the oil bath lubricated state, the wedge space formed by these surfaces is also formed between the outer diameter surface of the tapered roller 4 and the tapered surface of the columnar inner diameter surface of the cage 5. Lubricated with lubricating oil.

したがって、保持器のテーパ面の幅方向の長さ寸法Lが、円すいころの平均直径の11%〜20%である場合、円すいころの外径面と柱部内径面のテーパ面との間に比較的大きいくさび空間が形成され、多量の潤滑油がくさび空間に入り込む。このくさび空間からころの外径面と保持器のテーパ面との界面に入る潤滑油の量は限られているので、このように大量の潤滑油がくさび空間に入り込むと、これらの潤滑油の逃げ場がなくなって軸受回転の抵抗となり、トルク損失が大きくなる問題がある。また、このように軸受内部への流入する円すいころ軸受では、保持器の回転に対する潤滑油の流動抵抗も、無視できないトルク損失の要因となる。   Therefore, when the length dimension L in the width direction of the tapered surface of the cage is 11% to 20% of the average diameter of the tapered roller, it is between the outer diameter surface of the tapered roller and the tapered surface of the columnar inner diameter surface. A relatively large wedge space is formed, and a large amount of lubricating oil enters the wedge space. Since the amount of lubricating oil entering the interface between the outer diameter surface of the roller and the tapered surface of the cage is limited from this wedge space, if a large amount of lubricating oil enters the wedge space in this way, There is a problem that there is no escape space and there is resistance to rotation of the bearing, and torque loss increases. Further, in the tapered roller bearing that flows into the bearing as described above, the flow resistance of the lubricating oil with respect to the rotation of the cage also causes a torque loss that cannot be ignored.

そのため、軸受内部に潤滑油が流入する円すいころ軸受における潤滑油の流動抵抗によるトルク損失を低減させる必要がある。すなわち、低トルク化のために油の流動抵抗を減少させる必要がある。しかしながら、大幅な低トルク化を行うためには、転がり粘性抵抗が低下するように軸受諸元を変更することが必要である。ところが、従来の低トルク化手法(特許文献1〜3参照)では、定格荷重を低下させない低トルク化は可能であるが、軸受剛性はいくらか低下する。
特開平09−096352号公報 特開平11−0210765公報 特開2003−343552号公報 特開2003−28165号公報
Therefore, it is necessary to reduce torque loss due to the flow resistance of the lubricating oil in the tapered roller bearing in which the lubricating oil flows into the bearing. That is, it is necessary to reduce the oil flow resistance in order to reduce the torque. However, in order to significantly reduce the torque, it is necessary to change the bearing specifications so that the rolling viscous resistance is reduced. However, with the conventional torque reduction technique (see Patent Documents 1 to 3), it is possible to reduce the torque without reducing the rated load, but the bearing rigidity is somewhat reduced.
JP 09-096352 A Japanese Patent Laid-Open No. 11-0210765 JP 2003-343552 A JP 2003-28165 A

一方、自動車のトランスミッションには、近年、ミッションのAT・CVT化、低燃費化などのため、低粘度オイルが使用される傾向にあるが、低粘度オイルが使用される環境下では、油温が高い、油量が少ない、予圧抜けが発生する等の悪条件が重なった場合に潤滑不良に起因する非常に短寿命での表面起点剥離が、面圧の高い内輪の軌道面に生じることがある。   On the other hand, low-viscosity oil tends to be used for automobile transmissions in recent years for the purpose of AT / CVT mission and fuel efficiency reduction. When unfavorable conditions such as high, low oil volume, preload loss occur, etc., surface origin separation due to poor lubrication may occur on the raceway surface of the inner ring with high surface pressure. .

この表面起点剥離による短寿命対策としては最大面圧低減が直接的かつ有効な解決策である。最大面圧を低減するためには軸受寸法を変更するか、軸受寸法を変えない場合は軸受のころ本数を増大させる。ころ直径を減少させないでころ本数を増やすためには保持器のポケット間隔を狭くしなければならないが、そのためには保持器のピッチ円を大きくして外輪側にできるだけ寄せる必要がある。   As a countermeasure for short life due to this surface-origin separation, reduction of the maximum surface pressure is a direct and effective solution. In order to reduce the maximum surface pressure, the bearing dimensions are changed, or if the bearing dimensions are not changed, the number of rollers of the bearing is increased. In order to increase the number of rollers without reducing the roller diameter, the pocket interval of the cage must be narrowed. For this purpose, it is necessary to enlarge the pitch circle of the cage and bring it closer to the outer ring side as much as possible.

保持器を外輪内径面に接するまで寄せた例として、図7に記載の円錐ころ軸受がある(特許文献4参照)。この円錐ころ軸受61は保持器62の小径側環状部62aの外周面と大径側環状部62bの外周面を外輪63内径面と摺接させて保持器62をガイドし、保持器62の柱部62cの外径面に引きずりトルクを抑制するため凹所64を形成して、柱部62cの外径面と外輪63の軌道面63aの非接触状態を維持するようにしている。保持器62は詳しくは図7に示すように、小径側環状部62aと、大径側環状部62bと、小径側環状部62aと大径側環状部62bとを軸方向に繋ぎ外径面に凹所64が形成された複数の柱部62cとを有する。そして柱部62c相互間に円錐ころ65を転動自在に収容するための複数のポケット66が設けられている。小径側環状部62aには、内径側に一体に延びた鍔部62dが設けられている。   As an example in which the cage is brought into contact with the inner surface of the outer ring, there is a tapered roller bearing shown in FIG. 7 (see Patent Document 4). The tapered roller bearing 61 guides the cage 62 by sliding the outer peripheral surface of the small-diameter side annular portion 62 a and the outer peripheral surface of the large-diameter side annular portion 62 b with the inner surface of the outer ring 63. In order to suppress drag torque on the outer diameter surface of the portion 62c, a recess 64 is formed to maintain a non-contact state between the outer diameter surface of the column portion 62c and the raceway surface 63a of the outer ring 63. As shown in detail in FIG. 7, the retainer 62 has a small-diameter-side annular portion 62a, a large-diameter-side annular portion 62b, and a small-diameter-side annular portion 62a and a large-diameter-side annular portion 62b connected in the axial direction to the outer diameter surface. And a plurality of column parts 62c in which recesses 64 are formed. A plurality of pockets 66 are provided between the column portions 62c for accommodating the tapered rollers 65 in a rollable manner. The small-diameter-side annular portion 62a is provided with a flange portion 62d that extends integrally on the inner-diameter side.

