JP2007105806A - 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 - Google Patents
高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 Download PDFInfo
- Publication number
- JP2007105806A JP2007105806A JP2005296420A JP2005296420A JP2007105806A JP 2007105806 A JP2007105806 A JP 2007105806A JP 2005296420 A JP2005296420 A JP 2005296420A JP 2005296420 A JP2005296420 A JP 2005296420A JP 2007105806 A JP2007105806 A JP 2007105806A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- temperature
- constituent
- cutting
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
【解決手段】表面被覆サーメット製切削工具の硬質被覆層の一部をCr含有改質Ti系炭化物層およびCr含有改質Ti系炭窒化物層で構成し、かつ、これらの層が、電界放出型走査電子顕微鏡を用いて、NaCl型面心立方晶の結晶構造を有する結晶粒の結晶面の法線の表面研磨面の法線に対する傾斜角を測定し、この結果得られた測定傾斜角に基づいて作成された構成原子共有格子点分布グラフにおいて、いずれもΣ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す。
【選択図】図3
Description
(a)下部層として、いずれも化学蒸着形成された、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、1〜15μmの平均層厚、および化学蒸着形成された状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al2O3層で示す)、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
(a)従来被覆サーメット工具の硬質被覆層の下部層を構成するTiCN層(以下、従来TiCN層と云う)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl4:2〜10%、CH3CN:1〜5%、N2:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:15〜25kPa、
の条件(通常条件という)で蒸着形成されるが、これら通常条件において、上記の反応ガスにCrCl3を0.02〜1容量%の割合で添加し、これ以外は同一の条件で層の蒸着形成を行なうと、この結果形成された層[以下、Cr含有改質Ti系炭窒化物層と云い、改質(Ti,Cr)CN層で示す]は、CrをTiとの合量に占める割合で1〜10原子%の割合で含有し、上記の従来TiCN層と同じNaCl型面心立方晶の結晶構造(上記図1参照)、すなわち、Ti原子の一部がCr原子で置換されたNaCl型面心立方晶の結晶構造をもつものとなると共に、置換含有したCrの作用で高温強度が一段と向上したものになるので、切刃部にきわめて高い機械的負荷が加わる高速重切削加工でも、前記硬質被覆層の耐チッピング性向上に寄与すること。
反応ガス組成:容量%で、TiCl4:2〜10%、CH4:2〜10%、H2:残り、
反応雰囲気温度:950〜1000℃、
反応雰囲気圧力:20〜40kPa、
の条件(通常条件という)で蒸着形成されるが、これら通常条件において、同じく上記の反応ガスにCrCl3を0.02〜1容量%の割合で添加し、これ以外は同一の条件で層の蒸着形成を行なうと、この結果形成された層[以下、Cr含有改質Ti系炭化物層と云い、改質(Ti,Cr)C層で示す]は、同じくCrをTiとの合量に占める割合で1〜10原子%の割合で含有し、上記の従来TiC層と同じNaCl型面心立方晶の結晶構造(上記図1参照)、すなわち、Ti原子の一部がCr原子で置換されたNaCl型面心立方晶の結晶構造をもつものとなり、かつ、置換含有したCrの作用で高温強度が一段と向上したものになるので、切刃部にきわめて高い機械的負荷が加わる高速重切削加工でも、前記硬質被覆層の耐チッピング性向上に寄与すること。
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点に、従来TiCN層であればTiと炭素と窒素からなる構成原子、また従来TiC層であればTiと炭素からなる構成原子、さらに改質(Ti,Cr)CN層であればTiとCrと炭素と窒素からなる構成原子、また改質(Ti,Cr)C層であればTiとCrと炭素からなる構成原子、がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、前記改質(Ti,Cr)CN層および改質(Ti,Cr)C層は、図3,4に例示される通り、いずれもΣ3に最高ピークが存在し、かつ、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示すのに対して、前記従来TiCN層および従来TiC層は、図5,6に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示し、しかも前記改質(Ti,Cr)CN層および改質(Ti,Cr)C層のΣ3の分布割合は、層中のCr含有割合によって変化し、かつ前記Cr含有割合は上記の反応ガス中のCrCl3の配合割合を調整することにより所定の割合に調整できること。
以上(a)〜(e)に示される研究結果を得たのである。
(a)0.1〜1μmの平均層厚を有するTiN層からなる基体密着層、
(b)2〜15μmの平均層厚を有し、かつTiの一部をTiとの合量に占める割合で1〜10原子%のCrで置換含有してなる改質(Ti,Cr)CN層からなるからなる下側高温強化層、
(c)2〜10μmの平均層厚を有し、かつTiの一部をTiとの合量に占める割合で1〜10原子%のCrで置換含有してなる改質(Ti,Cr)C層からなる上側高温強化層、
(d)0.1〜1μmの平均層厚を有する、TiCO層およびTiCNO層のうちのいずれか1層、または両層からなる層間密着層、
(e)1〜15μmの平均層厚を有するα型Al2O3層からなる高温硬質層、
