JP2007114015A - Humidity measuring instrument - Google Patents

Humidity measuring instrument Download PDF

Info

Publication number
JP2007114015A
JP2007114015A JP2005304657A JP2005304657A JP2007114015A JP 2007114015 A JP2007114015 A JP 2007114015A JP 2005304657 A JP2005304657 A JP 2005304657A JP 2005304657 A JP2005304657 A JP 2005304657A JP 2007114015 A JP2007114015 A JP 2007114015A
Authority
JP
Japan
Prior art keywords
humidity
vibration
inspection member
vacuum chamber
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005304657A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kitatani
和彦 北谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KTY KK
Original Assignee
KTY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KTY KK filed Critical KTY KK
Priority to JP2005304657A priority Critical patent/JP2007114015A/en
Publication of JP2007114015A publication Critical patent/JP2007114015A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized humidity measuring instrument capable of measuring the humidity in a vacuum chamber or the like with high precision. <P>SOLUTION: The humidity measuring instrument 3 is constituted so as to measure the ambient humidity in the vacuum chamber 2 or the like and equipped with: an inspection member 6 having a gap in which a water molecule gets in the ratio corresponding to the difference of the ambient humidity; the vibration part 7 having the inspection member 6 attached thereto and vibrated along with the inspection member 6; a drive part 11 or 14 for vibrating the vibration part 7 at a set frequency; and a measuring part 12 or 15 for indirectly measuring humidity by measuring the vibration frequency of the vibration part 7 shifted from the set frequency by the change in the mass of the inspection member 6 proportional to the humidity caused by the change in the amount of moisture getting in the gap corresponding to a change in the ambient humidity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、周囲の湿度を測定する湿度測定装置に関し、特に真空蒸着で成形される膜材の屈折率等に影響する、真空室内の湿度測定に用いて好適な湿度測定装置に関する。   The present invention relates to a humidity measuring apparatus for measuring ambient humidity, and more particularly to a humidity measuring apparatus suitable for use in measuring humidity in a vacuum chamber that affects the refractive index of a film material formed by vacuum deposition.

例えば真空蒸着においては、真空引きされた真空室内で、金属等の材料を蒸発させて対象物の表面に蒸着膜を形成する処理である。具体的には、真空室内に膜材を形成する対象物を装着して真空引きし、膜材の材料を蒸発させて、対象物の表面に蒸発させた材料を積層させる。これにより、対象物の表面に均一な蒸着膜を形成する。   For example, vacuum deposition is a process of evaporating a material such as metal in a vacuumed vacuum chamber to form a deposited film on the surface of an object. Specifically, an object for forming a film material is mounted in a vacuum chamber and evacuated, the material of the film material is evaporated, and the evaporated material is laminated on the surface of the object. Thereby, a uniform vapor deposition film is formed on the surface of the object.

ところで、一般的な真空蒸着装置では、設定膜厚の均一な蒸着膜を形成するための制御が行われるだけで、湿度の違いは特に考慮されていない。湿度の違いに関しては、作業者が真空蒸着作業を行う前に湿度を確認して微調整を行う程度で、具体的な装置の制御対象にはされていなかった。これは、湿度まで考慮しなくても、これまでは精度的に問題にならなかったためである。   By the way, in a general vacuum vapor deposition apparatus, only a control for forming a vapor deposition film having a uniform set film thickness is performed, and a difference in humidity is not particularly taken into consideration. Regarding the difference in humidity, it was not specified as a specific object of control of the apparatus because the operator checked the humidity before performing the vacuum evaporation operation and made fine adjustments. This is because there has been no problem with accuracy until now even if humidity is not taken into consideration.

ところが、近年の各種の光学機器の精密化、高精度化によって、真空室内の湿度の変化による蒸着膜の屈折率の変化まで問題になるようになってきた。即ち、真空蒸着装置で蒸着膜を形成する際に、真空室内の湿度の違いで蒸着膜の屈折率が微妙に変化してしまい、その蒸着膜が施された部品を使用した光学機器の精度が低下するという問題が生じてきた。   However, with the recent improvements in precision and accuracy of various optical instruments, there has been a problem of changes in the refractive index of the deposited film due to changes in the humidity in the vacuum chamber. That is, when forming a vapor deposition film with a vacuum vapor deposition device, the refractive index of the vapor deposition film slightly changes due to the difference in humidity in the vacuum chamber, and the accuracy of the optical equipment using the component on which the vapor deposition film is applied is improved. The problem of decline has arisen.

なお、真空蒸着装置によって蒸着膜を形成する際に屈折率が変化するのは以下の理由による。真空室内で材料を蒸発させて対象物の表面に付着させるときに、蒸発した材料と共に真空室内に存在する水分子も蒸着膜内に入り込んでしまう。この水分子が蒸着膜内に入り込む量は真空室内の水分子量(湿度)に応じて決まる。この水分子量は、材料の蒸発に伴って真空室の内壁等から飛び出す水分子も加わって変化してしまう。そして、蒸着膜内に入り込んだ水分子量に応じて蒸着膜の屈折率も変化してしまう。この蒸着作業が始まった後の水分子量の変化は測定することができないため、これまで考慮されることはなかった。   In addition, when forming a vapor deposition film with a vacuum vapor deposition apparatus, a refractive index changes for the following reasons. When the material is evaporated in the vacuum chamber and adhered to the surface of the object, water molecules existing in the vacuum chamber together with the evaporated material also enter the deposited film. The amount of water molecules entering the deposited film is determined according to the water molecular weight (humidity) in the vacuum chamber. This water molecular weight changes with the addition of water molecules that jump out of the inner wall of the vacuum chamber as the material evaporates. And the refractive index of a vapor deposition film will also change according to the water molecular weight which entered the vapor deposition film. The change in water molecular weight after this deposition operation has started has not been taken into account since it cannot be measured.

しかし、この僅かな水分子量(湿度)の違いで変化する蒸着膜の屈折率も、近年の光学機器の精密化、高精度化によって問題になるようになってきた。   However, the refractive index of the deposited film, which changes due to the slight difference in water molecular weight (humidity), has become a problem due to the recent refinement and high precision of optical instruments.

このため、真空蒸着装置に真空室内の湿度を測定する装置を設ける必要性が出てきたが、真空蒸着装置に組み込めるような小型のもので、真空室内の僅かな水分子量(湿度)を測定できる高精度の湿度測定装置はこれまでなかった。   For this reason, it has become necessary to provide a device for measuring the humidity in the vacuum chamber in the vacuum vapor deposition device, but it is small enough to be incorporated into the vacuum vapor deposition device and can measure a small amount of water molecule (humidity) in the vacuum chamber. There has never been a highly accurate humidity measurement device.

本発明は上述の点に鑑みてなされたもので、真空室内等での僅かな湿度の変化を高精度で測定することができる小型の湿度測定装置を提供することにある。   The present invention has been made in view of the above points, and it is an object of the present invention to provide a small-sized humidity measuring apparatus capable of measuring a slight change in humidity in a vacuum chamber or the like with high accuracy.

以上の課題を解決するために、本発明に係る湿度測定装置は、周囲の湿度を測定する湿度測定装置であって、周囲の湿度の違いに応じた比率で水分子が入り込む空隙を有する検査部材と、当該検査部材が取り付けられて当該検査部材と共に振動する振動部と、当該振動部を設定周波数で振動させる駆動部と、周囲の湿度の変化に応じて上記空隙に入り込む水分子量が変化することで上記検査部材の質量が上記湿度に比例して変化しこれによって上記設定周波数からずれる上記振動部の振動周波数を測定して間接的に湿度を測定する測定部とを備えたことを特徴とする。   In order to solve the above problems, a humidity measuring apparatus according to the present invention is a humidity measuring apparatus for measuring ambient humidity, and has an inspection member having a gap into which water molecules enter at a ratio corresponding to a difference in ambient humidity. A vibration unit that is attached to the inspection member and vibrates with the inspection member, a drive unit that vibrates the vibration unit at a set frequency, and a water molecular weight that enters the gap changes according to a change in ambient humidity. And a measurement unit that measures the humidity indirectly by measuring the vibration frequency of the vibration unit that varies in proportion to the humidity and thereby deviates from the set frequency. .

上記構成により、検査部材が、周囲の湿度の違いに応じた比率で水分子を吸収して、周囲の湿度に比例した質量に変化する。これにより、上記質量の変化に応じて上記振動部の振動周波数が設定周波数からずれてしまい、測定部がこのずれ量を測定して、間接的に湿度を測定する。   With the above configuration, the inspection member absorbs water molecules at a ratio corresponding to the difference in ambient humidity, and changes to a mass proportional to the ambient humidity. As a result, the vibration frequency of the vibration unit is deviated from the set frequency in accordance with the change in the mass, and the measurement unit measures the amount of deviation and indirectly measures the humidity.

上記検査部材は、上記振動部の表面に積層して形成される金属、酸化物、フッ化物または硫化物の膜であることが望ましい。上記振動部は、上記設定周波数で印加される電圧に反応して振動する圧電性物質を備えて構成することが望ましい。上記圧電性物質は高周波で振動する水晶振動子であることが望ましい。また、本発明に係る湿度測定装置は、真空室内の湿度を測定することが望ましい。   The inspection member is preferably a metal, oxide, fluoride, or sulfide film formed by being laminated on the surface of the vibrating portion. It is desirable that the vibration unit includes a piezoelectric material that vibrates in response to a voltage applied at the set frequency. The piezoelectric material is preferably a quartz crystal vibrator that vibrates at a high frequency. Moreover, it is desirable that the humidity measuring device according to the present invention measures the humidity in the vacuum chamber.

これにより、金属、酸化物、フッ化物または硫化物の膜(例として、酸化チタンまたは酸化シリコンの膜)が、周囲の湿度の違いに応じた比率で水分子を吸収して、周囲の湿度に比例した質量に変化する。上記振動部では、水晶振動子等の圧電性物質が設定周波数、特に高周波で振動して、僅かな質量の違いでも周波数が大きくずれるように設定することができる。   As a result, a metal, oxide, fluoride, or sulfide film (for example, a titanium oxide or silicon oxide film) absorbs water molecules at a ratio corresponding to the difference in ambient humidity, and the ambient humidity is obtained. It changes to a proportional mass. In the vibration unit, the piezoelectric substance such as a quartz vibrator can be set to vibrate at a set frequency, particularly at a high frequency, so that the frequency is greatly shifted even with a slight difference in mass.

検査部材が水分子を吸収して質量が変化するのに応じてずれる上記振動部の振動周波数のずれ量を測定して、間接的に湿度を測定するため、僅かな質量の変化も検出することができ、僅かな湿度の変化を測定することができる。   Detecting even a slight change in mass by measuring the amount of vibration frequency deviation of the vibration part that shifts as the test member absorbs water molecules and changes in mass to indirectly measure humidity. And a slight change in humidity can be measured.

特に、上記検査部材を金属、酸化物、フッ化物または硫化物の膜(例として、酸化チタンまたは酸化シリコンの膜)にすることで、水分子を効率的に吸収して、周囲の湿度の変化によく追随して、周囲の湿度に比例した質量に変化させることができる。また、上記振動部では、水晶振動子等の圧電性物質が設定周波数、特に高周波で振動させることで、僅かな質量の違いでも周波数が大きくずれるように設定することができるため、僅かな湿度の変化を測定することができる。この結果、真空室内等の僅かな湿度の変化も高い精度で測定することができるようになる。   In particular, by making the inspection member a metal, oxide, fluoride or sulfide film (for example, a titanium oxide or silicon oxide film), water molecules are efficiently absorbed, and the ambient humidity changes. The mass can be changed in proportion to the ambient humidity. In addition, in the above-described vibration unit, a piezoelectric substance such as a crystal resonator can be set so that the frequency greatly deviates even with a slight difference in mass by vibrating at a set frequency, particularly at a high frequency. Changes can be measured. As a result, even a slight change in humidity in a vacuum chamber or the like can be measured with high accuracy.

また、測定部分を、水晶振動子等の小さな振動部と、この振動部に積層等により取り付けられる検査部材とから構成したので、この測定部分を小型化することができ、真空蒸着装置等の狭い空間にも容易に組み込むことができるようになる。   Moreover, since the measurement part is composed of a small vibration part such as a crystal resonator and an inspection member attached to the vibration part by lamination or the like, the measurement part can be reduced in size, and a vacuum deposition apparatus or the like is narrow. It can be easily incorporated into space.

以下、本発明の実施形態について添付図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明の湿度測定装置は、僅かな湿度の変化を測定する必要がある空間での湿度測定に用いることができるものである。特に、湿度測定装置は、真空室のように僅かな水分子しか存在しないような空間での湿度測定に用いて好適な装置である。ここでは、湿度測定装置を真空蒸着装置に用いた場合を例に、図1に基づいて説明する。図1は本実施形態に係る湿度測定装置を備えた真空蒸着装置を示す概略構成図である。   The humidity measuring apparatus of the present invention can be used for humidity measurement in a space where a slight change in humidity needs to be measured. In particular, the humidity measuring device is suitable for use in measuring humidity in a space such as a vacuum chamber where few water molecules exist. Here, an example in which the humidity measuring device is used in a vacuum vapor deposition device will be described with reference to FIG. FIG. 1 is a schematic configuration diagram showing a vacuum deposition apparatus provided with a humidity measuring apparatus according to the present embodiment.

図中の真空蒸着装置1は一般的に知られた装置である。このため、真空蒸着装置1については概略的に説明する。真空蒸着装置1は主に、蒸発させる材料を加熱する加熱手段(図示せず)と、蒸発させる材料を入れる坩堝(図示せず)と、蒸着対象物である基板(図示せず)と、真空室2と、この真空室2内の湿度を測定する湿度測定装置3と、湿度測定装置3での測定値の演算や真空室2内の真空引きや蒸着膜の膜厚調整等を制御する制御部4等を備えている。   The vacuum vapor deposition apparatus 1 in the figure is a generally known apparatus. For this reason, the vacuum evaporation apparatus 1 is demonstrated roughly. The vacuum deposition apparatus 1 mainly includes a heating means (not shown) for heating the material to be evaporated, a crucible (not shown) for storing the material to be evaporated, a substrate (not shown) as a deposition target, and a vacuum. A chamber 2, a humidity measuring device 3 for measuring the humidity in the vacuum chamber 2, and a control for controlling calculation of measured values in the humidity measuring device 3, evacuation in the vacuum chamber 2, film thickness adjustment of the deposited film, etc. Part 4 and the like.

坩堝は、蒸発させる金属材料等を入れるためのものである。加熱手段は、坩堝に入れられた材料を蒸発させるための手段である。加熱手段は、電子銃や電子流調整部(いずれも図示せず)等で構成されている。蒸着対象物である基板は、その表面に蒸着膜を施す対象部材である。   The crucible is for containing a metal material to be evaporated. A heating means is a means for evaporating the material put into the crucible. The heating means is composed of an electron gun, an electron current adjusting unit (both not shown), and the like. The substrate which is a vapor deposition target is a target member which applies a vapor deposition film on its surface.

真空室2は真空蒸着を行うための空間である。真空室2内が真空引きされて、真空蒸着作業が行われる。   The vacuum chamber 2 is a space for performing vacuum deposition. The inside of the vacuum chamber 2 is evacuated, and vacuum deposition work is performed.

湿度測定装置3は真空室2内の湿度を測定するための装置である。この湿度測定装置3は図2に示すように主に、検査部材6と、振動部7と、駆動部11又は14と、測定部12又は15とから構成されている。   The humidity measuring device 3 is a device for measuring the humidity in the vacuum chamber 2. As shown in FIG. 2, the humidity measuring device 3 mainly includes an inspection member 6, a vibrating unit 7, a driving unit 11 or 14, and a measuring unit 12 or 15.

検査部材6は、周囲の湿度の違いに応じた比率で水分子が入り込む空隙を有する材料である。検査部材6は、真空室2内の湿度を間接的に測定する。検査部材6は、水分子が入り込んだり抜け出たりする空隙を有し、周囲の湿度の違いに応じた比率で水分子が入り込み、この空隙に入り込んだ水分子量の違いによって質量が変化するようになっている。即ち、検査部材6は、真空室2内の湿度の違いに比例して質量が変化するようになっている。この結果、真空室2内の湿度と、検査部材6の質量とが比例関係になっている。このため、真空室2内に配設した検査部材6の質量の変化を測定することで、間接的に真空室2内の湿度の変化を測定することができる。   The inspection member 6 is a material having a void into which water molecules enter at a ratio corresponding to a difference in ambient humidity. The inspection member 6 indirectly measures the humidity in the vacuum chamber 2. The inspection member 6 has a gap through which water molecules enter and exit, and water molecules enter at a ratio corresponding to the difference in ambient humidity, and the mass changes due to the difference in the amount of water molecules entering the gap. ing. That is, the mass of the inspection member 6 changes in proportion to the difference in humidity in the vacuum chamber 2. As a result, the humidity in the vacuum chamber 2 and the mass of the inspection member 6 are in a proportional relationship. For this reason, the change in the humidity in the vacuum chamber 2 can be indirectly measured by measuring the change in the mass of the inspection member 6 disposed in the vacuum chamber 2.

検査部材6は、振動部7の上側表面に積層して設けられている。具体的には検査部材6は、振動部7の上側表面に積層して形成される酸化チタンまたは酸化シリコンの膜で構成されている。これらの部材は、周囲に存在する水分子を、その密度に比例した個数だけ取り込んだり放出したりすることができる大きさの空隙を作りやすい材料である。このような空隙を多数有する多孔質の検査部材6を振動部7の上側表面に設けることで、湿度の違いに比例して質量が変化する振動子を構成している。振動部7の上側表面に設けられる検査部材6の形状は、振動部7の振動に最も効率的に影響を与えることができる態様になっている。この検査部材6の形状は、振動部7の具体的な寸法、形状の等の諸条件によって異なるため、各振動部7に応じて、円盤状、三角形状、四角形状、ドーナツ状等の種々の形状に適宜設定される。また、検査部材6は、特定形状の1つの部材で構成されたり、小さいものを複数組み合わせて構成されたりする。即ち、検査部材6は、水分子の吸収による質量の変化を振動部7の振動周波数の変化に最も効率的に影響させることができる態様で設けられる。なお、検査部材6の材料としては、酸化チタンまたは酸化シリコンの膜に限らず、金属、酸化物、フッ化物または硫化物の膜であって、周囲の湿度の違いに応じた比率で水分子が出入りする空隙を形成できる材料であればよい。   The inspection member 6 is provided by being laminated on the upper surface of the vibration part 7. Specifically, the inspection member 6 is composed of a titanium oxide or silicon oxide film formed by being laminated on the upper surface of the vibration part 7. These members are materials that easily form voids having a size that allows the number of water molecules present in the surrounding area to be taken in and released in proportion to the density. By providing such a porous inspection member 6 having a large number of voids on the upper surface of the vibration part 7, a vibrator whose mass changes in proportion to the difference in humidity is configured. The shape of the inspection member 6 provided on the upper surface of the vibration part 7 is an aspect that can most effectively affect the vibration of the vibration part 7. Since the shape of the inspection member 6 varies depending on various conditions such as the specific dimensions and shape of the vibration portion 7, various shapes such as a disk shape, a triangular shape, a quadrangular shape, and a donut shape are used according to each vibration portion 7. The shape is appropriately set. Moreover, the test | inspection member 6 is comprised by one member of a specific shape, or is comprised combining several small things. That is, the inspection member 6 is provided in such a manner that the change in mass due to the absorption of water molecules can be most effectively affected by the change in the vibration frequency of the vibration part 7. The material of the inspection member 6 is not limited to a titanium oxide or silicon oxide film, but is a metal, oxide, fluoride or sulfide film, in which water molecules are present at a ratio corresponding to the difference in ambient humidity. Any material can be used as long as it can form the entrance and exit gaps.

振動部7は、上記検査部材6が取り付けられて検査部材6と共に振動する部材である。この振動部7は、設定周波数で印加される電圧に反応して振動する圧電性物質によって構成されている。この圧電性物質としては、チタン酸バリウムなどの金属酸化物粉末を圧縮焼成した圧電セラミックスや、水晶振動子等を用いることができる。また、水晶振動子の場合は、ATカット型、BTカット型、音叉型等の種々の形式の水晶振動子を用いることができる。ここでは圧電性物質として、ATカット型の水晶振動子を用いている。このATカット型の水晶振動子を高周波で振動させるようになっている。振動部7は、その上側面を球面状に形成され、この球面状の上側表面に検査部材6が積層して設けられている。振動部7は、真空室2内に装着されている。駆動部11又は14等の他の回路は、真空室2の外側に設けられている。なお、振動部7の上側面及び下側面にはそれぞれ電極層(図示せず)が設けられている。   The vibration part 7 is a member that is attached with the inspection member 6 and vibrates together with the inspection member 6. The vibrating portion 7 is made of a piezoelectric material that vibrates in response to a voltage applied at a set frequency. As the piezoelectric material, piezoelectric ceramics obtained by compressing and firing a metal oxide powder such as barium titanate, a crystal resonator, and the like can be used. In the case of a crystal resonator, various types of crystal resonators such as an AT cut type, a BT cut type, and a tuning fork type can be used. Here, an AT-cut type crystal resonator is used as the piezoelectric material. This AT-cut type crystal resonator is vibrated at a high frequency. The vibrating part 7 has a spherical upper surface, and an inspection member 6 is laminated on the upper surface of the spherical surface. The vibration part 7 is mounted in the vacuum chamber 2. Other circuits such as the drive unit 11 or 14 are provided outside the vacuum chamber 2. An electrode layer (not shown) is provided on each of the upper side surface and the lower side surface of the vibration part 7.

駆動部11又は14は、振動部7を設定周波数で振動させるための回路である。測定部12又は15は、駆動部11又は14で振動させた振動部7の振動周波数を測定するための回路である。振動部7を振動させる回路及び振動部7の振動周波数を測定する回路としては、一般に用いられている種々の回路を用いることができる。ここでは、発信法8による回路と伝送法9による回路の2つの例を図示している。これのうちの一方の回路で、振動部7の振動及び振動周波数の測定が可能である。   The drive unit 11 or 14 is a circuit for causing the vibration unit 7 to vibrate at a set frequency. The measurement unit 12 or 15 is a circuit for measuring the vibration frequency of the vibration unit 7 vibrated by the drive unit 11 or 14. As a circuit that vibrates the vibration unit 7 and a circuit that measures the vibration frequency of the vibration unit 7, various commonly used circuits can be used. Here, two examples of a circuit based on the transmission method 8 and a circuit based on the transmission method 9 are shown. One of the circuits can measure the vibration and vibration frequency of the vibration unit 7.

駆動部11又は14としては、振動部7の水晶振動子に高周波電圧を印加して水晶振動子を高周波で振動させることができる回路全てを用いることができる。ここでは、発信法8の駆動部11の例としてはオシュレータを用いている。伝送法9の駆動部14の例としてはπ回路を用いている。   As the drive unit 11 or 14, any circuit that can apply a high frequency voltage to the crystal resonator of the vibration unit 7 to vibrate the crystal resonator at a high frequency can be used. Here, an oscillator is used as an example of the drive unit 11 of the transmission method 8. As an example of the driving unit 14 of the transmission method 9, a π circuit is used.

測定部12又は15としては、振動部7の水晶振動子の高周波振動を測定することができる回路全てを用いることができる。ここでは、発信法8の測定部12の例としてはカウンターを用いている。伝送法9の測定部15の例としてはネットワークアナライザーを用いている。   As the measurement unit 12 or 15, any circuit that can measure high-frequency vibrations of the crystal unit of the vibration unit 7 can be used. Here, a counter is used as an example of the measuring unit 12 of the transmission method 8. As an example of the measurement unit 15 of the transmission method 9, a network analyzer is used.

上記振動部7は、上記駆動部11又は14がこの振動部7に設定周波数の電圧を印加することによって、設定周波数で振動するようになっている。駆動部11又は14は、基準となる湿度(例えば、湿度1%)のときに、その湿度に比例した質量になっている検査部材6を備えた振動部7が、設定周波数で振動することができるように調整された周波数の電圧を印加するようになっている。これにより、振動部7は、基準となる湿度で、上記駆動部11又は14がこの振動部7に調整された設定周波数の電圧を印加することによって、設定周波数で振動する。そして、基準となる湿度を境にして、湿度が高くなれば振動部7の振動周波数は設定周波数よりも低くなる方向にずれ、湿度が低くなれば振動部7の振動周波数は設定周波数よりも高くなる方向にずれる。そして、このずれた振動周波数を測定して周囲の湿度を間接的に測定するものである。   The vibration unit 7 is configured to vibrate at a set frequency when the drive unit 11 or 14 applies a voltage having a set frequency to the vibration unit 7. When the drive unit 11 or 14 has a reference humidity (for example, 1% humidity), the vibration unit 7 including the inspection member 6 having a mass proportional to the humidity may vibrate at a set frequency. A voltage having a frequency adjusted to be able to be applied is applied. As a result, the vibration unit 7 vibrates at the set frequency when the driving unit 11 or 14 applies a voltage of the adjusted set frequency to the vibration unit 7 at the reference humidity. When the humidity becomes high, the vibration frequency of the vibration unit 7 shifts in a direction lower than the set frequency, and when the humidity is low, the vibration frequency of the vibration unit 7 becomes higher than the set frequency. It shifts in the direction. Then, by measuring this shifted vibration frequency, the ambient humidity is indirectly measured.

また、振動部7は、高周波で振動される。これは、高周波にすることで、僅かな質量の変化でも、波長のずれを大きくすることができるためである。これにより、高い精度で湿度の変化を測定することができる。   Further, the vibration unit 7 is vibrated at a high frequency. This is because the shift in wavelength can be increased even with a slight change in mass by using a high frequency. Thereby, a change in humidity can be measured with high accuracy.

測定部12又は15は、間接的に湿度を測定するために、設定周波数からずれる振動部7の振動周波数を測定する。この測定部12又は15は、振動部7の振動周波数を測定して、この振動周波数から設定周波数を減算して得た値から湿度を間接的に測定するようになっている。測定部12又は15には、メモリ(図示せず)等の記憶領域が設けられている。この記憶領域には、振動部7の振動周波数の設定周波数からのずれと湿度との関係が記録されている。即ち、振動部7の振動周波数から設定周波数を減算した値と、真空室2内の湿度との関係を、予め実験的に特定しておき、その関係が記憶領域に記録されている。これにより、真空室2の湿度の変化に応じて検査部材6の空隙に入り込む水分子量が変化することで検査部材6の質量が上記湿度に比例して変化し、これによって上記設定周波数からずれる振動部7の振動周波数を測定し、この振動周波数から設定周波数を減算して得た値から間接的に湿度を測定するようになっている。なお、上記振動周波数から設定周波数を減算する減算回路と上記メモリとは、制御部4に設けてもよい。   The measurement unit 12 or 15 measures the vibration frequency of the vibration unit 7 that deviates from the set frequency in order to indirectly measure the humidity. The measurement unit 12 or 15 measures the vibration frequency of the vibration unit 7 and indirectly measures the humidity from a value obtained by subtracting the set frequency from the vibration frequency. The measuring unit 12 or 15 is provided with a storage area such as a memory (not shown). In this storage area, the relationship between the deviation of the vibration frequency of the vibration unit 7 from the set frequency and the humidity is recorded. That is, the relationship between the value obtained by subtracting the set frequency from the vibration frequency of the vibration unit 7 and the humidity in the vacuum chamber 2 is experimentally specified in advance, and the relationship is recorded in the storage area. As a result, the mass of the water in the inspection member 6 changes in proportion to the humidity due to the change in the molecular weight of water entering the gap of the inspection member 6 in accordance with the change in the humidity of the vacuum chamber 2. The vibration frequency of the unit 7 is measured, and the humidity is indirectly measured from a value obtained by subtracting the set frequency from the vibration frequency. The subtracting circuit for subtracting the set frequency from the vibration frequency and the memory may be provided in the control unit 4.

制御部4は、測定部9での測定値に基づいて、基準湿度からのずれの分を補正する厚さに、蒸着膜の膜厚を設定し直し、その膜厚で蒸着膜を形成するようになっている。   The control unit 4 resets the film thickness of the vapor deposition film to a thickness that corrects the deviation from the reference humidity based on the measurement value in the measurement unit 9, and forms the vapor deposition film with the film thickness. It has become.

[動作]
以上のように構成された真空蒸着装置1では、次のようにして基板の蒸着膜が形成される。
[Operation]
In the vacuum vapor deposition apparatus 1 configured as described above, the vapor deposition film of the substrate is formed as follows.

真空室2内に坩堝と基板が装着されて真空室2内が真空引きされ、上記加熱手段で坩堝内の材料が加熱されて蒸発され、基板の表面に蒸着される。この蒸着作業は、真空蒸着装置1で行う一般的なものである。このとき、基板に形成する蒸着膜の膜厚を真空室2内の湿度に応じた厚さに設定する。この蒸着膜の膜厚は、以下の処理によって設定する。   A crucible and a substrate are mounted in the vacuum chamber 2 and the inside of the vacuum chamber 2 is evacuated, and the material in the crucible is heated and evaporated by the heating means, and deposited on the surface of the substrate. This vapor deposition operation is a common one performed by the vacuum vapor deposition apparatus 1. At this time, the film thickness of the vapor deposition film formed on the substrate is set to a thickness corresponding to the humidity in the vacuum chamber 2. The film thickness of this deposited film is set by the following process.

まず、真空室2内の振動部7を駆動部11又は14によって設定周波数で振動させ、測定部12又は15によって振動部7の振動周波数を測定する。次いで、測定部12又は15で、測定した振動周波数から設定周波数が減算されて、その減算値から、メモリ内のデータ(減算値と真空室2内の湿度との関係)を参照して湿度が特定される。   First, the vibration unit 7 in the vacuum chamber 2 is vibrated at a set frequency by the drive unit 11 or 14, and the vibration frequency of the vibration unit 7 is measured by the measurement unit 12 or 15. Next, the measurement frequency is subtracted from the measured vibration frequency by the measurement unit 12 or 15, and the humidity is determined from the subtraction value with reference to data in the memory (relationship between the subtraction value and the humidity in the vacuum chamber 2). Identified.

制御部4では、予め特定しておいた反射光の強度と真空室2内の湿度との関係及び湿度の変化と蒸着膜の膜厚の補正分との関係から、蒸着膜の膜厚の補正分を特定する。   The control unit 4 corrects the film thickness of the vapor deposition film from the relationship between the intensity of reflected light specified in advance and the humidity in the vacuum chamber 2 and the relationship between the change in humidity and the correction of the film thickness of the vapor deposition film. Identify the minutes.

次いで、制御部4は、真空蒸着装置1の各部を制御して、上記湿度から特定した補正分を含む膜厚に設定し直して蒸着膜を形成する。   Subsequently, the control part 4 controls each part of the vacuum evaporation system 1, and sets it again to the film thickness containing the correction | amendment specified from the said humidity, and forms a vapor deposition film.

[効果]
以上のように、真空室2内の湿度の変化を、検査部材6の水分子の変化による周波数の変化として検出するため、高い精度で真空室2の湿度を間接的に測定することができる。
[effect]
As described above, since the change in the humidity in the vacuum chamber 2 is detected as the change in the frequency due to the change in the water molecules in the inspection member 6, the humidity in the vacuum chamber 2 can be indirectly measured with high accuracy.

検査部材6が水分子を吸収して質量が変化するのに応じてずれる振動部7の振動周波数のずれ量を測定して、間接的に湿度を測定するため、僅かな質量の変化も検出することができ、僅かな湿度の変化を測定することができるようになる。この結果、真空室2内の湿度の変化を容易に検出することができるようになる。   Since the inspection member 6 absorbs water molecules and changes the mass, the deviation of the vibration frequency of the vibrating part 7 is measured and the humidity is indirectly measured, so that a slight change in mass is also detected. And a slight change in humidity can be measured. As a result, a change in humidity in the vacuum chamber 2 can be easily detected.

特に、検査部材6を酸化チタンまたは酸化シリコンの膜にすることで、水分子を効率的に吸収して、周囲の湿度の変化によく追随して、周囲の湿度に比例した質量に変化させることができるため、高い精度で湿度の変化を間接的に検出することができるようになる。   In particular, by making the inspection member 6 a titanium oxide or silicon oxide film, water molecules are efficiently absorbed, and the change in the mass proportional to the ambient humidity is achieved by following the change in the ambient humidity. Therefore, it becomes possible to indirectly detect a change in humidity with high accuracy.

また、振動部7を高周波で振動させるため、僅かな質量の違いでも周波数が大きくずれるように設定することができ、僅かな湿度の変化を高い精度で測定することができる。この結果、真空室2内の僅かな湿度の変化も高い精度で測定することができるようになる。   Moreover, since the vibration part 7 is vibrated at high frequency, it can be set so that the frequency is greatly shifted even with a slight difference in mass, and a slight change in humidity can be measured with high accuracy. As a result, even a slight change in humidity in the vacuum chamber 2 can be measured with high accuracy.

また、測定部分を、水晶振動子からなる小さな振動部7と、この振動部7に積層して設けた検査部材6とから構成したので、この測定部分を小型化することができ、真空蒸着装置の真空室2のような狭い空間にも容易に組み込むことができるようになる。   Further, since the measurement part is composed of the small vibration part 7 made of a crystal resonator and the inspection member 6 provided by being laminated on the vibration part 7, the measurement part can be reduced in size, and the vacuum evaporation apparatus Thus, it can be easily incorporated into a narrow space such as the vacuum chamber 2.

[変形例]
上記実施形態では、湿度測定装置3の駆動部8等を真空室2の外部に設けたが、真空室2内にスペース的な余裕があれば、駆動部11又は14等を真空室2内に設けてもよい。この場合も、上記実施形態同様の作用、効果を奏することができる。
[Modification]
In the above embodiment, the drive unit 8 and the like of the humidity measuring device 3 are provided outside the vacuum chamber 2. However, if there is a space in the vacuum chamber 2, the drive unit 11 or 14 or the like is placed in the vacuum chamber 2. It may be provided. Also in this case, the same operations and effects as the above embodiment can be achieved.

また、上記実施形態では、真空蒸着装置1の真空室2内の湿度を測定する湿度測定装置3を例に説明したが、僅かな湿度の変化を高い精度で測定する必要のある用途全般に用いることができる。   Moreover, in the said embodiment, although the humidity measuring apparatus 3 which measures the humidity in the vacuum chamber 2 of the vacuum evaporation system 1 was demonstrated to the example, it uses for the general use which needs to measure a slight change of humidity with high precision. be able to.

本発明の実施形態に係る真空蒸着装置を示す概略構成図である。It is a schematic structure figure showing the vacuum evaporation system concerning the embodiment of the present invention. 湿度測定装置を示す構成図である。It is a block diagram which shows a humidity measuring apparatus.

符号の説明Explanation of symbols

1:真空蒸着装置、2:真空室、3:湿度測定装置、4:制御部、6:検査部材、7:振動部、8:駆動部、9:測定部、11:オシュレータ、12:カウンター、14:π回路、15:ネットワークアナライザー。
1: vacuum deposition device, 2: vacuum chamber, 3: humidity measurement device, 4: control unit, 6: inspection member, 7: vibration unit, 8: drive unit, 9: measurement unit, 11: oscillator, 12: counter, 14: π circuit, 15: network analyzer.

Claims (6)

周囲の湿度を測定する湿度測定装置であって、
周囲の湿度の違いに応じた比率で水分子が入り込む空隙を有する検査部材と、
当該検査部材が取り付けられて当該検査部材と共に振動する振動部と、
当該振動部を設定周波数で振動させる駆動部と、
周囲の湿度の変化に応じて上記空隙に入り込む水分子量が変化することで上記検査部材の質量が上記湿度に比例して変化しこれによって上記設定周波数からずれる上記振動部の振動周波数を測定して間接的に湿度を測定する測定部と
を備えたことを特徴とする湿度測定装置。
A humidity measuring device for measuring ambient humidity,
An inspection member having a void into which water molecules enter at a ratio according to the difference in ambient humidity;
A vibration part attached with the inspection member and vibrating with the inspection member;
A drive unit for vibrating the vibration unit at a set frequency;
By measuring the vibration frequency of the vibration part that deviates from the set frequency by changing the mass of the inspection member in proportion to the humidity by changing the molecular weight of water entering the gap according to the change in ambient humidity. A humidity measuring apparatus comprising a measuring unit for indirectly measuring humidity.
請求項1に記載の湿度測定装置において、
上記検査部材が、上記振動部の表面に積層して形成される金属、酸化物、フッ化物または硫化物の膜であることを特徴とする湿度測定装置。
The humidity measuring device according to claim 1,
The humidity measuring apparatus, wherein the inspection member is a metal, oxide, fluoride or sulfide film formed by being laminated on the surface of the vibration part.
請求項1又は2に記載の湿度測定装置において、
上記振動部が、上記設定周波数で印加される電圧に反応して振動する圧電性物質を備えて構成されたことを特徴とする湿度測定装置。
In the humidity measuring device according to claim 1 or 2,
The humidity measuring apparatus, wherein the vibration section includes a piezoelectric substance that vibrates in response to a voltage applied at the set frequency.
請求項3に記載の湿度測定装置において、
上記圧電性物質が水晶振動子であることを特徴とする湿度測定装置。
In the humidity measuring device according to claim 3,
A humidity measuring apparatus, wherein the piezoelectric substance is a crystal resonator.
請求項1ないし4のいずれか1項に記載の湿度測定装置において、
上記振動部が、高周波で振動することを特徴とする湿度測定装置。
In the humidity measuring device according to any one of claims 1 to 4,
A humidity measuring apparatus, wherein the vibration section vibrates at a high frequency.
請求項1ないし5のいずれか1項に記載の湿度測定装置において、
上記検査部材が取り付けられた振動部が真空室内に装着されて、当該真空室内の湿度を測定することを特徴とする湿度測定装置。

In the humidity measuring device according to any one of claims 1 to 5,
A humidity measuring apparatus, wherein a vibration part to which the inspection member is attached is mounted in a vacuum chamber and measures the humidity in the vacuum chamber.

JP2005304657A 2005-10-19 2005-10-19 Humidity measuring instrument Pending JP2007114015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304657A JP2007114015A (en) 2005-10-19 2005-10-19 Humidity measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304657A JP2007114015A (en) 2005-10-19 2005-10-19 Humidity measuring instrument

Publications (1)

Publication Number Publication Date
JP2007114015A true JP2007114015A (en) 2007-05-10

Family

ID=38096345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304657A Pending JP2007114015A (en) 2005-10-19 2005-10-19 Humidity measuring instrument

Country Status (1)

Country Link
JP (1) JP2007114015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100939060B1 (en) 2008-01-16 2010-01-28 한국표준과학연구원 Density measurement device and measurement method using vacuum
JP2012189462A (en) * 2011-03-11 2012-10-04 Mic Ware:Kk Navigation device, navigation method, and program
JP2018112444A (en) * 2017-01-11 2018-07-19 Q’z株式会社 Device for measuring concentration of two-gas mixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100939060B1 (en) 2008-01-16 2010-01-28 한국표준과학연구원 Density measurement device and measurement method using vacuum
JP2012189462A (en) * 2011-03-11 2012-10-04 Mic Ware:Kk Navigation device, navigation method, and program
JP2018112444A (en) * 2017-01-11 2018-07-19 Q’z株式会社 Device for measuring concentration of two-gas mixture

Similar Documents

Publication Publication Date Title
KR102035146B1 (en) Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
CN106574833B (en) Method for diagnosing film thickness sensor and film thickness monitor
CN111829428B (en) Double-quartz-crystal diaphragm thickness control instrument and error correction method
JP2009284219A (en) Piezoelectric vibration piece, and piezoelectric device
TW201250039A (en) Film formation apparatus
JP2019065391A (en) Method for determining life of crystal oscillator, thickness measurement device, film deposition method, film deposition apparatus, and method for manufacturing electronic device
KR20170028980A (en) Film-thickness monitor and film-thickness determination method
WO2004100365A1 (en) Frequency regulating method for tuning fork type vibrator and tuning fork type vibrator frequency-regulated by the method
JP2007114015A (en) Humidity measuring instrument
KR20180027334A (en) Film thickness sensor
JPH03804B2 (en)
JP2006250926A (en) Mass measurement device
JP2019099870A (en) Vapor deposition device and vapor deposition method
JP4830260B2 (en) Film thickness detection method
JP6412384B2 (en) Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device
RU2702702C1 (en) Method of determining sensitivity of quartz microbalance
JP2009232376A (en) Method of manufacturing piezoelectric oscillator
RU2298781C2 (en) Device for measuring gas moisture
JP7348873B2 (en) Sensor element and gas sensor
JP4841489B2 (en) GETTER EVALUATION SYSTEM, ITS EVALUATION METHOD, ITS EVALUATION PROGRAM, AND GETTER EVALUATION DEVICE
JPH0722482A (en) Film-thickness measuring device and thin-film forming device using film-thickness measuring device
RU2092808C1 (en) Piezoelectric sensor of vapors of mercury
JP2000137114A (en) Manufacture of optical filter
JP2001192827A (en) Vacuum evaporation system
JP4341340B2 (en) Method and apparatus for manufacturing piezoelectric vibration device