特許文献4記載の円錐ころ軸受61では、保持器62の柱部62cに凹所64があるので板厚が必然的に薄くなって保持器62の剛性が低下し、軸受61の組立て時の応力によって保持器62が変形したり、軸受61の回転中に保持器62が変形する等の可能性もある。保持器62の剛性を高めようとすると保持器62の径寸法が大きくなるため、外輪接触部での摺接によるトルク増大を引き起こす可能性がある。   In the tapered roller bearing 61 described in Patent Document 4, since the recess 64 is provided in the column portion 62 c of the cage 62, the plate thickness is inevitably thinned, the rigidity of the cage 62 is reduced, and the stress during assembly of the bearing 61 is reduced. As a result, the retainer 62 may be deformed, or the retainer 62 may be deformed while the bearing 61 is rotating. If the rigidity of the retainer 62 is increased, the diameter of the retainer 62 is increased, which may cause an increase in torque due to sliding contact at the outer ring contact portion.

一方、特許文献4記載の円錐ころ軸受以外の従来の典型的な保持器付き円すいころ軸受は、図8のように外輪71と保持器72との接触を避けた上で、保持器72の柱幅を確保し、適切な保持器72の柱強度と円滑な回転を得るために、次式で定義されるころ係数γ(ころの充填率)を、通常0.94以下にして設計している(特許文献2参照)。
ころ係数γ=(Z・DA)/(π・PCD)
ここで、Z:ころ本数、DA:ころ平均径、PCD:ころピッチ円径
なお、図8で73は円錐ころ、74は柱面、75は内輪、θは窓角である。
On the other hand, a conventional typical tapered roller bearing with a cage other than the tapered roller bearing described in Patent Document 4 avoids contact between the outer ring 71 and the cage 72 as shown in FIG. In order to secure the width and to obtain the appropriate column strength and smooth rotation of the cage 72, the roller coefficient γ (roller filling rate) defined by the following equation is usually designed to be 0.94 or less. (See Patent Document 2).
Roller coefficient γ = (Z · DA) / (π · PCD)
Here, Z: number of rollers, DA: roller average diameter, PCD: roller pitch circle diameter In FIG. 8, 73 is a tapered roller, 74 is a column surface, 75 is an inner ring, and θ is a window angle.

保持器72のポケット寸法をそのままにして単純にころ充填率を高めようとすると、保
持器72の柱72aが細くなり、充分な柱強度を確保することができない。
If an attempt is made to simply increase the roller filling rate while keeping the pocket size of the cage 72 as it is, the column 72a of the cage 72 becomes thin, and sufficient column strength cannot be ensured.

この発明の目的は、ころ本数を増やすことによって負荷容量の増加と軌道面の面圧過大による早期破損を防止し、かつ軸受剛性を低下させることなく、低トルク化を実現することができて、引きずりトルクの発生を抑制することができる円すいころ軸受を提供することにある。   The object of the present invention is to increase the number of rollers to prevent an early breakage due to an increase in load capacity and excessive surface pressure of the raceway surface, and to realize a reduction in torque without reducing bearing rigidity. An object of the present invention is to provide a tapered roller bearing capable of suppressing the generation of drag torque.

この発明は、内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持するポケットを有する保持器とを円すいころ軸受において、前記保持器を、機械的強度、耐油性および耐熱性に優れたエンジニアリング・プラスチックで構成して、ポケット間に形成される柱部の内径面の両側に前記円すいころの外径面が摺接するテーパ面を設け、このテーパ面の幅方向の長さ寸法を、前記円すいころの平均直径の5%以上で、11%未満とするともに、相対面するテーパ面が成す角であるポケットの窓角を55°以上80°以下とし、さらにころ係数γを0.94以上としたこと特徴とするものである。   The present invention relates to a tapered roller bearing comprising an inner ring, an outer ring, a plurality of tapered rollers arranged to roll between the inner ring and the outer ring, and a cage having a pocket for holding the tapered rollers at predetermined circumferential intervals. The retainer is made of engineering plastic having excellent mechanical strength, oil resistance and heat resistance, and the outer diameter surface of the tapered roller slides on both sides of the inner diameter surface of the pillar portion formed between the pockets. A pocket window having a tapered surface that is in contact with each other, the length dimension of the tapered surface in the width direction being not less than 5% and less than 11% of the average diameter of the tapered roller, and an angle formed by the opposing tapered surface The angle is 55 ° or more and 80 ° or less, and the roller coefficient γ is 0.94 or more.

窓角とは一つのころの周面に当接する柱部の案内面のなす角度をいう。この窓角を55°〜80°の範囲とすることにより、ころ係数が0.94超の保持器付き円すいころ軸受を可能にした。なお、窓角を55°以上としたのは、ころとの良好な接触状態を確保するためであり、80°以下としたのは、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤滑性の樹脂材であっても円滑な回転が得られなくなる危険性が生じるからである。なお、通常の保持器では窓角は25°〜50°となっている。   The window angle is an angle formed by the guide surface of the pillar portion that abuts on the peripheral surface of one roller. By setting the window angle in the range of 55 ° to 80 °, a tapered roller bearing with a cage having a roller coefficient exceeding 0.94 is made possible. The reason why the window angle is set to 55 ° or more is to ensure a good contact state with the roller, and the reason why the window angle is set to 80 ° or less is that the pressing force in the radial direction is increased when the angle is further increased. This is because there is a risk that smooth rotation cannot be obtained even with a lubricating resin material. In a normal cage, the window angle is 25 ° to 50 °.

ころ係数γ(ころの充填率)は(ころ本数×ころ平均径)/(π×PCD)で表されるパラメータであって、ころ平均径が一定とした場合、γの値が大きいほどころ本数が多いことを意味する。従来の典型的な保持器付き円すいころ軸受では、ころ係数γを、通常0.94以下にして設計しているので、ころ係数γが0.94を越えるということは、従来と比較して、ころ充填率ひいては軸受剛性が高いことを意味する。   The roller coefficient γ (roller filling ratio) is a parameter represented by (number of rollers × roller average diameter) / (π × PCD). When the average roller diameter is constant, the larger the value of γ, the greater the number of rollers. It means that there are many. In a conventional typical tapered roller bearing with a cage, the roller coefficient γ is usually designed to be 0.94 or less, so that the roller coefficient γ exceeds 0.94, This means that the roller filling rate and thus the bearing rigidity is high.

また保持器に、エンジニアリング・プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽く、自己潤滑性があり、摩擦係数が小さいという特徴がある。   In addition, the use of engineering plastics for the cage has the characteristics that the cage weight is lighter, self-lubricating, and the coefficient of friction is smaller than the iron plate cage.

テーパ面の幅方向の長さ寸法を、円すいころの平均直径の11%未満(好ましくは9%以下)としたことにより、円すいころの外径面とテーパ面との間にあまり大きなくさび空間が形成されない。テーパ面の幅方向の長さ寸法が、円すいころの平均直径の5%未満では、円すいころの外径面とテーパ面との弾性接触領域がテーパ面の幅よりも大きくなるおそれがあるので、テーパ面の幅方向の長さ寸法を、円すいころの平均直径の5%以上とするのが好ましい。   By making the length dimension of the tapered surface in the width direction less than 11% (preferably 9% or less) of the average diameter of the tapered roller, a very large wedge space is formed between the outer diameter surface of the tapered roller and the tapered surface. Not formed. If the length dimension in the width direction of the tapered surface is less than 5% of the average diameter of the tapered roller, the elastic contact area between the outer diameter surface of the tapered roller and the tapered surface may be larger than the width of the tapered surface. The length dimension of the tapered surface in the width direction is preferably 5% or more of the average diameter of the tapered rollers.

前記柱部の厚さ寸法を、前記円すいころの平均直径の5%以上で、17%未満とする。これにより、柱部の厚みを薄くして、保持器の回転に対する潤滑油の流動抵抗を小さくすることができる。なお、柱部の厚さ寸法を円すいころの平均直径の5%未満では、保持器の剛性を十分に確保できないので、柱部の厚さ寸法を円すいころの平均直径の5%以上とするのが好ましい。   The thickness of the column portion is 5% or more and less than 17% of the average diameter of the tapered rollers. Thereby, the thickness of a pillar part can be made thin and the flow resistance of the lubricating oil with respect to rotation of a holder | retainer can be made small. If the thickness dimension of the column part is less than 5% of the average diameter of the tapered roller, the rigidity of the cage cannot be sufficiently secured. Therefore, the thickness dimension of the column part is set to 5% or more of the average diameter of the tapered roller. Is preferred.

上述した各円すいころ軸受は、自走車両の動力伝達軸を支持するものに好適である。   Each tapered roller bearing described above is suitable for supporting a power transmission shaft of a self-propelled vehicle.

図10は円すいころ軸受においてころピッチ径(PCD)を変化させたときの剛性比(−●−)およびトルク比(−○−)を表したものである。図16に示すように、PCDを小さくすると軸受のトルクは大幅に低下するが、軸受剛性はあまり低下しないことが、ころの弾性変形量を計算確認した結果として得られた。そこで、ころ本数を減らさないか増加させつつPCDを小さくすれば、剛性を低下させずにトルクを低減させることができる。   FIG. 10 shows the rigidity ratio (-●-) and torque ratio (-o-) when the roller pitch diameter (PCD) is changed in the tapered roller bearing. As shown in FIG. 16, when the PCD is reduced, the bearing torque is greatly reduced, but the bearing rigidity is not lowered so much as a result of calculating and confirming the elastic deformation amount of the roller. Therefore, if the PCD is reduced while the number of rollers is not reduced or increased, the torque can be reduced without reducing the rigidity.

本発明では、ころ係数γが0.94を越えるようにすることによって、ころ本数を増加させつつこのPCDを小さくできる。このため、軸受剛性を低下させることなく、低トルク化を実現できる。また、ころ本数を増加させることによって、負荷容量がアップするばかりでなく、軸受のトルク特性を損なうことなくころ本数増大によって内外輪軌道面の最大面圧を低減させることができ、高油温、少油量、および予圧抜け発生など悪条件が重なって過酷潤滑条件となった場合でも、極短寿命の表面起点剥離がとりわけ内輪軌道面に発生するのを防止することができる。さらに、保持器の接触による引きずりトルクを発生させないため、保持器ポケットの摩耗も最小限とすることができる。   In the present invention, the PCD can be reduced while increasing the number of rollers by making the roller coefficient γ exceed 0.94. For this reason, a reduction in torque can be realized without reducing the bearing rigidity. Also, by increasing the number of rollers, not only the load capacity is increased, but the maximum surface pressure of the inner and outer ring raceway surfaces can be reduced by increasing the number of rollers without impairing the torque characteristics of the bearing. Even when adverse conditions such as a small amount of oil and occurrence of preload loss result in severe lubrication conditions, it is possible to prevent surface-origin separation having an extremely short life, particularly on the inner ring raceway surface. Furthermore, since no drag torque is generated due to the contact of the cage, wear of the cage pocket can be minimized.

また保持器に、エンジニアリング・プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽く、自己潤滑性があり、摩擦係数が小さいという特徴がある。このため、軸受内に介在する潤滑油の効果と相俟って、外輪との接触による磨耗の発生を抑えることが可能になる。これらの樹脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受起動時のトルク損失や保持器摩耗の低減に好適である。   In addition, the use of engineering plastics for the cage has the characteristics that the cage weight is lighter, self-lubricating, and the coefficient of friction is smaller than the iron plate cage. For this reason, combined with the effect of the lubricating oil present in the bearing, it becomes possible to suppress the occurrence of wear due to contact with the outer ring. Since these resins are lighter and have a smaller friction coefficient than steel plates, they are suitable for reducing torque loss and cage wear when starting the bearing.

本発明の円すいころ軸受は、テーパ面の幅方向の長さ寸法を、円すいころの平均直径の5%以上で、11%未満(好ましくは9%以下)としたので、円すいころの外径面とテーパ面との間にあまり大きなくさび空間が形成されない。このため、くさび空間に入り込む潤滑油の量を少なくし、潤滑油の逃げ場が無くなることによるトルク損失を低減できる。   In the tapered roller bearing of the present invention, the length dimension in the width direction of the tapered surface is 5% or more and less than 11% (preferably 9% or less) of the average diameter of the tapered roller. A very large wedge space is not formed between the taper surface and the taper surface. For this reason, the amount of lubricating oil entering the wedge space can be reduced, and torque loss due to the absence of the escape space for the lubricating oil can be reduced.

柱部の厚さ寸法を、円すいころの平均直径の5%以上で、17%未満とすることにより、柱部の厚みを薄くして、保持器の回転に対する潤滑油の流動抵抗を小さくし、トルク損失をより低減できる。   By making the thickness dimension of the column part 5% or more of the average diameter of the tapered roller and less than 17%, the thickness of the column part is reduced, and the flow resistance of the lubricating oil against the rotation of the cage is reduced, Torque loss can be further reduced.

以下に本発明の一実施形態を図1〜図3に基づいて説明する。図1(A)(B)に示す如く、この実施形態の円錐ころ軸受1は、円錐状の軌道面2aを有し、この軌道面2aの小径側に小鍔部2b、大径側に大鍔部2cを有する内輪2と、円錐状の軌道面3aを有する外輪3と、内輪2の軌道面2aと外輪3の軌道面3aとの間に転動自在に配された複数の円錐ころ4と、円錐ころ4を円周等間隔に保持する保持器5とで構成される。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1A and 1B, the tapered roller bearing 1 of this embodiment has a conical raceway surface 2a, and a small flange portion 2b on the small diameter side of the raceway surface 2a and a large diameter side on the large diameter side. An inner ring 2 having a flange 2c, an outer ring 3 having a conical raceway surface 3a, and a plurality of tapered rollers 4 disposed between the raceway surface 2a of the inner ring 2 and the raceway surface 3a of the outer ring 3 so as to be able to roll. And a cage 5 that holds the tapered rollers 4 at equal intervals around the circumference.

保持器5は、例えばPPS、PEEK、PA、PPA、PAI等のスーパーエンプラで一体成形される。保持器に、機械的強度、耐油性および耐熱性に優れたエンジニアリング・プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽く、自己潤滑性があり、摩擦係数が小さいという特徴があるため、軸受内に介在する潤滑油の効果と相俟って、外輪との接触による摩耗の発生を抑えることが可能になる。また、これらの樹脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受起動時のトルク損失や保持器摩耗の低減に好適である。   The cage 5 is integrally formed with a super engineering plastic such as PPS, PEEK, PA, PPA, or PAI. By using engineering plastics with excellent mechanical strength, oil resistance and heat resistance for the cage, the cage weight is lighter, self-lubricating, and the coefficient of friction is smaller than that of steel plate cages. Therefore, in combination with the effect of the lubricating oil present in the bearing, it becomes possible to suppress the occurrence of wear due to contact with the outer ring. In addition, these resins are lighter and have a smaller coefficient of friction than steel plates, and are therefore suitable for reducing torque loss and cage wear at the start of the bearing.

エンジニアリング・プラスチックは、汎用エンジニアリング・プラスチックとスーパー・エンジニアリング・プラスチックを含む。以下に代表的なものを掲げるが、これらはエンジニアリング・プラスチックの例示であって、エンジニアリング・プラスチックが以下のものに限定されるものではない。   Engineering plastics include general purpose engineering plastics and super engineering plastics. Typical examples are listed below, but these are examples of engineering plastics, and engineering plastics are not limited to the following.

〔汎用エンジニアリング・プラスチック〕ポリカーボネート(PC)、ポリアミド6(PA6)、ポリアミド66(PA66)、ポリアセタール(POM)、変性ポリフェニレンエーテル(m−PPE)、ポリブチレンテレフタレート(PBT)、GF強化ポリエチレンテレフタレート(GF−PET)、超高分子量ポリエチレン(UHMW−PE) [General-purpose engineering plastics] Polycarbonate (PC), polyamide 6 (PA6), polyamide 66 (PA66), polyacetal (POM), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), GF reinforced polyethylene terephthalate (GF) -PET), ultra high molecular weight polyethylene (UHMW-PE)

〔スーパー・エンジニアリング・プラスチック〕ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、熱可塑性ポリイミド(TPI)、ポリベンズイミダゾール(PBI)、ポリメチルベンテン(TPX)、ポリ1,4−シクロヘキサンジメチレンテレフタレート(PCT)、ポリアミド46(PA46)、ポリアミド6T(PA6T)、ポリアミド9T(PA9T)、ポリアミド11,12 (PA11,12)、フッ素樹脂、ポリフタルアミド(PPA) [Super Engineering Plastics] Polysulfone (PSF), Polyethersulfone (PES), Polyphenylene sulfide (PPS), Polyarylate (PAR), Polyamideimide (PAI), Polyetherimide (PEI), Polyetheretherketone ( PEEK), liquid crystal polymer (LCP), thermoplastic polyimide (TPI), polybenzimidazole (PBI), polymethylbenten (TPX), poly1,4-cyclohexanedimethylene terephthalate (PCT), polyamide 46 (PA46), polyamide 6T (PA6T), polyamide 9T (PA9T), polyamide 11,12 (PA11,12), fluororesin, polyphthalamide (PPA)

円すいころ軸受1は、ころ係数γがγ>0.94となっている。ころ係数γはころの充填率を表し、次式で定義される。
ころ係数γ=(Z・DA)/(π・PCD)
ここに、
Z:ころ本数
DA:ころ平均径
PCD:ころピッチ径。
The tapered roller bearing 1 has a roller coefficient γ of γ> 0.94. The roller coefficient γ represents the filling rate of the roller and is defined by the following equation.
Roller coefficient γ = (Z · DA) / (π · PCD)
here,
Z: Number of rollers DA: Roller average diameter PCD: Roller pitch diameter.

保持器5は、小径側環状部5aと、大径側環状部5bと、小径側環状部5aと大径側環状部5bとを軸方向に繋ぐ複数の柱部5cとを備えている。そして、円周方向に隣接する柱部5c間に、円すいころ4を転動自在に収容する複数のポケット5eが形成される。保持器5は、図2と図3等に示すように、柱部5cの内径面の両側には、円すいころ4の外径面が摺接する柱面(テーパ面)5dが設けられている。相対面する柱面5d、5dが成す角である   The cage 5 includes a small-diameter-side annular portion 5a, a large-diameter-side annular portion 5b, and a plurality of column portions 5c that connect the small-diameter-side annular portion 5a and the large-diameter-side annular portion 5b in the axial direction. A plurality of pockets 5e are formed between the column portions 5c adjacent to each other in the circumferential direction so as to accommodate the tapered rollers 4 in a rollable manner. As shown in FIGS. 2 and 3, the cage 5 is provided with column surfaces (taper surfaces) 5 d on both sides of the inner diameter surface of the column portion 5 c so that the outer diameter surface of the tapered roller 4 is in sliding contact. It is an angle formed by the column faces 5d and 5d facing each other.

相対面する柱面5d、5dが成す角である窓角θは、下限窓角θminが図2のように55°であり、上限窓角θmaxが図3のように80°である。窓角は、図8のように保持器が外輪から離間している典型的な保持器付き円すいころ軸受では、大きくて約50°である。本発明では窓角を大きめに設定することにより、ころ係数γを0.94以上にすることが可能になった。下限窓角θminを55°以上としたのは、ころとの良好な接触状態を確保するためであり、窓角55°未満ではころとの接触状態が悪くなる。すなわち、保持器強度を確保した上でγ>0.94とするためには、窓角を55°以上としないと良好な接触状態を確保できないのである。また上限窓角θmaxを80°以下としたのは、これ以上大きくなると半径方向への押し付け力が大きくなり、自己潤滑性の樹脂材であっても円滑な回転が得られなくなる危険性が生じるからである。   As for the window angle θ which is an angle formed by the column faces 5d and 5d facing each other, the lower limit window angle θmin is 55 ° as shown in FIG. 2, and the upper limit window angle θmax is 80 ° as shown in FIG. In a typical tapered roller bearing with a cage in which the cage is separated from the outer ring as shown in FIG. 8, the window angle is about 50 ° at the maximum. In the present invention, the roller coefficient γ can be made 0.94 or more by setting the window angle to be larger. The reason why the lower limit window angle θmin is set to 55 ° or more is to ensure a good contact state with the roller, and when the window angle is less than 55 °, the contact state with the roller is deteriorated. That is, in order to make γ> 0.94 after securing the cage strength, a good contact state cannot be secured unless the window angle is 55 ° or more. Further, the upper limit window angle θmax is set to 80 ° or less because if it is further increased, the pressing force in the radial direction increases, and there is a risk that smooth rotation cannot be obtained even with a self-lubricating resin material. It is.

保持器5は、このテーパ面5dの幅方向の長さ寸法Lは、円すいころ4の平均直径D(図1参照)の5%以上で、11%未満(好ましくは9%以下)とされる。テーパ面5dの幅方向の長さ寸法Lを、円すいころ4の平均直径の11%未満としたことにより、円すいころ4の外径面とテーパ面5dとの間にあまり大きなくさび空間が形成されない。テーパ面5dの幅方向の長さ寸法Lが、円すいころの平均直径の5%未満では、円すいころ4の外径面とテーパ面5dとの弾性接触領域がテーパ面5dの幅よりも大きくなるおそれがあるので、テーパ面5dの幅方向の長さ寸法Lを、円すいころ4の平均直径の5%以上とするのが好ましい。なお、この実施形態では、テーパ面5dの幅方向の長さ寸法Lを、円すいころ4の平均直径Dの7%とした。   In the cage 5, the length dimension L in the width direction of the tapered surface 5d is 5% or more of the average diameter D (see FIG. 1) of the tapered rollers 4 and less than 11% (preferably 9% or less). . By setting the length dimension L in the width direction of the tapered surface 5d to less than 11% of the average diameter of the tapered roller 4, a very large wedge space is not formed between the outer diameter surface of the tapered roller 4 and the tapered surface 5d. . When the length dimension L in the width direction of the tapered surface 5d is less than 5% of the average diameter of the tapered roller, the elastic contact region between the outer diameter surface of the tapered roller 4 and the tapered surface 5d is larger than the width of the tapered surface 5d. Since there exists a possibility, it is preferable that the length dimension L of the taper surface 5d in the width direction shall be 5% or more of the average diameter of the tapered roller 4. In this embodiment, the length dimension L in the width direction of the tapered surface 5d is 7% of the average diameter D of the tapered rollers 4.

また、柱部5cの厚さ寸法Tを、円すいころ4の平均直径Dの5%以上で、17%未満とする。これにより、保持器5の回転に対する潤滑油の流動抵抗を小さくできるようにしている。なお、柱部5cの厚さ寸法Tを円すいころの平均直径の5%未満では、保持器5の剛性を十分に確保できないので、柱部5cの厚さ寸法Tを円すいころ4の平均直径の5%以上とするのが好ましい。この実施形態では、柱部5cの厚さ寸法Tを、円すいころ4の平均直径Dの10%とした。   Further, the thickness dimension T of the column part 5c is set to 5% or more and less than 17% of the average diameter D of the tapered rollers 4. Thereby, the flow resistance of the lubricating oil with respect to the rotation of the cage 5 can be reduced. In addition, if the thickness dimension T of the column part 5c is less than 5% of the average diameter of the tapered roller, the rigidity of the cage 5 cannot be sufficiently secured. Therefore, the thickness dimension T of the column part 5c is equal to the average diameter of the tapered roller 4. 5% or more is preferable. In this embodiment, the thickness dimension T of the column part 5 c is 10% of the average diameter D of the tapered rollers 4.

本発明では、ころ係数γが0.94を越えるようにすることによって、ころ本数を増加させつつこのPCDを小さくできる。このため、軸受剛性を低下させることなく、低トルク化を実現できる。また、ころ本数を増加させることによって、負荷容量がアップするばかりでなく、軸受のトルク特性を損なうことなくころ本数増大によって内外輪軌道面の最大面圧を低減させることができ、高油温、少油量、および予圧抜け発生など悪条件が重なって過酷潤滑条件となった場合でも、極短寿命の表面起点剥離がとりわけ内輪軌道面に発生するのを防止することができる。さらに。保持器5の接触による引きずりトルクを発生させないため、保持器ポケット5eの摩耗も最小限とすることができる。   In the present invention, the PCD can be reduced while increasing the number of rollers by making the roller coefficient γ exceed 0.94. For this reason, a reduction in torque can be realized without reducing the bearing rigidity. Also, by increasing the number of rollers, not only the load capacity is increased, but the maximum surface pressure of the inner and outer ring raceway surfaces can be reduced by increasing the number of rollers without impairing the torque characteristics of the bearing. Even when adverse conditions such as a small amount of oil and occurrence of preload loss result in severe lubrication conditions, it is possible to prevent surface-origin separation having an extremely short life, particularly on the inner ring raceway surface. further. Since the drag torque due to the contact of the cage 5 is not generated, the wear of the cage pocket 5e can be minimized.

また保持器5に、エンジニアリング・プラスチックを使用することにより、鉄板製保持器に比べ、保持器重量が軽く、自己潤滑性があり、摩擦係数が小さいという特徴がある。このため、軸受内に介在する潤滑油の効果と相俟って、外輪との接触による磨耗の発生を抑えることが可能になる。これらの樹脂は鋼板と比べると重量が軽く摩擦係数が小さいため、軸受起動時のトルク損失や保持器摩耗の低減に好適である。   In addition, the use of engineering plastic for the cage 5 is characterized in that the cage weight is lighter, self-lubricating, and the coefficient of friction is smaller than the iron plate cage. For this reason, combined with the effect of the lubricating oil present in the bearing, it becomes possible to suppress the occurrence of wear due to contact with the outer ring. Since these resins are lighter and have a smaller friction coefficient than steel plates, they are suitable for reducing torque loss and cage wear when starting the bearing.

テーパ面5dの幅方向の長さ寸法を、円すいころ4の平均直径の5%以上で、11%未満(好ましくは9%以下)としたので、円すいころ4の外径面とテーパ面5dとの間にあまり大きなくさび空間が形成されない。このため、くさび空間に入り込む潤滑油の量を少なくし、潤滑油の逃げ場が無くなることによるトルク損失を低減できる。   Since the length dimension in the width direction of the tapered surface 5d is 5% or more of the average diameter of the tapered roller 4 and less than 11% (preferably 9% or less), the outer diameter surface of the tapered roller 4 and the tapered surface 5d A very large wedge space is not formed between the two. For this reason, the amount of lubricating oil entering the wedge space can be reduced, and torque loss due to the absence of the escape space for the lubricating oil can be reduced.

柱部5cの厚さ寸法を、円すいころ4の平均直径の5%以上で、17%未満とすることにより、柱部5cの厚みを薄くして、保持器5の回転に対する潤滑油の流動抵抗を小さくし、トルク損失をより低減できる。   By setting the thickness dimension of the column portion 5c to 5% or more and less than 17% of the average diameter of the tapered rollers 4, the thickness of the column portion 5c is reduced, and the flow resistance of the lubricating oil to the rotation of the cage 5 is reduced. The torque loss can be further reduced.

図4に軸受の寿命試験の結果を示す。軸受Aが、保持器と外輪とが離れた典型的な従来の円錐ころ軸受である。軸受Bが、特許文献1記載の従来の円錐ころ軸受である。軸受Cが、本発明の円錐ころ軸受である。試験は、過酷潤滑、過大負荷条件下で行なった。同図より明らかなように、本発明に係る軸受Cはころ係数が軸受Bと同じ0.96であるが、寿命時間は軸受Bの約5倍以上にもなる。なお、軸受A−Cの寸法はφ45×φ81×16(単位mm)、ころ本数は24本(軸受A)、27本(軸受B、C)、油膜パラメータΛ=0.2である。   FIG. 4 shows the results of bearing life tests. The bearing A is a typical conventional tapered roller bearing in which the cage and the outer ring are separated from each other. The bearing B is a conventional tapered roller bearing described in Patent Document 1. The bearing C is the tapered roller bearing of the present invention. The test was conducted under severe lubrication and overload conditions. As is clear from the figure, the bearing C according to the present invention has a roller coefficient of 0.96, which is the same as that of the bearing B, but its life time is about five times that of the bearing B. The dimensions of the bearings AC are φ45 × φ81 × 16 (unit mm), the number of rollers is 24 (bearings A), 27 (bearings B and C), and the oil film parameter Λ = 0.2.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能である。例えば前記実施形態では保持器材料にPPS、PEEK、PA、PPA、PAI等のスーパーエンプラを使用したが、必要に応じて、強度増強のため、これら樹脂材料またはその他のエンジニアリング・プラスチックに、ガラス繊維又は炭素繊維などを配合したものを使用してもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be variously modified. For example, in the above-described embodiment, super engineering plastics such as PPS, PEEK, PA, PPA, and PAI are used for the cage material. However, if necessary, glass fiber is added to these resin materials or other engineering plastics for strength enhancement. Or what mix | blended carbon fiber etc. may be used.

本発明に係る円錐ころ軸受1は、自動車のトランスミッションやデファレンシャルに使用することができるが、自動車用歯車装置以外の用途に使用することも可能である。   The tapered roller bearing 1 according to the present invention can be used for automobile transmissions and differentials, but can also be used for applications other than automobile gear devices.

テーパ面の長さ寸法Lを円すいころの平均直径Dの7%とした保持器を用いた円すいころ軸受(実施例)と、テーパ面の長さ寸法Lを円すいころの平均直径Dの13%とした従来の保持器を用いた円すいころ軸受(比較例)とを用意した。なお、各円すいころ軸受は、寸法が外径100mm、内径45mm、幅27.25mmとした。また、保持器の柱部の厚さ寸法Tは、実施例のものが円すいころの平均直径Dの13%、比較例のものが17%とした。   Tapered roller bearing (Example) using a cage whose length L of the tapered surface is 7% of the average diameter D of the tapered roller, and 13% of the average diameter D of the tapered roller having a tapered surface length L A tapered roller bearing (comparative example) using the conventional cage described above was prepared. Each tapered roller bearing had an outer diameter of 100 mm, an inner diameter of 45 mm, and a width of 27.25 mm. Further, the thickness T of the column portion of the cage was set to 13% of the average diameter D of the tapered roller in the example and 17% in the comparative example.

実施例と比較例の円すいころ軸受について、縦型トルク試験機を用いたトルク測定試験を行った。試験条件は以下のとおりである。
アキシアル荷重:300kgf
回転速度:300〜2000rpm(100rpmピッチ)
潤滑条件:油浴潤滑(潤滑油:75W−90)
About the tapered roller bearing of an Example and a comparative example, the torque measurement test using the vertical torque tester was done. The test conditions are as follows.
Axial load: 300kgf
Rotational speed: 300-2000 rpm (100 rpm pitch)
Lubrication condition: oil bath lubrication (lubricating oil: 75W-90)

図9は、上記トルク測定試験の結果を示す。図9のグラフの縦軸は、比較例のもののトルクに対する実施例のもののトルクの低減率を表す。テーパ面の長さ寸法Lを円すいころの平均直径Dの7%と小さくした実施例のものは、低速回転から高速回転まで顕著なトルク低減効果が認められ、試験の最高回転速度である2000rpmでも12.0%のトルク低減率が得られている。この実施例のトルク低減効果には、柱部の厚さ寸法Tを薄くして、保持器の回転に対する潤滑油の流動抵抗を小さくした効果も含まれている。   FIG. 9 shows the results of the torque measurement test. The vertical axis of the graph of FIG. 9 represents the torque reduction rate of the embodiment with respect to the torque of the comparative example. In the example in which the length L of the tapered surface is as small as 7% of the average diameter D of the tapered roller, a remarkable torque reduction effect is recognized from low speed rotation to high speed rotation, and even at the maximum rotation speed of 2000 rpm of the test. A torque reduction rate of 12.0% is obtained. The torque reduction effect of this embodiment includes the effect of reducing the flow resistance of the lubricating oil against the rotation of the cage by reducing the thickness dimension T of the column portion.

(A)は本発明の円錐ころ軸受の部分断面図であり、(B)は同ころ軸受の縦断面図である。(A) is a fragmentary sectional view of the tapered roller bearing of the present invention, and (B) is a longitudinal sectional view of the roller bearing. 窓角が下限の円錐ころ軸受の部分拡大断面図である。It is a partial expanded sectional view of the tapered roller bearing whose window angle is a lower limit. 窓角が上限の円錐ころ軸受の部分拡大断面図である。It is a partial expanded sectional view of the tapered roller bearing whose window angle is an upper limit. 軸受の寿命試験の結果を示す図である。It is a figure which shows the result of the lifetime test of a bearing. 一般的な自動車トランスミッションの断面図である。It is sectional drawing of a common motor vehicle transmission. 一般的な自動車のデファレンシャルを示す断面図である。It is sectional drawing which shows the differential of a common motor vehicle. 保持器を外輪側に寄せた従来の円錐ころ軸受の断面図。Sectional drawing of the conventional tapered roller bearing which brought the retainer to the outer ring side. 従来の別の円錐ころ軸受の部分拡大断面図。The partial expanded sectional view of another conventional tapered roller bearing. トルク測定試験の結果を示すグラフである。It is a graph which shows the result of a torque measurement test. 円すいころ軸受において円すいころピッチ径(PCD)を変化させたときの剛性比およびトルク比の変化を表す線図である。It is a diagram showing the change of a rigidity ratio and a torque ratio when changing a tapered roller pitch diameter (PCD) in a tapered roller bearing.

符号の説明Explanation of symbols

1 軸受
2 内輪
2c 大鍔部
2b 小鍔部
2a 軌道面
3 外輪
3a 軌道面
5 保持器
5a 小径側環状部
5b 大径側環状部
5c 柱部
5d テーパ面(柱面)
5f 突起部

DESCRIPTION OF SYMBOLS 1 Bearing 2 Inner ring 2c Large collar part 2b Small collar part 2a Raceway surface 3 Outer ring 3a Raceway surface 5 Cage 5a Small diameter side annular part 5b Large diameter side annular part 5c Column part 5d Tapered surface (column surface)
5f Protrusion

Claims (3)

内輪と、外輪と、内輪と外輪との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持するポケットを有する保持器とを円すいころ軸受において、
前記保持器を、機械的強度、耐油性および耐熱性に優れたエンジニアリング・プラスチックで構成して、ポケット間に形成される柱部の内径面の両側に前記円すいころの外径面が摺接するテーパ面を設け、このテーパ面の幅方向の長さ寸法を、前記円すいころの平均直径の5%以上で、11%未満とするともに、相対面するテーパ面が成す角であるポケットの窓角を55°以上80°以下とし、さらにころ係数γを0.94以上としたことを特徴とする円すいころ軸受。
In a tapered roller bearing, an inner ring, an outer ring, a plurality of tapered rollers arranged to roll between the inner ring and the outer ring, and a cage having a pocket for holding the tapered rollers at a predetermined circumferential interval,
The retainer is made of engineering plastic having excellent mechanical strength, oil resistance, and heat resistance, and the tapered outer diameter surface is in sliding contact with both sides of the inner diameter surface of the column portion formed between the pockets. The tapered window has a width dimension in the width direction of 5% or more and less than 11% of the average diameter of the tapered rollers, and a pocket window angle that is an angle formed by the facing tapered surfaces. A tapered roller bearing having a roller coefficient of 55 ° to 80 ° and a roller coefficient γ of 0.94 or more.
前記柱部の厚さ寸法を、前記円すいころの平均直径の5%以上で、17%未満としたことを特徴とする請求項1の円すいころ軸受。 The tapered roller bearing according to claim 1, wherein a thickness dimension of the column portion is 5% or more and less than 17% of an average diameter of the tapered roller. 自走車両の動力伝達軸を支持することを特徴とする請求項1又は請求項2に記載の円すいころ軸受。

The tapered roller bearing according to claim 1 or 2, wherein a power transmission shaft of the self-propelled vehicle is supported.

JP2005311659A 2005-10-19 2005-10-26 Tapered roller bearing Pending JP2007120577A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005311659A JP2007120577A (en) 2005-10-26 2005-10-26 Tapered roller bearing
PCT/JP2006/320186 WO2007046263A1 (en) 2005-10-19 2006-10-10 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311659A JP2007120577A (en) 2005-10-26 2005-10-26 Tapered roller bearing

Publications (1)

Publication Number Publication Date
JP2007120577A true JP2007120577A (en) 2007-05-17

Family

ID=38144647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311659A Pending JP2007120577A (en) 2005-10-19 2005-10-26 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP2007120577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052657A (en) * 2007-08-27 2009-03-12 Ntn Corp Retainer for tapered roller bearing
JP2020112269A (en) * 2020-04-20 2020-07-27 Ntn株式会社 Cage and conical roller bearing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101240A (en) * 1997-09-26 1999-04-13 Ntn Corp Holder for conical roller bearing and manufacture thereof
JP2000170775A (en) * 1998-12-03 2000-06-20 Ntn Corp Conical roller bearing and gear shaft support device for vehicle
JP2005098412A (en) * 2003-09-25 2005-04-14 Koyo Seiko Co Ltd Tapered roller bearing
JP2005147365A (en) * 2003-11-19 2005-06-09 Nakanishi Metal Works Co Ltd Retainer for conical roller bearing and assembling method of conical roller bearing
JP2005147364A (en) * 2003-11-19 2005-06-09 Nakanishi Metal Works Co Ltd Holder for roller bearings, and its manufacturing method
JP2005188738A (en) * 2003-12-02 2005-07-14 Ntn Corp Tapered roller bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101240A (en) * 1997-09-26 1999-04-13 Ntn Corp Holder for conical roller bearing and manufacture thereof
JP2000170775A (en) * 1998-12-03 2000-06-20 Ntn Corp Conical roller bearing and gear shaft support device for vehicle
JP2005098412A (en) * 2003-09-25 2005-04-14 Koyo Seiko Co Ltd Tapered roller bearing
JP2005147365A (en) * 2003-11-19 2005-06-09 Nakanishi Metal Works Co Ltd Retainer for conical roller bearing and assembling method of conical roller bearing
JP2005147364A (en) * 2003-11-19 2005-06-09 Nakanishi Metal Works Co Ltd Holder for roller bearings, and its manufacturing method
JP2005188738A (en) * 2003-12-02 2005-07-14 Ntn Corp Tapered roller bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052657A (en) * 2007-08-27 2009-03-12 Ntn Corp Retainer for tapered roller bearing
JP2020112269A (en) * 2020-04-20 2020-07-27 Ntn株式会社 Cage and conical roller bearing
JP7072017B2 (en) 2020-04-20 2022-05-19 Ntn株式会社 Cage and tapered roller bearings

Similar Documents

Publication Publication Date Title
JP2005188738A (en) Tapered roller bearing
WO2005111446A1 (en) Tapered roller bearing
JP5005209B2 (en) Tapered roller bearing
US20190219102A1 (en) Sealed bearing
US20060045403A1 (en) Tapered roller bearing
JP4975293B2 (en) Tapered roller bearings
JP5005207B2 (en) Tapered roller bearing
JP2007120577A (en) Tapered roller bearing
JP4994636B2 (en) Tapered roller bearing
JP4994637B2 (en) Roller bearing
JP5031219B2 (en) Tapered roller bearing
JP5008856B2 (en) Tapered roller bearing
JP2006022824A (en) Tapered roller bearing for differential
JP2007120575A (en) Tapered roller bearing
JP2006022821A (en) Tapered roller bearing
JP4994643B2 (en) Tapered roller bearing
JP2012107765A (en) Tapered roller bearing
JP4717574B2 (en) Tapered roller bearing
JP5031220B2 (en) Tapered roller bearing
JP2007127219A (en) Tapered roller bearing for differential
JP2007127220A (en) Tapered roller bearing for transmission
JP4987278B2 (en) Tapered roller bearing for transmission
JP2005351472A (en) Tapered roller bearing
JP2007127217A (en) Tapered roller bearing
JP2006022823A (en) Tapered roller bearing for transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080919

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A02 Decision of refusal

Effective date: 20111215

Free format text: JAPANESE INTERMEDIATE CODE: A02