JP2007109751A - Mounting structure and mounting method of semiconductor device - Google Patents

Mounting structure and mounting method of semiconductor device Download PDF

Info

Publication number
JP2007109751A
JP2007109751A JP2005297123A JP2005297123A JP2007109751A JP 2007109751 A JP2007109751 A JP 2007109751A JP 2005297123 A JP2005297123 A JP 2005297123A JP 2005297123 A JP2005297123 A JP 2005297123A JP 2007109751 A JP2007109751 A JP 2007109751A
Authority
JP
Japan
Prior art keywords
semiconductor device
solder
substrate
phs
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005297123A
Other languages
Japanese (ja)
Inventor
Atsuhiro Kubota
敦裕 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2005297123A priority Critical patent/JP2007109751A/en
Publication of JP2007109751A publication Critical patent/JP2007109751A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting structure of a semiconductor with which the semiconductor device having PHS (Plated Heat Sink) sharing heat dissipation and grounding at a rear face can easily and securely be soldered, heat generated at that time is appropriately diffused, and grounding can easily be performed. <P>SOLUTION: The mounting structure of the semiconductor device is provided with the semiconductor device 1 having PHS 6 sharing heat dissipation and grounding at the rear face, a substrate 2 having through-holes 12, first solders 3 connecting a part except for PHS 6 of the semiconductor device 1 and the substrate 2, and second solder 4 connecting a part of PHS 6 of the semiconductor device 1 and the substrate 2 with which the through-hole 12 of the substrate 2 is filled and whose melting point is lower than the first solders 3. The part except for PHS 6 is soldered by first solder 3, and the part of PHS 6 is soldered by second solder. Heat dissipation radiators 8 and 9 can be arranged in a face opposite to the mounting face of the semiconductor device 1 in the substrate 2 and a case of the semiconductor device 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体装置の実装構造及び実装方法に関し、特に、半導体パッケージ等の表面実装部品の裏面を直接基板にはんだ付けし、表面実装部品から発生する熱を適切に放散させて実装する半導体装置の実装構造及び実装方法に関する。   The present invention relates to a mounting structure and mounting method for a semiconductor device, and in particular, a semiconductor device that is mounted by soldering the back surface of a surface mounting component such as a semiconductor package directly to a substrate and dissipating heat generated from the surface mounting component appropriately. The present invention relates to a mounting structure and a mounting method.

従来、半導体チップを回路基板に実装する際には、半導体チップを回路基板に接地することが重要な要素の一つとなっている。そこで、例えば、特許文献1に記載の半導体装置の実装構造及び実装方法では、TAB(Tape Automated Bonding)方式により製造された半導体装置を回路基板に接地するため、導電性接着剤を回路基板のスルーホールを介して回路基板の反対面から流し込むことにより、半導体チップを回路基板に接地する技術が開示されている。この技術は、TAB方式により製造された半導体装置を回路基板に接地すること、及び、TAB方式により製造された半導体装置から発生する熱を適切に放散することにおいて一応の効果を奏している。   Conventionally, when a semiconductor chip is mounted on a circuit board, grounding the semiconductor chip to the circuit board has been one of the important elements. Therefore, for example, in the mounting structure and mounting method of the semiconductor device described in Patent Document 1, a conductive adhesive is passed through the circuit board in order to ground the semiconductor device manufactured by the TAB (Tape Automated Bonding) method to the circuit board. A technique for grounding a semiconductor chip to a circuit board by pouring from the opposite surface of the circuit board through a hole is disclosed. This technique has a temporary effect in grounding a semiconductor device manufactured by the TAB method to a circuit board and appropriately dissipating heat generated from the semiconductor device manufactured by the TAB method.

