JP2010030822A - Piezoelectric ceramic and its manufacturing method - Google Patents

Piezoelectric ceramic and its manufacturing method Download PDF

Info

Publication number
JP2010030822A
JP2010030822A JP2008193749A JP2008193749A JP2010030822A JP 2010030822 A JP2010030822 A JP 2010030822A JP 2008193749 A JP2008193749 A JP 2008193749A JP 2008193749 A JP2008193749 A JP 2008193749A JP 2010030822 A JP2010030822 A JP 2010030822A
Authority
JP
Japan
Prior art keywords
weight
parts
piezoelectric
lithium oxide
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008193749A
Other languages
Japanese (ja)
Inventor
Masaya Kawabe
雅也 川辺
Takatoshi Hashimoto
孝俊 橋本
Atsushi Sasaki
淳 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008193749A priority Critical patent/JP2010030822A/en
Publication of JP2010030822A publication Critical patent/JP2010030822A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a barium titanate-based piezoelectric ceramic capable of low-temperature firing without impairing the piezoelectric characteristic. <P>SOLUTION: Barium titanate powder which is a main component and has an average particle diameter of 0.05-0.10 μm, at least one kind of lithium oxide powder selected from lithium carbonate or lithium oxide as a first accessory component and vanadium pentoxide powder as a second accessory component are used as starting materials, and x pts.wt. of lithium oxide powder in terms of lithium oxide and y pts.wt. of vanadium pentoxide powder (wherein 0.040≤x≤0.081; 0.02≤y≤0.10) are added to 100 pts.wt of the main component and fired in a temperature range of 1,000-1,200°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、振動子、アクチュエータ、センサ等の圧電デバイスに使用される圧電セラミックス及びその製造方法に関する。   The present invention relates to piezoelectric ceramics used for piezoelectric devices such as vibrators, actuators, and sensors, and a method for manufacturing the same.

圧電材料からなる圧電セラミックスは、歪みを加えると電気分極が発生し、逆に、電界を加えると歪みが発生する物質であり、電気的信号と機械的信号との可逆的な変換が可能である特性から、各種のセンサやフィルタ、アクチュエータなどの圧電デバイスに用いられている。   Piezoelectric ceramics made of piezoelectric materials are substances that generate electrical polarization when strain is applied, and conversely generate strain when an electric field is applied. Reversible conversion between electrical and mechanical signals is possible. Due to its characteristics, it is used in piezoelectric devices such as various sensors, filters, and actuators.

特に、チタン酸ジルコン酸鉛(Pb(Ti,Zr)O3)を始めとする含鉛圧電材料は、優れた圧電特性のみならず、良好な温度特性を有し、また低温で焼成が可能といった利点があり、現在最も広い領域で利用されている。 In particular, lead-containing piezoelectric materials such as lead zirconate titanate (Pb (Ti, Zr) O 3 ) have not only excellent piezoelectric properties but also good temperature properties and can be fired at low temperatures. It has advantages and is currently used in the widest area.

しかしながら、鉛は人体に有害であることが確認されているため、含鉛圧電材料に実用上代替可能となる、鉛を含有しない非鉛圧電材料の開発が世界的規模で行われている。   However, since it has been confirmed that lead is harmful to the human body, development of lead-free piezoelectric materials not containing lead that can be practically substituted for lead-containing piezoelectric materials has been carried out on a global scale.

現在開発されている非鉛圧電材料の一つにチタン酸バリウムがあり、特許文献1、特許文献2、非特許文献1、非特許文献2に、良好な圧電特性を有するチタン酸バリウム系の圧電セラミックスが提案されている。特許文献1及び非特許文献1によれば、平均粒径が0.20μm以下のチタン酸バリウム粉末を原料とし、成形した後、マイクロ波加熱によって1320℃で焼成することで、高い電気機械結合係数を有する圧電セラミックスを得ている。   One of the lead-free piezoelectric materials currently being developed is barium titanate. In Patent Document 1, Patent Document 2, Non-Patent Document 1, and Non-Patent Document 2, a barium titanate-based piezoelectric material having good piezoelectric characteristics is disclosed. Ceramics have been proposed. According to Patent Document 1 and Non-Patent Document 1, a barium titanate powder having an average particle size of 0.20 μm or less is used as a raw material, and after molding, it is fired at 1320 ° C. by microwave heating, thereby providing a high electromechanical coupling coefficient. Has been obtained.

非特許文献2によれば、平均粒径が0.10μmのチタン酸バリウム粉末を原料とし、成形した後、抵抗加熱炉によって1320℃及び1150℃での二段階焼成を行うことで、高い電気機械結合係数を有する圧電セラミックスを得ている。   According to Non-Patent Document 2, a barium titanate powder having an average particle size of 0.10 μm is used as a raw material, and after molding, a two-stage firing at 1320 ° C. and 1150 ° C. is performed in a resistance heating furnace, thereby increasing the electrical machine A piezoelectric ceramic having a coupling coefficient is obtained.

また、特許文献2によれば、水熱合成法を用いて平均粒径が0.10μm以下のチタン酸バリウム粉末を作製し、成型した後、焼成時の酸素雰囲気を調整して、1050℃から1200℃の低温での焼成を実現した圧電セラミックスが提案されている。   Further, according to Patent Document 2, a barium titanate powder having an average particle size of 0.10 μm or less is prepared and molded using a hydrothermal synthesis method, and then the oxygen atmosphere during firing is adjusted to 1050 ° C. Piezoelectric ceramics that realize firing at a low temperature of 1200 ° C. have been proposed.

特開2006−315927号公報JP 2006-315927 A 特開2007−277031号公報JP 2007-277031 A Hirofumi T.,et al.,Japanese Journal of Applied Physics,45(2006)L30−L32Hirofumi T. , Et al. , Japan Journal of Applied Physics, 45 (2006) L30-L32. Tomoaki K.,et al.,Japanese Journal of Applied Physics,46(2007)L97−L98Tomoki K.K. , Et al. , Japan Journal of Applied Physics, 46 (2007) L97-L98.

しかしながら、高い電気機械結合係数を有するチタン酸バリウム系圧電セラミックスを作製するためには、特許文献1、非特許文献1及び非特許文献2においても記載されているように、マイクロ波加熱あるいは二段階加熱といった方法を用いて、1300℃以上の高温で焼成することが必要となる。1300℃以上の高温で焼成する場合、圧電セラミックスを積層セラミックデバイスとして製品化するためには、内部電極に融点が高く耐熱性のあるパラジウムや白金といった高価な貴金属を使用しなければならないため、コストの高騰が懸念される。   However, in order to produce a barium titanate-based piezoelectric ceramic having a high electromechanical coupling coefficient, as described in Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2, microwave heating or two-stage It is necessary to perform baking at a high temperature of 1300 ° C. or higher using a method such as heating. When firing at a high temperature of 1300 ° C. or higher, in order to commercialize piezoelectric ceramics as a multilayer ceramic device, it is necessary to use expensive noble metals such as palladium and platinum having a high melting point and heat resistance for the internal electrodes. There is a concern that soaring.

特許文献2においては、焼成時に酸素を導入し焼成雰囲気を調整して低温焼成を行った場合の実施例は記載されているが、大気中での低温焼成を行った場合の実施例は記載されておらず、実際に大気中での低温焼成を実施した場合には、高い電気機械結合係数を有する圧電セラミックスは得られなかった。   In Patent Document 2, an example in which oxygen is introduced during firing and a firing atmosphere is adjusted to perform low-temperature firing is described, but an example in which low-temperature firing is performed in the air is described. However, when the low-temperature firing was actually performed in the atmosphere, a piezoelectric ceramic having a high electromechanical coupling coefficient could not be obtained.

上述したように、含鉛圧電材料の代替としてチタン酸バリウムを主原料とする圧電材料は有力であると考えられるが、実用化に耐えるに十分な圧電特性を保持しつつ、焼成温度の低温化を同時に実現したチタン酸バリウム系圧電セラミックスは示されていなかった。   As mentioned above, it is thought that piezoelectric materials mainly composed of barium titanate as an alternative to lead-containing piezoelectric materials are promising, but the firing temperature is lowered while maintaining sufficient piezoelectric properties to withstand practical use. No barium titanate-based piezoelectric ceramics that simultaneously realized the above has been shown.

このような状況に鑑み、本発明の課題は、圧電特性を損なうことなく、1000℃以上1200℃以下での低温焼成が可能なチタン酸バリウム系の圧電セラミックス及びその製造方法を提供することにある。   In view of such circumstances, an object of the present invention is to provide a barium titanate-based piezoelectric ceramic that can be fired at a low temperature of 1000 ° C. or more and 1200 ° C. or less without impairing piezoelectric characteristics, and a method for manufacturing the same. .

本発明は、チタン酸バリウムを主成分とする圧電材料からなる圧電セラミックスであって、前記圧電材料には、主成分100重量部に対して、第一副成分として、リチウム酸化物を酸化リチウムに換算してx重量部、第二副成分として、バナジウム酸化物を五酸化バナジウムに換算してy重量部(ただし0.040≦x≦0.081、0.02≦y≦0.10)が、それぞれ含まれていることを特徴とする圧電セラミックスである。   The present invention relates to a piezoelectric ceramic made of a piezoelectric material mainly composed of barium titanate, wherein the piezoelectric material contains lithium oxide as lithium oxide as a first subcomponent with respect to 100 parts by weight of the main component. X parts by weight in terms of conversion, and vanadium oxide as the second subcomponent is converted to vanadium pentoxide by y parts by weight (however, 0.040 ≦ x ≦ 0.081, 0.02 ≦ y ≦ 0.10). These are piezoelectric ceramics characterized by being contained.

また、本発明は、チタン酸バリウムを主成分とする圧電材料からなる圧電セラミックスの製造方法であって、平均粒径が0.05μm以上0.10μm以下のチタン酸バリウム粉末、第一副成分として、炭酸リチウムあるいは酸化リチウムから選択された少なくとも一種のリチウム酸化物粉末、及び第二副成分として、五酸化バナジウム粉末を出発原料とし、主成分100重量部に対して、前記リチウム酸化物粉末を酸化リチウムに換算してx重量部、前記五酸化バナジウム粉末をy重量部 (ただし0.040≦x≦0.081、0.02≦y≦0.10)添加して得られた圧電材料を、1000℃以上1200℃以下の温度範囲で焼結することを特徴とする圧電セラミックスの製造方法である。   The present invention also relates to a method for producing a piezoelectric ceramic comprising a piezoelectric material mainly composed of barium titanate, wherein the barium titanate powder having an average particle size of 0.05 μm or more and 0.10 μm or less is used as the first subcomponent. At least one lithium oxide powder selected from lithium carbonate or lithium oxide, and, as a second subcomponent, vanadium pentoxide powder is used as a starting material, and the lithium oxide powder is oxidized with respect to 100 parts by weight of the main component. A piezoelectric material obtained by adding x parts by weight in terms of lithium and y parts by weight of the vanadium pentoxide powder (where 0.040 ≦ x ≦ 0.081, 0.02 ≦ y ≦ 0.10), A method for producing a piezoelectric ceramic, comprising sintering in a temperature range of 1000 ° C. or more and 1200 ° C. or less.

上述したように、本発明によれば、チタン酸バリウムを主成分とする圧電材料において、副成分としてリチウム酸化物及びバナジウム酸化物を添加することによって、圧電特性を劣化させることなく、1200℃以下の低い温度での焼成が可能となる。このことは、環境適応型の非鉛圧電材料を使用した圧電セラミックスとして広い応用が期待できる。   As described above, according to the present invention, in a piezoelectric material mainly composed of barium titanate, by adding lithium oxide and vanadium oxide as subcomponents, 1200 ° C. or less without deteriorating piezoelectric characteristics. Can be fired at a low temperature. This can be expected to be widely applied as piezoelectric ceramics using environment-friendly lead-free piezoelectric materials.

本発明は、チタン酸バリウムを主成分とし、主成分100重量部に対して、第一副成分として、リチウム酸化物を酸化リチウムに換算してx重量部、第二副成分として、バナジウム酸化物を五酸化バナジウムに換算してy重量部(ただし0.040≦x≦0.081、0.02≦y≦0.10)が、それぞれ含まれている圧電材料を焼成した圧電セラミックスである。この組成範囲外においては、第一に1200℃以下の温度で圧電セラミックスが緻密化しない、第二に圧電セラミックスの絶縁抵抗が著しく低下してしまい、分極処理の際に絶縁破壊が生じてしまう、第三に圧電セラミックスの圧電特性が劣化してしまうという、以上三点のうちの何れかの不具合が発生するために好ましくない。   In the present invention, barium titanate is a main component, and 100 parts by weight of the main component is converted into lithium oxide to x parts by weight as the first subcomponent and vanadium oxide as the second subcomponent. Is a piezoelectric ceramic obtained by firing a piezoelectric material containing y parts by weight (where 0.040 ≦ x ≦ 0.081, 0.02 ≦ y ≦ 0.10) in terms of vanadium pentoxide. Outside this composition range, first, the piezoelectric ceramic is not densified at a temperature of 1200 ° C. or lower, and secondly, the insulation resistance of the piezoelectric ceramic is significantly reduced, and dielectric breakdown occurs during the polarization treatment. Third, it is not preferable because any of the above three problems that the piezoelectric characteristics of the piezoelectric ceramics deteriorate will occur.

また、上述した圧電セラミックスの製造方法において、出発原料として、平均粒径が0.05μm以上0.10μm以下のチタン酸バリウム粉末、この主成分100重量部に対して、炭酸リチウムあるいは酸化リチウムから選択された少なくとも一種のリチウム酸化物粉末を酸化リチウムに換算してx重量部、バナジウム酸化物を五酸化バナジウムに換算してy重量部(ただし0.040≦x≦0.081、0.02≦y≦0.10) 添加して得られた圧電材料を、1000℃以上1200℃以下の温度範囲で焼結することが望ましい。なお、本発明において、1000℃以上1200℃以下の温度とは、焼成時の最高温度を表すものである。また、本発明においては、焼成工程は大気中で行うことが可能であるため、製造工程の簡略化、製品コストの削減にも寄与する。   Further, in the above-described method for manufacturing a piezoelectric ceramic, as a starting material, barium titanate powder having an average particle size of 0.05 μm or more and 0.10 μm or less is selected from 100 parts by weight of the main component from lithium carbonate or lithium oxide. X parts by weight of at least one lithium oxide powder converted to lithium oxide and y parts by weight of vanadium oxide converted to vanadium pentoxide (however, 0.040 ≦ x ≦ 0.081, 0.02 ≦ y ≦ 0.10) It is desirable to sinter the piezoelectric material obtained by the addition in a temperature range of 1000 ° C. or more and 1200 ° C. or less. In addition, in this invention, the temperature of 1000 degreeC or more and 1200 degrees C or less represents the highest temperature at the time of baking. In the present invention, since the firing process can be performed in the air, the manufacturing process can be simplified and the product cost can be reduced.

本発明におけるチタン酸バリウム粉末は、共沈法、アルコキシド法、水熱合成法、ゾル・ゲル法、噴射法、エマルジョン法、蓚酸塩法、クエン酸塩法、固相反応法等の公知の作製法によって得られる。また、本発明におけるチタン酸バリウム粉末の平均粒径は、SEM画像から算出した体積基準の球相当径である。   The barium titanate powder in the present invention is a known preparation such as coprecipitation method, alkoxide method, hydrothermal synthesis method, sol-gel method, injection method, emulsion method, oxalate method, citrate method, solid phase reaction method, etc. Obtained by law. The average particle diameter of the barium titanate powder in the present invention is a volume-based sphere equivalent diameter calculated from the SEM image.

チタン酸バリウム粉末の平均粒径が0.10μmよりも大きい場合は、第一副成分であるリチウム酸化物、及び第二副成分であるバナジウム酸化物の添加量が、リチウム酸化物の添加量を酸化リチウムに換算してx重量部、バナジウム酸化物の添加量を五酸化バナジウムに換算してy重量部(ただし0.040≦x≦0.081、0.02≦y≦0.10)の範囲であっても、緻密なチタン酸バリウム系圧電セラミックスを得るために1250℃以上での焼成が必要となる。また、チタン酸バリウム粉末の平均粒径が0.05μmよりも小さい場合は、前述したリチウム酸化物の添加量、バナジウム酸化物の添加量の範囲においても、圧電セラミックスの圧電特性が劣化してしまうという不具合が発生するために好ましくない。   When the average particle diameter of the barium titanate powder is larger than 0.10 μm, the addition amount of the lithium oxide as the first subcomponent and the vanadium oxide as the second subcomponent is equal to the addition amount of the lithium oxide. X parts by weight in terms of lithium oxide, and y parts by weight of vanadium oxide added in terms of vanadium pentoxide (however, 0.040 ≦ x ≦ 0.081, 0.02 ≦ y ≦ 0.10) Even within the range, firing at 1250 ° C. or higher is necessary to obtain a dense barium titanate-based piezoelectric ceramic. In addition, when the average particle size of the barium titanate powder is smaller than 0.05 μm, the piezoelectric characteristics of the piezoelectric ceramic are deteriorated even in the range of the addition amount of the lithium oxide and the addition amount of the vanadium oxide described above. This is not preferable because of the problem.

以下、実施例に基づき本発明による圧電セラミックス及びその製造方法を具体的に説明する。   Hereinafter, a piezoelectric ceramic according to the present invention and a method for manufacturing the same will be described in detail based on examples.

(実施例1)
本発明の実施例1における圧電セラミックスは、以下に示す製造工程により作製した。まず、出発原料として、平均粒径が0.10μmである高純度のチタン酸バリウム粉末(堺化学工業株式会社製)を用いた。次に、主成分100重量部に対して、副成分として0.05重量部以上0.25重量部以下の炭酸リチウム(酸化リチウム換算で0.020重量部以上0.101重量部以下)及び0以上0.12重量部以下の五酸化バナジウムを添加し、エタノールを加え、ジルコニア製ボールミルにより24時間の湿式混合を行った。
Example 1
The piezoelectric ceramic in Example 1 of the present invention was manufactured by the following manufacturing process. First, as a starting material, a high-purity barium titanate powder (manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle diameter of 0.10 μm was used. Next, 0.05 parts by weight or more and 0.25 parts by weight or less of lithium carbonate (0.020 part by weight or more and 0.101 part by weight or less in terms of lithium oxide) and 0 parts by weight with respect to 100 parts by weight of the main component. More than 0.12 parts by weight of vanadium pentoxide was added, ethanol was added, and wet mixing was performed for 24 hours with a zirconia ball mill.

乾燥後、得られた粉末について、ポリビニルアルコールをバインダーとして混合することによって造粒し、圧力100MPaの一軸加圧成形により、直径20mm、厚さ5mmの円板状試料を成形した。この成形体を大気中、1000℃以上1300℃以下で3時間焼成し、圧電セラミックスの焼結体を作製した。   After drying, the obtained powder was granulated by mixing polyvinyl alcohol as a binder, and a disk-shaped sample having a diameter of 20 mm and a thickness of 5 mm was formed by uniaxial pressure molding of a pressure of 100 MPa. This molded body was fired in the atmosphere at 1000 ° C. or higher and 1300 ° C. or lower for 3 hours to produce a sintered body of piezoelectric ceramic.

比較例として、平均粒径が0.10μmである高純度のチタン酸バリウム粉末のみで、副成分である炭酸リチウム及び五酸化バナジウムは添加せず、更に湿式混合も行わない従来品も準備し、上記と同様に円板状試料を成型し、1200℃及び1300℃で3時間焼成した。   As a comparative example, only a high-purity barium titanate powder having an average particle size of 0.10 μm is prepared, and lithium carbonate and vanadium pentoxide as auxiliary components are not added, and a conventional product that does not perform wet mixing is also prepared. A disk-shaped sample was molded in the same manner as above and fired at 1200 ° C. and 1300 ° C. for 3 hours.

作製した円板状焼結体はアルキメデス法により密度を計測した後、1mmの厚さに加工して、その両面に銀電極を焼き付けた。このようにして得られた各試料について、80℃のシリコンオイル中で1kV/mmの直流電界を30分間印加することによって分極処理を行った。   The produced disk-shaped sintered body was measured for density by the Archimedes method, then processed to a thickness of 1 mm, and silver electrodes were baked on both surfaces thereof. Each sample thus obtained was subjected to polarization treatment by applying a DC electric field of 1 kV / mm for 30 minutes in 80 ° C. silicone oil.

分極処理した試料については、室温で24時間放置することによって圧電特性を安定化させた後、インピーダンスアナライザーを用いて共振−反共振法により、圧電特性の一つの指標となる径方向振動モードの電気機械結合係数kp、及び長さ方向振動モードの電気機械結合係数k31を測定した。なお、k31を測定するために、長さ10mm、幅2mm、厚さ1mmの矩形状の試料も、上記円板状焼結体を切断加工して作製した。また、得られた試料の相対密度を以下の式(1)によって計算した。試料の緻密性は、相対密度が95.0%以上確保された場合に緻密化したものと判断できる。 For a sample subjected to polarization treatment, the piezoelectric characteristics are stabilized by being allowed to stand at room temperature for 24 hours, and then an electric current in a radial vibration mode, which is one index of the piezoelectric characteristics, is obtained by a resonance-antiresonance method using an impedance analyzer. The mechanical coupling coefficient k p and the electromechanical coupling coefficient k 31 in the longitudinal vibration mode were measured. In order to measure k 31 , a rectangular sample having a length of 10 mm, a width of 2 mm, and a thickness of 1 mm was also produced by cutting the disk-shaped sintered body. Moreover, the relative density of the obtained sample was calculated by the following formula (1). The denseness of the sample can be determined as being densified when the relative density is 95.0% or more.

相対密度(%)=[(試料の重量/試料の体積)/6.01]×100・・・(1)   Relative density (%) = [(sample weight / sample volume) /6.01] × 100 (1)

作製した圧電セラミックスの組成と添加量、焼結温度、相対密度、電気機械結合係数kp及びk31の値を表1に示す。表1においては、本発明の範囲内外の試料を比較例として記載した。 Table 1 shows the composition and addition amount, sintering temperature, relative density, electromechanical coupling coefficient k p and k 31 of the produced piezoelectric ceramic. In Table 1, samples within and outside the scope of the present invention are described as comparative examples.

Figure 2010030822
Figure 2010030822

表1から明らかなように、出発原料として高純度のチタン酸バリウム粉末を用いて、副成分として0.10重量部以上0.20重量部以下の炭酸リチウム(酸化リチウム換算で0.040重量部以上0.081重量部以下)及び0.02重量部以上0.10重量部以下の五酸化バナジウムを添加して、1000℃以上1200℃以下の温度で焼成した、本発明の範囲内の各試料(試料番号11〜15、試料番号18〜22、試料番号32、試料番号35)において、圧電セラミックスの緻密化を達成したと共に、副成分を添加せず、1300℃の高温で焼成した比較例(試料番号1)と同等以上となる良好な電気機械結合係数が得られた。   As apparent from Table 1, high-purity barium titanate powder was used as the starting material, and 0.10 to 0.20 parts by weight of lithium carbonate (0.040 parts by weight in terms of lithium oxide) as an accessory component. Each sample within the scope of the present invention was added with 0.02 parts by weight or less) and 0.02 parts by weight or more and 0.10 parts by weight or less vanadium pentoxide and fired at a temperature of 1000 ° C. or more and 1200 ° C. or less. In (Sample Nos. 11 to 15, Sample Nos. 18 to 22, Sample No. 32, and Sample No. 35), the piezoelectric ceramics were densified and added with no subcomponents, and were fired at a high temperature of 1300 ° C. ( A good electromechanical coupling coefficient equal to or higher than that of sample number 1) was obtained.

(実施例2)
本発明の実施例2における圧電セラミックスは、以下に示す製造工程により作製した。まず、出発原料として、平均粒径が0.03μm、0.05μm、0.10μm、0.30μm、及び0.50μmである高純度のチタン酸バリウム粉末を用いた。次に、副成分として0.10重量部の炭酸リチウム(酸化リチウム換算で0.040重量部)及び0.02重量部の五酸化バナジウムを添加し、エタノールを加え、ジルコニア製ボールミルにより24時間の湿式混合を行った。
(Example 2)
The piezoelectric ceramic in Example 2 of the present invention was manufactured by the following manufacturing process. First, high-purity barium titanate powder having an average particle size of 0.03 μm, 0.05 μm, 0.10 μm, 0.30 μm, and 0.50 μm was used as a starting material. Next, 0.10 parts by weight of lithium carbonate (0.040 parts by weight in terms of lithium oxide) and 0.02 parts by weight of vanadium pentoxide were added as subcomponents, ethanol was added, and zirconia ball mill was used for 24 hours. Wet mixing was performed.

乾燥後、得られた粉末について、ポリビニルアルコールをバインダーとして混合することによって造粒し、圧力100MPaの一軸加圧成形により、直径20mm、厚さ5mmの円板状試料を成形した。この成形体を950℃以上1250℃以下で3時間焼成し、圧電セラミックスの焼結体を作製した。   After drying, the obtained powder was granulated by mixing polyvinyl alcohol as a binder, and a disk-shaped sample having a diameter of 20 mm and a thickness of 5 mm was formed by uniaxial pressure molding of a pressure of 100 MPa. This molded body was fired at 950 ° C. or higher and 1250 ° C. or lower for 3 hours to produce a sintered body of piezoelectric ceramic.

作製した円板状焼結体はアルキメデス法により密度を計測し、相対密度を式(1)により計算した。図1は、チタン酸バリウムの平均粒径を変化させ、炭酸リチウム及び五酸化バナジウムを添加したときの、焼結温度と相対密度の関係を示したものである。得られた試料の緻密性は、相対密度が95.0%以上確保された場合に緻密化したものと判断できる。図1において、符号1は、出発原料として平均粒径0.03μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したものである。符号2は、出発原料として平均粒径0.05μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したものである。符号3は、出発原料として平均粒径0.10μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したものである。符号4は、出発原料として平均粒径0.30μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したものである。符号5は、出発原料として平均粒径0.50μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したものである。   The produced disk-shaped sintered body was measured for density by the Archimedes method, and the relative density was calculated by Equation (1). FIG. 1 shows the relationship between sintering temperature and relative density when the average particle diameter of barium titanate is changed and lithium carbonate and vanadium pentoxide are added. It can be judged that the denseness of the obtained sample is dense when the relative density is 95.0% or more. In FIG. 1, reference numeral 1 indicates that barium titanate powder having an average particle size of 0.03 μm is used as a starting material, 0.10 parts by weight of lithium carbonate (0.040 parts by weight in terms of lithium oxide) and five This is the addition of 0.02 part by weight of vanadium oxide. Reference numeral 2 indicates that barium titanate powder having an average particle diameter of 0.05 μm is used as a starting material, 0.10 parts by weight of lithium carbonate (0.040 parts by weight in terms of lithium oxide) and vanadium pentoxide of 0.0. 02 parts by weight are added. Reference numeral 3 indicates that barium titanate powder having an average particle diameter of 0.10 μm is used as a starting material, lithium carbonate 0.10 parts by weight (0.040 parts by weight in terms of lithium oxide) and vanadium pentoxide 0. 02 parts by weight are added. Reference numeral 4 indicates that barium titanate powder having an average particle size of 0.30 μm is used as a starting material, lithium carbonate 0.10 parts by weight (0.040 parts by weight in terms of lithium oxide) and vanadium pentoxide 0. 02 parts by weight are added. Reference numeral 5 indicates that barium titanate powder having an average particle diameter of 0.50 μm is used as a starting material, lithium carbonate 0.10 parts by weight (0.040 parts by weight in terms of lithium oxide) and vanadium pentoxide 0. 02 parts by weight are added.

図1から明らかなように、出発原料として、平均粒径が0.10μm以下である符号1、2、3の高純度のチタン酸バリウム粉末を用いた場合に、副成分として炭酸リチウム及び五酸化バナジウムを添加した試料は、1000℃以上1200℃以下の焼成温度範囲で緻密化を達成することができた。   As is clear from FIG. 1, when high-purity barium titanate powders 1, 2, and 3 having an average particle diameter of 0.10 μm or less are used as starting materials, lithium carbonate and pentoxide as subcomponents are used. The sample to which vanadium was added was able to achieve densification in the firing temperature range of 1000 ° C. or more and 1200 ° C. or less.

次に、実施例1と同様に1mmの厚さに加工後、分極処理を施した。なお、長さ方向振動モードの電気機械結合係数k31を測定するために、長さ10mm、幅2mm、厚さ1mmの矩形状の試料も、上記円板状焼結体を切断加工して作製した。分極処理した試料については、室温で24時間放置することによって圧電特性を安定化させた後、インピーダンスアナライザーを用いて共振−反共振法により、圧電特性の一つの指標となる径方向振動モードの電気機械結合係数kp、及び長さ方向振動モードの電気機械結合係数k31を測定した。 Next, after processing to a thickness of 1 mm as in Example 1, polarization treatment was performed. In addition, in order to measure the electromechanical coupling coefficient k 31 in the longitudinal vibration mode, a rectangular sample having a length of 10 mm, a width of 2 mm, and a thickness of 1 mm was also produced by cutting the disk-shaped sintered body. did. For a sample subjected to polarization treatment, the piezoelectric characteristics are stabilized by being allowed to stand at room temperature for 24 hours, and then an electric current in a radial vibration mode, which is one index of the piezoelectric characteristics, is obtained by a resonance-antiresonance method using an impedance analyzer. The mechanical coupling coefficient k p and the electromechanical coupling coefficient k 31 in the longitudinal vibration mode were measured.

作製した圧電セラミックスの組成と添加量、焼結温度、相対密度、電気機械結合係数kp及びk31の値を表2に示す。表2において、本発明の範囲内外の試料を比較例として記載した。 Table 2 shows the composition and addition amount, sintering temperature, relative density, electromechanical coupling coefficient k p and k 31 of the produced piezoelectric ceramic. In Table 2, samples within and outside the scope of the present invention are listed as comparative examples.

Figure 2010030822
Figure 2010030822

表2から明らかなように、出発原料として平均粒径が0.05μm以上0.10μm以下である高純度のチタン酸バリウム粉末を用いて、副成分として炭酸リチウム及び五酸化バナジウムを添加して、1000℃以上1200℃以下の温度で焼結した、本発明の範囲内の各試料(試料番号42〜44、試料番号46〜48)において、圧電セラミックスの緻密化を達成したと共に、副成分を添加せず、1300℃の高温で焼結した比較例(表1記載の試料番号1)と同等以上となる良好な電気機械結合係数が得られた。   As is apparent from Table 2, using a high-purity barium titanate powder having an average particle size of 0.05 μm or more and 0.10 μm or less as a starting material, lithium carbonate and vanadium pentoxide are added as auxiliary components, In each sample (Sample Nos. 42 to 44, Sample Nos. 46 to 48) sintered at a temperature of 1000 ° C. or more and 1200 ° C. or less, densification of the piezoelectric ceramic was achieved, and subcomponents were added. Without fail, a good electromechanical coupling coefficient equal to or higher than that of the comparative example (sample number 1 in Table 1) sintered at a high temperature of 1300 ° C. was obtained.

以上説明したように本発明によれば、チタン酸バリウムを主成分とする圧電材料において、副成分としてリチウム酸化物及びバナジウム酸化物を添加することによって、圧電特性を劣化させずに、1200℃以下の低い温度による焼成を実現した圧電セラミックスとその製造方法を提供することが可能となった。   As described above, according to the present invention, in a piezoelectric material mainly composed of barium titanate, by adding lithium oxide and vanadium oxide as subcomponents, the piezoelectric characteristics are not deteriorated, and the temperature is 1200 ° C. or lower. It has become possible to provide a piezoelectric ceramic that realizes firing at a low temperature and a method for producing the same.

チタン酸バリウムの平均粒径を変化させ、炭酸リチウム及び五酸化バナジウムを添加したときの、焼結温度と相対密度の関係。Relationship between sintering temperature and relative density when the average particle size of barium titanate is changed and lithium carbonate and vanadium pentoxide are added.

符号の説明Explanation of symbols

1 出発原料として平均粒径0.03μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したもの
2 出発原料として平均粒径0.05μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したもの
3 出発原料として平均粒径0.10μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したもの
4 出発原料として平均粒径0.30μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したもの
5 出発原料として平均粒径0.50μmのチタン酸バリウム粉末を使用して、副成分として炭酸リチウム0.10重量部(酸化リチウム換算で0.040重量部)及び五酸化バナジウム0.02重量部を添加したもの
1 Using barium titanate powder having an average particle size of 0.03 μm as a starting material, 0.10 parts by weight of lithium carbonate (0.040 parts by weight in terms of lithium oxide) and 0.02 parts by weight of vanadium pentoxide as subcomponents 2 Using barium titanate powder having an average particle size of 0.05 μm as a starting material, 0.10 parts by weight of lithium carbonate (0.040 parts by weight in terms of lithium oxide) and vanadium pentoxide 0 Addition of 0.02 part by weight 3 Using barium titanate powder having an average particle size of 0.10 μm as a starting material, 0.10 parts by weight of lithium carbonate (0.040 parts by weight in terms of lithium oxide) as an auxiliary component, and Addition of 0.02 part by weight of vanadium pentoxide 4 Using barium titanate powder with an average particle size of 0.30 μm as a starting material, and carbon as an accessory component What added 0.10 weight part of lithium (0.040 weight part in conversion of lithium oxide) and 0.02 weight part of vanadium pentoxide 5 Using the barium titanate powder with an average particle diameter of 0.50 micrometer as a starting material, Addition of 0.10 parts by weight of lithium carbonate (0.040 parts by weight in terms of lithium oxide) and 0.02 parts by weight of vanadium pentoxide as subcomponents

Claims (2)

チタン酸バリウムを主成分とする圧電材料からなる圧電セラミックスであって、前記圧電材料には、主成分100重量部に対して、第一副成分として、リチウム酸化物を酸化リチウムに換算してx重量部、第二副成分として、バナジウム酸化物を五酸化バナジウムに換算してy重量部(ただし0.040≦x≦0.081、0.02≦y≦0.10)が、それぞれ含まれていることを特徴とする圧電セラミックス。   Piezoelectric ceramics composed of a piezoelectric material containing barium titanate as a main component, wherein the piezoelectric material has x as a first subcomponent in terms of 100 parts by weight of the main component, with lithium oxide converted to lithium oxide. As weight parts and second subcomponents, y parts by weight of vanadium oxide converted to vanadium pentoxide (where 0.040 ≦ x ≦ 0.081, 0.02 ≦ y ≦ 0.10) are included, respectively. Piezoelectric ceramics characterized by チタン酸バリウムを主成分とする圧電材料からなる圧電セラミックスの製造方法であって、平均粒径が0.05μm以上0.10μm以下のチタン酸バリウム粉末、第一副成分として、炭酸リチウムあるいは酸化リチウムから選択された少なくとも一種のリチウム酸化物粉末、及び第二副成分として、五酸化バナジウム粉末を出発原料とし、主成分100重量部に対して、前記リチウム酸化物粉末を酸化リチウムに換算してx重量部、前記五酸化バナジウム粉末をy重量部 (ただし0.040≦x≦0.081、0.02≦y≦0.10)添加して得られた圧電材料を、1000℃以上1200℃以下の温度範囲で焼結することを特徴とする圧電セラミックスの製造方法。   A method for producing a piezoelectric ceramic comprising a piezoelectric material mainly composed of barium titanate, having an average particle diameter of 0.05 μm or more and 0.10 μm or less, lithium carbonate or lithium oxide as a first subcomponent As a second subcomponent, at least one lithium oxide powder selected from the above, vanadium pentoxide powder is used as a starting material, and 100 parts by weight of the main component, the lithium oxide powder is converted into lithium oxide x Parts by weight, and the piezoelectric material obtained by adding y parts by weight of the vanadium pentoxide powder (0.040 ≦ x ≦ 0.081, 0.02 ≦ y ≦ 0.10), 1000 ° C. or more and 1200 ° C. or less A method for producing a piezoelectric ceramic, comprising sintering in a temperature range of
JP2008193749A 2008-07-28 2008-07-28 Piezoelectric ceramic and its manufacturing method Pending JP2010030822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008193749A JP2010030822A (en) 2008-07-28 2008-07-28 Piezoelectric ceramic and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008193749A JP2010030822A (en) 2008-07-28 2008-07-28 Piezoelectric ceramic and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010030822A true JP2010030822A (en) 2010-02-12

Family

ID=41735796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008193749A Pending JP2010030822A (en) 2008-07-28 2008-07-28 Piezoelectric ceramic and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010030822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215435A (en) * 2009-03-13 2010-09-30 Nec Tokin Corp Piezoelectric ceramic and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115868A (en) * 1987-10-28 1989-05-09 Matsushita Electric Ind Co Ltd Dielectric porcelain and production thereof
JP2002087879A (en) * 2000-09-14 2002-03-27 Toho Titanium Co Ltd Dielectric ceramic composition and laminated ceramic capacitor using the same
JP2002187770A (en) * 2000-12-15 2002-07-05 Toho Titanium Co Ltd Dielectric porcelain composition and laminated ceramic capacitor using the same
JP2003277142A (en) * 2002-03-22 2003-10-02 Japan Science & Technology Corp Piezoelectric ceramics and piezoelectric actuator
JP2007137747A (en) * 2005-11-22 2007-06-07 Taiyo Yuden Co Ltd Dielectric porcelain and method of manufacturing the same
JP2007277031A (en) * 2006-04-05 2007-10-25 Fuji Ceramics:Kk Piezoelectric ceramic obtained by sintering nano-sized barium titanate powder having dielectric and piezoelectric property and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115868A (en) * 1987-10-28 1989-05-09 Matsushita Electric Ind Co Ltd Dielectric porcelain and production thereof
JP2002087879A (en) * 2000-09-14 2002-03-27 Toho Titanium Co Ltd Dielectric ceramic composition and laminated ceramic capacitor using the same
JP2002187770A (en) * 2000-12-15 2002-07-05 Toho Titanium Co Ltd Dielectric porcelain composition and laminated ceramic capacitor using the same
JP2003277142A (en) * 2002-03-22 2003-10-02 Japan Science & Technology Corp Piezoelectric ceramics and piezoelectric actuator
JP2007137747A (en) * 2005-11-22 2007-06-07 Taiyo Yuden Co Ltd Dielectric porcelain and method of manufacturing the same
JP2007277031A (en) * 2006-04-05 2007-10-25 Fuji Ceramics:Kk Piezoelectric ceramic obtained by sintering nano-sized barium titanate powder having dielectric and piezoelectric property and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215435A (en) * 2009-03-13 2010-09-30 Nec Tokin Corp Piezoelectric ceramic and method for producing the same

Similar Documents

Publication Publication Date Title
EP2178131A2 (en) Piezoelectric ceramic, vibrator and ultrasonic motor
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
JP2004244300A (en) Piezoelectric ceramic composition, its production method, piezoelectric element, and dielectric element
JPWO2010001542A1 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP2008150247A (en) Manufacturing method of piezoelectric ceramic, piezoelectric ceramic, and piezoelectric element
JP2017114751A (en) Dielectric ceramic composition and ceramic electronic component comprising the same
JP2014224038A (en) Piezoelectric ceramic and piezoelectric device using the same
JP6175528B2 (en) Piezoelectric device
JP2013035746A (en) Ceramic composition and laminated ceramic electronic component including the same
JP2008156172A (en) Lead-free piezoelectric porcelain composition
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP4140796B2 (en) Piezoelectric ceramics
JP2005154238A (en) Manufacturing method of piezoelectric porcelain composition
JP5469475B2 (en) Piezoelectric ceramics and manufacturing method thereof
JP2010076958A (en) Piezoelectric ceramic and method for producing the same
JP2010215418A (en) Method of manufacturing piezoelectric ceramic electronic component
JP2010030822A (en) Piezoelectric ceramic and its manufacturing method
JP2006265055A (en) Method of manufacturing piezoelectric ceramic
JP5360886B2 (en) Piezoelectric ceramics and manufacturing method thereof
JP2010006623A (en) Piezoelectric ceramic and method of manufacturing the same
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JP2010047439A (en) Piezoelectric ceramic and manufacturing method thereof
JP2012201581A (en) Dielectric ceramic composition and electronic component
JP5468984B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics and manufacturing method thereof
JP5173752B2 (en) Piezoelectric ceramic, manufacturing method thereof, and piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120719