以上(a)〜(e)で構成すると共に、上記下側高温強化層および上側高温強化層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTiとCrと炭素と窒素(下側高温強化層の場合)、またはTiとCrと炭素(上側高温強化層の場合)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、いずれもΣ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質(Ti,Cr)CN層および改質(Ti,Cr)C層、
で構成してなる、高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
(a)TiN層(基体密着層)
TiN層は、工具基体および下側高温強化層である改質(Ti,Cr)CN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その平均層厚が0.1μm未満では、所望の密着性を確保することができず、一方前記密着性は1μmの平均層厚で十分であることから、その平均層厚を0.1〜1μmと定めた。
上記の改質(Ti,Cr)CN層は、上記の通り、従来TiCN層に比して一段と高温強度の向上したものになっており、この特性は、反応ガスにCrCl3を0.01〜1容量%の割合で添加して、蒸着形成される層中のCr含有割合をTiとの合量に占める割合で1〜10原子%とし、この結果として構成原子共有格子点分布グラフにおけるΣ3の分布割合が60%以上となることにより得られるものであり、したがって、Σ3の分布割合が60%未満では、高速重切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことになることから、Σ3の分布割合を60%以上と定めた。
このように前記改質(Ti,Cr)CN層は、上記の通りTiCN自体のもつ高温硬さと高温強度に加えて、さらに一段とすぐれた高温強度を有するが、その平均層厚が2μm未満では所望のすぐれた高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2〜15μmと定めた。
上記の改質(Ti,Cr)C層は、上記の改質(Ti,Cr)CN層に比して、高温強度の点では及ばないが、相対的に高い高温硬さを有するので、硬質被覆層の耐摩耗性向上に寄与するほか、上記の通り、従来TiC層に比してすぐれた高温強度を有するので、高速重切削加工で、硬質被覆層の耐チッピング性向上にも寄与するが、これらの特性は、前記改質(Ti,Cr)CN層と同じく、上記の構成原子共有格子点分布グラフにおけるΣ3の分布割合が、層中のCr含有割合をTiとの合量に占める割合で1〜10原子%に調整して、60%以上となるようにすることによって可能となり、したがって、Σ3の分布割合が60%未満では、高速重切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。
このように前記改質(Ti,Cr)C層は、TiC自体のもつ高温硬さに加えて、さらに従来TiC層に比して一段とすぐれた高温強度を有するようになるが、その平均層厚が2μm未満では所望のすぐれた高温硬さおよび高温強度を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が10μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜10μmと定めた。
TiCO層およびTiCNO層は、上側高温強化層である改質TiC層および高温硬質層であるα型Al2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その平均層厚が0.1μm未満では、所望の密着性を確保することができず、一方前記のすぐれた密着性は1μmの平均層厚で十分確保できることから、その平均層厚を0.1〜1μmと定めた。
α型Al2O3層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を長期に亘って発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質(Ti,Cr)CN層および改質(Ti,Cr)C層、さらに従来TiCN層および従来TiC層の表面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を求めることにより作成した。
なお、図3,4は、本発明被覆サーメット工具2の改質(Ti,Cr)CN層(図3)および改質(Ti,Cr)C層(図4)の構成原子共有格子点分布グラフ、図5,6は、従来被覆サーメット工具4の従来TiCN層の(図5)および従来TiC層(図6)構成原子共有格子点分布グラフをそれぞれ示すものである。
被削材:JIS・S10Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:8mm、
送り:0.3mm/rev、
切削時間:8分、
の条件(切削条件A)での炭素鋼の乾式断続高速高切り込み切削試験(通常の切削速度および切り込みは200m/minおよび3mm)、
被削材:JIS・SCM440の丸棒、
切削速度:350m/min、
切り込み:3mm、
送り:0.7mm/rev、
切削時間:8分、
の条件(切削条件B)での合金鋼の乾式連続高速高送り切削試験(通常の切削速度および送りは200m/minおよび0.3mm/rev)、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:8mm、
送り:0.3mm/rev、
切削時間:8分、
の条件(切削条件C)での鋳鉄の湿式連続高速高切り込み切削試験(通常の切削速度および切り込みは230m/minおよび4mm)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
Claims (1)
- 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、化学蒸着形成された硬質被覆層を、工具基体側から順に、
(a)0.1〜1μmの平均層厚を有する窒化チタン層からなる基体密着層、
(b)2〜15μmの平均層厚を有し、かつTiの一部をTiとの合量に占める割合で1〜10原子%のCrで置換含有してなるCr含有改質Ti系炭窒化物層からなる下側高温強化層、
(c)2〜10μmの平均層厚を有し、かつTiの一部をTiとの合量に占める割合で1〜10原子%のCrで置換含有してなるCr含有改質Ti系炭化物層からなる上側高温強化層、
(d)0.1〜1μmの平均層厚を有する、炭酸化チタン層および炭窒酸化チタン層のうちのいずれか1層、または両層からなる層間密着層、
(e)1〜15μmの平均層厚および化学蒸着した状態でα型結晶構造を有する酸化アルミニウム層からなる高温硬質層、
以上(a)〜(e)で構成すると共に、上記上側高温強化層および下側高温強化層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTiとCrと炭素(上側高温強化層の場合)、またはTiとCrと炭素と窒素(下側高温強化層の場合)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、いずれもΣ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示すCr含有改質Ti系炭化物層およびCr含有改質Ti系炭窒化物層、
で構成したことを特徴とする高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005296420A JP4720995B2 (ja) | 2005-10-11 | 2005-10-11 | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005296420A JP4720995B2 (ja) | 2005-10-11 | 2005-10-11 | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007105806A true JP2007105806A (ja) | 2007-04-26 |
JP4720995B2 JP4720995B2 (ja) | 2011-07-13 |
Family
ID=38032066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005296420A Active JP4720995B2 (ja) | 2005-10-11 | 2005-10-11 | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4720995B2 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11302848A (ja) * | 1998-04-20 | 1999-11-02 | Mitsubishi Materials Corp | 耐欠損性のすぐれた表面被覆超硬合金製スローアウエイ切削チップ |
-
2005
- 2005-10-11 JP JP2005296420A patent/JP4720995B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11302848A (ja) * | 1998-04-20 | 1999-11-02 | Mitsubishi Materials Corp | 耐欠損性のすぐれた表面被覆超硬合金製スローアウエイ切削チップ |
Also Published As
Publication number | Publication date |
---|---|
JP4720995B2 (ja) | 2011-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4518260B2 (ja) | 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4822120B2 (ja) | 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP4716252B2 (ja) | 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP2006231433A (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4518259B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4716250B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP5263572B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP4474643B2 (ja) | 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP5286930B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP4716254B2 (ja) | 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4811787B2 (ja) | 硬質被覆層の改質κ型酸化アルミニウム層が優れた粒界面強度を有する表面被覆サーメット製切削工具 | |
JP4730656B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP5286931B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具 | |
JP4474644B2 (ja) | 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4720995B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4822119B2 (ja) | 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP4747338B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4857950B2 (ja) | 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具 | |
JP4730651B2 (ja) | 耐熱合金の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4748444B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4894406B2 (ja) | 硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP4752536B2 (ja) | 高硬度材の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP5309698B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具 | |
JP2009166194A (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 | |
JP2005279908A (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110322 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |