JP2001158663A - Piezoelectric ceramic composition - Google Patents

Piezoelectric ceramic composition

Info

Publication number
JP2001158663A
JP2001158663A JP34067199A JP34067199A JP2001158663A JP 2001158663 A JP2001158663 A JP 2001158663A JP 34067199 A JP34067199 A JP 34067199A JP 34067199 A JP34067199 A JP 34067199A JP 2001158663 A JP2001158663 A JP 2001158663A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
ceramic composition
value
oscillation
divalent metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34067199A
Other languages
Japanese (ja)
Other versions
JP3961175B2 (en
Inventor
Shuzo Iwashita
修三 岩下
Shuichi Fukuoka
修一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34067199A priority Critical patent/JP3961175B2/en
Publication of JP2001158663A publication Critical patent/JP2001158663A/en
Application granted granted Critical
Publication of JP3961175B2 publication Critical patent/JP3961175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic composition having high temperature stability of the oscillating frequency, as the P/V value of the fundamental vibration is enlarged in the thickness and slip vibrations. SOLUTION: This piezoelectric ceramic composition comprises 100 pts.wt. of a Bi-layer structure compound represented by the general formula: (Na0.5 Bi0.5)1-xMxBi4Ti4O15 (where x is 0.5<x<1) and 0.05-1 pt.wt. of Mn calculated as the oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電磁器組成物に
関し、例えば、発振子、超音波振動子、超音波モーター
あるいは加速度センサー、ノッキングセンサー、及びA
Eセンサー等の圧電センサーなどに適し、特に、厚みす
べり振動の基本波振動を利用したエネルギー閉じ込め型
の高周波用発振子として好適に用いられる圧電磁器組成
物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic composition, for example, an oscillator, an ultrasonic oscillator, an ultrasonic motor or an acceleration sensor, a knocking sensor, and an A.
The present invention relates to a piezoelectric ceramic composition suitable for a piezoelectric sensor such as an E sensor and the like, and particularly suitable for use as an energy trapping type high frequency oscillator utilizing fundamental vibration of thickness shear vibration.

【0002】[0002]

【従来技術】従来から、圧電磁器組成物を利用した製品
としては、例えば、フィルタ、共振子、発振子、超音波
振動子、超音波モーター、圧電センサー等がある。
2. Description of the Related Art Conventionally, products using a piezoelectric ceramic composition include, for example, filters, resonators, oscillators, ultrasonic oscillators, ultrasonic motors, piezoelectric sensors, and the like.

【0003】ここで、発振子は、マイコンの基準信号発
振用として、例えば、コルビッツ型発振回路等の発振回
路に組み込まれて利用される。このコルピッツ型発振回
路は、図1に示すように、コンデンサ1l、12と抵抗
13とインバータ14及び発振子15により構成されて
いる。そして、コルピッツ型発振回路において、発振信
号を発生するには、以下の発振条件を満足する必要があ
る。
Here, the oscillator is used for oscillation of a reference signal of a microcomputer, for example, incorporated in an oscillation circuit such as a Colwitz oscillation circuit. As shown in FIG. 1, the Colpitts oscillation circuit includes capacitors 11 and 12, a resistor 13, an inverter 14, and an oscillator 15. In order to generate an oscillation signal in a Colpitts oscillation circuit, the following oscillation conditions must be satisfied.

【0004】インバータ14と抵抗13からなる増幅回
路において、増幅率をα、移相量をθ1とし、また、発
振子15とコンデンサ11、12からなる帰還回路にお
いて、帰還率をβ、移相量をθ2としたとき、ループゲ
インがα×β≧1、かつ、移相量がθ1+θ2=360×
n(但しn=1,2,…)であることが必要となる。
In an amplifier circuit comprising an inverter 14 and a resistor 13, the amplification factor is α and the phase shift amount is θ 1. In a feedback circuit comprising an oscillator 15 and capacitors 11 and 12, the feedback ratio is β and When the amount is θ 2 , the loop gain is α × β ≧ 1, and the phase shift amount is θ 1 + θ 2 = 360 ×
n (where n = 1, 2,...).

