JP2007119871A - Method for depositing metal film, and method for depositing electrode pattern by means of metal film - Google Patents

Method for depositing metal film, and method for depositing electrode pattern by means of metal film Download PDF

Info

Publication number
JP2007119871A
JP2007119871A JP2005315575A JP2005315575A JP2007119871A JP 2007119871 A JP2007119871 A JP 2007119871A JP 2005315575 A JP2005315575 A JP 2005315575A JP 2005315575 A JP2005315575 A JP 2005315575A JP 2007119871 A JP2007119871 A JP 2007119871A
Authority
JP
Japan
Prior art keywords
metal powder
metal
nitrogen gas
film
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005315575A
Other languages
Japanese (ja)
Inventor
Shinji Kanda
真治 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELFO TEC KK
ELFO-TEC KK
Original Assignee
ELFO TEC KK
ELFO-TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELFO TEC KK, ELFO-TEC KK filed Critical ELFO TEC KK
Priority to JP2005315575A priority Critical patent/JP2007119871A/en
Publication of JP2007119871A publication Critical patent/JP2007119871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for depositing a metal film which is inexpensive compared with the deposition of a metal film by the conventional vacuum deposition, and can solve the problem that metal powder does not stuck onto a substrate due to its oxiidadation when the metal powder is sprayed on the substrate to deposit the metal film. <P>SOLUTION: The inside of a working chamber is made into a gaseous nitrogen atmosphere, and a mixed fluid of gaseous nitrogen and metal powder is sprayed on a working substrate in the gaseous nitrogen atmosphere, thus a metal film can be deposited on the surface of the substrate without oxidizing the metal powder, and a wiring pattern by the metal can easily and stably be formed on the working substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、安定して簡単に無機基材上に均一な金属被膜を形成させる方法に関し、さらにこの金属被膜を使用して均一な電極パターンを形成する方法に関する。 The present invention relates to a method for forming a uniform metal film on an inorganic substrate stably and easily, and further relates to a method for forming a uniform electrode pattern using the metal film.

従来一般的に基材表面に金属膜を形成する方法としては、真空蒸着により金属膜を形成する方法が一般的に行われてきた。 Conventionally, as a method of generally forming a metal film on a substrate surface, a method of forming a metal film by vacuum deposition has been generally performed.

真空蒸着以外の方法として、高圧エアー等の高圧ガスを使用して空気中に一般的なサンドブラスト装置を使用して低融点の金属パウダーを噴射することにより金属膜を形成する方法が提案されている。 As a method other than vacuum deposition, a method of forming a metal film by injecting low melting point metal powder into the air using a high-pressure gas such as high-pressure air and using a general sandblasting device has been proposed. .

特開2001−94235号公報JP 2001-94235 A 特開2000−265286号公報JP 2000-265286 A

従来の真空蒸着による金属膜を形成する方法では、高真空にするために長時間時間がかかる問題や、基材が大型になると大型の真空装置が必要となり、装置の価格が高くなりまた真空装置が大型になればより高真空にするために長時間時間がかかる問題があった。 In the conventional method of forming a metal film by vacuum deposition, it takes a long time to achieve a high vacuum, and if the base material is large, a large vacuum device is required, which increases the price of the device and increases the vacuum device. There is a problem that it takes a long time to make a higher vacuum when the size of the substrate becomes larger.

また、空気中に金属粉末を高圧ガスで噴射する方法では、基材に金属粉末が衝突した時に生じる衝突熱で金属粉末表面の金属が溶融して基材に付着するが、付着するのは融点が500℃以下の錫や亜鉛やインジウム等の融点が低い金属に限られ、低融点の金属を使用しても基材表面への噴射及び衝突を繰り返している間に金属粉末表面が酸化して付着しなくなる問題があった。 In addition, in the method of injecting metal powder into the air with high-pressure gas, the metal on the surface of the metal powder melts and adheres to the base material due to the impact heat generated when the metal powder collides with the base material. Is limited to metals with a low melting point such as tin, zinc or indium of 500 ° C. or less. Even when a low melting point metal is used, the surface of the metal powder is oxidized during repeated injection and collision to the substrate surface. There was a problem of not sticking.

特に融点が600℃以上の高融点の金属ではより高温になり、酸化被膜が形成しやすくなり、従来の空気中で酸素が大量に存在する雰囲気では金属被膜を形成できなかった。 In particular, a high melting point metal having a melting point of 600 ° C. or higher has a higher temperature, and an oxide film can be easily formed. In a conventional atmosphere where a large amount of oxygen exists in air, the metal film cannot be formed.

また、金属粉末を噴射するエアー源として高圧エアーではなく、窒素ガス等のガスを使用しても一般のサクション式サンドブラスト装置は研磨材を吸い込んで噴射するために、外気も研磨材と一緒に取り込むため、窒素ガスのみでの噴射は困難であり、またノズルから金属粉末を噴射したときに大気中の酸素も取り込むため、金属が酸化してしまい金属皮膜を形成できなかった。 In addition, even if a gas such as nitrogen gas is used as an air source for injecting metal powder, a general suction type sandblasting device sucks and injects the abrasive, so that outside air is also taken in with the abrasive. Therefore, injection with only nitrogen gas is difficult, and oxygen in the atmosphere is also taken in when metal powder is injected from the nozzle, so that the metal is oxidized and a metal film cannot be formed.

一般的に電気配線等の電極パターン形成に使用される金属としては、電気抵抗の低い銅やアルミや銀が使用されるが、この電気抵抗の低い金属はいずれも600℃以上の高融点の金属であり、高融点の金属被膜が酸化することなく簡単に基材に形成できる方法が望まれていた。 In general, copper, aluminum, or silver having a low electric resistance is used as a metal used for forming an electrode pattern for electric wiring or the like, and any metal having a low electric resistance has a high melting point of 600 ° C. or higher. Therefore, there has been a demand for a method by which a high melting point metal film can be easily formed on a substrate without being oxidized.

前記課題を解決するための手段として、加工基板を設置した加工室内を、ブロアーの負圧により加工室内の空気を吸い込みながら窒素ガスを送り込むことにより加工室内を窒素ガス雰囲気とし、平均粒径が30μm以下の金属粉末を導入したタンク内を0.05MPa以上の圧力の窒素ガスにて加圧し、該窒素ガスにて加圧したタンク内より金属粉末供給装置を介して一定量の該金属粉末を窒素ガスと共に金属粉末供給管を経て金属粉末噴射ノズルに供給し、金属粉末噴射ノズルより該金属粉末と窒素ガスの混合流体を吹き付けることにより、金属又はセラミック又はガラス又はシリコンウェハー又は化合物半導体又は水晶等の無機基材表面に金属膜を形成した。 As a means for solving the above-mentioned problems, the processing chamber is provided with a nitrogen gas atmosphere by feeding nitrogen gas while sucking the air in the processing chamber by the negative pressure of the blower, and the average particle size is 30 μm. The inside of the tank into which the following metal powder was introduced was pressurized with nitrogen gas at a pressure of 0.05 MPa or more, and a certain amount of the metal powder was transferred from the tank pressurized with the nitrogen gas through the metal powder supply device. In addition, it is supplied to a metal powder injection nozzle through a metal powder supply pipe, and by spraying a mixed fluid of the metal powder and nitrogen gas from the metal powder injection nozzle, an inorganic such as metal, ceramic, glass, silicon wafer, compound semiconductor, crystal, etc. A metal film was formed on the substrate surface.

加工室内を窒素ガス雰囲気とし、窒素ガス雰囲気中に窒素ガスにて加圧した金属粉末と窒素ガスの混合流体を吹き付けることにより、酸素が非常に希薄な状態になり加工基板に衝突したことにより発生した熱により金属粉体が酸化することを防止でき、安定して金属又はセラミック又はガラス又はシリコンウェハー又は化合物半導体又は水晶等の無機基材表面に金属膜を形成することができた。 Occurs when the processing chamber has a nitrogen gas atmosphere and a mixed fluid of metal powder and nitrogen gas pressurized with nitrogen gas is blown into the nitrogen gas atmosphere, causing oxygen to become extremely dilute and colliding with the processing substrate. It was possible to prevent the metal powder from being oxidized by the applied heat, and to stably form a metal film on the surface of an inorganic base material such as metal, ceramic, glass, silicon wafer, compound semiconductor, or crystal.

また酸素が高濃度で存在する空気中ではできなかった融点が600℃以上の金属粉末を基材表面に吹き付けて金属膜を形成することが可能になり、融点が600℃以上の導電性の高いアルミ・銅・銀等の金属を使用して安価に安定してセラミック又はガラス又はシリコンウェハー又は化合物半導体又は水晶等の基材表面に配線パターンを形成することが可能となった。 Further, it becomes possible to form a metal film by spraying a metal powder having a melting point of 600 ° C. or higher onto the substrate surface, which could not be performed in air containing a high concentration of oxygen, and has a high conductivity having a melting point of 600 ° C. or higher. It has become possible to form a wiring pattern on the surface of a base material such as ceramic, glass, silicon wafer, compound semiconductor, crystal, or the like, using metals such as aluminum, copper, and silver at low cost.

本発明の金属被膜形成方法及び金属被膜による電極パターン形成方法を実施するための最良の形態について、以下に図を参照して説明する。 The best mode for carrying out the metal film forming method and the electrode pattern forming method using the metal film of the present invention will be described below with reference to the drawings.

図3はレジストとして感光性ドライフィルムを使用して基板上にレジストパターンを形成後窒素ガスにて金属粉末を吹き付け、配線パターンを形成する例である。 FIG. 3 shows an example of forming a wiring pattern by using a photosensitive dry film as a resist to form a resist pattern on a substrate and then spraying metal powder with nitrogen gas.

感光性ドライフィルム以外に液状感光性レジストを使用するか、スクリーン印刷にて基板上にレジストインクを使用しレジストパターンを形成しても良い。 A liquid photosensitive resist other than the photosensitive dry film may be used, or a resist pattern may be formed on the substrate by screen printing using a resist ink.

図3の(3−1)にて、ドライフィルム用ラミネータを使用して加工基板7上に感光性ドライフィルム41をラミネートする。 At (3-1) in FIG. 3, a photosensitive dry film 41 is laminated on the processed substrate 7 using a laminator for dry film.

(3−2)にて加工基板7に貼り付けた感光性ドライフィルム41上にガラスマスク又はフィルムマスク等のマスクパターン40を乗せて露光装置にて紫外線露光を行う。 A mask pattern 40 such as a glass mask or a film mask is placed on the photosensitive dry film 41 attached to the processed substrate 7 in (3-2), and ultraviolet exposure is performed by an exposure apparatus.

(3−3)にて露光した感光性ドライフィルム41をドライフィルム用現像機にて現像液44を現像ノズル43より吹き付け現像を行う。 The photosensitive dry film 41 exposed in (3-3) is developed by spraying a developer 44 from the developing nozzle 43 with a dry film developing machine.

(3−4)にて窒素ガス雰囲気中で窒素ガスと金属粉末の混合流体6を吹き付けて金属膜50を加工基板40上に形成させる。 In (3-4), a mixed fluid 6 of nitrogen gas and metal powder is sprayed in a nitrogen gas atmosphere to form the metal film 50 on the processed substrate 40.

金属粉末を吹き付ける装置としては図1及び図2のような装置を使用する。
図1及び図2に於いて、金属粉末加圧タンク内22に金属粉末5を充填した後、金属粉末加圧弁24を閉じる。
An apparatus as shown in FIGS. 1 and 2 is used as an apparatus for spraying metal powder.
1 and 2, the metal powder pressurization valve 24 is closed after the metal powder pressurization tank 22 is filled with the metal powder 5.

集塵機35はサイクロン32を経て、加工室30とつながっており集塵機35のブロアーの負圧により加工室内の空気を吸い込みながら、金属粉末圧送用窒素ガス導入部3に窒素ガスを導入し、導入した窒素ガスは金属粉末供給管(金属粉末供給ホース28)から金属粉末噴射ノズ20ルより加工室内30に供給されることにより加工室内が窒素ガス雰囲気となり、加工室内の酸素濃度が低下し、ほぼ窒素ガス雰囲気となる。 The dust collector 35 is connected to the processing chamber 30 via the cyclone 32, and nitrogen gas is introduced into the nitrogen gas introduction portion 3 for feeding metal powder while sucking air in the processing chamber by the negative pressure of the blower of the dust collector 35. The gas is supplied from the metal powder supply pipe (metal powder supply hose 28) into the processing chamber 30 from the metal powder injection nozzle 20 to bring the processing chamber into a nitrogen gas atmosphere, the oxygen concentration in the processing chamber is lowered, and the nitrogen gas is substantially reduced. It becomes an atmosphere.

金属粉末噴射ノズル20より窒素ガスを供給する代わりに、集塵機のブロアーの負圧により加工室内の空気を吸い込みながら直接加工室内に窒素ガスを導入しても良い。 Instead of supplying nitrogen gas from the metal powder injection nozzle 20, nitrogen gas may be directly introduced into the processing chamber while sucking air in the processing chamber by the negative pressure of the blower of the dust collector.

加工室内30に窒素ガスを供給後、タンク加圧用窒素ガス導入部2より窒素ガスを導入し、金属粉末加圧タンク22内を窒素ガスにて加圧し金属粉末定量供給装置10から一定量の金属粉末と窒素ガスの混合流体を金属粉末供給管(金属粉末供給ホース)28に供給し、金属粉末噴射ノズル20より金属粉末と窒素ガスの混合流体6を噴射し、加工基板7に吹き付ける。 After supplying nitrogen gas into the processing chamber 30, nitrogen gas is introduced from the tank pressurizing nitrogen gas introducing unit 2, and the metal powder pressurizing tank 22 is pressurized with nitrogen gas, and a certain amount of metal is supplied from the metal powder quantitative supply device 10. A mixed fluid of powder and nitrogen gas is supplied to a metal powder supply pipe (metal powder supply hose) 28, and a mixed fluid 6 of metal powder and nitrogen gas is sprayed from a metal powder spray nozzle 20 and sprayed onto the processed substrate 7.

金属粉末噴射ノズル20は加工室内で左右に揺動させ、加工基板7を前後に移動させることにより加工基板7全面に金属粉末と窒素ガスの混合流体6を吹き付ける。 The metal powder injection nozzle 20 swings left and right in the processing chamber and moves the processed substrate 7 back and forth, thereby spraying a mixed fluid 6 of metal powder and nitrogen gas over the entire surface of the processed substrate 7.

吹き付けた金属粉末5は、加工室のホッパー33から集塵機のブロアーの負圧によりサイクロン導管27を経てサイクロン32にて捕集され、金属粉末捕集タンク29に入る。 The sprayed metal powder 5 is collected by the cyclone 32 through the cyclone conduit 27 by the negative pressure of the blower of the dust collector from the hopper 33 in the processing chamber, and enters the metal powder collection tank 29.

金属粉末噴射ノズル20より噴射終了後金属粉末加圧弁24を開くことにより金属粉末5は金属粉末捕集タンク29より金属粉末加圧タンク22内に供給され、再び金属粉末噴射ノズル20より窒素ガスと金属粉末の混合流体が噴射される。 The metal powder 5 is supplied from the metal powder collection tank 29 into the metal powder pressurization tank 22 by opening the metal powder pressurization valve 24 after completion of the injection from the metal powder injection nozzle 20, and again with the nitrogen gas from the metal powder injection nozzle 20. A mixed fluid of metal powder is injected.

金属粉末加圧タンク24を2ヶ設け、交互に弁を開くことにより連続してサイクロン32で捕集された金属粉末5を金属粉末噴射ノズル20から噴射中でも金属粉末加圧タンク22内に金属粉末5を供給できるようにしても良い。 Two metal powder pressure tanks 24 are provided, and the metal powder 5 continuously collected by the cyclone 32 by opening the valve alternately is injected into the metal powder pressure tank 22 even during the injection from the metal powder injection nozzle 20. 5 may be supplied.

金属粉末5を噴射させる窒素ガスの圧力としては0.05MPa以上で0.3MPa以下の圧力望ましくは0.1MPa以上0.3MPa以下の圧力にて加工する。 The pressure of the nitrogen gas for injecting the metal powder 5 is 0.05 MPa or more and 0.3 MPa or less, preferably 0.1 MPa or more and 0.3 MPa or less.

加工圧力が0.05MPaより小さいと基板への衝突して発生する熱エネルギーが小さくなり0.3MPaより大きいと熱エネルギーの発生が大きくなり、加工室に残留した微量の酸素にて酸化されやすくなり、長時間の加工で金属膜の付着が悪くなる傾向にある。 If the processing pressure is less than 0.05 MPa, the thermal energy generated by colliding with the substrate will be small, and if it is greater than 0.3 MPa, the generation of thermal energy will increase and it will be easily oxidized by the trace amount of oxygen remaining in the processing chamber. There is a tendency that the adhesion of the metal film becomes worse with time processing.

加工中は加工室内に窒素ガスを導入し、酸素濃度を限りなく0%とすることが望ましいが、少量の酸素が残っている状態でも加工圧力を0.3MPa以下で加工すれば金属粉末の酸化を抑えて金属粉末を噴射させ金属膜を形成することが可能となる。 During processing, it is desirable to introduce nitrogen gas into the processing chamber so that the oxygen concentration is 0%. However, even if a small amount of oxygen remains, if the processing pressure is 0.3 MPa or less, the metal powder is oxidized. It is possible to form a metal film by spraying metal powder while suppressing.

窒素ガス雰囲気とした加工室内の酸素濃度としては5%以下で望ましくは2%以下とする。 The oxygen concentration in the processing chamber in a nitrogen gas atmosphere is 5% or less, preferably 2% or less.

電極パターンを形成する場合は、噴射する金属粉末の粒径としては平均粒径で30μm以下であり、望ましくは20μm以下の粒径とする。
金属の粒径が大きくなるとパターンの間に金属粒子が詰まり加工できなくなる。
In the case of forming an electrode pattern, the average particle size of the metal powder to be ejected is 30 μm or less, preferably 20 μm or less.
When the metal particle size is increased, the metal particles are clogged between the patterns and cannot be processed.

金属による電極パターンを形成する場合は、導電率が 以上の金属粉末を使用することが望ましく、金属の融点として600℃以上1200℃以下のアルミニウム又は銅又は銀等の金属粉末を使用する。 In the case of forming an electrode pattern made of metal, it is desirable to use a metal powder having an electrical conductivity of above, and a metal powder such as aluminum, copper, or silver having a melting point of 600 ° C. or higher and 1200 ° C. or lower is used.

金属の融点が1200℃より高い高融点の金属粉末を窒素ガス雰囲気下で窒素ガスにて吹き付けた場合、金属膜を形成することができなかった。 When a metal powder having a high melting point higher than 1200 ° C. was blown with nitrogen gas in a nitrogen gas atmosphere, a metal film could not be formed.

一般的に電極パターンとして使用されている金属は融点が600℃以上であり、600℃より低い金属では金属の硬度が低く金属膜を吹き付けた場合に付着する数ミクロンの膜厚では実用性に乏しい。 Generally, the metal used as an electrode pattern has a melting point of 600 ° C. or higher, and a metal lower than 600 ° C. has low metal hardness and is not practical with a film thickness of several microns attached when a metal film is sprayed. .

本発明の窒素ガス雰囲気で窒素ガスと金属粉末の混合流体を吹き付けて金属膜を形成する方法では、数ミクロンの膜厚しか形成できないため、膜厚をさらに厚くするためには吹き付けにより形成した金属膜を基にして無電解鍍金にて膜厚を厚くする。 In the method of forming a metal film by spraying a mixed fluid of nitrogen gas and metal powder in the nitrogen gas atmosphere of the present invention, since only a film thickness of several microns can be formed, a metal formed by spraying is required to further increase the film thickness. The film thickness is increased by electroless plating based on the film.

以下実施例をあげて、本発明を具体的に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.

アルミナ基板上にサンドブラスト用感光性ドライフィルムの東京応化工業(株)製BF45Zを(株)エルフォテック製ドライフィルムラミネータELM−350にてラミネート温度70℃でラミネートする。 BF45Z manufactured by Tokyo Ohka Kogyo Co., Ltd., which is a photosensitive dry film for sandblasting, is laminated on an alumina substrate at a laminating temperature of 70 ° C. using a dry film laminator ELM-350 manufactured by Elfotec.

200μm幅のラインパターンのフィルムマスクをラミネートした感光性ドライフィルム41上に乗せて、真空密着させて露光量200mJにて(株)エルフォテック製露光機EEX350にて露光する。 It is placed on the photosensitive dry film 41 laminated with a film mask having a line pattern of 200 μm width, and is brought into close contact with a vacuum, and is exposed with an exposure machine EEX350 manufactured by Elfotec Co., Ltd. at an exposure amount of 200 mJ.

(株)エルフォテック製現像機を使用して露光した感光性ドライフィルムを現像する。 The exposed photosensitive dry film is developed using a developing machine manufactured by Elfotec.

現像液の温度は30℃で噴射圧力0.25Mpaで現像液濃度0.3%の炭酸ナトリウム水溶液を使用した。 The temperature of the developer was 30 ° C., an injection pressure of 0.25 MPa, and an aqueous sodium carbonate solution having a developer concentration of 0.3% was used.

あらかじめ、金属粉末加圧タンク内に平均粒径約10μmの銅粉5kgを投入した後金属粉末加圧弁を閉じた。 In advance, 5 kg of copper powder having an average particle size of about 10 μm was charged into the metal powder pressure tank, and then the metal powder pressure valve was closed.

集塵機の電源を入れて、集塵機のブロアーにより加工室内を負圧にしながら金属粉末圧送用窒素ガス導入部より窒素ガスを導入し、金属粉末噴射ノズルより窒素ガスのみ圧力0.1MPaの圧力にて約3分間噴射させ加工室内を窒素ガス雰囲気とした。 Turn on the dust collector, introduce nitrogen gas from the nitrogen gas introduction part for metal powder pumping while making the processing chamber negative pressure by the blower of the dust collector, and only nitrogen gas from the metal powder injection nozzle at a pressure of 0.1 MPa about 3 The process chamber was sprayed for minutes to create a nitrogen gas atmosphere.

ノズルを左右に5m/分の速度で左右に揺動し、コンベアを20mm/分の速度で前に移動させながら、タンク加圧用窒素ガス導入部より窒素ガスを導入し、金属粉末加圧タンク内を窒素ガスにて加圧して、金属粉末定量供給装置から170g/分の量の銅粉と0.15Mpaの圧力の窒素ガスを金属粉末供給管(金属粉末供給ホース)に供給し金属粉末噴射ノズルより銅粉を0.15MPaの圧力でアルミナ基板全面に吹き付けた。 The nozzle is swung left and right at a speed of 5 m / min, and the conveyor is moved forward at a speed of 20 mm / min. Pressurize with nitrogen gas, supply copper powder of 170g / min and nitrogen gas of pressure 0.15Mpa from the metal powder quantitative supply device to the metal powder supply pipe (metal powder supply hose) from the metal powder injection nozzle Copper powder was sprayed on the entire surface of the alumina substrate at a pressure of 0.15 MPa.

銅粉を吹き付けたアルミナ基板を加工室から取り出し、1%のモノエタノールアミン水溶液につけて、アルミナ基板表面のドライフィルムを剥離し、膜厚約2μmの銅膜による配線パターンを形成した。 The alumina substrate onto which the copper powder was sprayed was taken out of the processing chamber, put on a 1% monoethanolamine aqueous solution, the dry film on the surface of the alumina substrate was peeled off, and a wiring pattern with a copper film having a thickness of about 2 μm was formed.

本発明の産業上の利用可能性としては、セラミック等の基板上に大気圧上の窒素ガス雰囲気中で金属粉末を吹き付けることにより安価に安定して耐熱性のセラミック等の基板上に配線パターンを形成することが可能となる。 As industrial applicability of the present invention, a metal pattern is sprayed on a substrate such as a ceramic in a nitrogen gas atmosphere at atmospheric pressure, and a wiring pattern can be formed on the substrate such as a heat-resistant ceramic stably. It becomes possible to form.

金属粉末を噴射する装置の側面図Side view of a device for jetting metal powder 金属粉末を噴射する機構の断面図Cross-sectional view of mechanism for injecting metal powder 金属による電極パターン形成の工程図Process diagram of electrode pattern formation with metal

符号の説明Explanation of symbols

1 高圧ガス
2 タンク加圧用窒素ガス導入部
3 金属粉末圧送用窒素ガス導入部
5 金属粉末
6 窒素ガスと金属粉末の混合流体
7 加工基板
10 金属粉末定量供給装置
16 金属粉末供給ローラー
17 金属粉末取り出し部
20 金属粉末噴射ノズル
21 金属粉末投入タンク
22 金属粉末加圧タンク
23 金属粉末噴射ノズルチップ
24 金属粉末加圧弁
26 タンク加圧用窒素ガス導管
27 サイクロン導管
28 金属粉末供給管(金属粉末供給ホース)
29 金属粉末捕集タンク
30 加工室
31 金属粉末噴射装置本体
32 分級装置(サイクロン)
33 ホッパー
34 本体導管
35 集塵機
36 バイブレーター
37 集塵用導管
38 ノズル駆動部
39 コンベア駆動部
40 マスクパターン
41 感光性ドライフィルム
42 ラミネートロール
43 現像ノズル
44 現像液
45 パターン形成した感光性ドライフィルム
46 剥離液
47 剥離液噴射ノズル
50 金属膜
DESCRIPTION OF SYMBOLS 1 High pressure gas 2 Nitrogen gas introduction part for tank pressurization 3 Nitrogen gas introduction part for metal powder pressure feeding 5 Metal powder 6 Mixed fluid of nitrogen gas and metal powder 7 Processed substrate 10 Metal powder fixed supply device 16 Metal powder supply roller 17 Metal powder take-out Unit 20 Metal powder injection nozzle 21 Metal powder injection tank 22 Metal powder pressurization tank 23 Metal powder injection nozzle chip 24 Metal powder pressurization valve 26 Nitrogen gas conduit 27 for tank pressurization Cyclone conduit 28 Metal powder supply pipe (metal powder supply hose)
29 Metal powder collection tank 30 Processing chamber 31 Metal powder injection device body 32 Classifier (Cyclone)
33 Hopper 34 Main body conduit 35 Dust collector 36 Vibrator 37 Dust collection conduit 38 Nozzle driving unit 39 Conveyor driving unit 40 Mask pattern 41 Photosensitive dry film 42 Laminating roll 43 Developing nozzle 44 Developer 45 Patterned photosensitive dry film 46 Stripping solution 47 Stripping liquid injection nozzle 50 Metal film

Claims (2)

平均粒径が30μm以下であり融点が1200℃以下の金属粉末を導入したタンク内を0.05MPa以上の圧力の窒素ガスにて加圧し、該窒素ガスにて加圧したタンク内より一定量の該金属粉末を窒素ガスと共に金属粉末供給管を経て金属粉末噴射ノズルに供給し、金属粉末噴射ノズルより該金属粉末と窒素ガスの混合流体を、あらかじめ加工室内をブロアーの負圧にて加工室内の空気を吸い込みながら窒素ガスを加工室内に導入し、ほぼ窒素ガス雰囲気状態にした加工室内に設置した金属又はセラミック又はガラス又はシリコンウェハー又は化合物半導体又は水晶等の無機基材に吹き付けることにより該金属又はセラミック又はガラス又はシリコンウェハー又は化合物半導体又は水晶等の無機基材表面に金属被膜を形成させることを特徴とする金属被膜形成方法。 The inside of a tank into which metal powder having an average particle diameter of 30 μm or less and a melting point of 1200 ° C. or less is introduced is pressurized with nitrogen gas at a pressure of 0.05 MPa or more, and a certain amount of the tank is pressurized from inside the tank pressurized with the nitrogen gas. The metal powder is supplied together with nitrogen gas to the metal powder injection nozzle through the metal powder supply pipe, and the mixed fluid of the metal powder and nitrogen gas is previously supplied from the metal powder injection nozzle to the air in the processing chamber at the negative pressure of the blower. Nitrogen gas is introduced into the processing chamber while inhaling air, and the metal or ceramic is sprayed onto an inorganic base material such as a metal, ceramic, glass, silicon wafer, compound semiconductor, crystal, or the like installed in the processing chamber in an almost nitrogen gas atmosphere state. Or a metal coating characterized by forming a metal film on the surface of an inorganic base material such as glass, silicon wafer, compound semiconductor or crystal. Film forming method. 請求項1記載の金属被膜形成方法に於いて、あらかじめセラミック又はガラス又はシリコンウェハー又は化合物半導体又は水晶等の加工基板上にスクリーン印刷によりレジストインクを印刷しレジストパターンを形成するか、又は感光性ドライフィルム等のフォトレジストによりレジストパターンを形成後、該レジストパターンを形成した加工基板に窒素ガスと金属粉末の混合流体を吹き付け、レジスト以外の部分に金属膜を形成後、レジストを剥離して電極パターンを形成することを特徴とする加工基板上への金属被膜による電極パターン形成方法。 2. The method of forming a metal film according to claim 1, wherein a resist ink is printed by screen printing on a ceramic, glass, silicon wafer, compound semiconductor, quartz or other processed substrate in advance, or a photosensitive dry film is formed. After forming a resist pattern with a photoresist such as a film, spray a mixed fluid of nitrogen gas and metal powder onto the processed substrate on which the resist pattern is formed, and after forming a metal film on the part other than the resist, the resist is peeled off to form an electrode pattern A method for forming an electrode pattern with a metal film on a processed substrate.
JP2005315575A 2005-10-31 2005-10-31 Method for depositing metal film, and method for depositing electrode pattern by means of metal film Pending JP2007119871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315575A JP2007119871A (en) 2005-10-31 2005-10-31 Method for depositing metal film, and method for depositing electrode pattern by means of metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315575A JP2007119871A (en) 2005-10-31 2005-10-31 Method for depositing metal film, and method for depositing electrode pattern by means of metal film

Publications (1)

Publication Number Publication Date
JP2007119871A true JP2007119871A (en) 2007-05-17

Family

ID=38144016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315575A Pending JP2007119871A (en) 2005-10-31 2005-10-31 Method for depositing metal film, and method for depositing electrode pattern by means of metal film

Country Status (1)

Country Link
JP (1) JP2007119871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180160A (en) * 2015-03-24 2016-10-13 オーエム産業株式会社 Production method of device
KR20240020073A (en) 2022-08-05 2024-02-14 주식회사 엘지에너지솔루션 Powder feeder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180160A (en) * 2015-03-24 2016-10-13 オーエム産業株式会社 Production method of device
KR20240020073A (en) 2022-08-05 2024-02-14 주식회사 엘지에너지솔루션 Powder feeder

Similar Documents

Publication Publication Date Title
TWI250136B (en) Glass plate surface etching method, glass plate etching apparatus, glass plate for flat panel display, and flat panel display
JP2008186864A (en) Cleaning method of gate valve, and substrate treatment system
WO2004070809A1 (en) Method for manufacturing display
JP5565673B2 (en) Mist etching apparatus and mist etching method
CN106232867B (en) Film forms equipment, substrate processing apparatus and device producing method
JP2012170872A (en) Substrate cleaning apparatus, substrate cleaning method and apparatus and method for manufacturing display
TW200949013A (en) Ceramic sprayed member, making method, abrasive medium for use therewith
CN100418774C (en) Nozzle plate producing method, nozzle plate, liquid droplet ejecting head and liquid droplet ejecting apparatus
JP2003309100A (en) Resist film removing device and method and organic matter removing device and method therefor
TW200820856A (en) Method of forming electrical wiring and method of repairing the same
TWI577504B (en) And a direct pressure type bead processing apparatus for direct injection type bead processing apparatus
KR20060050162A (en) A cleaning method and a cleaning apparatus for performing the method
JP2007119871A (en) Method for depositing metal film, and method for depositing electrode pattern by means of metal film
JP2006286947A (en) Method and apparatus for cleaning electronic device
JP4448458B2 (en) Substrate cleaning method and substrate cleaning apparatus
WO2013172403A1 (en) Film-formation device and film-formation method
JP2013116531A (en) Pattern cutting method for glass epoxy substrate and abrasive for use in the same
JP3922003B2 (en) Method of joining circuit body to flat panel display panel
WO2007004431A1 (en) Method of forming high-resolution pattern and apparatus therefor
TWI280218B (en) Agitated machine for wet process
JP3232070B2 (en) Etching equipment
JPH02211691A (en) Etching method for forming fine pattern and etching device
WO2012090815A1 (en) Resist removal device and resist removal method
JP2003089060A (en) Sand blasting method and abrasive component for sand blast machining
JP2008146994A (en) Treatment device