また、この種の実装構造では、表面実装部品の裏面から発生する熱を適切に放散することが重要な要素の一つとなっている。そこで、例えば、特許文献2に記載の半導体パッケージ搭載基板では、表面実装部品の裏面に対応するパターンと、基板反対面に平面状の導体層とを形成し、表面実装部品の裏面をはんだ付けするとともに、スルーホールを介して両導体層同士を接続している。この技術は、表面実装部品から発生する熱を表面実装部品の裏面、基板実装面の導体層、スルーホール、そして基板反対面の導体層へと導くことで、表面実装部品の裏面から発生する熱を適切に放散させることにおいて一応の効果を奏している。   Further, in this type of mounting structure, it is one of the important elements to dissipate heat generated from the back surface of the surface mounting component appropriately. Therefore, for example, in the semiconductor package mounting substrate described in Patent Document 2, a pattern corresponding to the back surface of the surface mount component and a planar conductor layer are formed on the opposite surface of the substrate, and the back surface of the surface mount component is soldered. At the same time, the two conductor layers are connected to each other through a through hole. This technology guides the heat generated from the surface mount component to the back surface of the surface mount component, the conductor layer on the board mounting surface, the through hole, and the conductor layer on the opposite surface of the substrate, thereby generating heat generated from the back surface of the surface mount component. It has a temporary effect in properly dissipating.

さらに、この種の実装構造では、表面実装部品の裏面をはんだ付けするため、裏面のはんだが部品全体を浮上させてしまい、配線用電極のはんだ付け品質を低下させるという問題がある。そこで、例えば、特許文献3に記載の表面実装部品の実装構造、実装方法及びリペア方法では、表面実装部品の裏面に対応するパッドにスルーホールを設ける技術が開示されている。この技術は、リフロー時に余分なはんだがスルーホールへ流れ込むようにすることで、表面実装部品の浮きの抑制において一応の効果を奏している。   Further, in this type of mounting structure, since the back surface of the surface-mounted component is soldered, the solder on the back surface causes the entire component to float, and there is a problem that the soldering quality of the wiring electrode is degraded. Thus, for example, in the surface mounting component mounting structure, mounting method, and repair method described in Patent Document 3, a technique of providing a through hole in a pad corresponding to the back surface of the surface mounting component is disclosed. This technique has a temporary effect in suppressing the floating of the surface mount component by allowing excess solder to flow into the through hole during reflow.

特許第2778790号公報Japanese Patent No. 2778790 特開平6−85427号公報JP-A-6-85427 特開2004−349418号公報JP 2004-349418 A

しかし、特許文献1に記載の技術は、TAB方式により製造された半導体装置に特化したものであって、導電性接着剤の熱膨張係数と、はんだ付けされた入出力端子の熱膨張係数の差により、新たに導電性接着剤、又は、はんだにクラックが生じる可能性があるという問題があった。TAB方式であれば、導電性接着剤の熱膨張係数と、はんだ付けされた入出力端子の熱膨張係数の差よるストレスは、TABリードや入出力端子により吸収可能であり、有効な手段ではある。しかし、表面実装部品の裏面に放熱と接地を兼ねたプレーテッドヒートシンクを備える半導体装置への適用を考えると、熱膨張係数の差によるストレスを吸収することができないという問題があった。   However, the technique described in Patent Document 1 is specialized for a semiconductor device manufactured by the TAB method, and includes the thermal expansion coefficient of the conductive adhesive and the thermal expansion coefficient of the soldered input / output terminals. Due to the difference, there is a problem that a crack may be newly generated in the conductive adhesive or the solder. In the case of the TAB method, the stress due to the difference between the thermal expansion coefficient of the conductive adhesive and the thermal expansion coefficient of the soldered input / output terminal can be absorbed by the TAB lead and the input / output terminal, which is an effective means. . However, when considering application to a semiconductor device having a plated heat sink that serves as both heat dissipation and grounding on the back surface of the surface mount component, there is a problem that stress due to a difference in thermal expansion coefficient cannot be absorbed.

また、特許文献2に記載の半導体パッケージ搭載基板は、特許文献3で指摘されているように、裏面のはんだが部品全体を浮上させてしまい、配線用電極のはんだ付け品質を低下させるという問題があった。   Further, as pointed out in Patent Document 3, the semiconductor package mounting substrate described in Patent Document 2 has a problem that the solder on the back surface causes the entire component to float, and the soldering quality of the wiring electrode is degraded. there were.

さらに、特許文献3に記載の技術は、表面実装部品の裏面のはんだペーストの量を制御する必要があり、余分なはんだがスルーホールへ流れ込むようにしているが、余分なはんだの量が多過ぎると、部品全体を浮上させてしまい、少な過ぎれば、裏面のはんだ付けが不十分となるという問題があった。   Furthermore, in the technique described in Patent Document 3, it is necessary to control the amount of solder paste on the back surface of the surface-mounted component, and excessive solder flows into the through hole. However, the excessive amount of solder is too large. Then, the entire part is lifted, and if it is too small, there is a problem that the soldering on the back surface becomes insufficient.

そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、裏面に放熱と接地を兼ねたプレーテッドヒートシンクを備える半導体装置を、簡単かつ確実にはんだ付けすることができ、その際に発生する熱を適切に放散させ、接地も容易に行うことのできる半導体装置の実装構造及び実装方法を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described problems in the conventional technology, and can easily and reliably solder a semiconductor device including a plated heat sink that combines heat dissipation and grounding on the back surface. An object of the present invention is to provide a mounting structure and a mounting method for a semiconductor device which can dissipate heat generated at that time and can be easily grounded.

上記目的を達成するため、本発明は、半導体装置の実装構造であって、裏面に放熱と接地を兼ねたプレーテッドヒートシンク(以下、「PHS」という)を備える半導体装置と、スルーホールを有する基板と、前記半導体装置の前記PHS以外の部分と、前記基板とを接続する第1のはんだと、前記半導体装置の前記PHSの部分と、前記基板とを接続するとともに、前記基板の前記スルーホールに充填され、前記第1のはんだよりも融点の低い第2のはんだとを備えることを特徴とする。   In order to achieve the above object, the present invention provides a semiconductor device mounting structure, a semiconductor device having a plated heat sink (hereinafter referred to as “PHS”) having both heat dissipation and grounding on the back surface, and a substrate having a through hole. And connecting the PHS portion of the semiconductor device and the substrate to the through hole of the substrate, the first solder for connecting the portion other than the PHS of the semiconductor device and the substrate, the PHS portion of the semiconductor device, and the substrate. And a second solder having a melting point lower than that of the first solder.

そして、本発明によれば、第1のはんだと第2のはんだ(低温はんだ)との熱膨張係数の差を、第1のはんだと導電性接着剤の熱膨張係数と比べて十分小さくすることができるため、はんだ部分にクラック等が発生する可能性がなく、裏面に放熱と接地を兼ねたPHSを備える半導体装置を、簡単かつ確実に実装することができる。   According to the present invention, the difference in thermal expansion coefficient between the first solder and the second solder (low temperature solder) is made sufficiently smaller than the thermal expansion coefficient between the first solder and the conductive adhesive. Therefore, there is no possibility that cracks or the like occur in the solder portion, and a semiconductor device having a PHS that combines heat dissipation and grounding on the back surface can be easily and reliably mounted.

また、本発明によれば、内部が電気的、熱的良導体である低温はんだで充填された円柱型のサーマルビアを形成することになり、従来の中空の円筒型のサーマルビアと比べて、実装面と反対面との間の熱抵抗を大幅に下げることができる。   In addition, according to the present invention, a cylindrical thermal via filled with low-temperature solder, which is a good electrical and thermal conductor, is formed, and compared with a conventional hollow cylindrical thermal via, The thermal resistance between the surface and the opposite surface can be greatly reduced.

さらに、副次的な効果として、PHSのはんだ付け時の温度上昇も低温はんだの溶融点程度に抑えることができるため、半導体装置は熱ストレスを受けにくいという効果も奏する。   Further, as a secondary effect, the temperature rise during soldering of PHS can be suppressed to about the melting point of low-temperature solder, so that the semiconductor device is also less susceptible to thermal stress.

前記半導体装置の実装構造において、前記基板の、前記半導体装置の実装面の反対側の面に、放熱ラジエータを備えることができる。これによって、放熱効率をより高めることができる。   In the semiconductor device mounting structure, a heat dissipation radiator may be provided on a surface of the substrate opposite to the mounting surface of the semiconductor device. Thereby, the heat dissipation efficiency can be further increased.

また、前記半導体装置の実装構造において、前記半導体装置のケースに放熱ラジエータを備えることができる。これによって、放熱効率をさらに高めることができる。   In the semiconductor device mounting structure, a heat dissipation radiator may be provided in the case of the semiconductor device. Thereby, the heat dissipation efficiency can be further increased.

さらに、本発明は、裏面に放熱と接地を兼ねたPHSを備える半導体装置を、スルーホールを有する基板に実装する半導体装置の実装方法であって、前記PHS以外の部分を前記基板に第1のはんだにてはんだ付けする第1段階と、前記基板の、前記半導体装置の実装面の反対側から、前記PHSの部分を、前記第1のはんだよりも融点の低い第2のはんだにてはんだ付けする第2段階とで構成され、該第2段階が完了した後で、前記第2のはんだが前記基板の前記スルーホールに充填されることを特徴とする。   Furthermore, the present invention provides a semiconductor device mounting method for mounting a semiconductor device having a PHS having both heat dissipation and grounding on a substrate having a through-hole on the back surface, and a portion other than the PHS is mounted on the substrate. A first step of soldering with solder, and soldering the PHS portion from the opposite side of the mounting surface of the semiconductor device to the substrate with a second solder having a melting point lower than that of the first solder The second solder is filled in the through hole of the substrate after the second step is completed.

そして、本発明によれば、上述のように、はんだ部分にクラック等が発生する可能性がなく、裏面に放熱と接地を兼ねたPHSを備える半導体装置を、簡単かつ確実に実装することができる。例えば、第1段階で第1のはんだを鉛共晶はんだとした場合、鉛共晶はんだの溶融点は約183℃である。第2の低温はんだをインジウムはんだとした場合、溶融点は約100℃であり、第1のはんだより溶融点が低いため、第1段階でのはんだ付け品質を劣化させることがない。   According to the present invention, as described above, there is no possibility that cracks or the like occur in the solder portion, and a semiconductor device including a PHS that combines heat dissipation and grounding can be easily and reliably mounted on the back surface. . For example, when the first solder is lead eutectic solder in the first stage, the melting point of lead eutectic solder is about 183 ° C. When the second low-temperature solder is indium solder, the melting point is about 100 ° C., and the melting point is lower than that of the first solder, so that the soldering quality in the first stage is not deteriorated.

また、本発明によれば、従来の中空の円筒型のサーマルビアと比べて、実装面と反対面との間の熱抵抗を大幅に下げることができ、PHSのはんだ付け時の温度上昇も低温はんだの溶融点程度に抑えることができ、半導体装置は熱ストレスを受けにくくなる。   In addition, according to the present invention, compared to a conventional hollow cylindrical thermal via, the thermal resistance between the mounting surface and the opposite surface can be greatly reduced, and the temperature rise during soldering of PHS is also low. The temperature can be suppressed to the melting point of the solder, and the semiconductor device is less susceptible to thermal stress.

前記半導体装置の実装方法において、前記基板の、前記半導体装置の実装面の反対側の面に、放熱ラジエータを実装することができる。これによって、放熱効率をより高めることができる。   In the mounting method of the semiconductor device, a heat dissipation radiator can be mounted on the surface of the substrate opposite to the mounting surface of the semiconductor device. Thereby, the heat dissipation efficiency can be further increased.

また、半導体装置の実装方法において、前記半導体装置のケースに放熱ラジエータを実装することができる。これによって、放熱効率をさらに高めることができる。   Further, in the semiconductor device mounting method, a heat dissipation radiator can be mounted on the case of the semiconductor device. Thereby, the heat dissipation efficiency can be further increased.

以上のように、本発明によれば、裏面に放熱と接地を兼ねたPHSを備える半導体装置を、簡単かつ確実にはんだ付けすることができ、その際に発生する熱を適切に放散させ、接地も容易に行うことが可能となる。   As described above, according to the present invention, it is possible to easily and reliably solder a semiconductor device including a PHS that serves as both heat dissipation and grounding on the back surface, appropriately dissipating the heat generated at that time, and grounding. Can also be easily performed.

次に、本発明の実施の形態について、図面を参照しながら説明する。本発明にかかる半導体装置の実装構造及び実装方法は、Small Outline Pakage(SOP)、Quad Flat Pakage(QFP)、Leaderess Chip Carrier(LCC)等の表面実装(Surfase Mount Device:SMD)形状であり、底面にPHSを有する大発熱半導体装置に好適に用いることができる。一例として、インジウム−ガリウム−リン(InGaP)プロセスを用いたヘテロバイポーラトランジスタ(HBT)があり、これらは主にSOP形状で、底面のほとんどの部分を放熱と接地を兼ねたPHSが占めている。以下の説明では、SOPを実装する場合を例にとって説明する。   Next, embodiments of the present invention will be described with reference to the drawings. The mounting structure and mounting method of the semiconductor device according to the present invention is a surface mount device (SMD) shape such as Small Outline Pakage (SOP), Quad Flat Pakage (QFP), and Leaderess Chip Carrier (LCC), and the bottom surface. It can be suitably used for a large heat generating semiconductor device having PHS. One example is a hetero-bipolar transistor (HBT) using an indium-gallium-phosphorus (InGaP) process, which is mainly SOP-shaped, and most of the bottom surface is occupied by PHS that combines heat dissipation and grounding. In the following description, a case where SOP is mounted will be described as an example.

本発明では、発熱量の大きい半導体装置1を基板2に実施するにあたって、まず、図1(a)に示すように、第1段階として、PHS6以外の部分(リード3)を通常のはんだ(第1のはんだ)にてはんだ付けする。   In the present invention, when the semiconductor device 1 having a large calorific value is implemented on the substrate 2, first, as shown in FIG. Solder with 1 solder).

次に、図1(b)に示すように、第2段階として、基板2の、半導体装置1の実装面とは反対側の面から、サーマルビア5(図2参照)のみに対して低温はんだ(第2のはんだ)4のはんだ付けを行う。このとき、低温はんだ4は、液体化し、サーマルビア5を介してPHS6に流れ込むことではんだ付けが行われる。尚、図2に示すように、基板2には、多数のスルーホール13が穿設され、リード3と、入力信号パターン10、出力信号パターン11及び電源入力パターン12が接続される。   Next, as shown in FIG. 1B, as a second stage, low-temperature solder is applied only to the thermal via 5 (see FIG. 2) from the surface of the substrate 2 opposite to the mounting surface of the semiconductor device 1. (Second solder) 4 is soldered. At this time, the low-temperature solder 4 is liquefied and soldered by flowing into the PHS 6 through the thermal via 5. As shown in FIG. 2, a large number of through holes 13 are formed in the substrate 2, and the leads 3 are connected to the input signal pattern 10, the output signal pattern 11, and the power input pattern 12.

PHS6は、第1段階ではんだ付けしたリード3と同一平面上に存在するため、第1段階のはんだ層に相当する厚みの隙間がPHS6と基板2の間に存在する。この隙間に対し、主に毛細管現象によって低温はんだ4が流れ込む。半導体装置1のPHS6は、はんだでプリコートされていることが通常であり、また、半導体装置1のケース7(図3参照)は、プラスチックであることがほとんどである。このため、PHS6と基板2の間と比べて、プラスチックケースと基板間では、低温はんだ4の親和性が大きく異なり、PHS6と基板2との間の部分にだけ低温はんだ4が回り込む。   Since the PHS 6 exists on the same plane as the lead 3 soldered in the first stage, a gap having a thickness corresponding to the solder layer in the first stage exists between the PHS 6 and the substrate 2. Low-temperature solder 4 flows into the gap mainly by capillary action. The PHS 6 of the semiconductor device 1 is usually precoated with solder, and the case 7 (see FIG. 3) of the semiconductor device 1 is mostly plastic. For this reason, the affinity of the low-temperature solder 4 differs greatly between the plastic case and the substrate as compared with between the PHS 6 and the substrate 2, and the low-temperature solder 4 wraps around only the portion between the PHS 6 and the substrate 2.

上記第2段階の低温はんだ4の使用量は、図2に示した一つのサーマルビア5に対し、そのサーマルビア5の容積と同等の分量とする。基板設計図からサーマルビア5の容積を計算することは容易である。PHS6と基板実装面、基板反対面間の熱抵抗を下げるため、PHS6に対して複数のサーマルビア5を形成することが通常であるため、PHS6と基板2の間に流れ込む低温はんだ4の量は、複数のサーマルビア5の総容積と比べて微量だからである。   The amount of the low-temperature solder 4 used in the second stage is equivalent to the volume of the thermal via 5 for one thermal via 5 shown in FIG. It is easy to calculate the volume of the thermal via 5 from the board design drawing. In order to reduce the thermal resistance between the PHS 6 and the board mounting surface and the opposite surface of the board, it is usual to form a plurality of thermal vias 5 with respect to the PHS 6, so the amount of low-temperature solder 4 flowing between the PHS 6 and the board 2 is This is because the amount is smaller than the total volume of the plurality of thermal vias 5.

上述のように、本発明では、従来に比較してはんだ付けが一回追加となるが、既に示したように、低温はんだ4を使用するため、例えば、リフロー炉の温度プロファイルのみを変更するだけで対応可能である。また、低温はんだ4を用いるため、はんだ付けに必要な時間も短時間で済む。   As described above, in the present invention, soldering is added once compared to the conventional case. However, as already described, since the low temperature solder 4 is used, for example, only the temperature profile of the reflow furnace is changed. It is possible to cope with. Further, since the low temperature solder 4 is used, the time required for soldering can be shortened.

尚、上記実施の形態では、SOP形状の半導体装置を例として示したが、既に述べたように底面にPHSを備えるQFP、LCC形状や他のSMDにも本発明を適用することができる。   In the above embodiment, an SOP-shaped semiconductor device is shown as an example. However, as described above, the present invention can also be applied to a QFP having a PHS on the bottom surface, an LCC shape, and other SMDs.

また、上記実施の形態において、通常のはんだを第1のはんだ、低温はんだを第2のはんだとしたが、ここで重要なことは、2種類のはんだの熱膨張係数の差が十分小さいことであり、通常のはんだのはんだ付け品質を劣化させない温度で溶融する低温はんだを用いることが需要である。   In the above embodiment, the normal solder is the first solder and the low-temperature solder is the second solder. What is important here is that the difference between the thermal expansion coefficients of the two types of solder is sufficiently small. There is a need to use low-temperature solder that melts at a temperature that does not degrade the soldering quality of ordinary solder.

尚、上記2回のはんだ付けの後、図4に示すように、基板2の、半導体装置1の実装面とは反対側の面に放熱ラジエータ8を取り付けることで、さらに放熱効果を高めることができる。これは、上述のように、サーマルビア5の反対面側では、充填された低温はんだ4は、PHS6と基板2の実装面に微量ながら流れ込むので、やや内側に凹んでいる。そのため、サーマルビア5の反対面は、放熱ラジエータ8を取り付けることができる程度に平坦であるからである。放熱ラジエータ8は、熱的良導体接着材で固定してもよく、また機械的なばね等で押圧するようにしてもよい。   In addition, after the above-mentioned two times of soldering, as shown in FIG. 4, the heat radiation effect can be further enhanced by attaching the heat radiation radiator 8 to the surface of the substrate 2 opposite to the mounting surface of the semiconductor device 1. it can. As described above, on the opposite surface side of the thermal via 5, the filled low-temperature solder 4 flows into the mounting surface of the PHS 6 and the substrate 2 in a small amount, and therefore is slightly recessed inside. Therefore, the opposite surface of the thermal via 5 is flat enough to attach the heat dissipation radiator 8. The heat dissipation radiator 8 may be fixed with a thermal good conductor adhesive, or may be pressed with a mechanical spring or the like.

また、図5に示すように、半導体装置1のケース7自体に放熱ラジエータ9を取り付けることで、さらに放熱効果を高めることも可能である。   Further, as shown in FIG. 5, it is possible to further enhance the heat dissipation effect by attaching a heat dissipation radiator 9 to the case 7 itself of the semiconductor device 1.

本発明にかかる半導体装置の実装方法の一実施の形態を説明するための断面図であって、(a)は第1段階を、(b)は第2段階を示す。It is sectional drawing for demonstrating one Embodiment of the mounting method of the semiconductor device concerning this invention, (a) shows a 1st step and (b) shows a 2nd step. 本発明が適用される半導体装置の裏面の一例を示す図である。It is a figure which shows an example of the back surface of the semiconductor device to which this invention is applied. 本発明にかかる半導体装置の実装構造の一実施の形態を示す基板の裏面透視図である。It is a back surface perspective view of the board | substrate which shows one Embodiment of the mounting structure of the semiconductor device concerning this invention. 本発明にかかる半導体装置の実装構造の他の実施の形態を示す断面図である。It is sectional drawing which shows other embodiment of the mounting structure of the semiconductor device concerning this invention. 本発明にかかる半導体装置の実装構造の他の実施の形態を示す断面図である。It is sectional drawing which shows other embodiment of the mounting structure of the semiconductor device concerning this invention.

符号の説明Explanation of symbols

1 半導体装置
2 基板
3 リード(第1段階ではんだ付けする通常はんだ部分)
4 低温はんだ
5 サーマルビア
6 半導体装置のPHS
7 半導体装置のケース
8 放熱ラジエータ
9 放熱ラジエータ
10 半導体装置の入力信号パターン
11 半導体装置の出力信号パターン
12 半導体装置の電源入力パターン
13 スルーホール
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Board | substrate 3 Lead (normal solder part soldered in the 1st step)
4 Low-temperature solder 5 Thermal via 6 PHS of semiconductor device
7 Semiconductor Device Case 8 Heat Dissipation Radiator 9 Heat Dissipation Radiator 10 Semiconductor Device Input Signal Pattern 11 Semiconductor Device Output Signal Pattern 12 Semiconductor Device Power Supply Input Pattern 13 Through Hole

Claims (6)

裏面に放熱と接地を兼ねたプレーテッドヒートシンクを備える半導体装置と、
スルーホールを有する基板と、
前記半導体装置の前記プレーテッドヒートシンク以外の部分と、前記基板とを接続する第1のはんだと、
前記半導体装置の前記プレーテッドヒートシンクの部分と、前記基板とを接続するとともに、前記基板の前記スルーホールに充填され、前記第1のはんだよりも融点の低い第2のはんだとを備えることを特徴とする半導体装置の実装構造。
A semiconductor device having a plated heat sink that combines heat dissipation and grounding on the back surface;
A substrate having a through hole;
A portion of the semiconductor device other than the plated heat sink and a first solder for connecting the substrate;
The plated heat sink portion of the semiconductor device is connected to the substrate, and the second solder is filled in the through hole of the substrate and has a melting point lower than that of the first solder. A mounting structure of a semiconductor device.
前記基板の、前記半導体装置の実装面の反対側の面に、放熱ラジエータを備えることを特徴とする請求項1に記載の半導体装置の実装構造。   The semiconductor device mounting structure according to claim 1, further comprising a heat dissipation radiator on a surface of the substrate opposite to the mounting surface of the semiconductor device. 前記半導体装置のケースに放熱ラジエータを備えることを特徴とする請求項1又は2に記載の半導体装置の実装構造。   The semiconductor device mounting structure according to claim 1, wherein a heat dissipation radiator is provided in the case of the semiconductor device. 裏面に放熱と接地を兼ねたプレーテッドヒートシンクを備える半導体装置を、スルーホールを有する基板に実装する半導体装置の実装方法であって、
前記プレーテッドヒートシンク以外の部分を前記基板に第1のはんだにてはんだ付けする第1段階と、
前記基板の、前記半導体装置の実装面の反対側から、前記プレーテッドヒートシンクの部分を、前記第1のはんだよりも融点の低い第2のはんだにてはんだ付けする第2段階とで構成され、
該第2段階が完了した後で、前記第2のはんだが前記基板の前記スルーホールに充填されることを特徴とする半導体装置の実装方法。
A semiconductor device mounting method for mounting a semiconductor device including a plated heat sink that combines heat dissipation and grounding on a back surface to a substrate having a through hole,
A first step of soldering a portion other than the plated heat sink to the substrate with a first solder;
A second step of soldering the plated heat sink portion with a second solder having a melting point lower than that of the first solder from the opposite side of the mounting surface of the semiconductor device of the substrate;
A semiconductor device mounting method, wherein the second solder is filled in the through hole of the substrate after the second stage is completed.
前記基板の、前記半導体装置の実装面の反対側の面に、放熱ラジエータを実装することを特徴とする請求項4に記載の半導体装置の実装方法。   5. The semiconductor device mounting method according to claim 4, wherein a heat dissipation radiator is mounted on a surface of the substrate opposite to the mounting surface of the semiconductor device. 前記半導体装置のケースに放熱ラジエータを実装することを特徴とする請求項4又は5に記載の半導体装置の実装方法。   The semiconductor device mounting method according to claim 4, wherein a heat dissipation radiator is mounted on the case of the semiconductor device.
JP2005297123A 2005-10-12 2005-10-12 Mounting structure and mounting method of semiconductor device Pending JP2007109751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297123A JP2007109751A (en) 2005-10-12 2005-10-12 Mounting structure and mounting method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297123A JP2007109751A (en) 2005-10-12 2005-10-12 Mounting structure and mounting method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2007109751A true JP2007109751A (en) 2007-04-26

Family

ID=38035402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297123A Pending JP2007109751A (en) 2005-10-12 2005-10-12 Mounting structure and mounting method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2007109751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079280B1 (en) 2009-06-16 2011-11-04 주식회사 센플러스 sub-mount for semiconductor package, semiconductor package and method for fabricating semiconductor package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079280B1 (en) 2009-06-16 2011-11-04 주식회사 센플러스 sub-mount for semiconductor package, semiconductor package and method for fabricating semiconductor package

Similar Documents

Publication Publication Date Title
KR101388328B1 (en) Lead frame based, over-molded semiconductor package with integrated through hole technology(tht) heat spreader pin(s) and associated method of manufacturing
JP3639505B2 (en) Printed wiring board and semiconductor device
US6972479B2 (en) Package with stacked substrates
KR20080087161A (en) High power module with open frame package
JP6338895B2 (en) Electrical or electronic equipment
CN109588023B (en) Heat dissipation structure and related equipment
JPWO2007138771A1 (en) Semiconductor device, electronic component module, and method of manufacturing semiconductor device
JP4712449B2 (en) Metal core circuit board
US6573595B1 (en) Ball grid array semiconductor package with resin coated metal core
KR101115403B1 (en) Light emitting apparatus
JP2007109751A (en) Mounting structure and mounting method of semiconductor device
JP2006319145A (en) Metal core circuit board
JP4214880B2 (en) Semiconductor device
JP2002151634A (en) Board radiator
JP2008098328A (en) Structure for surface-mounting electronic components
JP2009076813A (en) Semiconductor device
WO2017203859A1 (en) Electronic circuit device and method
JP3959839B2 (en) Manufacturing method of semiconductor device
JPH08191128A (en) Electronic device
WO2023221529A1 (en) Packaging structure, packaging method and electronic device
JP2019140179A (en) Flip-chip mounting board and electronic equipment using the same
JP2008147253A (en) Printed circuit board device
JP2018022764A (en) Electronic device
JP2007221014A (en) Multi-layer wiring substrate structure
JP2003031614A (en) Semiconductor device, semiconductor module and method of mounting the device and the module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090817