【0005】一般に、抵抗13及びインバータ14から
なる増幅回路は、マイコンに内蔵されており、誤発振や
不発振を起さず安定した発振を得るためには、ループゲ
インを大きくしなければならない。このループゲインを
大きくするために、帰還率βのゲインを決定する発振子
のP/V値、すなわち共振インピーダンスR0及び反共
振インピーダンスRaの差を大きくする事が必要とな
る。なお、P/V値は20Log(Ra/R0)の値とし
て定義される。
Generally, an amplifier circuit including the resistor 13 and the inverter 14 is built in the microcomputer, and in order to obtain stable oscillation without causing erroneous oscillation or non-oscillation, the loop gain must be increased. In order to increase the loop gain, P / V value of the oscillator to determine the gain of the feedback factor beta, that is, necessary to increase the difference in resonance impedance R 0 and the anti-resonance impedance R a. The P / V value is defined as a value of 20 Log (R a / R 0 ).

【0006】また、位相量の条件を満たすためには、Q
mの高い圧電材料が望ましい。例えば、従来のPZT
系、PT系などの材料と比較して機械的品質係数(Qm
値)の高いSrBi4415が、Japanese Journal of
Applied Physics(1974)誌の1572〜1577頁に開示されて
いる。それによれば、PbTiO3のQm値が1100で
あるのに対して、SrBi4415は7200という高
い値が得られている。このように、ビスマス層状化合物
SrBi4415は、Qm値が高いという特徴があり、
特に発振子用の圧電材料などに応用が可能であった。
In order to satisfy the condition of the phase amount, Q
Piezoelectric materials with a high m are desirable. For example, conventional PZT
Quality factor (Q m
Value) of SrBi 4 T 4 O 15
Applied Physics (1974), pages 1572-1577. According to it, whereas the Q m value of PbTiO 3 is 1100, SrBi 4 T 4 O 15 is high as 7200 is obtained. Thus, the bismuth layered compound SrBi 4 T 4 O 15 is characterized by a high Q m value,
In particular, it could be applied to piezoelectric materials for oscillators.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記文
献に示されたビスマス層状化合物(SrBi4415
を主体とする圧電磁器組成物では、共振子として用いる
場合、共振周波数の温度変化率が±5000ppm以上
と大きく、温度変化の大きな環境において使用される携
帯機器などには使用できないという問題があった。
However, the bismuth layered compound (SrBi 4 T 4 O 15 ) disclosed in the above-mentioned document is required.
When used as a resonator, a piezoelectric ceramic composition mainly composed of: has a problem that the temperature change rate of the resonance frequency is as large as ± 5000 ppm or more and cannot be used for a portable device used in an environment where the temperature change is large. .

【0008】したがって、本発明は、厚み滑り振動の基
本波振動のP/V値を大きくするとともに−40℃〜8
0℃の温度範囲で発振周波数の温度安定性に優れる圧電
磁器組成物を提供することを目的とする。
Therefore, the present invention increases the P / V value of the fundamental vibration of the thickness-shear vibration and increases the P / V value from -40.degree.
An object of the present invention is to provide a piezoelectric ceramic composition having excellent oscillation frequency temperature stability in a temperature range of 0 ° C.

【0009】[0009]

【課題を解決するための手段】本発明の圧電磁器組成物
は、Mを2価の金属元素の中から選ばれる少なくとも1
種としたとき、一般式、(Na0.5Bi0.51-xxBi
4Ti415 (但し、xは0.5<x<1)で示される
Bi層状構造化合物l00重量部に対して、Mnを酸化
物換算で0.05〜1重量部含有することを特徴とする
すなわち、非鉛系圧電材料であるBi層状化合物の代表
的材料であるSr4Bi4Ti415のSrを(Na0.5
0.5)及び2価の金属元素で置換して(Na 0.5Bi
0.51-xxBi4Ti415とし、かつMnを含有させ
ることで、厚み滑り振動の基本波振動のP/V値(以下
単にP/V値ということがある)を十分高めることがで
き、かつ同時に、−40℃〜80℃における発振周波数
の温度変化率を低く抑えることができるため、高周波用
発振子に好適に用いることができる。
Means for Solving the Problems The piezoelectric ceramic composition of the present invention
Represents that M is at least one selected from divalent metal elements.
When a seed is used, the general formula (Na0.5Bi0.5)1-xMxBi
FourTiFourOFifteen (Where x is represented by 0.5 <x <1)
Mn is oxidized with respect to 100 parts by weight of Bi layer structure compound
Characterized by containing 0.05 to 1 part by weight in terms of material
That is, a representative of the Bi layered compound which is a lead-free piezoelectric material
Material SrFourBiFourTiFourOFifteenOf Sr (Na0.5B
i0.5) And a divalent metal element (Na 0.5Bi
0.5)1-xMxBiFourTiFourOFifteenAnd containing Mn
By doing so, the P / V value of the fundamental wave vibration of the thickness slip vibration (hereinafter
(Sometimes simply referred to as the P / V value).
And at the same time, the oscillation frequency at -40 ° C to 80 ° C
Temperature change rate can be kept low,
It can be suitably used for an oscillator.

【0010】したがって、発振子として用いた場合に
は、発振余裕度が高まり、常時安定して発振が得られる
とともに、発振周波数が広範な温度範囲において安定
し、高精度な発振が得られる。すなわち、厚み滑り振動
における基本波振動を用いて、高周波、特に2〜20M
Hzに適応できる発振子を得ることができる。
Therefore, when used as an oscillator, the oscillation margin is increased and stable oscillation can always be obtained, and the oscillation frequency is stable over a wide temperature range, so that highly accurate oscillation can be obtained. That is, by using the fundamental wave vibration in the thickness shear vibration, a high frequency, especially 2 to 20 M
The oscillator which can be adapted to Hz can be obtained.

【0011】また、2価の金属元素Mが、Ca、Srお
よびBaのうちから選ばれる少なくとも1種であること
が好ましい。これにより、P/V値をさらに高めること
ができる。
Preferably, the divalent metal element M is at least one selected from Ca, Sr and Ba. Thereby, the P / V value can be further increased.

【0012】さらに、2価の金属MがSrと他の2価の
金属元素Nからなり、Mが一般式、Sr1-yyで表され
たとき、0.05≦y≦0.5であることが好ましい。
すなわち、SrがP/V値を顕著に高める働きがあるた
め、他の2価の金属元素Nと組み合わせることにより、
P/V値を高く保ったままで発振周波数の温度安定性を
さらに高めることができる。
Further, when the divalent metal M is composed of Sr and another divalent metal element N, and M is represented by the general formula, Sr 1-y N y , 0.05 ≦ y ≦ 0.5 It is preferred that
That is, since Sr has a function of significantly increasing the P / V value, by combining it with another divalent metal element N,
The temperature stability of the oscillation frequency can be further improved while keeping the P / V value high.

【0013】[0013]

【発明の実施の形態】本発明の圧電磁器組成物は、一般
式(Na0.5Bi0.51-xxBi4Ti415(但し、x
は0.5<x<1)で表されるBi層状化合物を主成分
とし、この主成分100重量部に対して、Mnを酸化物
換算で0.05〜1重量部含有させたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The piezoelectric ceramic composition of the present invention has a general formula (Na 0.5 Bi 0.5 ) 1-x M x Bi 4 Ti 4 O 15 (where x
Has a Bi layered compound represented by 0.5 <x <1) as a main component, and contains 0.05 to 1 part by weight of Mn in terms of oxide based on 100 parts by weight of the main component. .

【0014】ここで、2価の金属元素としては、Ca、
Sr、Ba、Raなどがあり、この2価の元素は、その
一部が(Na0.5Bi0.5)によって置換されるが、その
置換量1−xは、0<1−x<0.5、特に0.1≦1
−x≦0.4、さらには0.2≦1−x≦0.3に設定
することにより、P/V値を高め、かつ発振周波数の温
度変化率を減少させることができる。しかし、2価の金
属元素に対する(Na 0.5Bi0.5)の置換量を示す1−
xが0.5以上の場合にはP/V値が減少し、且つ−4
0℃〜80℃における発振周波数の温度変化率も大きく
なってしまう。
Here, as the divalent metal element, Ca,
There are Sr, Ba, Ra and the like.
Some (Na0.5Bi0.5), But the
The substitution amount 1-x is 0 <1-x <0.5, particularly 0.1 ≦ 1.
-X≤0.4, and set to 0.2≤1-x≤0.3
By doing so, the P / V value is increased, and the temperature of the oscillation frequency is increased.
The degree of rate change can be reduced. However, divalent gold
(Na 0.5Bi0.51)
When x is 0.5 or more, the P / V value decreases, and -4
Large temperature change rate of oscillation frequency from 0 ° C to 80 ° C
turn into.

【0015】また、主成分l00重量部に対して、Mn
の含有量が、酸化物換算で0.05〜1.0重量部、特
に0.1〜0.4重量部にすることにより、P/V値を
著しく向上することができる。Mnの含有量が酸化物換
算で0.05重量部より少なくなるとP/Vが大幅に減
少し、l.0重量部より多いと、焼結体の体積固有抵抗
が減少し分極が困難となるからである。
[0015] Further, Mn is based on 100 parts by weight of the main component.
The P / V value can be remarkably improved by setting the content to 0.05 to 1.0 part by weight, particularly 0.1 to 0.4 part by weight, in terms of oxide. When the content of Mn is less than 0.05 parts by weight in terms of oxide, P / V is greatly reduced, and l. If the amount is more than 0 parts by weight, the volume resistivity of the sintered body decreases and polarization becomes difficult.

【0016】したがって、2価の金属元素に対する(N
0.5Bi0.5)の置換量1−xとMnの含有量とを上記
のように設定すると、置換の効果とMnの効果との相乗
効果により、P/V値を50dB以上にすることがで
き、かつ同時に−40℃〜80℃における発振周波数の
温度変化率を−5000〜5000ppmとすることが
できる。
Therefore, (N
When the substitution amount 1-x of a 0.5 Bi 0.5 ) and the Mn content are set as described above, the P / V value can be increased to 50 dB or more due to the synergistic effect of the substitution effect and the Mn effect. At the same time, the temperature change rate of the oscillation frequency at −40 ° C. to 80 ° C. can be set to −5000 to 5000 ppm.

【0017】また、本発明の圧電磁器組成物は、Mを、
Ca、Sr、Baのうちから選ばれる少なくとも1種と
することにより、さらにP/V値を向上できる。
Further, the piezoelectric ceramic composition of the present invention comprises:
By using at least one selected from Ca, Sr, and Ba, the P / V value can be further improved.

【0018】特に、MをSrと他の2価の金属元素Nと
の組合せにすることにより、さらに高いP/V値と、さ
らに0に近い温度変化率を得ることができる。すなわ
ち、Mが一般式、Sr1-yyで表され、主成分のBi層
状化合物が一般式(Na0.5Bi0.51-x(Sr
1-yyxBi4Ti415 (但し、xは0.5<x<
1)で表されたとき、0.05≦y≦0.5とすること
により、P/V値を60dB以上、−40℃〜80℃に
おける発振周波数の温度変化率を−3800〜3800
ppmとすることができる。特に、0.1≦y≦0.4
が望ましい。
Particularly, when M is a combination of Sr and another divalent metal element N, a higher P / V value and a temperature change rate closer to 0 can be obtained. That is, M is represented by the general formula Sr 1-y N y , and the Bi layered compound as the main component is represented by the general formula (Na 0.5 Bi 0.5 ) 1-x (Sr
1-y N y ) x Bi 4 Ti 4 O 15 (where x is 0.5 <x <
When represented by 1), by setting 0.05 ≦ y ≦ 0.5, the P / V value is 60 dB or more, and the temperature change rate of the oscillation frequency at −40 ° C. to 80 ° C. is −3800 to 3800.
ppm. In particular, 0.1 ≦ y ≦ 0.4
Is desirable.

【0019】本発明の圧電磁器組成物においては、結晶
相として(Na0.5Bi0.51-xxBi4Ti415で表
されるビスマス層状化合物を主結晶相とするものであ
る。Mnは主結晶相中に固溶し、一部Mn化合物の結晶
として主結晶相の粒界に析出する場合がある。また、本
発明の圧電磁器組成物では、ビスマス層状化合物以外の
結晶相として、パイロクロア結晶相、ペロブスカイト結
晶相が存在することもあるが、微量であれば特性上問題
はない。
In the piezoelectric ceramic composition of the present invention, a bismuth layered compound represented by (Na 0.5 Bi 0.5 ) 1-x M x Bi 4 Ti 4 O 15 is used as a main crystal phase. Mn may form a solid solution in the main crystal phase and partially precipitate as crystals of the Mn compound at the grain boundaries of the main crystal phase. In addition, in the piezoelectric ceramic composition of the present invention, a pyrochlore crystal phase and a perovskite crystal phase may be present as crystal phases other than the bismuth layered compound, but there is no problem in characteristics as long as the amount is small.

【0020】本発明の圧電磁器組成物は、例えば、原料
として、Na2CO3、Bi23、SrCO3、CaC
3、BaCO3、MnO2、TiO2などの粉末を用い
る。
The piezoelectric ceramic composition of the present invention is prepared, for example, by using Na 2 CO 3 , Bi 2 O 3 , SrCO 3 , CaC
Powder such as O 3 , BaCO 3 , MnO 2 , TiO 2 is used.

【0021】これらの原料を、本発明の磁器組成物の組
成となるように秤量し、混合した後、この混合物を85
0〜1050℃で仮焼し、所定の有機バインダを加えて
乾式混合し、造粒する。このようにして得られた粉体
を、公知のプレス成形等により所定形状に成形し、大気
中等の酸化性雰囲気において1000〜1300℃の温
度範囲で2〜5時間焼成し、本発明の圧電磁器組成物が
得られる。
After these raw materials are weighed and mixed so as to have the composition of the porcelain composition of the present invention, the mixture is mixed with 85%.
The mixture is calcined at 0 to 1050 ° C, a predetermined organic binder is added, dry-mixed, and granulated. The powder thus obtained is formed into a predetermined shape by known press molding or the like, and calcined in an oxidizing atmosphere such as air at a temperature range of 1000 to 1300 ° C. for 2 to 5 hours. A composition is obtained.

【0022】なお、原料として用いる金属酸化物は、上
記の作製プロセス中、調合時だけでなく、仮焼した粉体
に対して混合しても同様な効果が得られる。また、使用
する原料粉末としては炭酸塩や酸化物だけでなく、酢酸
塩または有機金属などの化合物のいずれであっても、焼
成などの熱処理プロセスによって酸化物になるものであ
れば差し支えない。
The same effect can be obtained by mixing the metal oxide used as a raw material not only at the time of blending but also with the calcined powder during the above manufacturing process. The raw material powder to be used is not limited to carbonates and oxides, and may be any compound such as acetate or organic metal as long as it becomes an oxide by a heat treatment process such as firing.

【0023】また、本発明の圧電磁器においては、原料
粉末や混合ボールなどに微少量含まれるAl、Si、Z
rまたはTaなどの不可避不純物が混入する場合がある
が、特性に影響のない範囲であれば何ら差し支えない。
Further, in the piezoelectric ceramic according to the present invention, the Al, Si, Z
An unavoidable impurity such as r or Ta may be mixed in, but there is no problem as long as the characteristics are not affected.

【0024】本発明の圧電磁器組成物は、図1に示すよ
うなコルピッツ型発振回路の発振子の圧電磁器組成物と
して最適であるが、それ以外の発振子、超音波振動子、
超音波モータ及び加速度センサー、ノッキングセンサ
ー、AEセンサー等の圧電センサーなどにも最適であ
り、特に厚み滑り振動の基本波振動を利用する高周波用
発振子として最適な圧電磁器組成物である。
The piezoelectric ceramic composition of the present invention is most suitable as a piezoelectric ceramic composition for an oscillator of a Colpitts type oscillation circuit as shown in FIG. 1, but other oscillators, ultrasonic oscillators,
The piezoelectric ceramic composition is most suitable for an ultrasonic motor and a piezoelectric sensor such as an acceleration sensor, a knocking sensor, and an AE sensor, and is particularly suitable as a high-frequency oscillator utilizing a fundamental wave vibration of a thickness-shear vibration.

【0025】[0025]

【実施例】本発明の圧電磁器組成物は、まず、出発原料
として平均粒径1.5μm、純度99.9%のNa2
3粉末、Bi23粉末、TiO2粉末を秤量し、これに
平均粒径1.2μm、純度99.9%のMnO2粉末と
所望によりCaCO3粉末、SrCO3粉末およびBaC
3粉末を用いて、上記した組成式において表1の組成
となるように調合した。次に、純度99.9%のジルコ
ニアボール、イソプロピルアルコール(IPA)と共に
500mlポリポットに投入し、16時間回転ミルにて
混合した。混合後のスラリーを大気中にて乾燥し、#4
0メッシュを通し、その後、大気中950℃、3時間保
持して仮焼し、評価粉末を得た。
EXAMPLE The piezoelectric ceramic composition of the present invention was prepared by first using Na 2 C having an average particle size of 1.5 μm and a purity of 99.9% as a starting material.
O 3 powder, Bi 2 O 3 powder, and TiO 2 powder were weighed, and MnO 2 powder having an average particle diameter of 1.2 μm and a purity of 99.9%, and optionally CaCO 3 powder, SrCO 3 powder and BaC
It was prepared using O 3 powder so as to have the composition shown in Table 1 in the above composition formula. Next, the zirconia balls having a purity of 99.9% and isopropyl alcohol (IPA) were put into a 500 ml polypot, and mixed with a rotary mill for 16 hours. The mixed slurry is dried in the atmosphere, and # 4
After passing through 0 mesh, it was calcined at 950 ° C. for 3 hours in the atmosphere to obtain an evaluation powder.

【0026】この粉末に適量の有機バインダーを添加し
て造粒し、金型プレスにて150MPaで長さ25m
m、幅38mm、厚みl.0mmの板状に成形し、大気
中において1140℃の温度で3時間本焼成し圧電磁器
を得た。
An appropriate amount of an organic binder is added to the powder, and the mixture is granulated.
m, width 38 mm, thickness l. It was formed into a 0 mm plate shape and fired in air at a temperature of 1140 ° C. for 3 hours to obtain a piezoelectric ceramic.

【0027】得られた磁器を長さ6mm、幅30mm、
厚み0.60mmに加工し、長さ方向に分極するため、
端面に分極用電極を設けて分極処理を施した。次に、こ
の分極用電極を除去し、厚みを0.23mmとした後、
長さ6mmと幅30mmからなる面の両面にAgおよび
Crとを同時に蒸着し、250℃で12時間のアニール
処理を施した。
The resulting porcelain was 6 mm long, 30 mm wide,
Processed to a thickness of 0.60 mm and polarized in the length direction,
A polarization electrode was provided on the end face to perform polarization processing. Next, after removing the electrode for polarization to a thickness of 0.23 mm,
Ag and Cr were simultaneously vapor-deposited on both surfaces having a length of 6 mm and a width of 30 mm, and annealed at 250 ° C. for 12 hours.

【0028】次に、電極の不要な部位に形成されている
AgとCrからなる蒸着層をエッチングで除去し、切断
して図2に示すような8MHz発振に相当する厚み滑り
振動の基本波振動を用いた発振子を作製した。この試料
は、長さ4.5mm(L)、幅1.1mm(W)、厚み
0.23mm(H)の形状で、上下面に電極を有してい
た。なお、図2の矢印Pは分極の方向を示している。
Next, the vapor deposition layer made of Ag and Cr formed at unnecessary portions of the electrodes is removed by etching, cut, and the fundamental wave vibration of thickness slip vibration corresponding to 8 MHz oscillation as shown in FIG. An oscillator using was manufactured. This sample had a length of 4.5 mm (L), a width of 1.1 mm (W), and a thickness of 0.23 mm (H), and had electrodes on the upper and lower surfaces. The arrow P in FIG. 2 indicates the direction of polarization.

【0029】発振子の特性は、インピーダンスアナライ
ザによリインピーダンス波形を測定し、厚み滑り振動の
基本波振動でのP/Vを以下の式により算出した。 P/V値=20Log(Ra/R0) 但し、Ra:反共振インピーダンス、R0:共振インピー
ダンス さらに、−40℃〜80℃における発振周波数の温度変
化率を測定した。この共振周波数の温度変化率は、25
℃を基準にして、以下の式により算出した。Fosc変
化率(ppm)={(Fosc(drift)−Fos
c(25))/Fosc(25)}×100、但し、F
osc変化率は共振周波数の温度変化率であり、また、
Fosc(dfift)は−40℃もしくは+80℃で
の共振周波数であり、Fosc(25)は25℃での発
振周波数である。そして、−40〜25℃または25〜
80℃のいずれか大きい方の値を温度変化率とした。結
果を表1に示す。
As for the characteristics of the oscillator, a re-impedance waveform was measured by an impedance analyzer, and P / V at the fundamental wave vibration of the thickness shear vibration was calculated by the following equation. P / V value = 20 Log (R a / R 0 ) where Ra : anti-resonance impedance, R 0 : resonance impedance Further, the temperature change rate of the oscillation frequency at −40 ° C. to 80 ° C. was measured. The temperature change rate of this resonance frequency is 25
Based on ° C, it was calculated by the following equation. Fosc change rate (ppm) = {(Fosc (drift) −Fos
c (25)) / Fosc (25)} × 100, where F
The osc change rate is a temperature change rate of the resonance frequency, and
Fosc (dshift) is the resonance frequency at -40 ° C or + 80 ° C, and Fosc (25) is the oscillation frequency at 25 ° C. And -40 to 25 ° C or 25 to
The larger value of 80 ° C. was defined as the temperature change rate. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】本発明の試料No.1、2、4〜7、10
〜15、17〜22は、厚み滑り振動の基本波振動のP
/V値が50dB以上、−40℃〜80℃における共振
周波数の温度変化率の絶対値が4100ppm以下であ
った。特に、Mnの含有量が酸化物換算で、0.1〜
0.4重量部である試料No.11〜13は、厚み滑り
振動の基本波振動のP/V値が55dB以上であった。
Sample No. of the present invention 1,2,4-7,10
To 15 and 17 to 22 are the P of the fundamental wave vibration of the thickness shear vibration.
/ V value was 50 dB or more, and the absolute value of the temperature change rate of the resonance frequency at −40 ° C. to 80 ° C. was 4100 ppm or less. In particular, when the content of Mn is 0.1 to
Sample No. 0.4 parts by weight. In Nos. 11 to 13, the P / V value of the fundamental wave vibration of the thickness shear vibration was 55 dB or more.

【0032】また、2価の金属元素MをSrと他の2価
の金属Nとした本発明の試料No.17〜22は、P/
V値が60以上、共振周波数の温度変化率が3800p
pm以下であった。
The sample No. of the present invention in which the divalent metal element M was Sr and another divalent metal N was used. 17-22 are P /
V value is 60 or more, temperature change rate of resonance frequency is 3800p
pm or less.

【0033】一方、2価の金属元素MがBaで、xの値
が本発明の範囲外の試料No.3および8は、それぞれ
P/V値が45、48dB、共振周波数の温度変化率が
3500、5100ppmであった。
On the other hand, the sample No. 2 in which the divalent metal element M is Ba and the value of x is out of the range of the present invention. In Nos. 3 and 8, the P / V value was 45 and 48 dB, and the temperature change rate of the resonance frequency was 3500 and 5100 ppm, respectively.

【0034】また、2価の金属元素MがBaで、Mnの
含有量が本発明の範囲外の試料No.9は、P/V値が
22dBであり、試料No.15は、Mnの含有量が多
すぎて分極できなかった。
Sample No. 2 in which the divalent metal element M is Ba and the Mn content is out of the range of the present invention. Sample No. 9 had a P / V value of 22 dB, and No. 15 could not be polarized because the content of Mn was too large.

【0035】[0035]

【発明の効果】本発明の圧電磁器組成物は、厚み滑り振
動における基本波振動のP/V値を高めることができ、
同時に−40℃〜80℃の温度範囲における発振周波数
の温度変化率を小さくできるため、発振周波数の温度安
定性に優れた圧電磁器組成物を得ることができる。
The piezoelectric ceramic composition of the present invention can increase the P / V value of the fundamental wave vibration in the thickness shear vibration,
At the same time, the rate of temperature change of the oscillation frequency in the temperature range of -40 ° C to 80 ° C can be reduced, so that a piezoelectric ceramic composition excellent in temperature stability of the oscillation frequency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コルピッツ型の発振回路を示した回路図であ
る。
FIG. 1 is a circuit diagram showing a Colpitts type oscillation circuit.

【図2】8MHz用発振子の斜視図である。FIG. 2 is a perspective view of an oscillator for 8 MHz.

【符号の説明】[Explanation of symbols]

ll、12・・・コンデンサ 13・・・抵抗 14・・・インバータ 15・・・発振子 11, 12 ... capacitor 13 ... resistor 14 ... inverter 15 ... oscillator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Mを2価の金属元素の中から選ばれる少な
くとも1種としたとき、一般式、 (Na0.5Bi0.51-xxBi4Ti415 (但し、x
は0.5<x<1)で示されるBi層状構造化合物から
なる主成分と、該主成分l00重量部に対して、Mnを
酸化物換算で0.05〜1重量部含有することを特徴と
する圧電磁器組成物。
When M is at least one selected from divalent metal elements, a general formula: (Na 0.5 Bi 0.5 ) 1-x M x Bi 4 Ti 4 O 15 (where x
Is characterized by containing 0.05 to 1 part by weight of Mn in terms of oxide based on 100 parts by weight of the main component comprising a Bi layer structure compound represented by 0.5 <x <1). Piezoelectric ceramic composition.
【請求項2】2価の金属元素Mが、Ca、SrおよびB
aのうちから選ばれる少なくとも1種であることを特徴
とする請求項1記載の圧電磁器組成物。
2. The method according to claim 1, wherein the divalent metal element M is Ca, Sr or B
2. The piezoelectric ceramic composition according to claim 1, wherein the composition is at least one selected from a.
【請求項3】2価の金属元素Mが、Srと他の2価の金
属元素Nからなり、Mが一般式、Sr1-yyで表された
とき、0.05≦y≦0.5であることを特徴とする請
求項1または2記載の圧電磁器組成物。
Wherein the divalent metal element M consists of Sr and other divalent metal elements N, when M is the formula, expressed in Sr 1-y N y, 0.05 ≦ y ≦ 0 3. The piezoelectric ceramic composition according to claim 1, wherein the composition is 0.5.
JP34067199A 1999-11-30 1999-11-30 Oscillator Expired - Fee Related JP3961175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34067199A JP3961175B2 (en) 1999-11-30 1999-11-30 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34067199A JP3961175B2 (en) 1999-11-30 1999-11-30 Oscillator

Publications (2)

Publication Number Publication Date
JP2001158663A true JP2001158663A (en) 2001-06-12
JP3961175B2 JP3961175B2 (en) 2007-08-22

Family

ID=18339210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34067199A Expired - Fee Related JP3961175B2 (en) 1999-11-30 1999-11-30 Oscillator

Country Status (1)

Country Link
JP (1) JP3961175B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226264A (en) * 2001-01-31 2002-08-14 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2002226265A (en) * 2001-01-31 2002-08-14 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2007119269A (en) * 2005-10-25 2007-05-17 Ngk Spark Plug Co Ltd Piezoelectric ceramic composition and piezoelectric element
WO2013187339A1 (en) * 2012-06-10 2013-12-19 株式会社富士セラミックス Piezoelectric ceramic composition and method for producing same
WO2013187338A1 (en) * 2012-06-10 2013-12-19 株式会社富士セラミックス Piezoelectric ceramic composition and method for producing same
WO2014192164A1 (en) * 2013-05-29 2014-12-04 株式会社富士セラミックス Piezoelectric ceramic composition and production method therefor
CN113896526A (en) * 2021-10-22 2022-01-07 厦门乃尔电子有限公司 Piezoelectric material with high piezoelectricity and good high-temperature insulativity and preparation method thereof
CN116854464A (en) * 2023-07-07 2023-10-10 石河子大学 Ferroelectric composite energy storage ceramic material and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226264A (en) * 2001-01-31 2002-08-14 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP2002226265A (en) * 2001-01-31 2002-08-14 Kyocera Corp Piezoelectric ceramic composition and piezoelectric resonator
JP4737843B2 (en) * 2001-01-31 2011-08-03 京セラ株式会社 Piezoelectric ceramic composition and piezoelectric resonator
JP2007119269A (en) * 2005-10-25 2007-05-17 Ngk Spark Plug Co Ltd Piezoelectric ceramic composition and piezoelectric element
JP2013256393A (en) * 2012-06-10 2013-12-26 Fuji Ceramics:Kk Piezoelectric ceramic composition and method for producing the same
WO2013187338A1 (en) * 2012-06-10 2013-12-19 株式会社富士セラミックス Piezoelectric ceramic composition and method for producing same
WO2013187339A1 (en) * 2012-06-10 2013-12-19 株式会社富士セラミックス Piezoelectric ceramic composition and method for producing same
JP2013256394A (en) * 2012-06-10 2013-12-26 Fuji Ceramics:Kk Piezoelectric ceramic composition and method for producing the same
WO2014192164A1 (en) * 2013-05-29 2014-12-04 株式会社富士セラミックス Piezoelectric ceramic composition and production method therefor
JP2014231462A (en) * 2013-05-29 2014-12-11 株式会社富士セラミックス Piezoelectric ceramic composition and method for manufacturing the same
CN113896526A (en) * 2021-10-22 2022-01-07 厦门乃尔电子有限公司 Piezoelectric material with high piezoelectricity and good high-temperature insulativity and preparation method thereof
CN116854464A (en) * 2023-07-07 2023-10-10 石河子大学 Ferroelectric composite energy storage ceramic material and preparation method thereof
CN116854464B (en) * 2023-07-07 2024-04-16 石河子大学 Ferroelectric composite energy storage ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JP3961175B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
JP3570294B2 (en) Piezoelectric ceramic material and piezoelectric ceramic sintered body obtained using the same
JP3961175B2 (en) Oscillator
JP4234898B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP4234902B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP4471542B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP3732967B2 (en) Porcelain composition
JP4544712B2 (en) Piezoelectric ceramic and piezoelectric element
JP3125624B2 (en) Piezoelectric ceramic
JP4789328B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP3554202B2 (en) Piezoelectric ceramic for vibrator
JP4737843B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JP2001342061A (en) Piezoelectric ceramic and piezoelectric resonator
JP3389477B2 (en) Piezoelectric ceramic composition
JP2001130961A (en) Piezoelectric ceramic composition and piezoelectric ceramic element by using the same
JP4231202B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
US6391223B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP3618040B2 (en) Piezoelectric ceramic composition
JP3805103B2 (en) Manufacturing method of third overtone oscillator
JP3389485B2 (en) Piezoelectric ceramic composition
JP5094284B2 (en) Piezoelectric ceramic and piezoelectric element
JP3860684B2 (en) Piezoelectric ceramic composition
JP3347602B2 (en) Piezoelectric ceramic composition
JP3420458B2 (en) Piezoelectric ceramic composition
JP2874495B2 (en) Piezoelectric material
JPH0570141A (en) Piezoelectric porcelain material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees