JP2007119269A - Piezoelectric ceramic composition and piezoelectric element - Google Patents

Piezoelectric ceramic composition and piezoelectric element Download PDF

Info

Publication number
JP2007119269A
JP2007119269A JP2005310241A JP2005310241A JP2007119269A JP 2007119269 A JP2007119269 A JP 2007119269A JP 2005310241 A JP2005310241 A JP 2005310241A JP 2005310241 A JP2005310241 A JP 2005310241A JP 2007119269 A JP2007119269 A JP 2007119269A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
piezoelectric
ceramic composition
composition
strain constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005310241A
Other languages
Japanese (ja)
Other versions
JP4927378B2 (en
Inventor
Masato Yamazaki
正人 山崎
Kohei Ito
浩平 伊藤
Yasudai Fujii
靖大 藤井
Katsuya Yamagiwa
勝也 山際
Takeshi Mitsuoka
健 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005310241A priority Critical patent/JP4927378B2/en
Publication of JP2007119269A publication Critical patent/JP2007119269A/en
Application granted granted Critical
Publication of JP4927378B2 publication Critical patent/JP4927378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic composition which has high heat resistance and large piezoelectric strain constant, and is easily manufactured. <P>SOLUTION: The piezoelectric ceramic composition contains Na, Bi, Ti and Co and each content ratio of Na, Bi, Ti and Co expressed in terms of oxide satisfies following composition range (1): aNa<SB>2</SB>O-bBi<SB>2</SB>O<SB>3</SB>-cTiO<SB>2</SB>-dCoO (where each of (a), (b), (c) and (d) expresses the molar ratio and is respectively 0.030≤a≤0.042, 0.330≤b≤0.370, 0.580≤c≤0.620, 0<d≤0.017 and a+b+c+d=1). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は圧電磁器組成物および圧電素子に係り、詳しくは非鉛系でありながら、高い耐熱性と大きな圧電歪定数とを有する圧電磁器組成物およびそれを用いた圧電素子に関する。   The present invention relates to a piezoelectric ceramic composition and a piezoelectric element. More specifically, the present invention relates to a piezoelectric ceramic composition having high heat resistance and a large piezoelectric strain constant while being lead-free, and a piezoelectric element using the same.

現在実用化されている圧電セラミックスは、チタン酸鉛(PT)、チタン酸ジルコン酸鉛(PZT)等に代表されるように、鉛を含有するものがほとんどである。しかしながら、これらの鉛系圧電セラミックスは鉛成分による環境面への影響が課題となっている。また、これらの鉛系圧電セラミックスはキュリー点が200〜500℃付近に存在し、それ以上の温度では圧電性が消失するため、500℃以上の温度で使用される圧電セラミックスセンサの材料として用いることは困難である。このため環境面への影響が少なく、500℃以上で使用可能な非鉛系圧電セラミックスの実現が切望されている。   Most piezoelectric ceramics currently in practical use contain lead as represented by lead titanate (PT), lead zirconate titanate (PZT) and the like. However, these lead-based piezoelectric ceramics have a problem of environmental effects due to lead components. These lead-based piezoelectric ceramics have a Curie point in the vicinity of 200 to 500 ° C., and the piezoelectricity disappears at temperatures higher than that, so they should be used as materials for piezoelectric ceramic sensors used at temperatures of 500 ° C. or higher. It is difficult. For this reason, realization of a lead-free piezoelectric ceramic that can be used at 500 ° C. or higher with little influence on the environment is desired.

このような非鉛系圧電セラミックスとして、例えばビスマス層状構造強誘電体Na0.5Bi4.5Ti15(NBT)等が知られている。(例えば、特許文献1、2、非特許文献1、2参照。)。ビスマス層状構造強誘電体NBTは、キュリー点が約670℃であり、上述したPT、PZTのキュリー点よりも高いことから、高温での使用が可能な非鉛系圧電セラミックスとして有望であると考えられている。
特開昭50−67492号公報 特開平11−29356号公報 「Piezoelectricity in Ceramics of Ferroelectric Bismuth Compound with Layer Structure」 S.Ikegami and I.Ueda Japanese Journal of Applied Physics,13 (1974) p.1572-1577 「Grain-Oriented and Mn-Doped (NaBi) (1-x)/2CaxBi4Ti4O15 Ceramics for Piezo-and Pyrosensor Materials」 T.Takenaka and K.Sakata Sensor and Materials,1 (1988) p.35-46
As such lead-free piezoelectric ceramics, for example, bismuth layered structure ferroelectric Na 0.5 Bi 4.5 Ti 4 O 15 (NBT) is known. (For example, refer to Patent Documents 1 and 2 and Non-Patent Documents 1 and 2.) Bismuth layer structure ferroelectric NBT has a Curie point of about 670 ° C. and higher than the Curie point of PT and PZT described above. Therefore, it is considered promising as a lead-free piezoelectric ceramic that can be used at high temperatures. It has been.
JP 50-67492 A JP 11-29356 A `` Piezoelectricity in Ceramics of Ferroelectric Bismuth Compound with Layer Structure '' S. Ikegami and I. Ueda Japanese Journal of Applied Physics, 13 (1974) p.1572-1577 `` Grain-Oriented and Mn-Doped (NaBi) (1-x) / 2CaxBi4Ti4O15 Ceramics for Piezo-and Pyrosensor Materials '' T. Takenaka and K. Sakata Sensor and Materials, 1 (1988) p.35-46

しかしながら、ビスマス層状構造強誘電体Na0.5Bi4.5Ti15(NBT)はキュリー点が高く耐熱性に優れるものの、圧電歪定数が小さいためセンサ等への応用が困難となっている。また、一般に、ビスマス層状構造強誘電体NBTのように結晶構造異方性を有するものについては、特定の結晶方向へ揃えるように配向処理することで圧電歪定数を向上できることが知られているが、このような配向処理にはホットプレス等を行なう必要があり、製造工程が複雑化し製造コストが上昇するという課題がある。 However, bismuth layered structure ferroelectric Na 0.5 Bi 4.5 Ti 4 O 15 (NBT) has a high Curie point and excellent heat resistance, but its piezoelectric strain constant is small, making it difficult to apply to sensors and the like. Yes. In general, it is known that the piezoelectric strain constant of a bismuth layer-structured ferroelectric NBT having a crystal structure anisotropy can be improved by performing an alignment process so as to align in a specific crystal direction. Such an alignment process requires hot pressing or the like, and there is a problem that the manufacturing process becomes complicated and the manufacturing cost increases.

本発明は上述したような課題を解決するためになされたものであって、高い耐熱性と大きな圧電歪定数とを有し、かつ、製造が容易な圧電磁器組成物およびそれを用いた圧電素子を提供することを目的としている。   The present invention has been made in order to solve the above-described problems, and has a high heat resistance, a large piezoelectric strain constant, and is easily manufactured, and a piezoelectric element using the same. The purpose is to provide.

Na、Bi、TiおよびCoを含有する圧電磁器組成物であって、前記Na、Bi、TiおよびCoをそれらの酸化物に換算したときの含有比が下記組成範囲(1)内であることを特徴とする。
aNaO−bBi−cTiO−dCoO ・・・(1)
(但し、a、b、cおよびdはモル比を表し、0.030≦a≦0.042、0.330≦b≦0.370、0.580≦c≦0.620、0<d≦0.017、a+b+c+d=1である。)
It is a piezoelectric ceramic composition containing Na, Bi, Ti and Co, and the content ratio when the Na, Bi, Ti and Co are converted into their oxides is within the following composition range (1). Features.
aNa 2 O-bBi 2 O 3 -cTiO 2 -dCoO ··· (1)
(However, a, b, c and d represent molar ratios, 0.030 ≦ a ≦ 0.042, 0.330 ≦ b ≦ 0.370, 0.580 ≦ c ≦ 0.620, 0 <d ≦ 0.017, a + b + c + d = 1)

また、本発明の圧電磁器組成物は、Na、Bi、TiおよびCoを含有し、Na0.5Bi4.5Ti15型結晶で示される構造の化合物を主成分とする圧電磁器組成物であって、CoをCoOに換算したときの含有量が0.70質量%以下であることを特徴とする。 Moreover, the piezoelectric ceramic composition of the present invention contains Na, Bi, Ti and Co, and a piezoelectric ceramic composition containing as a main component a compound having a structure represented by a Na 0.5 Bi 4.5 Ti 4 O 15 type crystal. The content of Co when converted to CoO is 0.70% by mass or less.

このような本発明の圧電磁器組成物は、ビスマス層状構造強誘電体(BLSF)を主生成相とすることが好ましい。また、本発明の圧電素子は、このような圧電磁器組成物を用いてなることを特徴とする。   Such a piezoelectric ceramic composition of the present invention preferably has a bismuth layered structure ferroelectric (BLSF) as a main product phase. The piezoelectric element of the present invention is characterized by using such a piezoelectric ceramic composition.

本発明によれば、従来、環境に与える影響が少なく耐熱性にも優れるものの、圧電歪定数が小さいためセンサ等への適用が困難であった非鉛系の圧電セラミックスであるビスマス層状構造強誘電体Na0.5Bi4.5Ti15(NBT)において、所定量のCo元素を含有させることで、高い耐熱性を維持しつつ、無配向であっても圧電歪定数を大きくすることができる。これにより、耐熱性および圧電性に優れる本発明の圧電磁器組成物は、圧電振動子、アクチュエータ、燃焼圧センサ、ノッキングセンサ、超音波モータ、圧電ジャイロセンサ等として好適に用いることができる。 According to the present invention, a bismuth layered structure ferroelectric, which is a lead-free piezoelectric ceramic that has been conventionally difficult to apply to a sensor or the like because of its small piezoelectric strain constant, although it has little impact on the environment and excellent heat resistance. In the body Na 0.5 Bi 4.5 Ti 4 O 15 (NBT), by containing a predetermined amount of Co element, it is possible to increase the piezoelectric strain constant even when non-oriented, while maintaining high heat resistance. Can do. Thereby, the piezoelectric ceramic composition of the present invention having excellent heat resistance and piezoelectricity can be suitably used as a piezoelectric vibrator, an actuator, a combustion pressure sensor, a knocking sensor, an ultrasonic motor, a piezoelectric gyro sensor, and the like.

本発明の圧電磁器組成物は、ビスマス層状構造強誘電体Na0.5Bi4.5Ti15(NBT)を主生成相とする圧電磁器組成物に係り、無配向のままであっても、組成範囲を調整することにより高い圧電歪定数を得ることを目的としてなされたものである。 The piezoelectric ceramic composition of the present invention relates to a piezoelectric ceramic composition having a bismuth layer-structured ferroelectric Na 0.5 Bi 4.5 Ti 4 O 15 (NBT) as a main product phase, and remains unoriented. Also, the purpose is to obtain a high piezoelectric strain constant by adjusting the composition range.

すなわち、本発明の圧電磁器組成物は、Na、Bi、TiおよびCoを含有する圧電磁器組成物であって、前記Na、Bi、TiおよびCoをそれらの酸化物に換算したときの含有比が下記組成範囲(1)内であることを特徴とするものである。
aNaO−bBi−cTiO−dCoO ・・・(1)
(但し、a、b、cおよびdはモル比を表し、0.030≦a≦0.042、0.330≦b≦0.370、0.580≦c≦0.620、0<d≦0.017、a+b+c+d=1である。)
That is, the piezoelectric ceramic composition of the present invention is a piezoelectric ceramic composition containing Na, Bi, Ti and Co, and the content ratio when the Na, Bi, Ti and Co are converted into their oxides is It is within the following composition range (1).
aNa 2 O-bBi 2 O 3 -cTiO 2 -dCoO ··· (1)
(However, a, b, c and d represent molar ratios, 0.030 ≦ a ≦ 0.042, 0.330 ≦ b ≦ 0.370, 0.580 ≦ c ≦ 0.620, 0 <d ≦ 0.017, a + b + c + d = 1)

また、本発明の圧電磁器組成物は、Na、Bi、TiおよびCoを含有し、Na0.5Bi4.5Ti15型結晶で示される構造の化合物を主成分とする圧電磁器組成物であって、CoをCoOに換算したときの含有量が0.70質量%以下であることを特徴とするものである。
なお、CoOの含有量とは、圧電磁器組成物全体に対するCoOの比率である。
Moreover, the piezoelectric ceramic composition of the present invention contains Na, Bi, Ti and Co, and a piezoelectric ceramic composition containing as a main component a compound having a structure represented by a Na 0.5 Bi 4.5 Ti 4 O 15 type crystal. It is a thing, Comprising: When Co is converted into CoO, content is 0.70 mass% or less, It is characterized by the above-mentioned.
The CoO content is the ratio of CoO to the whole piezoelectric ceramic composition.

本発明では、ビスマス層状構造強誘電体NBTの組成にCo元素を含有させた組成の圧電磁器組成物とすることで、圧電磁器組成物を製造する際にビスマス層状構造強誘電体NBTと共に生成する不純物相の生成を抑制し、ビスマス層状構造強誘電体NBTの生成比率を高くし、かつビスマス層状構造強誘電体NBTの結晶構造に歪みを生じさせ、圧電歪定数を大きくすることが可能となる。   In the present invention, a piezoelectric ceramic composition having a composition containing Co element in the composition of the bismuth layered structure ferroelectric NBT is produced together with the bismuth layered structure ferroelectric NBT when the piezoelectric ceramic composition is manufactured. It is possible to suppress the generation of the impurity phase, increase the generation ratio of the bismuth layered structure ferroelectric NBT, cause distortion in the crystal structure of the bismuth layered structure ferroelectric NBT, and increase the piezoelectric strain constant. .

圧電磁器組成物の組成をビスマス層状構造強誘電体NBTの組成のみからなるものとし、Co元素を含有しないものとした場合、すなわち、上記組成範囲(1)におけるCoOのモル比であるd値が0の場合、あるいは、Co元素のCoO換算での含有量が0質量%の場合、実際にはビスマス層状構造強誘電体NBTだけでなく、不純物相であるBiTi12(BiT)も併せて生成するため、ビスマス層状構造強誘電体NBTの生成比率が低くなり圧電歪定数が小さくなる。 When the composition of the piezoelectric ceramic composition is composed only of the composition of the bismuth layer structure ferroelectric NBT and does not contain Co element, that is, the d value which is the molar ratio of CoO in the composition range (1) is In the case of 0, or when the content of Co element in terms of CoO is 0% by mass, not only the bismuth layered structure ferroelectric NBT but also Bi 4 Ti 3 O 12 (BiT) as an impurity phase is actually used. Since they are also generated, the generation ratio of the bismuth layered structure ferroelectric NBT is lowered, and the piezoelectric strain constant is reduced.

一方、ビスマス層状構造強誘電体NBTの組成に対するCo元素の含有量の割合を多くしていくと、上述した不純物相であるBiTの生成比率は低下するだけでなく、ビスマス層状構造強誘電体NBTの結晶構造に歪みが生じる。そして、上記組成範囲(1)におけるCoOのモル比であるd値が0.017を超える場合、あるいは、Co元素のCoO換算での含有量が0.70質量%を超える場合、ビスマス層状構造強誘電体NBTの結晶構造の歪が大きくなり、その結晶構造自体が不安定となるので、圧電歪定数が小さくなる。   On the other hand, when the ratio of the content of Co element to the composition of the bismuth layer-structured ferroelectric NBT is increased, not only the generation ratio of the above-described impurity phase BiT is lowered, but also the bismuth layer-structure ferroelectric NBT. Distortion occurs in the crystal structure. And when d value which is the molar ratio of CoO in the said composition range (1) exceeds 0.017, or when content in CoO conversion of Co element exceeds 0.70 mass%, bismuth layer structure strength Since the distortion of the crystal structure of the dielectric NBT becomes large and the crystal structure itself becomes unstable, the piezoelectric strain constant becomes small.

このため、本発明では、不純物相であるBiTの生成を抑制することでビスマス層状構造強誘電体NBTの生成比率を高くし、かつビスマス層状構造強誘電体NBTの結晶構造に歪みを適度に生じさせ、大きな圧電歪定数を得ることができるものとして、上記組成範囲(1)におけるCoOのモル比であるd値を0<d≦0.017とし、または、Co元素のCoO換算での含有量を0質量%以上、0.70質量%以下としたものである。   Therefore, in the present invention, the generation ratio of the bismuth layered structure ferroelectric NBT is increased by suppressing the generation of BiT that is an impurity phase, and the crystal structure of the bismuth layered structure ferroelectric NBT is moderately distorted. In order to obtain a large piezoelectric strain constant, the d value which is the molar ratio of CoO in the composition range (1) is 0 <d ≦ 0.017, or the content of Co element in terms of CoO Is 0 mass% or more and 0.70 mass% or less.

なお、本発明における圧電磁器組成物の組成としては、500℃近傍の温度にも耐え得る高い耐熱性を有し、かつ圧電歪定数(d33)が20(pC/N)以上という高い特性を発揮させる観点から、上記組成範囲(1)におけるa〜dの値を、0.031≦a≦0.037、0.340≦b≦0.370、0.600≦c≦0.620、0.0031<d≦0.016とすることが好ましい。また、Co元素の含有量をCoO換算で表した場合、0.10質量%以上、0.55質量%以下とすることが好ましい。
さらに、500℃近傍の温度にも耐え得る高い耐熱性を有し、かつ圧電歪定数(d33)が25(pC/N)以上という高い圧電性を発揮させる観点から、上記組成範囲(1)におけるa〜dの値が、0.031≦a≦0.037、0.340≦b≦0.370、0.600≦c≦0.620、0.0031<d≦0.010とすることが好ましい。また、Co元素の含有量をCoO換算で表した場合、0.10質量%以上、0.35質量%以下とすることが好ましい。
In addition, as a composition of the piezoelectric ceramic composition in the present invention, the piezoelectric ceramic composition has high heat resistance that can withstand temperatures close to 500 ° C. and has a high piezoelectric strain constant (d 33 ) of 20 (pC / N) or more. From the viewpoint of exhibiting, the values of a to d in the composition range (1) are 0.031 ≦ a ≦ 0.037, 0.340 ≦ b ≦ 0.370, 0.600 ≦ c ≦ 0.620, 0 .0031 <d ≦ 0.016 is preferable. Further, when the content of Co element is expressed in terms of CoO, it is preferably set to 0.10% by mass or more and 0.55% by mass or less.
Furthermore, from the viewpoint of having high heat resistance capable of withstanding temperatures near 500 ° C. and exhibiting high piezoelectricity with a piezoelectric strain constant (d 33 ) of 25 (pC / N) or more, the above composition range (1) The values of a to d are 0.031 ≦ a ≦ 0.037, 0.340 ≦ b ≦ 0.370, 0.600 ≦ c ≦ 0.620, and 0.0031 <d ≦ 0.010. Is preferred. Further, when the content of Co element is expressed in terms of CoO, the content is preferably 0.10% by mass or more and 0.35% by mass or less.

なお、圧電磁器組成物の組成が上述した組成範囲内となっているかの判断は、例えばICP発光分析、蛍光X線分析等による組成分析により行なうことができる。具体的には、蛍光X線分析による場合、例えば圧電磁器組成物の焼結体を適宜作製し、その焼結体を蛍光X線分析装置にかけ、圧電磁器組成物を構成するNa、Bi、TiおよびCo等の金属元素の含有量の比率を求め、これらの金属元素を組成式(1)で示すような酸化物で表したときのモル比が、組成式(1)で示した範囲内あるいは、CoをCoO換算したときの含有量が、質量%で、0質量%よりも多く、0.70質量%以下となるものであればよい。
また、ICP発光分析による組成分析の場合、例えば圧電磁器組成物を加圧硫酸分解したものをICP発光分析装置にかけて、組成分析を行なう。
The determination of whether the composition of the piezoelectric ceramic composition is within the above-described composition range can be made by, for example, composition analysis by ICP emission analysis, fluorescent X-ray analysis, or the like. Specifically, in the case of fluorescent X-ray analysis, for example, a sintered body of a piezoelectric ceramic composition is appropriately prepared, the sintered body is subjected to a fluorescent X-ray analyzer, and Na, Bi, Ti constituting the piezoelectric ceramic composition And the ratio of the content of metal elements such as Co, and the molar ratio when these metal elements are represented by oxides represented by the composition formula (1) is within the range represented by the composition formula (1) or As long as the content of Co in terms of CoO is mass%, the content may be more than 0 mass% and 0.70 mass% or less.
In the case of composition analysis by ICP emission analysis, for example, a composition obtained by subjecting a piezoelectric ceramic composition to pressure sulfuric acid decomposition is applied to an ICP emission analysis apparatus.

次に、本発明の圧電磁器組成物の製造方法について説明する。まず、原料粉末として、ビスマス層状構造強誘電体NBTを構成する金属元素であるNa、BiおよびTiならびに圧電歪定数を向上させるためのCo源としての、炭酸ナトリウム、酸化ビスマス、酸化チタンおよび酸化コバルトの各原料粉末を用意する。なお、これらの原料粉末は必ずしも上述した形態でなくてもよく、酸化物、炭酸塩あるいは炭酸水素塩等の形態で提供されるものであってもよい。   Next, the manufacturing method of the piezoelectric ceramic composition of this invention is demonstrated. First, Na, Bi, and Ti, which are metal elements constituting the bismuth layer structure ferroelectric NBT, and sodium carbonate, bismuth oxide, titanium oxide, and cobalt oxide as a Co source for improving the piezoelectric strain constant are used as the raw material powder. Prepare each raw material powder. Note that these raw material powders are not necessarily in the form described above, and may be provided in the form of an oxide, carbonate, bicarbonate, or the like.

これらの原料粉末は、最終的に圧電磁器組成物としたときの組成が上述した組成範囲(1)等となるように秤量し、エタノール等の分散媒に添加した後、ボールミル等により湿式混合、粉砕を行い泥漿とする。このようにして得られた泥漿は、乾燥させ原料混合粉末とする。   These raw material powders are weighed so that the final composition of the piezoelectric ceramic composition is in the above-described composition range (1), etc., added to a dispersion medium such as ethanol, and then wet mixed by a ball mill or the like. Grind into slurry. The slurry thus obtained is dried to obtain a raw material mixed powder.

原料混合粉末は、例えば大気雰囲気中、600℃〜1100℃、10分〜300分の間で仮焼を行い仮焼物粉末とする。仮焼物粉末には、例えばポリビニルアルコール、ポリビニルブチラール等の有機バインダおよびアルコール類、エーテル類等の分散媒を加えて、ボールミル等により湿式粉砕を行い泥漿とする。このようにして得られた泥漿は、乾燥させて造粒粉末とする。   The raw material mixed powder is calcined at 600 ° C. to 1100 ° C. for 10 minutes to 300 minutes, for example, in an air atmosphere to obtain a calcined powder. To the calcined powder, for example, an organic binder such as polyvinyl alcohol and polyvinyl butyral and a dispersion medium such as alcohols and ethers are added, and wet pulverized by a ball mill or the like to obtain a slurry. The slurry thus obtained is dried to obtain a granulated powder.

さらに、この造粒粉末を所定の形状に成形して、成形体とする。成形体の形状は特に制限されるのではなく、必要に応じて円板状等の形状を適宜選択することができる。また、成形は例えば30MPa程度で一軸成形した後、150MPa程度で冷間等方静水圧プレス(CIP)処理することが好ましい。このようにして得られた成形体は、例えば1050℃〜1250℃、1時間〜10時間の範囲で焼成して焼結体とする。   Further, the granulated powder is molded into a predetermined shape to obtain a molded body. The shape of the molded body is not particularly limited, and a disk shape or the like can be appropriately selected as necessary. In addition, for example, it is preferable to perform uniaxial molding at about 30 MPa and then cold isostatic press (CIP) treatment at about 150 MPa. The molded body thus obtained is fired, for example, in the range of 1050 ° C. to 1250 ° C. for 1 hour to 10 hours to obtain a sintered body.

このようにして得られた焼結体は、例えば円板状であればその両主面を平面研磨し、次いでこの両主面に導電性ペーストをスクリーン印刷等により塗布し、適宜焼き付けを行い、電極を形成する。   If the sintered body obtained in this way is, for example, disk-shaped, both main surfaces thereof are planarly polished, then a conductive paste is applied to both the main surfaces by screen printing, etc., and appropriately baked, An electrode is formed.

導電性ペーストとしては、例えば導電成分、ガラスフリットおよび有機媒体からなるものが挙げられる。導電成分としては、例えば銀、金、パラジウムあるいは白金等の貴金属からなる貴金属粉末、これらの貴金属の合金からなる合金粉末、または、これらの貴金属粉末の2種以上からなる混合粉末等を用いることができる。また、このような貴金属以外にも、銅、ニッケル等の金属からなる粉末、合金粉末、混合粉末等も用いることができる。ガラスフリットとしては、例えばSiO、Al、ZnOおよびTiOを含むものが使用できる。また、有機媒体としては、アルコール類、エーテル類等のこの種のペーストに用いられるものを使用することができる。 Examples of the conductive paste include those made of a conductive component, glass frit, and an organic medium. As the conductive component, for example, a noble metal powder composed of a noble metal such as silver, gold, palladium or platinum, an alloy powder composed of an alloy of these noble metals, or a mixed powder composed of two or more of these noble metal powders may be used. it can. In addition to such noble metals, powders made of metals such as copper and nickel, alloy powders, mixed powders, and the like can also be used. As the glass frit, for example, one containing SiO 2 , Al 2 O 3 , ZnO and TiO 2 can be used. Moreover, what is used for this kind of pastes, such as alcohol and ethers, can be used as an organic medium.

このようにして電極が形成された焼結体は、例えば室温〜200℃程度のシリコーンオイル等の絶縁オイル中で、3kV/mm〜12kV/mm程度の直流電圧を10分間〜100分間程度印加して分極処理を行い圧電磁器組成物とする。このようにして電極が形成された圧電磁器組成物は、電極が形成されたままの状態で用いてもよいし、表面に形成された電極を除去して用いてもよい。   The sintered body on which the electrodes are formed in this manner is applied with a DC voltage of about 3 kV / mm to 12 kV / mm for about 10 to 100 minutes in an insulating oil such as silicone oil at room temperature to about 200 ° C., for example. Thus, a polarization treatment is performed to obtain a piezoelectric ceramic composition. The piezoelectric ceramic composition in which the electrode is formed in this way may be used in a state where the electrode is formed, or may be used after removing the electrode formed on the surface.

このような圧電磁器組成物は、例えば振動子、アクチュエータ、センサ等の圧電素子に好適に用いられる。特に、本例の圧電磁器組成物を用いた圧電素子は、例えば自動車の燃焼室近傍等の高温部においても、感度が高く且つ長期間安定して使用できることが求められる燃焼圧検出センサ等の高温用センサ部品に好適に用いることができる。つまり、本例の圧電磁器組成物は高い耐熱性と大きな圧電歪定数を有することから、上記燃焼圧センサやノッキングセンサに代表される自動車用部品として好適に用いることができる。   Such a piezoelectric ceramic composition is suitably used for piezoelectric elements such as vibrators, actuators, and sensors. In particular, the piezoelectric element using the piezoelectric ceramic composition of the present example has a high sensitivity such as a combustion pressure detection sensor that is required to be highly sensitive and can be used stably for a long period of time even in a high temperature part such as the vicinity of a combustion chamber of an automobile It can be suitably used for a sensor component. That is, since the piezoelectric ceramic composition of this example has high heat resistance and a large piezoelectric strain constant, it can be suitably used as an automotive part typified by the combustion pressure sensor or the knocking sensor.

原料粉末として、炭酸ナトリウム(NaCO)(純度99.53%)、酸化ビスマス(Bi)(純度98.8%)、酸化チタン(TiO)(純度99.0%)および酸化コバルト(CoO)(純度99.9%)を用い、下記表1に示すような割合(モル%)で配合した。表1中、試料No.2〜11は、圧電磁器組成物としたときの組成が本発明の範囲内となるものである。また、試料No.1と12は、圧電磁器組成物としたときの組成が本発明の範囲外となるものであり、試料No.1は酸化コバルトを含まないもの、試料NO.12は酸化コバルトを過剰に含むものである。なお、表1に示した組成は原料粉末の調合時の組成を示したものであり、実際に得られる圧電磁器組成物の組成とは若干異なるものである。 As raw powder, sodium carbonate (Na 2 CO 3 ) (purity 99.53%), bismuth oxide (Bi 2 O 3 ) (purity 98.8%), titanium oxide (TiO 2 ) (purity 99.0%) and Cobalt oxide (CoO) (purity 99.9%) was used and blended at a ratio (mol%) as shown in Table 1 below. In Table 1, Sample No. In Nos. 2 to 11, the composition of the piezoelectric ceramic composition falls within the scope of the present invention. Sample No. In Nos. 1 and 12, the composition of the piezoelectric ceramic composition is outside the scope of the present invention. 1 does not contain cobalt oxide, sample NO. 12 contains excessive cobalt oxide. In addition, the composition shown in Table 1 shows the composition at the time of preparation of the raw material powder, and is slightly different from the composition of the piezoelectric ceramic composition actually obtained.

Figure 2007119269
Figure 2007119269

上述したような原料粉末の配合物にエタノールを加え、ボールミルにより15時間の湿式粉砕を行った後、得られた泥漿を湯煎乾燥して原料混合粉末とした。この原料粉砕物を、800℃、120分間の条件で仮焼して仮焼物粉末とした後、さらに有機バインダとエタノールとを加え、ボールミルにより15時間の湿式粉砕を行い、得られた泥漿を湯煎乾燥して造粒粉末とした。   Ethanol was added to the mixture of raw material powders as described above, and wet pulverization was performed for 15 hours by a ball mill, and then the resulting slurry was dried in hot water to obtain a raw material mixed powder. This raw material pulverized product is calcined at 800 ° C. for 120 minutes to obtain a calcined powder, and further, an organic binder and ethanol are added, and wet pulverization is performed for 15 hours by a ball mill. Dried to give a granulated powder.

造粒粉末を30MPaの圧力で一軸加圧成形を行うことにより直径20mm、厚み3mmの円板状成形体とした後、この円板状成形体に150MPaの圧力で冷間等方静水圧プレス処理(CIP処理)を行った。このCIP処理後の円板状成形体は、焼成時間を120分間、焼成温度を1150℃として焼成を行い焼結体とした。   The granulated powder is uniaxially pressed at a pressure of 30 MPa to form a disk-shaped molded body having a diameter of 20 mm and a thickness of 3 mm, and this disk-shaped molded body is subjected to cold isostatic pressing at a pressure of 150 MPa. (CIP treatment) was performed. The disk-shaped molded body after the CIP treatment was fired at a firing time of 120 minutes and a firing temperature of 1150 ° C. to obtain a sintered body.

次に、各焼結体の両主面を平面研磨した後、この両主面にSiO、Al、ZnOおよびTiOを含むガラスフリット、銀粉末ならびに有機媒体としてのブチルカルビトールアセテートを用いて調整した銀ペーストを塗布、700℃で20分間の焼き付けを行い、銀電極を形成して、円板状素子を得た。さらに、円板状素子を150℃の絶縁オイル中で、9kV/mmの直流電圧を30分間印加して分極処理を行って銀電極を有する圧電磁器組成物(圧電素子)を得た。 Next, both main surfaces of each sintered body are flat-polished, and then glass frit, silver powder, and butyl carbitol acetate as an organic medium containing SiO 2 , Al 2 O 3 , ZnO and TiO 2 on both main surfaces. The silver paste prepared using was applied and baked at 700 ° C. for 20 minutes to form a silver electrode to obtain a disk-shaped element. Further, the piezoelectric element composition (piezoelectric element) having a silver electrode was obtained by subjecting the disk-shaped element to polarization treatment by applying a DC voltage of 9 kV / mm for 30 minutes in an insulating oil at 150 ° C.

得られた圧電素子について、圧電歪定数(d33)を測定すると共に、これを600℃、1時間の条件で熱処理した後、再び圧電歪定数(d33)を測定した。圧電歪定数(d33)の測定は、EMAS−6100に従い、インピーダンスアナライザ(ヒューレットパッカード社製、形式「4194A」)を用いて、圧電素子を温度20℃に保持した恒温槽に静置し測定した。 For the obtained piezoelectric element, the piezoelectric strain constant (d 33 ) was measured, and after heat-treating it at 600 ° C. for 1 hour, the piezoelectric strain constant (d 33 ) was measured again. The piezoelectric strain constant (d 33 ) was measured in accordance with EMAS-6100 by using an impedance analyzer (manufactured by Hewlett-Packard Co., model “4194A”) by placing the piezoelectric element in a thermostatic chamber maintained at a temperature of 20 ° C. .

また、圧電素子に用いた圧電磁器組成物の組成と結晶相を確認するために、圧電磁器組成物の作製に用いた焼結体と同様な焼結体を用いて、蛍光X線分析による組成分析を行なうと共に、X線回折により結晶相の同定を行った。なお、蛍光X線分析による組成分析は、ZSX100e(リガク株式会社、商品名)を用いて行い、X線回折による観察は、RU−200T(リガク株式会社、商品名)を用いて行った。   In addition, in order to confirm the composition and crystal phase of the piezoelectric ceramic composition used for the piezoelectric element, a composition obtained by fluorescent X-ray analysis was used using a sintered body similar to the sintered body used for the production of the piezoelectric ceramic composition. In addition to analysis, the crystal phase was identified by X-ray diffraction. Composition analysis by fluorescent X-ray analysis was performed using ZSX100e (Rigaku Corporation, trade name), and observation by X-ray diffraction was performed using RU-200T (Rigaku Corporation, trade name).

図1に試料No.1と3のX線回折の観察結果であるチャート図を示す。また、表2、3には、各圧電磁器組成物の蛍光X線分析による組成分析の結果、および、各圧電素子の熱処理前の圧電歪定数を示す。また、表4には、試料No.3〜7の圧電素子の熱処理前後の圧電歪定数を示す。また、図2に、表2に示したCoO含有量(mol%)とd33値(熱処理前)との関係をグラフにして示す。 In FIG. The chart figure which is the observation result of X-ray diffraction of 1 and 3 is shown. Tables 2 and 3 show the results of composition analysis by fluorescent X-ray analysis of each piezoelectric ceramic composition, and the piezoelectric strain constants before heat treatment of each piezoelectric element. Table 4 shows the sample No. The piezoelectric-strain constant before and behind heat processing of the piezoelectric element of 3-7 is shown. FIG. 2 is a graph showing the relationship between the CoO content (mol%) and the d 33 value (before heat treatment) shown in Table 2.

Figure 2007119269
Figure 2007119269

Figure 2007119269
Figure 2007119269

Figure 2007119269
Figure 2007119269

図1のX線回折の観察結果から、試料NO.1および3ともに、ビスマス層状構造強誘電体NBTが得られていることが認められた。また、他の試料についても、X線回折の観察により、同様にビスマス層状構造強誘電体NBTが得られていることを確認した。なお、試料No.1〜12のいずれの圧電磁器組成は、別途X線回折により観察したところ、いずれも無配向であることがわかった。   From the X-ray diffraction observation results of FIG. It was confirmed that bismuth layered structure ferroelectric NBT was obtained for both 1 and 3. For other samples, it was confirmed by observation of X-ray diffraction that a bismuth layer structure ferroelectric NBT was obtained in the same manner. Sample No. When any of the piezoelectric ceramic compositions 1 to 12 were separately observed by X-ray diffraction, it was found that all were non-oriented.

しかしながら、Co元素を含有しない試料No.1の圧電磁器組成物については、図1のX線回折の観察結果から明らかなように、不純物相であるBiTが生成していることが認められ、圧電歪定数が13(pC/N)未満となることが認められた。   However, sample no. As is apparent from the observation result of X-ray diffraction in FIG. 1, the piezoelectric ceramic composition of No. 1 was found to generate BiT as an impurity phase, and the piezoelectric strain constant was less than 13 (pC / N). It was recognized that

また、Co元素を過剰に含む試料No.12の圧電磁器組成物については、X線回折の観察結果から、不純物相であるBiTの生成は抑制されているものの、ビスマス層状構造強誘電体NBTの結晶構造の歪が大きくなることが認められ、圧電歪定数が13(pC/N)未満となることが認められた。   Sample No. containing excessive Co element was used. With regard to the piezoelectric ceramic composition No. 12, from the observation result of X-ray diffraction, although the generation of BiT, which is an impurity phase, is suppressed, it is recognized that the distortion of the crystal structure of the bismuth layer-structure ferroelectric NBT increases. It was confirmed that the piezoelectric strain constant was less than 13 (pC / N).

これに対して、試料No.2〜11の圧電磁器組成物は、X線回折の観察結果から明らかなように、不純物相であるBiTの生成が抑制され、圧電歪定数はいずれも13(pC/N)を超えることが認められた。
特に、図2からも明らかなように、CoをCoOに換算して、CoOのモル比が、0.0031以上、0.010以下である試料No.3〜7は、より高い圧電歪定数を得ることができ、その値は25(pC/N)を超えることが認められた。また、その場合、Co元素の含有量をCoO換算し、CoOの含有量を重量%で計算した場合、0.10質量%以上、0.35質量%以下となる。
In contrast, sample no. As is apparent from the observation results of X-ray diffraction, the piezoelectric ceramic compositions of 2 to 11 were found to suppress the generation of BiT as an impurity phase, and the piezoelectric strain constants all exceeded 13 (pC / N). It was.
In particular, as is apparent from FIG. 2, the sample No. 1 in which Co is converted to CoO and the molar ratio of CoO is 0.0031 or more and 0.010 or less. 3 to 7 were able to obtain a higher piezoelectric strain constant, and the value was found to exceed 25 (pC / N). Further, in that case, when the content of Co element is converted to CoO and the content of CoO is calculated by weight%, it is 0.10 mass% or more and 0.35 mass% or less.

また、表4の熱処理前後の圧電歪定数の値より、熱処理による圧電歪定数の変化が比較的少なく良好な結果が確認され、その中でも試料No.3〜5は熱処理後においても、25(pC/N)以上という高い値を維持し、とりわけ良好な耐熱性が確認された。   Further, from the values of the piezoelectric strain constant before and after the heat treatment in Table 4, the change in the piezoelectric strain constant due to the heat treatment was relatively small, and good results were confirmed. 3 to 5 maintained a high value of 25 (pC / N) or more even after heat treatment, and particularly good heat resistance was confirmed.

かくして、ビスマス層状構造強誘電体NBTにCo元素を必須成分として所定の範囲で含有させることにより、高い圧電歪定数と優れた耐熱性とを両立できることが認められた。   Thus, it has been confirmed that a high piezoelectric strain constant and excellent heat resistance can be achieved by including Co element as an essential component in the bismuth layer-structured ferroelectric NBT within a predetermined range.

なお、本発明の圧電磁器組成物または圧電素子は、耐熱性と圧電歪定数とを下げない限り、微量の不純物を含有しても良い。   The piezoelectric ceramic composition or the piezoelectric element of the present invention may contain a small amount of impurities as long as the heat resistance and the piezoelectric strain constant are not lowered.

X線回折による観察結果を示したチャート図。The chart figure which showed the observation result by X-ray diffraction. Co含有量と圧電歪定数との関係を示したグラフ。The graph which showed the relationship between Co content and a piezoelectric strain constant.

Claims (4)

Na、Bi、TiおよびCoを含有する圧電磁器組成物であって、
前記Na、Bi、TiおよびCoをそれらの酸化物に換算したときの含有比が下記組成範囲(1)内であることを特徴とする圧電磁器組成物。
aNaO−bBi−cTiO−dCoO ・・・(1)
(但し、a、b、cおよびdはモル比を表し、0.030≦a≦0.042、0.330≦b≦0.370、0.580≦c≦0.620、0<d≦0.017、a+b+c+d=1である。)
A piezoelectric ceramic composition containing Na, Bi, Ti and Co,
A piezoelectric ceramic composition characterized in that the content ratio when Na, Bi, Ti and Co are converted into their oxides is within the following composition range (1).
aNa 2 O-bBi 2 O 3 -cTiO 2 -dCoO ··· (1)
(However, a, b, c and d represent molar ratios, 0.030 ≦ a ≦ 0.042, 0.330 ≦ b ≦ 0.370, 0.580 ≦ c ≦ 0.620, 0 <d ≦ 0.017, a + b + c + d = 1)
Na、Bi、TiおよびCoを含有し、Na0.5Bi4.5Ti15型結晶で示される構造の化合物を主成分とする圧電磁器組成物であって、
CoをCoOに換算したときの含有量が0.70質量%以下であることを特徴とする圧電磁器組成物。
A piezoelectric ceramic composition containing Na, Bi, Ti and Co, and comprising as a main component a compound having a structure represented by a Na 0.5 Bi 4.5 Ti 4 O 15 type crystal,
A piezoelectric ceramic composition characterized in that the content when Co is converted to CoO is 0.70 mass% or less.
ビスマス層状構造強誘電体(BLSF)を主生成相とすることを特徴とする請求項1または2記載の圧電磁器組成物。   The piezoelectric ceramic composition according to claim 1 or 2, wherein a bismuth layered structure ferroelectric (BLSF) is used as a main generation phase. 請求項1乃至3のいずれかに1項記載の圧電磁器組成物を用いてなることを特徴とする圧電素子。
A piezoelectric element comprising the piezoelectric ceramic composition according to any one of claims 1 to 3.
JP2005310241A 2005-10-25 2005-10-25 Piezoelectric ceramic composition and piezoelectric element Expired - Fee Related JP4927378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310241A JP4927378B2 (en) 2005-10-25 2005-10-25 Piezoelectric ceramic composition and piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310241A JP4927378B2 (en) 2005-10-25 2005-10-25 Piezoelectric ceramic composition and piezoelectric element

Publications (2)

Publication Number Publication Date
JP2007119269A true JP2007119269A (en) 2007-05-17
JP4927378B2 JP4927378B2 (en) 2012-05-09

Family

ID=38143503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310241A Expired - Fee Related JP4927378B2 (en) 2005-10-25 2005-10-25 Piezoelectric ceramic composition and piezoelectric element

Country Status (1)

Country Link
JP (1) JP4927378B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221066A (en) * 2008-03-18 2009-10-01 Kyocera Corp Piezoelectric ceramic and piezoelectric element using the same
WO2009122916A1 (en) * 2008-03-18 2009-10-08 京セラ株式会社 Piezoelectric ceramic, and piezoelectric elementing using the same
WO2010001542A1 (en) 2008-06-30 2010-01-07 日本特殊陶業株式会社 Piezoelectric ceramic composition and piezoelectric element made by using the same
JP2010047465A (en) * 2008-07-25 2010-03-04 Kyocera Corp Piezoelectric ceramic and piezoelectric element using the same
US7808161B2 (en) * 2008-03-25 2010-10-05 Ngk Spark Plug Co., Ltd. Piezoelectric ceramic composition and piezoelectric device
JP2015096455A (en) * 2013-11-15 2015-05-21 日本特殊陶業株式会社 Piezoelectric ceramic composition, piezoelectric element, sensor for internal combustion engine and manufacturing method for piezoelectric ceramic composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129356A (en) * 1997-07-09 1999-02-02 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP2000264727A (en) * 1999-03-19 2000-09-26 Tdk Corp Piezoelectric ceramics
JP2001158663A (en) * 1999-11-30 2001-06-12 Kyocera Corp Piezoelectric ceramic composition
JP2001220226A (en) * 2000-02-08 2001-08-14 Tdk Corp Piezoelectric ceramic
JP2003026474A (en) * 2001-05-10 2003-01-29 Tdk Corp Piezoelectric ceramics
JP2004292279A (en) * 2003-03-28 2004-10-21 Tdk Corp Piezoelectric ceramic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129356A (en) * 1997-07-09 1999-02-02 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP2000264727A (en) * 1999-03-19 2000-09-26 Tdk Corp Piezoelectric ceramics
JP2001158663A (en) * 1999-11-30 2001-06-12 Kyocera Corp Piezoelectric ceramic composition
JP2001220226A (en) * 2000-02-08 2001-08-14 Tdk Corp Piezoelectric ceramic
JP2003026474A (en) * 2001-05-10 2003-01-29 Tdk Corp Piezoelectric ceramics
JP2004292279A (en) * 2003-03-28 2004-10-21 Tdk Corp Piezoelectric ceramic

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221066A (en) * 2008-03-18 2009-10-01 Kyocera Corp Piezoelectric ceramic and piezoelectric element using the same
WO2009122916A1 (en) * 2008-03-18 2009-10-08 京セラ株式会社 Piezoelectric ceramic, and piezoelectric elementing using the same
EP2261191A1 (en) * 2008-03-18 2010-12-15 Kyocera Corporation Piezoelectric ceramic, and piezoelectric elementing using the same
EP2261191A4 (en) * 2008-03-18 2011-07-13 Kyocera Corp Piezoelectric ceramic, and piezoelectric elementing using the same
US8643255B2 (en) 2008-03-18 2014-02-04 Kyocera Corporation Piezoelectric ceramic and piezoelectric element using the same
US7808161B2 (en) * 2008-03-25 2010-10-05 Ngk Spark Plug Co., Ltd. Piezoelectric ceramic composition and piezoelectric device
WO2010001542A1 (en) 2008-06-30 2010-01-07 日本特殊陶業株式会社 Piezoelectric ceramic composition and piezoelectric element made by using the same
EP2295389A1 (en) * 2008-06-30 2011-03-16 NGK Spark Plug Co., Ltd. Piezoelectric ceramic composition and piezoelectric element made by using the same
EP2295389A4 (en) * 2008-06-30 2011-12-07 Ngk Spark Plug Co Piezoelectric ceramic composition and piezoelectric element made by using the same
US8142679B2 (en) 2008-06-30 2012-03-27 Ngk Spark Plug Co., Ltd. Piezoelectric ceramic composition and piezoelectric element made by using the same
JP2010047465A (en) * 2008-07-25 2010-03-04 Kyocera Corp Piezoelectric ceramic and piezoelectric element using the same
JP2015096455A (en) * 2013-11-15 2015-05-21 日本特殊陶業株式会社 Piezoelectric ceramic composition, piezoelectric element, sensor for internal combustion engine and manufacturing method for piezoelectric ceramic composition

Also Published As

Publication number Publication date
JP4927378B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5714819B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP5537931B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4927378B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2014224038A (en) Piezoelectric ceramic and piezoelectric device using the same
JP4163068B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
US7808161B2 (en) Piezoelectric ceramic composition and piezoelectric device
JP4437848B2 (en) Piezoelectric ceramic composition
JP4247936B2 (en) Piezoelectric ceramic composition
JP5022926B2 (en) Piezoelectric ceramic composition and piezoelectric element
JPH11217262A (en) Piezoelectric porcelain composition
JP2006169032A (en) Piezoelectric ceramic composition and piezoelectric element
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP2002348173A (en) Piezoelectric ceramic material and its manufacturing method
JP4141051B2 (en) Piezoelectric ceramic composition
JP2004077304A (en) Piezo-electric element and knocking sensor using the same
JP2001048641A (en) Piezoelectric porcelain composition
JP4141052B2 (en) Piezoelectric ceramic composition
JP2000143339A (en) Piezoelectric substance porcelain composition
JP5173752B2 (en) Piezoelectric ceramic, manufacturing method thereof, and piezoelectric element
JP2000022235A (en) Piezoelectric ceramic composition
JP2012131675A (en) Piezoelectric ceramic and piezoelectric ceramic component
JP2010030822A (en) Piezoelectric ceramic and its manufacturing method
JP2000044335A (en) Piezoelectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4927378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees