JP2007103493A - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
JP2007103493A
JP2007103493A JP2005288903A JP2005288903A JP2007103493A JP 2007103493 A JP2007103493 A JP 2007103493A JP 2005288903 A JP2005288903 A JP 2005288903A JP 2005288903 A JP2005288903 A JP 2005288903A JP 2007103493 A JP2007103493 A JP 2007103493A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
atom
general formula
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005288903A
Other languages
English (en)
Inventor
Yoshitaka Kitamura
吉隆 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005288903A priority Critical patent/JP2007103493A/ja
Publication of JP2007103493A publication Critical patent/JP2007103493A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 高輝度で、駆動耐久性に優れた有機電界発光素子を提供する。
【解決手段】 一対の電極間に、2以上の発光ユニットと、前記発光ユニット間に介在する中間接触層とを有する有機電界発光素子であって、前記2以上の発光ユニットがそれぞれ独立に発光層を含む有機化合物層を有し、前記有機化合物層が3座以上の配位子を有する金属錯体を含有することを特徴とする有機電界発光素子。
【選択図】 なし

Description

本発明は、電気エネルギーを光に変換して発光できる有機電界発光素子(以下、「発光素子」、または「EL素子」ともいう。)に関する。
有機電界発光(EL)素子は、低電圧で高輝度の発光を得ることができるため、有望な表示素子として注目されている。有機電界発光素子は、発光層もしくは発光層を含む複数の有機層を挟んだ対向電極から構成されており、陰極から注入された電子と陽極から注入された正孔が発光層において再結合し、生成した励起子からの発光を利用するもの、又は前記励起子からエネルギー移動によって生成する他の分子の励起子からの発光を利用するものである。
有機EL素子は自発光の面光源であることから、照明光源、液晶ディスプレイのバックライトなどが有機EL素子の用途として挙げられる。これらの用途として用いる場合、高輝度で、高耐久性で発光することが必要となる。
ところが、有機EL素子の発光材料として燐光材料を用いると、数千cd/m2以上の高輝度で発光させた場合、低輝度時と比較して、外部量子効率が大きく減少することが一般的に知られている。例えば、発光材料としてIr(ppy)3(トリス(2−フェニルピリジン)イリジウム)を用いた場合、数百cd/m2の輝度で発光させた場合と比較して、数千cd/m2の輝度で発光させた場合の効率は大きく減少する。(例えば、非特許文献1参照。)
すなわち、燐光材料を含む有機EL素子を高輝度光源として用いると、高輝度で効率が低下するため、消費電力が上昇し、改善が望まれていた。
高輝度において高効率で、駆動耐久性を向上させる方法として、一対の電極間に、電荷発生層により仕切られた、発光素子の両電極を除いた発光ユニットを有する積層型の有機エレクトロルミネッセンス素子が開示されている(例えば、特許文献2〜5等参照。)。
しかしながら、駆動耐久性はまだ不十分で更なる向上が望まれていた。
特開2003−272860号公報 特開平11−329748号公報 特開2004−39617号公報 特表平10−503878号公報 「Applied Physics Letters」,1999,Vol.75,No.1,p.4−6
本発明の目的は、高輝度で、駆動耐久性に優れた有機電界発光素子を提供することにある。
前記実情に鑑み本発明者らは、鋭意研究を行ったところ、上記課題を解決しうることを見出し本発明を完成した。
即ち、本発明は下記の手段により達成されるものである。
<1> 一対の電極間に、2以上の発光ユニットと、前記2以上の発光ユニット間に介在する中間接触層とを有する有機電界発光素子であって、前記2以上の発光ユニットがそれぞれ独立に発光層を含む有機化合物層を有し、前記有機化合物層が3座以上の配位子を有する金属錯体を含有することを特徴とする有機電界発光素子。
<2> 前記3座以上の配位子を有する金属錯体が下記一般式(I)で表されることを特徴とする上記<1>に記載の有機電界発光素子。
Figure 2007103493
(一般式(I)中、M11は金属イオンを表し、L11〜L15はそれぞれM11に配位する配位子を表す。L11とL14との間に原子群がさらに存在して環状配位子を形成してもよい。L15はL11及びL14の両方と結合して環状配位子を形成してもよい。Y11、Y12、Y13はそれぞれ連結基、単結合、または二重結合を表す。また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。n11は0〜4を表す。M11とL11〜L15との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。)
<3> 前記3座以上の配位子が、鎖状配位子であることを特徴とする上記<1>又は<2>に記載の有機電界発光素子。
<4> 前記3座以上の配位子を有する金属錯体が、下記一般式(II)で表されることを特徴とする上記<1>に記載の有機電界発光素子。
Figure 2007103493
(一般式(II)中、MX1は金属イオンを表す。QX11〜QX16はMX1に配位する原子またはMX1に配位する原子を含んだ原子群を表す。LX11〜LX14は単結合、二重結合または連結基を表す。すなわち、QX11−LX11−QX12−LX12−QX13からなる原子群およびQX14−LX13−QX15−LX14−QX16からなる原子群はそれぞれ三座の配位子である。MX1とQX11〜QX16との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。)
<5> 前記3座以上の配位子を有する金属錯体が、下記一般式(III)で表されることを特徴とする上記<1>に記載の有機電界発光素子。
Figure 2007103493
(一般式(III)中、Q11は含窒素へテロ環を形成する原子群を表し、Z11、Z12、Z13はそれぞれ置換又は無置換の、炭素原子又は窒素原子を表し、MY1は更に配位子を有しても良い金属イオンを表す。)
<6> 前記3座以上の配位子を有する金属錯体中の金属イオンが、遷移金属イオンであることを特徴とする上記<1>〜<5>のいずれか1項に記載の有機電界発光素子。
<7> 前記3座以上の配位子を有する金属錯体中の金属イオンが、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ロジウムイオン、ルテニウムイオン、オスミウムイオン、パラジウムイオン、銀イオン、銅イオン、コバルトイオン、亜鉛イオン、ニッケルイオン、鉛イオン、アルミニウムイオン、及びガリウムイオンの群から選ばれる一種以上であることを特徴とする上記<6>に記載の有機電界発光素子。
<8> 前記3座以上の配位子を有する金属錯体中の金属イオンが、希土類金属イオンであることを特徴とする上記<1>〜<5>のいずれか1項に記載の有機電界発光素子。
<9> 前記中間接触層が電荷発生層であることを特徴とする上記<1>〜<8>のいずれか1項に記載の有機電界発光素子。
<10> 前記中間接触層がバイアス電圧の付与可能な内部電極であることを特徴とする上記<1>〜<8>のいずれか1項に記載の有機電界発光素子。
<11> 前記3座以上の配位子を有する金属錯体を含有する有機化合物層が発光層であることを特徴とする上記<1>〜<10>のいずれか1項に記載の有機電界発光素子。
本発明によれば、高輝度で、駆動耐久性に優れた有機電界発光素子を提供することができる。
本発明の有機電界発光素子は、一対の電極間に、2以上の発光ユニットと、前記2以上の発光ユニット間に介在する形成される中間接触層とを有する有機電界発光素子であって、前記2以上の発光ユニットがそれぞれ独立に発光層を含む有機化合物層を有し、前記有機化合物層が3座以上の配位子を有する金属錯体を含有することを特徴とする。
本発明の有機電界発光素子は上記構成とすることにより、高輝度で、駆動耐久性に優れた有機電界発光素子を得ることができる。
まず、本発明中の前記3座以上の配位子を有する金属錯体について説明する。
該金属錯体において金属イオンに配位する原子は特に限定されないが、酸素原子、窒素原子、炭素原子、硫黄原子又はリン原子が好ましく、酸素原子、窒素原子又は炭素原子がより好ましく、窒素原子又は炭素原子が更に好ましい。
金属錯体中の金属イオンは、特に限定されないが、発光効率向上、耐久性向上、駆動電圧低下の観点から、遷移金属イオン、希土類金属イオンであることが好ましく、より好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ロジウムイオン、ルテニウムイオン、オスミウムイオン、パラジウムイオン、銀イオン、銅イオン、コバルトイオン、亜鉛イオン、ニッケルイオン、鉛イオン、アルミニウムイオン、ガリウムイオン、希土類金属イオン(例えば、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンなど)が好ましく、更に好ましくは、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、パラジウムイオン、亜鉛イオン、アルミニウムイオン、ガリウムイオン、ユーロピウムイオン、カドリニウムイオン、テルビウムイオンであり、該金属錯体を発光材料として用いる場合には、イリジウムイオン、白金イオン、レニウムイオン、タングステンイオン、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンが特に好ましく、該金属錯体を電荷輸送材料や発光層中のホスト材料として用いる場合には、イリジウムイオン、白金イオン、パラジウムイオン、亜鉛イオン、アルミニウムイオン、ガリウムイオンが特に好ましい。
本発明における3座以上の配位子を有する金属錯体としては、発光効率向上、耐久性向上の観点から、3座以上6座以下の配位子を有する金属錯体が好ましく、イリジウムイオンに代表される6配位型錯体を形成しやすい金属イオンの場合には、3座、4座、または6座の配位子を有する金属錯体がより更好ましく、白金イオンに代表される4配位型錯体を形成しやすい金属イオンの場合には、3座または4座の配位子を有する金属錯体がより好ましく、4座の配位子を有する金属錯体が更に好ましい。
本発明における金属錯体の配位子は発光効率向上、耐久性向上の観点から、鎖状、又は、環状であることが好ましく、中心金属(例えば、後述する一般式(I)で表される化合物の場合であればM11を表す。)に窒素で配位する含窒素へテロ環(例えば、ピリジン環、キノリン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環など)を少なくとも一つ有することが好ましい。該含窒素ヘテロ環としては、含窒素6員ヘテロ環、含窒素5員ヘテロ環であることがより好ましい。これらのヘテロ環は他の環と縮合環を形成してもよい。
金属錯体の配位子が鎖状であるとは、金属錯体の配位子が環状構造をとらないことを意味する(例えば、ターピリジル配位子など。)。また、金属錯体の配位子が環状であるとは、金属錯体中の複数の配位子が互いに結合して、閉じた構造形成することを意味する(例えば、フタロシアニン配位子、クラウンエーテル配位子など。)。
本発明における金属錯体としては、以下に詳述する一般式(I)、一般式(II)または一般式(III)で表される化合物であることが好ましい。
先ず、一般式(I)で表される化合物について説明する。
Figure 2007103493
一般式(I)中、M11は金属イオンを表し、L11〜L15はそれぞれM11に配位する配位子を表す。L11とL14との間に原子群がさらに存在して環状配位子を形成してもよい。L15はL11及びL14の両方と結合して環状配位子を形成してもよい。Y11、Y12、Y13はそれぞれ連結基、単結合、または二重結合を表す。また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。n11は0〜4を表す。M11とL11〜L15との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。。
一般式(I)で表される化合物について詳細に説明する。
一般式(I)中、M11は金属イオンを表す。金属イオンとしては特に限定されないが、2価または3価の金属イオンが好ましい。2価または3価の金属イオンとしては、白金イオン、イリジウムイオン、レニウムイオン、パラジウムイオン、ロジウムイオン、ルテニウムイオン、銅イオン、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンが好ましく、白金イオン、イリジウムイオン、ユーロピウムイオンがより好ましく、白金イオン、イリジウムイオンがさらに好ましく、白金イオンが特に好ましい。
一般式(I)中、L11、L12、L13、及びL14は、それぞれ独立に、M11に配位する配位子を表す。L11、L12、L13、及びL14に含まれ、かつ、M11に配位する原子としては、窒素原子、酸素原子、硫黄原子、炭素原子、又はリン原子が好ましく、窒素原子、酸素原子、硫黄原子、又は炭素原子がより好ましく、窒素原子、酸素原子、又は炭素原子が更に好ましい。
11とL11、L12、L13、及びL14でそれぞれ形成される結合は、それぞれ独立に、共有結合であってもイオン結合であっても配位結合であってもよい。本発明における配位子とは、説明の便宜上、配位結合のみならず他のイオン結合、共有結合により形成された場合においても用いるものとする。
11、Y12、L12、Y11、L13、Y13、及びL14から成る配位子は、アニオン性配位子(少なくとも一つのアニオンが金属と結合する配位子)であることが好ましい。アニオン性配位子中のアニオンの数は、1〜3が好ましく、1、2がより好ましく、2がさらに好ましい。
11に炭素原子で配位するL11、L12、L13、及びL14としては、特に限定されないが、それぞれ独立にイミノ配位子、芳香族炭素環配位子(例えばベンゼン配位子、ナフタレン配位子、アントラセン配位子、フェナントラセン配位子など)、ヘテロ環配位子(例えばチオフェン配位子、ピリジン配位子、ピラジン配位子、ピリミジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、及び、それらを含む縮環体(例えばキノリン配位子、ベンゾチアゾール配位子など)およびこれらの互変異性体)が挙げられる。
11に窒素原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、含窒素へテロ環配位子(例えば、ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサジアゾール配位子、チアジアゾール配位子、及び、それらを含む縮環体(例えば、キノリン配位子、ベンズオキサゾール配位子、ベンズイミダゾール配位子など)、及び、これらの互変異性体(なお、本発明では通常の異性体以外に次のような例も互変異性体と定義する。例えば、後述する化合物(24)の5員ヘテロ環配位子、化合物(64)の末端5員ヘテロ環配位子、化合物(145)の5員ヘテロ環配位子もピロール互変異性体と定義する。)など、アミノ配位子(アルキルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばメチルアミノなどが挙げられる。)、アリールアミノ配位子(例えばフェニルアミノなどが挙げられる。)、アシルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ配位子(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、イミノ配位子など)が挙げられる。これらの配位子はさらに置換されていてもよい。
11に酸素原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシルオキシ配位子(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、シリルオキシ配位子(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、カルボニル配位子(例えばケトン配位子、エステル配位子、アミド配位子など)、エーテル配位子(例えばジアルキルエーテル配位子、ジアリールエーテル配位子、フリル配位子など)などが挙げられる。
11に硫黄原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、チオカルボニル配位子(例えばチオケトン配位子、チオエステル配位子など)、又はチオエーテル配位子(例えばジアルキルチオエーテル配位子、ジアリールチオエーテル配位子、チオフリル配位子など)などが挙げられる。これらの置換配位子は更に置換されてもよい。
11にリン原子で配位するL11、L12、L13、及びL14としては特に限定されないが、それぞれ独立に、ジアルキルホスフィノ基、ジアリールホスフィノ基、トリアルキルホスフィン、トリアリールホスフィン、ホスフィニン基等があげられる。これらの基は更に置換されてもよい。
11及びL14は、それぞれ独立に、芳香族炭素環配位子、アルキルオキシ配位子、アリールオキシ配位子、エーテル配位子、アルキルチオ配位子、アリールチオ配位子、アルキルアミノ配位子、アリールアミノ配位子、アシルアミノ配位子、含窒素へテロ環配位子(例えばピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサジアゾール配位子、チアジアゾール配位子、又は、それらを含む縮配位子体(例えば、キノリン配位子、ベンズオキサゾール配位子、ベンズイミダゾール配位子など)、又は、これらの互変異性体など)が好ましく、芳香族炭素環配位子、アリールオキシ配位子、アリールチオ配位子、アリールアミノ配位子、並びにピリジン配位子、ピラジン配位子、イミダゾール配位子、又は、それらを含む縮配位子体(例えば、キノリン配位子、キノキサリン配位子、ベンズイミダゾール配位子など)、又は、これらの互変異性体がより好ましく、芳香族炭素環配位子、アリールオキシ配位子、アリールチオ配位子、又はアリールアミノ配位子がさらに好ましく、芳香族炭素環配位子、又はアリールオキシ配位子が特に好ましい。
12及びL13は、それぞれ独立に、M11と配位結合を形成する配位子が好ましく、M11
と配位結合を形成する配位子としては、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、チアゾール環、オキサゾール環、ピロール環、トリアゾール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズオキサゾール環、ベンズイミダゾール環、インドレニン環など)及び、これらの互変異性体が好ましく、ピリジン環、ピラジン環、ピリミジン環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズピロールなど)、及び、これらの互変異性体がより好ましく、ピリジン環、ピラジン環、ピリミジン環、及び、それらを含む縮環体(例えば、キノリン環など)がさらに好ましく、ピリジン環、及び、ピリジン環を含む縮環体(例えば、キノリン環など)が特に好ましい。
一般式(I)中、L15はM11に配位する配位子を表す。L15は1〜4座の配位子が好ましく、1〜4座のアニオン性配位子がより好ましい。1〜4座のアニオン性配位子としては特に限定されないが、ハロゲン配位子、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えば、ピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)、L11、Y12
、L12、Y11、L13、Y13、L14で形成される4座配位子が好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えばピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)、L11、Y12、L12、Y11、L13、Y13、L14で形成される4座配位子がより好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)、ピリジン配位子を含有するモノアニオン性2座配位子(例えば、ピコリン酸配位子、2−(2−ヒドロキシフェニル)−ピリジン配位子など)がさらに好ましく、1,3−ジケトン配位子(例えば、アセチルアセトン配位子など)が特に好ましい。配位座の数、及び配位子の数が、金属の配位数を上回ることはない。但し、L15はL11及びL14の両方と結合して環状配位子を形成することはない。
一般式(I)中、Y11、Y12、及びY13は、それぞれ独立に、連結基、単結合、または二重結合を表す。連結基としては、特に限定されないが、例えば、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子から選択される原子を含んで構成される連結基が好ましい。このような連結基の具体例としては、例えば下記のものが挙げられる。
Figure 2007103493
また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。
11、Y12、及びY13は、それぞれ独立に、単結合、二重結合、カルボニル連結基、アルキレン連結基、アルケニレン基が好ましい。Y11は、単結合、アルキレン基がより好ましく、アルキレン基がさらに好ましい。Y12及びY13は、単結合、アルケニレン基がより好ましく、単結合がさらに好ましい。
12、L11、L12、及びM11で形成される環、Y11、L12、L13、及びM11で形成される環、Y13、L13、L14、及びM11で形成される環は、それぞれ環員数4〜10が好ましく、環員数5〜7がより好ましく、環員数5又は6がさらに好ましい。
一般式(I)中、n11は0〜4を表す。M11が配位数4の金属の場合、n11は0であり、M11が配位数6の金属の場合、n11は1、2が好ましく、1がより好ましい。M11が配位数6でn11が1の場合L15は2座配位子を表し、M11が配位数6でn11が2の場合L15は単座配位子を表す。M11が配位数8の金属の場合、n11は1〜4が好ましく、1、2がより好ましく、1がより好ましい。M11が配位数8でn11が1の場合L15は4座配位子を表し、M11が配位数8でn11が2の場合L15は2座配位子を表す。n11が複数のときは、複数のL15は同じであっても異なっていてもよい。
前記一般式(I)で表される化合物の好ましい形態は、以下に挙げる、一般式(1)、一般式(2)、一般式(3)、及び一般式(4)で表される各化合物である。
一般式(1)で表される化合物について説明する。
Figure 2007103493
一般式(1)中、M21は金属イオンを表し、Y21は連結基、単結合、または二重結合を表す。Y22、Y23はそれぞれ単結合または連結基を表す。Q21、Q22はそれぞれ含窒素ヘテロ環を形成する原子群を表し、Q21で形成される環とY21の間の結合およびQ22で形成される環とY21の間の結合は、単結合または二重結合を表す。X21、X22は、それぞれ独立に、酸素原子、硫黄原子、置換または無置換の窒素原子を表す。R21、R22、R23、及びR24は、それぞれ独立に、水素原子又は置換基を表し、R21及びR22並びにR23及びR24は各々結合して環を形成してもよい。L25はM21に配位する配位子を表す。n21は0〜4の整数を表す。
一般式(1)について詳細に説明する。
一般式(1)中、M21は、前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
21、Q22は、それぞれ独立に、含窒素へテロ環(M21に配位する窒素を含む環)を形成する原子群を表す。Q21、Q22で形成される含窒素ヘテロ環としては特に限定されないが、例えば、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、チアゾール環、オキサゾール環、ピロール環、トリアゾール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズオキサゾール環、ベンズイミダゾール環、インドレニン環など)及び、これらの互変異性体が挙げられる。
21、Q22で形成される含窒素ヘテロ環としては、好ましくは、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、ピラゾール環、イミダゾール環、オキサゾール環、ピロール環、ベンズアゾール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズオキサゾール環、ベンズイミダゾール環など)及び、これらの互変異性体であり、より好ましくはピリジン環、ピラジン環、ピリミジン環、イミダゾール環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環など)及び、これらの互変異性体であり、さらに好ましくは、ピリジン環、及び、その縮環体(例えば、キノリン環など)であり、特に好ましくはピリジン環である。
21、X22は、それぞれ独立に、酸素原子、硫黄原子、置換または無置換の窒素原子であり、酸素原子、硫黄原子、置換された窒素原子がより好ましく、酸素原子、硫黄原子がさらに好ましく、酸素原子が特に好ましい。
21は、前記一般式(I)におけるY11と同義であり、好ましい範囲も同じである。
22、Y23は、それぞれ独立に、単結合、連結基を表し、単結合が好ましい。連結基としては特に限定されないが、例えば、カルボニル連結基、チオカルボニル連結基、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、酸素原子連結基、窒素原子連結基、及び、これらの組み合わせからなる連結基などが挙げられる。
22又はY23として表される連結基としては、カルボニル連結基、アルキレン連結基、アルケニレン連結基が好ましく、カルボニル連結基、アルケニレン連結基がより好ましく、カルボニル連結基がさらに好ましい。
21、R22、R23、及びR24は、それぞれ独立に、水素原子または置換基を表す。置換基としては特に限定されないが、例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、
アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、
アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、
カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、
リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。
21、R22、R23、及びR24は、それぞれ独立に、アルキル基、アリール基、R21とR22またはR23とR24が結合して環構造(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基が好ましく、R21とR22又はR23とR24が結合して環構造(例えばベンゾ縮環、ピリジン縮環など)を形成する基がより好ましい。
25は前記一般式(I)におけるL15と同義であり、好ましい範囲も同じである。
21は前記一般式(I)におけるn11と同義であり、好ましい範囲も同じである。
一般式(1)において、Q21、Q22が形成する環がピリジン環のとき、Y21は連結基を表す金属錯体であること、Q21、Q22が形成する環がピリジン環で、Y21が単結合または二重結合で、X21、X22が硫黄原子、置換または無置換の窒素原子を表す金属錯体であること、或いは、Q21、Q22が形成する環が含窒素ヘテロ5員環、または、窒素原子を2つ以上含む含窒素6員環を表す金属錯体であることが好ましい。
前記一般式(1)で表される化合物の好ましい形態は、下記一般式(1−A)で表される化合物である。
Figure 2007103493
一般式(1−A)について説明する。
一般式(1−A)中、M31は、前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
31、Z32、Z33、Z34、Z35、及びZ36は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、置換または無置換の炭素原子がより好ましい。炭素上の置換基としては、前記一般式(1)におけるR21で説明した基が挙げられ、また、Z31とZ32、Z32とZ33、Z33とZ34、Z34とZ35、Z35とZ36が連結基を介して結合し、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成してもよく、Z31とT31、Z36とT38が連結基を介して結合し、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成してもよい。
前記炭素上の置換基としては、アルキル基、アルコキシ基、アルキルアミノ基、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基、ハロゲン原子が好ましく、アルキルアミノ基、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基がより好ましく、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基がさらに好ましく、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基が特に好ましい。
31、T32、T33、T34、T35、T36、T37、及びT38は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、置換または無置換の炭素原子がより好ましい。炭素上の置換基としては、前記一般式(1)におけるR21で説明した基が挙げられ、また、T31とT32、T32とT33、T33とT34、T35とT36、T36とT37、T37とT38が連結基を介して結合し、縮環(例えばベンゾ縮環など)を形成しても良い。
前記炭素上の置換基としては、アルキル基、アルコキシ基、アルキルアミノ基、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基、ハロゲン原子が好ましく、アリール基、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基、ハロゲン原子がより好ましく、アリール基、ハロゲン原子がさらに好ましく、アリール基が特に好ましい。
31、X32は、それぞれ独立に、前記一般式(1)におけるX21、X22と同義であり、好ましい範囲も同じである。
一般式(2)で表される化合物について説明する。
Figure 2007103493
一般式(2)中、M51は前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
51、Q52は、それぞれ独立に、前記一般式(1)におけるQ21、Q22と同義であり、好ましい範囲も同じである。
53、Q54は、それぞれ独立に、含窒素へテロ環(M51に配位する窒素を含む環)を形成する基を表す。Q53、Q54で形成される含窒素ヘテロ環としては特に限定されないが、ピロール誘導体の互変異性体、イミダゾール誘導体の互変異性体(例えば、下記例示化合物(29)のヘテロ5員環配位子など)、チアゾール誘導体の互変異性体(例えば、下記例示化合物(30)のヘテロ5員環配位子など)、オキサゾール誘導体の互変異性体(例えば、下記例示化合物(31)のヘテロ5員環配位子など)が好ましく、ピロール誘導体の互変異性体、イミダゾール誘導体の互変異性体、チアゾール誘導体の互変異性体がより好ましく、ピロール誘導体の互変異性体、イミダゾール誘導体の互変異性体がさらに好ましく、ピロール誘導体の互変異性体が特に好ましい。
51は前記一般式(I)におけるY11と同義であり、好ましい範囲も同じである。
55は前記一般式(I)におけるL15と同義であり、好ましい範囲も同じである。
51は前記n11と同義であり、好ましい範囲も同じである。
51、W52は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、無置換の炭素原子、窒素原子が好ましく、無置換の炭素原子がより好ましい。
一般式(3)で表される化合物について説明する。
Figure 2007103493
一般式(3)中、MA1、QA1、QA2、YA1、YA2、YA3、RA1、RA2、RA3、RA4、LA5、nA1は、前記一般式(1)におけるM21、Q21、Q22、Y21、Y22、Y23、R21、R22、R23、R24、L25、n21と同義であり、好ましい範囲も同じである。
前記一般式(3)で表される化合物の好ましい形態は、下記一般式(3−A)で表される化合物、及び下記一般式(3−B)で表される化合物である。
先ず、一般式(3−A)で表される化合物について説明する
Figure 2007103493
一般式(3−A)中、M61は、前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
61、Q62は、それぞれ独立に、環を形成する基を表す。Q61、Q62で形成される環としては特に限定されないが、例えば、ベンゼン環、ピリジン環、ピリダジン環、ピリミジン環、チオフェン環、イソチアゾール環、フラン環、イソオキサゾ−ル環、及び、その縮環体が挙げられる。
61、Q62で形成される環は、好ましくは、ベンゼン環、ピリジン環、チオフェン環、チアゾール環、及び、その縮環体であり、ベンゼン環、ピリジン環、及び、その縮環体がより好ましく、ベンゼン環、及び、その縮環体がさらに好ましい。
61は前記一般式(I)におけるY11と同義であり、好ましい範囲も同じである。
62、Y63は、それぞれ独立に、連結基または単結合を表す。連結基としてはとくに限定されないが、例えば、カルボニル連結基、チオカルボニル連結基、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、酸素原子連結基、窒素原子連結基、及び、これらの組み合わせからなる連結基などが挙げられる。
62、Y63は、それぞれ独立に、単結合、カルボニル連結基、アルキレン連結基、アルケニレン基が好ましく、単結合、アルケニレン基がより好ましく、単結合がさらに好ましい。
65は前記一般式(I)におけるL15と同義であり、好ましい範囲も同じである。
61は前記一般式(I)におけるn11と同義であり、好ましい範囲も同じである。
61、Z62、Z63、Z64、Z65、Z66、Z67、及びZ68は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、置換または無置換の炭素原子が好ましい。炭素上の置換基としては、前記一般式(1)におけるR21で説明した基が挙げられ、また、Z61とZ62、Z62とZ63、Z63とZ64、Z65とZ66、Z66とZ67、Z67とZ68が連結基を介して結合し、縮環(例えば、ベンゾ縮環、ピリジン縮環など)を形成しても良い。Q61、Q62で形成される環がそれぞれZ61、Z68と連結基を介して結合し、環を形成してもよい。
前記炭素上の置換基としては、アルキル基、アルコキシ基、アルキルアミノ基、アリール基、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成する基、ハロゲン原子が好ましく、アルキルアミノ基、アリール基、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成する基がより好ましく、アリール基、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成する基がさらに好ましく、縮環(例えばベンゾ縮環、ピリジン縮環など)を形成する基が特に好ましい。
一般式(3−B)で表される化合物について説明する。
Figure 2007103493
一般式(3−B)中、M71は前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
71、Y72、Y73は、それぞれ独立に、前記一般式(3−A)におけるY62と同義であり、好ましい範囲も同じである。
75は前記一般式(I)におけるL15と同義であり、好ましい範囲も同じである。
71は前記一般式(I)におけるn11と同義であり、好ましい範囲も同じである。
71、Z72、Z73、Z74、Z75、及びZ76は、それぞれ独立に、置換または無置換の炭素原子、窒素原子を表し、置換または無置換の炭素原子が好ましい。炭素上の置換基としては、前記一般式(1)におけるR21で説明した基が挙げられる。また、R71とR72、R73とR74が連結基を介して結合し、環(例えばベンゼン環、ピリジン環)を形成してもよい。R71〜R74は前記一般式(1)におけるR21〜R24の置換基と同義であり、好ましい範囲も同じである。
前記一般式(3−B)で表される化合物の好ましい形態は、下記一般式(3−C)で表される化合物である。
一般式(3−C)で表される化合物について説明する。
Figure 2007103493
一般式(3−C)中、RC1、RC2は、それぞれ独立に、水素原子または置換基を表し、置換基としては、前記一般式(1)におけるR21ないしR24の置換基として説明したアルキル基、アリール基を表す。RC3、RC4、RC5、及びRC6が表す置換基も前記一般式(1)におけるR21ないしR24の置換基と同義である。nC3、nC6は0〜3の整数、nC4、nC5は0〜4の整数を表し、RC3、RC4、RC5、RC6をそれぞれ複数個有する場合、複数個のRC3、RC4、RC5、RC6は同じであっても異なってもよく、連結して環を形成してもよい。RC3、RC4、RC5、RC6は、好ましくはアルキル基、アリール基、ヘテロアリール基、ハロゲン原子である。
一般式(4)で表される化合物について説明する。
Figure 2007103493
一般式(4)中、MB1、YB2、YB3、RB1、RB2、RB3、RB4、LB5、nB3、XB1、XB2は、前記一般式(1)におけるM21、Y22、Y23、R21、R22、R23、R24、L25、n21、X21、X22とそれぞれ同義であり好ましい範囲も同様である。
B1は連結基を表し、前記一般式(1)におけるY21と同様のであり、好ましくは1,2位で置換したビニル基、フェニレン環、ピリジン環、ピラジン環、ピリミジン環または炭素数2〜8のアルキレン基を表す。
B5、RB6は、それぞれ独立に、水素原子または置換基を表し、置換基としては前記一般式(1)におけるR21ないしR24の置換基として説明したアルキル基、アリール基、ヘテロ環基を表す。ただし、YB1はRB5またはRB6と連結することはない。nB1、nB2は、それぞれ独立に、0ないし1の整数を表す。
前記一般式(4)で表される化合物の好ましい形態は、下記一般式(4−A)で表される化合物である。
一般式(4−A)で表される化合物について説明する。
Figure 2007103493

一般式(4−A)中、RD3、RD4は、それぞれ独立に、水素原子または置換基を表し、RD1、RD2はそれぞれ置換基を表す。RD1、RD2、RD3、及びRD4が表す置換基としては、前記一般式(4)におけるRB5、RB6が表す置換基と同義であり、好ましい範囲も同様である。nD1、nD2は0〜4の整数を表し、RD1、RD2をそれぞれ複数個有する場合、複数個のRD1、RD2は同じであっても異なってもよく、連結して環を形成してもよい。YD1は1,2位で置換したビニル基、フェニレン環、ピリジン環、ピラジン環、ピリミジン環または炭素数1〜8のアルキレン基を表す。
本発明における3座配位子を有する金属錯体の好ましい形態は、下記一般式(5)で表される化合物である。
一般式(5)で表される化合物について説明する。
Figure 2007103493
一般式(5)中、M81は前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
81、L82、及びL83は、それぞれ独立に、前記一般式(I)におけるL11、L12、L14と同義であり、好ましい範囲も同じである。
81、Y82は、それぞれ独立に、前記一般式(I)におけるY11、Y12と同義であり、好ましい範囲も同じである。
85はM81に配位する配位子を表す。L85は1〜3座の配位子が好ましく、1〜3座のアニオン性配位子がより好ましい。1〜3座のアニオン性配位子としては特に限定されないが、ハロゲン配位子、L81、Y81、L82、Y82、L83で形成される3座配位子が好ましく、L81、Y81、L82、Y82、L83で形成される3座配位子がより好ましい。L85が金属を介さずにL81、L83と連結することはない。配位座の数、及び配位子の数が、金属の配位数を上回ることはない。
81は0〜5を表す。M81が配位数4の金属の場合、n81は1であり、L85は単座配位子を表す。M81が配位数6の金属の場合、n81は1〜3が好ましく、1、3がより好ましく、1がさらに好ましい。M81が配位数6でn81が1の場合L85は3座配位子を表し、M81が配位数6でn81が2の場合L85は単座配位子1つと2座配位子1つを表し、M81が配位数6でn81が3の場合L85は単座配位子を表す。M81が配位数8の金属の場合、n81は1〜5が好ましく、1、2がより好ましく、1がより好ましい。M81が配位数8でn81が1の場合L85は5座配位子を表し、n81が2の場合L85は3座配位子1つと2座配位子1つを表し、n81が3の場合L85は3座配位子1つと単座配位子2つ、または、2座配位子2つと単座配位子1つを表し、n81が4の場合L85は2座配位子1つと単座配位子3つを表し、n81が5の場合L85は単座配位子5つを表す。n81が複数のときは、複数のL85は同じであっても異なっていてもよい。
前記一般式(5)の好ましい形態は、前記一般式(5)のL81、L82、L83が炭素原子でM81に配位する芳香族炭素環またはヘテロ環、または窒素原子でM81に配位する含窒素ヘテロ環を表し、L81、L82、L83のうち少なくとも一つが含窒素ヘテロ環である。これら炭素原子で配位する芳香族炭素環、ヘテロ環および窒素原子で配位する含窒素ヘテロ環は前記一般式(I)で説明したM11に炭素原子で配位する配位子および窒素原子で配位する例が挙げられ、好ましい範囲も同様である。Y81、Y82は好ましくは単結合ないしはメチレン基を表す。
前記一般式(5)で表される化合物の他の好ましい形態は、下記一般式(5−A)で表される化合物、及び下記一般式(5−B)で表される化合物である。
先ず、一般式(5−A)で表される化合物について説明する。
Figure 2007103493
一般式(5−A)中、M91は前記一般式(5)におけるM81と同義であり、好ましい範囲も同じである。
91、Q92は含窒素へテロ環(M91に配位する窒素を含む環)を形成する基を表す。Q91、Q92で形成される含窒素ヘテロ環としては特に限定されないが、例えば、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、チアゾール環、オキサゾール環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズオキサゾール環、ベンズイミダゾール環、インドレニン環など)及び、これらの互変異性体が挙げられる。
91、Q92で形成される含窒素ヘテロ環は、好ましくは、ピリジン環、ピラゾール環、チアゾール環、イミダゾール環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環、ベンズチアゾール環、ベンズイミダゾール環、インドレニン環など)、及び、これらの互変異性体であり、より好ましくはピリジン環、ピロール環、及び、それらを含む縮環体(例えば、キノリン環など)、及び、これらの互変異性体、さらに好ましくは、ピリジン環、及び、それらを含む縮環体(例えば、キノリン環など)であり、特に好ましくはピリジン環である。
93は含窒素へテロ環(M91に配位する窒素を含む環)を形成する基を表す。Q93で形成される含窒素ヘテロ環としては特に限定されないが、ピロール環、イミダゾール環、トリアゾール環の互変異性体、及び、それらを含む縮環体(例えばベンズピロールなど)が好ましく、ピロール環の互変異性体及びピロール環を含む縮環体(例えばベンズピロールなど)の互変異性体がより好ましい。
91、W92は、それぞれ独立に、前記一般式(2)におけるW51、W52と同義であり、好ましい範囲も同じである。
95は前記一般式(5)におけるL85と同義であり、好ましい範囲も同じである。
91は前記一般式(5)におけるn81と同義であり、好ましい範囲も同じである。
一般式(5−B)で表される化合物について説明する。
Figure 2007103493
一般式(5−B)中、M101は、前記一般式(5)におけるM81と同義であり、好まし
い範囲も同じである。
102は、前記一般式(1)におけるQ21と同義であり、好ましい範囲も同じである。
101は前記一般式(5−A)におけるQ91と同義であり、好ましい範囲も同じである
103は芳香環を形成する基を表す。Q103で形成される芳香環としては特に限定されないが、ベンゼン環、フラン環、チオフェン環、ピロール環、及び、それらを含む縮環体(例えば、ナフタレン環など)が好ましく、ベンゼン環及びベンゼン環を含む縮環体(例えば、ナフタレン環など)がより好ましく、ベンゼン環が特に好ましい。
101、Y102は、それぞれ独立に、前記一般式(1)におけるY22と同義であり、好ましい範囲も同じである。
105は前記一般式(5)におけるL85と同義であり、好ましい範囲も同じである。
101は前記一般式(5)におけるn81と同義であり、好ましい範囲も同じである。
101は前記一般式(1)におけるX21と同義であり、好ましい範囲も同じである。
本発明における三座配位子を有する金属錯体の他の好ましい態様は、下記一般式(II)で表される化合物である。
Figure 2007103493
一般式(II)中、MX1は金属イオンを表す。QX11〜QX16はMX1に配位する原子またはMX1に配位する原子を含んだ原子群を表す。LX11〜LX14は単結合、二重結合または連結基を表す。すなわち、QX11−LX11−QX12−LX12−QX13からなる原子群およびQX14−LX13−QX15−LX14−QX16からなる原子群はそれぞれ三座の配位子である。MX1とQX11〜QX16との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。
一般式(II)で表される化合物について詳細に説明する。
一般式(II)中、MX1は金属イオンを表す。金属イオンとしては特に限定されないが、1価〜3価の金属イオンが好ましく、2価又は3価の金属イオンがより好ましく、3価の金属イオンがさらに好ましい。具体的には、白金イオン、イリジウムイオン、レニウムイオン、パラジウムイオン、ロジウムイオン、ルテニウムイオン、銅イオン、ユーロピウムイオン、ガドリニウムイオン、テルビウムイオンが好ましく、イリジウムイオン、ユーロピウムイオンがより好ましく、イリジウムイオンがさらに好ましい。
X11〜QX16は、MX1に配位する原子又はMX1に配位する原子を含んだ原子群を表す。
X11〜QX16がMX1に配位する原子を表す場合、その具体的な原子としては、炭素原子、窒素原子、酸素原子、珪素原子、リン原子、硫黄原子などが挙げられ、好ましくは窒素原子、酸素原子、硫黄原子、リン原子であり、より好ましくは窒素原子、酸素原子である。
X11〜QX16がMX1に配位する原子を含んだ原子群を表す場合、MX1に炭素原子で配位するものとしては、例えば、イミノ基、芳香族炭化水素環基(ベンゼン、ナフタレンなど)、ヘテロ環基(チオフェン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、チアゾール、オキサゾール、ピロール、イミダゾール、ピラゾール、トリアゾールなど)およびこれらを含む縮合環、およびこれらの互変異性体が挙げられる。
X1に窒素原子で配位するものとしては、例えば、含窒素ヘテロ環基(ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、チアゾール、オキサゾール、ピロール、イミダゾール、ピラゾール、トリアゾールなど)、アミノ基(アルキルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばメチルアミノ)、アリールアミノ基(例えばフェニルアミノ)などが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、イミノ基などが挙げられる。これらの基はさらに置換されていてもよい。
X1に酸素原子で配位するものとしては、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、カルボニル基(例えばケトン基、エステル基、アミド基など)、エーテル基(例えばジアルキルエーテル基、ジアリールエーテル基、フリル基など)などが挙げられる。
X1に珪素原子で配位するものとしては、アルキルシリル基(好ましくは炭素数3〜30であり、たとえば、トリメチルシリル基などが挙げられる。)、アリールシリル基(好ましくは炭素数18〜30であり、例えば、トリフェニルシリル基などが挙げられる。)等があげられる。これらの基はさらに置換されてもよい。
X1に硫黄原子で配位するものとしては、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、チオカルボニル基(例えばチオケトン基、チオエステル基など)、チオエーテル基(例えばジアルキルチオエーテル基、ジアリールチオエーテル基、チオフリル基など)などが挙げられる。
X1にリン原子で配位するものとしては、ジアルキルホスフィノ基、ジアリールホスフィノ基、トリアルキルホスフィン、トリアリールホスフィン、ホスフィニン基等があげられる。これらの基はさらに置換されてもよい。
X11〜QX16で表される原子群として好ましくは、MX1に、炭素原子で配位する芳香族炭化水素環基、炭素原子で配位する芳香族ヘテロ環基、窒素原子で配位する含窒素芳香族ヘテロ環基、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ジアルキルホスフィノ基であり、より好ましくは炭素原子で配位する芳香族炭化水素環基、炭素原子で配位する芳香族ヘテロ環基、窒素原子で配位する含窒素芳香族ヘテロ環基である。
X1とQX11〜QX16との結合は、それぞれ配位結合でも共有結合でもよい。
一般式(II)中、LX11〜LX14は、単結合、二重結合、又は連結基を表す。連結基としては特に限定されないが、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子から選択される原子を含んで構成される連結基が好ましい。該連結基の具体例を下記に示すが、これらに限定されることはない。
Figure 2007103493
これらの連結基はさらに置換されてもよく、置換基としては前記一般式(2)におけるR21〜R24で表される置換基として挙げたものが適用でき、好ましい範囲も同様である。LX11〜LX14として好ましくは、単結合、ジメチルメチレン基、ジメチルシリレン基である。
一般式(II)で表される化合物のうち、より好ましくは下記一般式(X2)で表される化合物であり、更に好ましくは下記一般式(X3)で表される化合物である。
先ず、一般式(X2)で表される化合物について説明する。
Figure 2007103493
一般式(X2)中、MX2は金属イオンを表す。YX21〜YX26はMX2に配位する原子を表し、QX21〜QX26は、それぞれYX21〜YX26と共に芳香環もしくは芳香族ヘテロ環を形成する原子群を表す。LX21〜LX24は単結合、二重結合または連結基を表す。MX2とYX21〜YX26との結合は、それぞれ配位結合でも共有結合でもよい。
一般式(X2)で表される化合物について詳細に説明する。
一般式(X2)中、MX2は、前記一般式(II)におけるMX1と同義であり、また好ましい範囲も同様である。YX21〜YX26はMX2に配位する原子を表す。YX21〜YX26とMX2
との結合は配位結合でも共有結合でもよい。YX21〜YX26としては、炭素原子、窒素原子、酸素原子、硫黄原子、りん原子、ケイ素原子が挙げられ、好ましくは炭素原子、窒素原子である。QX21〜QX26は、それぞれYX21〜YX26を含んで芳香族炭化水素環または芳香族ヘテロ環を形成する原子群を表す。この場合に形成する芳香族炭化水素環、芳香族ヘテロ環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、フラン環が挙げられ、好ましくはベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピラゾール環、イミダゾール環、トリアゾール環であり、さらに好ましくはベンゼン環、ピリジン環、ピラジン環、ピラゾール環、トリアゾール環であり、特に好ましくはベンゼン環、ピリジン環である。これらはさらに縮環を有していても置換基を有していても良い。
X21〜LX24は前記一般式(II)におけるLX11〜LX14と同義であり好ましい範囲も同様である。
前記一般式(II)で表される化合物は、さらに好ましくは下記一般式(X3)で表される化合物である。
一般式(X3)について説明する。
Figure 2007103493
一般式(X3)中、MX3は金属イオンを表す。YX31〜YX36は、炭素原子、窒素原子、リン原子を表す。LX31〜LX34は単結合、二重結合または連結基を表す。MX3とYX31〜YX36との結合は、それぞれ配位結合でも共有結合でもよい。
X3は前記一般式(II)におけるMX1と同義であり、また好ましい範囲も同様である。YX31〜YX36はMX3に配位する原子を表す。YX31〜YX36とMX3との結合は配位結合でも共有結合でも良い。YX31〜YX36としては、炭素原子、窒素原子、りん原子が挙げられ、好ましくは炭素原子、窒素原子である。LX31〜LX34は前記一般式(II)におけるLX11〜LX14と同義であり好ましい範囲も同様である。
前記一般式(I)、一般式(II)、及び一般式(5)で表される化合物の具体例としては、特願2004−162849号明細書に記載の化合物(1)〜化合物(242)、化合物(243)〜化合物(247)(以下に構造を示す。)が挙げられるが、これらに限定されるものではない。
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
上記化合物例で代表される化合物のうち、ビピリジル又はフェナントロリンを部分構造に含む4座配位子、シッフ塩基型4座配位子、フェニルビピリジル3座配位子、ジフェニルピリジン3座配位子、ターピリジン3座配位子から選ばれる配位子を有する化合物を除いた化合物がより好ましい。
(本発明における金属錯体の合成方法)
本発明における金属錯体〔前記一般式(I)、(1)、(1−A)、(2)、(3)、(3−A)、(3−B)、(3−C)、(4)、(4−A)、(5)、(5−A)、及び(5−B)、並びに前記一般式(II)、(X2)、及び(X3)で表される化合物〕は、種々の手法で合成できる。
例えば、配位子、またはその解離体と金属化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、水などが挙げられる)の存在下、もしくは、溶媒非存在下、塩基の存在下(無機、有機の種々の塩基、例えば、ナトリウムメトキサイド、t−ブトキシカリウム、トリエチルアミン、炭酸カリウムなどが挙げられる)、もしくは、塩基非存在下、室温以下、もしくは加熱し(通常の加熱以外にもマイクロウェーブで加熱する手法も有効である)得ることができる。
本発明の金属錯体を合成する際の反応時間は反応原料の活性により異なり、特に限定されないが、1分以上5日以下が好ましく、5分以上3日以下がより好ましく、10分以上1日以下がさらに好ましい。
本発明の金属錯体合成の反応温度は反応の活性により異なり、特に限定されないが、0℃以上300℃以下が好ましく、5℃以上250℃以下がより好ましく、10℃以上200℃以下がさらに好ましい。
本発明の金属錯体は、目的とする錯体の部分構造を形成している配位子を適宜選択することで、前記一般式(I)、(1)、(1−A)、(2)、(3)、(3−A)、(3−B)、(3−C)、(4)、(4−A)、(5)、(5−A)、及び(5−B)、並びに前記一般式(II)、(X2)、及び(X3)で表される化合物で表される化合物は合成できる。
例えば、一般式(1−A)で表される化合物を合成する際は、6,6'−ビス(2−ヒ
ドロキシフェニル)−2,2'−ビピリジル配位子またはその誘導体(例えば、2,9−
ビス(2−ヒドロキシフェニル)−1,10−フェナントロリン配位子、2,9−ビス(2−ヒドロキシフェニル)−4,7−ジフェニル−1,10−フェナントロリン配位子、6,6'−ビス(2−ヒドロキシ−5−tert−ブチルフェニル)−2,2'−ビピリジル配位子など)などを、金属化合物に対し、好ましくは0.1当量〜10当量、より好ましくは0.3当量〜6当量、さらに好ましくは0.5当量〜4当量加えて合成できる。一般式(1−A)で表される化合物の合成方法において、反応溶媒、反応時間、反応温度の各々は、上記本発明の金属錯体の合成方法で述べた事項と同様である。
6,6'−ビス(2−ヒドロキシフェニル)−2,2'−ビピリジル配位子の誘導体は種々の公知の方法を用いて合成することができる。
例えば、2,2'−ビピリジル誘導体(例えば、1,10−フェナントロリンなど)と
アニソール誘導体(例えば、4−フルオロアニソールなど)をJournal of Organic Chemistry, 741, 11,(1946)に記載の方法で反応させることにより合成することができる。また、ハロゲン化された2,2'−ビピリジ
ル誘導体(例えば、2,9−ジブロモ−1,10−フェナントロリンなど)と2−メトキシフェニルボロン酸誘導体など(例えば、2−メトキシ−5−フルオロフェニルボロン酸など)を出発物質として鈴木カップリング反応を行った後、メチル基を脱保護する(Journal of Organic Chemistry, 741, 11,(1946)に記載の方法、ピリジン塩酸塩中で加熱するなどの方法を用いる)ことにより合成することができる。また、2,2'−ビピリジルボロン酸誘導体(例えば6,6'−ビス(4,4,5,5−テトラメチル−1,3,2−ジオキサボロリル)−2,2'−ビピリジル
など)とハロゲン化されたアニソール誘導体(例えば2−ブロモアニソールなど)を出発物質として鈴木カップリング反応を行った後、メチル基を脱保護する(Journal of Organic Chemistry, 741, 11,(1946)に記載の方法、または、ピリジン塩酸塩中で加熱するなどの方法を用いる)ことによっても合成することができる。
以下、下記一般式(III)で表される化合物について説明する。
Figure 2007103493
一般式(III)中、Q11は含窒素へテロ環を形成する原子群を表し、Z11、Z12、Z13はそれぞれ置換又は無置換の、炭素原子又は窒素原子を表し、MY1は更に配位子を有しても良い金属イオンを表す。
一般式(III)中、Q11は、Q11が結合する炭素原子2つとこれらの炭素原子に直接結合している窒素原子とを含んで、含窒素へテロ環を形成する原子群を表す。Q11で形成される含窒素へテロ環の環員数としては特に限定されないが、環員数12〜20が好ましく、環員数14〜16がより好ましく、環員数16がさらに好ましい。
11、Z12、及びZ13はそれぞれ独立に、置換又は無置換の、炭素原子又は窒素原子を表す。Z11、Z12、及びZ13の組合せとしては、Z11、Z12、及びZ13の少なくとも1つが窒素原子であることが好ましい。
炭素原子上の置換基としては、例えば、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、
アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、
アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、
カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミダゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、
スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、
シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。
これらの置換基の中でも、炭素原子上の置換基としては、アルキル基、アリール基、ヘテロ環基、ハロゲン原子が好ましく、より好ましくはアリール基、ハロゲン原子であり、さらに好ましくはフェニル基、フッ素原子である。
窒素原子上の置換基としては、前記炭素原子上の置換基として例示した置換基が挙げられ、好ましい範囲も同じである。
一般式(III)中、MY1は配位子を更に有してもよい金属イオンを表し、他に配位子を有さない金属イオンがより好ましい。
Y1で表される金属イオンとしては特に限定されないが、2価または3価の金属イオンが好ましい。2価または3価の金属イオンとしては、コバルトイオン、マグネシウムイオン、亜鉛イオン、パラジウムイオン、ニッケルイオン、銅イオン、白金イオン、鉛イオン、アルミニウムイオン、イリジウムイオン、ユーロピウムイオンが好ましく、コバルトイオン、マグネシウムイオン、亜鉛イオン、パラジウムイオン、ニッケルイオン、銅イオン、白金イオン、鉛イオンがより好ましく、銅イオン、白金イオンがさらに好ましく、白金イオンが特に好ましい。MY1は、Q11に含まれる原子と結合していても結合していなくてもよく、結合している方が好ましい。
Y1が、さらに有していてもよい配位子としては、特に限定されないが、単座、もしくは、2座の配位子が好ましく、2座の配位子がより好ましい。配位する原子としては、特に限定されないが、酸素原子、硫黄原子、窒素原子、炭素原子、りん原子が好ましく、酸素原子、窒素原子、炭素原子がより好ましく、酸素原子、窒素原子がさらに好ましい。
前記一般式(III)で表される化合物の好ましい例は、下記一般式(a)〜(j)で表される化合物、又はそれらの互変異性体である。
一般式(III)で表される化合物はとしては、一般式(a)及び一般式(b)で表される化合物またはその互変異性体がより好ましく、一般式(b)で表される化合物またはその互変異性体がより好ましい。
また、一般式(III)で表される化合物としては、一般式(c)または一般式(g)で表される化合物も好ましい。
一般式(c)で表される化合物としては、一般式(d)で表される化合物またはその互変異性体、一般式(e)で表される化合物またはその互変異性体、一般式(f)で表される化合物またはその互変異性体が好ましく、一般式(d)で表される化合物またはその互変異性体、一般式(e)で表される化合物またはその互変異性体がより好ましく、一般式(d)で表される化合物またはその互変異性体がさらに好ましい。
一般式(g)で表される化合物としては、一般式(h)で表される化合物またはその互変異性体、一般式(i)で表される化合物またはその互変異性体、一般式(j)で表される化合物またはその互変異性体が好ましく、一般式(h)で表される化合物またはその互変異性体、一般式(i)で表される化合物またはその互変異性体がより好ましく、一般式(h)表される化合物またはその互変異性体がさらに好ましい。
以下、一般式(a)〜(j)で表される化合物について詳細に説明する。
Figure 2007103493
一般式(a)で表される化合物について説明する。
一般式(a)中、Z21、Z22、Z23、Z24、Z25、Z26、M21はそれぞれ対応する前記一般式(III)におけるZ11、Z12、Z13、Z11、Z12、Z13、MY1と同義であり、好ましい範囲も同じである。
21、Q22はそれぞれ含窒素へテロ環を形成する基を表す。Q21、Q22で形成される含窒素ヘテロ環としては特に限定されないが、ピロール環、イミダゾール環、トリアゾール環、及び、それらを含む縮環体(例えばベンズピロール)、及び、これらの互変異性体(例えば、後述の一般式(b)において、R43、R44、R45、R46が置換している含窒素5員環はピロールの互変異性体と定義する)が好ましく、ピロール環及びピロール環を含む縮環体(例えば、ベンズピロール)がより好ましい。
21、X22、X23、X24は、それぞれ独立に、置換または無置換の、炭素原子又は窒素原子を表し、無置換の、炭素原子、窒素原子が好ましく、窒素原子がより好ましい。
一般式(b)で表される化合物について説明する。
Figure 2007103493
一般式(b)中、Z41、Z42、Z43、Z44、Z45、Z46、X41、X42、X43、X44、M41は前記一般式(a)におけるZ21、Z22、Z23、Z24、Z25、Z26、X21、X22、X23、X24、M21と同義であり、好ましい範囲も同じである。
43、R44、R45、R46はそれぞれ独立に水素原子、または前記一般式(III)におけるZ11又はZ12上の置換基として例示したアルキル基、アリール基、R43とR44またはR45とR46が結合して環構造(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基が好ましく、アルキル基、アリール基、R43とR44またはR45とR46が結合して環構造(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基がより好ましく、R43とR44またはR45とR46が結合して環構造(例えば、ベンゾ縮環、ピリジン縮環など)を形成する基がさらに好ましい。
43、R44、R45、R46はそれぞれ独立に水素原子または置換基を表す。置換基としては前記一般式(III)におけるZ11又はZ12について炭素原子上の置換基で説明した基が挙げられる。
一般式(c)で表される化合物について説明する。
Figure 2007103493
一般式(c)中、Z101、Z102、Z103はそれぞれ独立に置換又は無置換の、炭素原子又は窒素原子を表す。Z101、Z102、Z103の少なくとも一つが窒素原子であることが好ましい。
101、L102、L103、L104はそれぞれ独立に単結合または連結基を表す。連結としては特に限定されないが、例えば、カルボニル連結基、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、含窒素ヘテロ環連結基、酸素原子連結基、アミノ連結基、イミノ連結基、カルボニル連結基、及び、これらの組み合わせからなる連結基などが挙げられる。
101、L102、L103、L104はそれぞれ独立に単結合、アルキレン基、アルケニレン基、アミノ連結基、イミノ連結基が好ましく、単結合、アルキレン連結基、アルケニレン連結基、イミノ連結基がより好ましく、単結合、アルキレン連結基がさらに好ましい。
101、Q103はそれぞれ独立にM101に炭素原子で配位する基、窒素原子で配位する基
、りん原子で配位する基、酸素原子で配位する基、または、硫黄原子で配位する基を表す。
101に炭素原子で配位する基としては、炭素原子で配位するアリール基、炭素原子で配位する5員環へテロアリール基、炭素原子で配位する6員環へテロアリール基が好ましく、炭素原子で配位するアリール基、炭素原子で配位する含窒素5員環へテロアリール基、炭素原子で配位する含窒素6員環へテロアリール基がより好ましく、炭素原子で配位するアリール基がさらに好ましい。
101に窒素原子で配位する基としては、窒素原子で配位する含窒素5員環へテロアリ
ール基、窒素原子で配位する含窒素6員環へテロアリール基が好ましく、窒素原子で配位する含窒素6員環へテロアリール基がより好ましい。
101にりん原子で配位する基としては、りん原子で配位するアルキルホスフィン基、
りん原子で配位するアリールホスフィン基、りん原子で配位するアルコキシホスフィン基、りん原子で配位するアリールオキシホスフィン基、りん原子で配位するヘテロアリールオキシホスフィン基、りん原子で配位するホスフィニン基、りん原子で配位するホスホール基が好ましく、りん原子で配位するアルキルホスフィン基、りん原子で配位するアリールホスフィン基がより好ましい。
101に酸素原子で配位する基としては、オキシ基、酸素原子で配位するカルボニル基
が好ましく、オキシ基がさらに好ましい。
101に硫黄原子で配位する基としては、スルフィド基、チオフェン基、チアゾール基
が好ましく、チオフェン基がより好ましい。
101、Q103はM101に炭素原子で配位する基、窒素原子で配位する基、酸素原子で配位する基が好ましく、炭素原子で配位する基、窒素原子で配位する基がより好ましく、炭素原子で配位する基がさらに好ましい。
102はM101に窒素原子で配位する基、りん原子で配位する基、酸素原子で配位する基、または、硫黄原子で配位する基を表し、窒素原子で配位する基がより好ましい。
101は前記一般式(I)におけるM11と同義であり、好ましい範囲も同じである。
一般式(d)で表される化合物について説明する。
Figure 2007103493
一般式(d)中、Z201、Z202、Z203、Z207、Z208、Z209、L201、L202、L203、L204、M201はそれぞれ対応する前記一般式(c)におけるZ101、Z102、Z103、Z101、Z102、Z103、L101、L102、L103、L104、M101と同義であり、好ましい範囲も同じである。Z204、Z205、Z206、Z210、Z211、Z212はそれぞれ置換または無置換の炭素原子又は窒素原子を表し、置換または無置換の炭素原子が好ましい。
一般式(e)で表される化合物について説明する。
Figure 2007103493
一般式(e)中、Z301、Z302、Z303、Z304、Z305、Z306、Z307、Z308、Z309、Z310、L301、L302、L303、L304、M301は、それぞれ対応する前記一般式(d)、(c)におけるZ201、Z202、Z203、Z204、Z206、Z207、Z208、Z209、Z210、Z212、L101、L102、L103、L104、M101と同義であり、好ましい範囲も同じである。
一般式(f)で表される化合物について説明する。
Figure 2007103493
一般式(f)中、Z401、Z402、Z403、Z404、Z405、Z406、Z407、Z408、Z409、Z410、Z411、Z412、L401、L402、L403、L404、M401は、それぞれ対応する前記一般式(d)、(c)におけるZ201、Z202、Z203、Z204、Z205、Z206、Z207、Z208、Z209、Z210、Z211、Z212、L101、L102、L103、L104、M101と同義であり、好ましい範囲も同じである。
401、X402はそれぞれ独立に酸素原子、置換又は無置換の窒素原子、硫黄原子を表し、酸素原子、置換窒素原子が好ましく、酸素原子がより好ましい。
一般式(g)で表される化合物について説明する
Figure 2007103493
一般式(g)中、Z501、Z502、Z503、L501、L502、L503、L504、Q501、Q502、Q503、M501は、それぞれ対応する前記一般式(c)におけるZ101、Z102、Z103、L101、L102、L103、L104、Q101、Q103、Q102、M101と同義であり、好ましい範囲も同じである。
一般式(h)で表される化合物について説明する。
Figure 2007103493
一般式(h)中、Z601、Z602、Z603、Z604、Z605、Z606、Z607、Z608、Z609、Z610、Z611、Z612、L601、L602、L603、L604、M601は、それぞれ対応する前記一般式(d)、(c)におけるZ201、Z202、Z203、Z207、Z208、Z209、Z204、Z205、Z206、Z210、Z211、Z212、L101、L102、L103、L104、M101と同義であり、好ましい範囲も同じである。
一般式(i)で表される化合物について説明する。
Figure 2007103493
一般式(i)中、Z701、Z702、Z703、Z704、Z705、Z706、Z707、Z708、Z709、Z710、L701、L702、L703、L704、M701はそれぞれ対応する前記一般式(d)、(c)におけるZ201、Z202、Z203、Z207、Z208、Z209、Z204、Z206、Z210、Z212、L101、L102、L103、L104、M101と同義であり、好ましい範囲も同じである。
一般式(j)で表される化合物について説明する。
Figure 2007103493
一般式(j)中、Z801、Z802、Z803、Z804、Z805、Z806、Z807、Z808、Z809、Z810、Z811、Z812、L801、L802、L803、L804、M801、X801、X802は、それぞれ対応する前記一般式(d)、(c)、(f)におけるZ201、Z202、Z203、Z207、Z208、Z209、Z204、Z205、Z206、Z210、Z211、Z212、L101、L102、L103、L104、M101、X401、X402と同義であり、好ましい範囲も同じである。
一般式(III)で表される化合物の具体例としては、特願2004−88575記載の化合物(2)〜化合物(8)、化合物(15)〜化合物(20)、化合物(27)〜化合物(32)、化合物(36)〜化合物(38)、化合物(42)〜化合物(44)、化合物(50)〜化合物(52)、及び、化合物(57)〜化合物(154)(以下に構造を示す。)が挙げられるが、これらに限定されるものではない。
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
さらに、本発明における金属錯体の好ましい例としては、下記一般式(A−1)、下記一般式(B−1)、下記一般式(C−1)、下記一般式(D−1)、下記一般式(E−1)、及び下記一般式(F−1)で表される各化合物が挙げられる。
一般式(A−1)について説明する。
Figure 2007103493
一般式(A−1)中、MA1は金属イオンを表す。YA11、YA14、YA15およびYA18は、それぞれ独立に炭素原子または窒素原子を表す。YA12、YA13、YA16およびYA17はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LA11、LA12、LA13、LA14は連結基を表し、これらの連結基は、同一構造であっても異なる構造であっても良い。QA11、QA12はMA1に共有結合で結合する原子を含有する部分構造を表す。
一般式(A−1)で表される化合物について、詳細に説明する。
A1は金属イオンを表す。金属イオンとしては特に限定されることはないが、2価の金属イオンが好ましく、Pt2+、Pd2+、Cu2+、Ni2+、Co2+、Zn2+、Mg2+、Pb2+が好ましく、Pt2+、Cu2+がより好ましく、Pt2+が特に好ましい。
A11、YA14、YA15およびYA18は、それぞれ独立に炭素原子または窒素原子を表す。YA11、YA14、YA15およびYA18として好ましくは、炭素原子である。
A12、YA13、YA16およびYA17はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。YA12、YA13、YA16およびYA17
として好ましくは、置換または無置換の炭素原子、置換または無置換の窒素原子である。
A11、LA12、LA13、LA14は二価の連結基を表す。LA11、LA12、LA13、LA14で表される二価の連結基としては、それぞれ独立に単結合のほか、炭素、窒素、珪素、硫黄、酸素、ゲルマニウム、リン等で構成される連結基であり、より好ましくは、単結合、置換または無置換の炭素原子、置換または無置換の窒素原子、置換珪素原子、酸素原子、硫黄原子、二価の芳香族炭化水素環基、二価の芳香族ヘテロ環基であり、さらに好ましくは単結合、置換または無置換の炭素原子、置換または無置換の窒素原子、置換珪素原子、二価の芳香族炭化水素環基、二価の芳香族ヘテロ環基であり、特に好ましくは、単結合、置換または無置換のメチレン基である、LA11、LA12、LA13、LA14で表される二価の連結基としては、例えば以下のものが挙げられる。
Figure 2007103493
A11、LA12、LA13、LA14で表される二価の連結基は、さらに置換基を有していてもよい。導入可能な置換基としては、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、
アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、
ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、
アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、
スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、
アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、
ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、
ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。
これらの置換基は更に置換されてもよい。置換基として好ましくは、アルキル基、アリール基、ヘテロ環基、ハロゲン原子、シリル基であり、より好ましくはアルキル基、アリール基、ヘテロ環基、ハロゲン原子であり、さらに好ましくはアルキル基、アリール基、芳香族ヘテロ環基、フッ素原子である。
A11、QA12はMA1に共有結合で結合する原子を含有する部分構造を表す。QA11、QA12はそれぞれ独立にMA1に炭素原子で結合する基、窒素原子で結合する基、珪素原子で結合する基、リン原子で結合する基、酸素原子で結合する基、硫黄原子で結合する基が好ましく、炭素原子、窒素原子、酸素原子、硫黄原子で結合する基がより好ましく、炭素原子、窒素原子で結合する基がさらに好ましく、炭素原子で結合する基が特に好ましい。
炭素原子で結合する基としては、炭素原子で結合するアリール基、炭素原子で結合する五員環へテロアリール基、炭素原子で結合する六員環へテロアリール基が好ましく、炭素原子で結合するアリール基、炭素原子で結合する含窒素五員環へテロアリール基、炭素原子で結合する含窒素六員環へテロアリール基がより好ましく、炭素原子で結合するアリール基が特に好ましい。
窒素原子で結合する基としては、置換アミノ基、窒素原子で結合する含窒素へテロ五員環へテロアリール基が好ましく、窒素原子で結合する含窒素ヘテロ五員環へテロアリール基が特に好ましい。
リン原子で結合する基としては、置換ホスフィノ基が好ましい。珪素原子で結合する基としては、置換シリル基が好ましい。酸素原子で結合する基としてはオキシ基、硫黄原子で結合する基としてはスルフィド基が好ましい。
前記一般式(A−1)で表される化合物は、より好ましくは一般式(A−2)、一般式(A−3)、又は一般式(A−4)で表される化合物である。
Figure 2007103493
一般式(A−2)中、MA2は金属イオンを表す。YA21、YA24、YA25およびYA28は、それぞれ独立に炭素原子または窒素原子を表す。YA22、YA23、YA26およびYA27はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LA21、LA22、LA23、LA24は連結基を表す。ZA21、ZA22、ZA23、ZA24、ZA25およびZA26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
Figure 2007103493
一般式(A−3)中、MA3は金属イオンを表す。YA31、YA34、YA35およびYA38は、それぞれ独立に炭素原子または窒素原子を表す。YA32、YA33、YA36およびYA37はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LA31、LA32、LA33、LA34は連結基を表す。ZA31、ZA32、ZA33およびZA34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
Figure 2007103493
一般式(A−4)中、MA4は金属イオンを表す。YA41、YA44、YA45およびYA48は、それぞれ独立に炭素原子または窒素原子を表す。YA42、YA43、YA46およびYA47はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LA41、LA42、LA43、LA44は連結基を表す。ZA41、ZA42、ZA43、ZA44、ZA45およびZA46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。XA41、XA42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。
一般式(A−2)で表される化合物について詳細に説明する。
A2、YA21、YA24、YA25、YA28、YA22、YA23、YA26、YA27、LA21、LA22、LA23、LA24はそれぞれ対応する、一般式(A−1)中のMA1、YA11、YA14、YA15、YA18、YA12、YA13、YA16、YA17、LA11、LA12、LA13、LA14と同義であり、また好ましい範囲も同様である。
A21、ZA22、ZA23、ZA24、ZA25およびZA26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZA21、ZA22、ZA23、ZA24、ZA25およびZA26として好ましくはそれぞれ独立に置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(A−3)で表される化合物について詳細に説明する。
A3、YA31、YA34、YA35、YA38、YA32、YA33、YA36、YA37、LA31、LA32、LA33、LA34はそれぞれ対応する、一般式(A−1)中のMA1、YA11、YA14、YA15、YA18、YA12、YA13、YA16、YA17、LA11、LA12、LA13、LA14と同義であり、また好ましい範囲も同様である。
A31、ZA32、ZA33、およびZA34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZA31、ZA32、ZA33、およびZA34として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(A−4)で表される化合物について詳細に説明する。
A4、YA41、YA44、YA45、YA48、YA42、YA43、YA46、YA47、LA41、LA42、LA43、LA44はそれぞれ対応する、一般式(A−1)中のMA1、YA11、YA14、YA15、YA18、YA12、YA13、YA16、YA17、LA11、LA12、LA13、LA14と同義であり、また好ましい範囲も同様である。
A41、ZA42、ZA43、ZA44、ZA45およびZA46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZA41、ZA42、ZA43、ZA44、ZA45およびZA46として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
A41、XA42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。XA41、XA42として好ましくはそれぞれ独立に酸素原子、硫黄原子であり、より好ましくは酸素原子である。
一般式(A−1)で表される化合物の具体例を以下に列挙するが、本発明はこれらの化合物に限定されることはない。
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
本発明における金属錯体の内、好ましい化合物の一つは、下記一般式(B−1)で表される化合物である。
Figure 2007103493
一般式(B−1)中、MB1は金属イオンを表す。YB11、YB14、YB15およびYB18は、それぞれ独立に炭素原子または窒素原子を表す。YB12、YB13、YB16およびYB17はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LB11、LB12、LB13、LB14は連結基を表す。QB11、QB12はMB1に共有結合で結合する原子を含有する部分構造を表す。
一般式(B−1)について詳細に説明する。
一般式(B−1)中、MB1、YB11、YB14、YB15、YB18、YB12、YB13、YB16、YB17、LB11、LB12、LB13、LB14、QB11、QB12は、それぞれ対応する、一般式(A−1)中における、MA1、YA11、YA14、YA15、YA18、YA12、YA13、YA16、YA17、LA11、LA12、LA13、LA14、QA11、QA12と同義であり、また好ましい範囲も同様である。
一般式(B−1)で表される化合物は、より好ましくは、下記一般式(B−2)、一般式(B−3)、又は一般式(B−4)で表される化合物である。
Figure 2007103493
一般式(B−2)中、MB2は金属イオンを表す。YB21、YB24、YB25およびYB28は、それぞれ独立に炭素原子または窒素原子を表す。YB22、YB23、YB26およびYB27はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LB21、LB22、LB23、LB24は連結基を表す。ZB21、ZB22、ZB23、ZB24、ZB25およびZB26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
Figure 2007103493
一般式(B−3)中、MB3は金属イオンを表す。YB31、YB34、YB35およびYB38は、それぞれ独立に炭素原子または窒素原子を表す。YB32、YB33、YB36およびYB37は、それぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LB31、LB32、LB33、LB34は連結基を表す。ZB31、ZB32、ZB33およびZB34は、それぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
Figure 2007103493
一般式(B−4)中、MB4は金属イオンを表す。YB41、YB44、YB45およびYB48は、それぞれ独立に炭素原子または窒素原子を表す。YB42、YB43、YB46およびYB47はそれぞれ独立に置換または無置換の炭素原子、置換または無置換の窒素原子、酸素原子、硫黄原子を表す。LB41、LB42、LB43、LB44は連結基を表す。ZB41、ZB42、ZB43、ZB44、ZB45およびZB46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。XB41、XB42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。
一般式(B−2)で表される化合物について詳細に説明する。
一般式(B−2)中、MB2、YB21、YB24、YB25、YB28、YB22、YB23、YB26、YB27、LB21、LB22、LB23、LB24はそれぞれ対応する、一般式(B−1)中のMB1、YB11、YB14、YB15、YB18、YB12、YB13、YB16、YB17、LB11、LB12、LB13、LB14と同義であり、また好ましい範囲も同様である。
B21、ZB22、ZB23、ZB24、ZB25およびZB26は、それぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZB21、ZB22、ZB23、ZB24、ZB25およびZB26として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(B−3)で表される化合物について詳細に説明する。
一般式(B−3)中、MB3、YB31、YB34、YB35、YB38、YB32、YB33、YB36、YB37、LB31、LB32、LB33、LB34はそれぞれ対応する、一般式(B−1)中のMB1、YB11、YB14、YB15、YB18、YB12、YB13、YB16、YB17、LB11、LB12、LB13、LB14と同義であり、また好ましい範囲も同様である。
B31、ZB32、ZB33、およびZB34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZB31、ZB32、ZB33、およびZB34として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(B−4)で表される化合物について詳細に説明する。
一般式(B−4)中、MB4、YB41、YB44、YB45、YB48、YB42、YB43、YB46、YB47、LB41、LB42、LB43、LB44はそれぞれ対応する、一般式(B−1)中のMB1、YB11、YB14、YB15、YB18、YB12、YB13、YB16、YB17、LB11、LB12、LB13、LB14と同義であり、また好ましい範囲も同様である。
B41、ZB42、ZB43、ZB44、ZB45およびZB46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZB41、ZB42、ZB43、ZB44、ZB45およびZB46として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
B41、XB42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。XB41、XB42として好ましくは酸素原子、硫黄原子であり、より好ましくは酸素原子である。
一般式(B−1)で表される化合物の具体例を以下に列挙するが、本発明はこれらの化合物に限定されることはない。
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
本発明における金属錯体の内、好ましい化合物の一つは、一般式(C−1)で表される化合物である。
Figure 2007103493
一般式(C−1)中、MC1は金属イオンを表す。RC11、RC12は、それぞれ独立に、水素原子、互いに連結して五員環を形成する置換基、または互いに連結することの無い置換基を表す。RC13、RC14は、それぞれ独立に、水素原子、互いに連結して五員環を形成する置換基、または互いに連結することの無い置換基を表す。GC11、GC12は、それぞれ独立に、窒素原子、置換または無置換の炭素原子を表す。LC11、LC12は連結基を表す。QC11、QC12はMC1に共有結合で結合する原子を含有する部分構造を表す。
一般式(C−1)について詳細に説明する。
一般式(C−1)中、MC1、LC11、LC12、QC11、QC12はそれぞれ対応する一般式(A−1)中における、MA1、LA11、LA12、QA11、QA12と同義であり、また好ましい範囲も同様である。
C11、GC12は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表し、好ましくは窒素原子、無置換の炭素原子であり、より好ましくは窒素原子である。
C11、RC12はそれぞれ独立に水素原子または置換基を表す。RC11、RC12は互いに連結して五員環を形成してもよい。RC13、RC14はそれぞれ独立に水素原子または置換基を表す。RC13、RC14は互いに連結して五員環を形成してもよい。
C11、RC12、RC13およびRC14で表される置換基としては、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、
アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、
ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、
アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、
アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、
ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。
C11、RC12、RC13およびRC14で表される置換基として好ましくは、アルキル基、アリール基、RC11とRC12、RC13とRC14が互いに結合して五員環を形成する基であり、特に好ましくはRC11とRC12、RC13とRC14が互いに結合して五員環を形成する基である。
一般式(C−1)で表される化合物は、より好ましくは一般式(C−2)で表される化合物である。
Figure 2007103493
一般式(C−2)中、MC2は金属イオンを表す。
C21、YC22、YC23およびYC24は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。GC21、GC22は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。LC21、LC22は連結基を表す。QC21、QC22はMC2に共有結合で結合する原子を含有する部分構造を表す。
一般式(C−2)について詳細に説明する。
一般式(C−2)中、MC2、LC21、LC22、QC21、QC22、GC21、GC22はそれぞれ対応する、一般式(C−1)におけるMC1、LC11、LC12、QC11、QC12、GC11、GC12と同義であり、好ましい範囲も同様である。
C21、YC22、YC23およびYC24は、それぞれ独立に、窒素原子、置換もしくは無置換の炭素原子を表し、好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
一般式(C−2)で表される化合物は、より好ましくは下記一般式(C−3)、一般式(C−4)又は一般式(C−5)で表される化合物である。
Figure 2007103493
一般式(C−3)中、MC3は金属イオンを表す。
C31、YC32、YC33およびYC34は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。GC31、GC32は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。LC31、LC32は連結基を表す。ZC31、Z C32、Z C33、Z C34、Z C35およびZ C36はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
Figure 2007103493
一般式(C−4)中、MC4は金属イオンを表す。 YC41、YC42、YC43およびYC44は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。GC41、GC42は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。LC41、LC42は連結基を表す。ZC41、ZC42、ZC43およびZC44はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
Figure 2007103493
一般式(C−5)中、MC5は金属イオンを表す。
C51、YC52、YC53およびYC54は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。GC51、GC52は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。LC51、LC52は連結基を表す。ZC51、Z C52、Z C53、Z C54、Z C55およびZ C56はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。XC51、XC52はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。
一般式(C−3)で表される化合物について詳細に説明する。
一般式(C−3)中、MC3、LC31、LC32、GC31、GC32はそれぞれ対応する、一般式(C−1)における、MC1、LC11、LC12、GC11、GC12と同義であり、また好ましい範囲も同様である。
C31、ZC32、ZC33、ZC34、ZC35およびZC36はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZC31、ZC32、ZC33、ZC34、ZC35およびZC36として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
一般式(C−4)で表される化合物について詳細に説明する。
一般式(C−4)中、MC4、LC41、LC42、GC41、GC42は、それぞれ対応する一般式(C−1)における、MC1、LC11、LC12、GC11、GC12と同義であり、また好ましい範囲も同様である。
C41、ZC42、ZC43、およびZC44はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZC41、ZC42、ZC43、およびZC44として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
一般式(C−5)で表される化合物について詳細に説明する。
C5、LC51、LC52、GC51、GC52は、それぞれ対応する一般式(C−1)における、MC1、LC11、LC12、GC11、GC12と同義であり、また好ましい範囲も同様である。
C51、ZC52、ZC53、ZC54、ZC55およびZC56はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZC51、ZC52、ZC53、ZC54、ZC55およびZC56として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
C51、XC52はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。XC51、XC52として好ましくは酸素原子、硫黄原子であり、より好ましくは酸素原子である。
一般式(C−1)で表される化合物の具体例を以下に列挙するが、本発明はこれらの化合物に限定されることはない。
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
本発明における金属錯体の内、好ましい化合物の一つは、下記一般式(D−1)で表される化合物である。
Figure 2007103493
一般式(D−1)中、MD1は金属イオンを表す。
D11、GD12は、それぞれ独立に窒素原子、置換または無置換の炭素原子を表す。JD1
1、JD12、JD13およびJD14は五員環を形成するのに必要な原子群を表す。LD11、LD12
は連結基を表す。
一般式(D−1)について詳細に説明する。
一般式(D−1)中、MD1、LD11、LD12はそれぞれ対応する一般式(A−1)中における、MA1、LA11、LA12と同義であり、また好ましい範囲も同様である。
D11、GD12は、それぞれ対応する一般式(C−1)におけるGC11、GC12と同義であり、また好ましい範囲も同様である。
D11、JD12、JD13およびJD14は、これらが結合している原子群と共に、含窒素へテロ五員環を形成するのに必要な原子群を表す。
一般式(D−1)で表される化合物は、より好ましくは下記一般式(D−2)、一般式(D−3)、又は一般式(D−4)で表される化合物である。
Figure 2007103493
一般式(D−2)中、MD2は金属イオンを表す。
D21、GD22は、それぞれ独立に窒素原子、置換または無置換の炭素原子を表す。
D21、YD22、YD23およびYD24は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
D21、XD22、XD23およびXD24は、それぞれ独立に酸素原子、硫黄原子、−NRD21−、−C(RD22)RD23−を表す。
D21、RD22およびRD23は、それぞれ独立に水素原子または置換基を表す。LD21、LD22は連結基を表す。
Figure 2007103493
一般式(D−3)中、MD3は金属イオンを表す。
D31、GD32は、それぞれ独立に窒素原子、置換または無置換の炭素原子を表す。
D31、YD32、YD33およびYD34は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
D31、XD32、XD33およびXD34は、それぞれ独立に酸素原子、硫黄原子、−NRD31−、−C(RD32)RD33−を表す。
D31、RD32およびRD33は、それぞれ独立に水素原子または置換基を表す。LD31、LD32は連結基を表す。
Figure 2007103493
一般式(D−4)中、MD4は金属イオンを表す。
D41、GD42は、それぞれ独立に窒素原子、置換または無置換の炭素原子を表す。
D41、YD42、YD43およびYD44は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
D41、XD42、XD43およびXD44は、それぞれ独立に酸素原子、硫黄原子、−NRD41−、−C(RD42)RD43−を表す。RD41、RD42およびRD43は、それぞれ独立に水素原子または置換基を表す。LD41、LD42は連結基を表す。
一般式(D−2)について詳細に説明する。
D2、LD21、LD22、GD21、GD22は、一般式(D−1)におけるMD1、LD11、LD12、GD11、GD12と同義であり、また好ましい範囲も同様である。
D21、YD22、YD23およびYD24は、それぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表し、好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。
D21、XD22、XD23およびXD24は、それぞれ独立に酸素原子、硫黄原子、−NRD21−、−C(RD22)RD23−を表し、好ましくは硫黄原子、−NRD21−、−C(RD22)RD23−であり、より好ましくは−NRD21−、−C(RD22)RD23−であり、さらに好ましくは−NRD21−である。
D21、RD22およびRD23は、それぞれ独立に水素原子または置換基を表す。RD21、RD22およびRD23で表される置換基としては、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシル等が挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニル等が挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニル等が挙げられる。)、
アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル等が挙げられる。)、置換カルボニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、メトキシカルボニル、フェニルオキシカルボニル、ジメチルアミノカルボニル、フェニルアミノカルボニル、等が挙げられる。)、置換スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシル等が挙げられる。)、
ヘテロ環基(脂肪族ヘテロ環基、芳香族ヘテロ環基がある。好ましくは、酸素原子、硫黄原子、窒素原子のいずれかを含み、好ましくは炭素数1〜50、より好ましくは炭素数1〜30、特に好ましくは炭素数2〜12であり、例えばイミダゾリル、ピリジル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、トリアゾリル基等が挙げられる。)等が挙げられる。RD21、RD22およびRD23は好ましくはアルキル基、アリール基、芳香族ヘテロ環基であり、より好ましくは、アルキル基、アリール基であり、さらに好ましくはアリール基である。
一般式(D−3)について詳細に説明する。
一般式(D−3)中、MD3、LD31、LD32、GD31、GD32は、それぞれ対応する一般式(D−1)におけるMD1、LD11、LD12、GD11、GD12と同義であり、また好ましい範囲も同様である。
D31、XD32、XD33およびXD34はそれぞれ対応する、一般式(D−2)におけるXD21、XD22、XD23およびXD24と同義であり、また好ましい範囲も同様である。
D31、YD32、YD33およびYD34はそれぞれ対応する、一般式(D−2)におけるYD21、YD22、YD23およびYD24と同義であり、また好ましい範囲も同様である。
一般式(D−4)について詳細に説明する。
一般式(D−4)中、MD4、LD41、LD42、GD41、GD42は、それぞれ対応する、一般式(D−1)におけるMD1、LD11、LD12、GD11、GD12と同義であり、また好ましい範囲も同様である。
D41、XD42、XD43およびXD44は、それぞれ対応する一般式(D−2)におけるXD21、XD22、XD23およびXD24と同義であり、また好ましい範囲も同様である。YD41、YD42、YD43およびYD44は、それぞれ対応する、一般式(D−2)におけるYD21、YD22、YD23およびYD24と同義であり、また好ましい範囲も同様である。
一般式(D−1)で表される化合物の具体例を以下に列挙するが、本発明はこれらの化合物に限定されることはない。
Figure 2007103493
Figure 2007103493
本発明における金属錯体の内、好ましい化合物の一つは、下記一般式(E−1)で表される化合物である。
Figure 2007103493
一般式(E−1)中、ME1は金属イオンを表す。JE11、JE12は五員環を形成するのに必要な原子群を表す。GE11、GE12、GE13およびGE14は、それぞれ独立に、窒素原子、置換もしくは無置換の炭素原子を表す。YE11、YE12、YE13およびYE14はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。
一般式(E−1)について詳細に説明する。
一般式(E−1)中、ME1は一般式(A−1)におけるMA1と同義であり、また好ましい範囲も同様である。GE11、GE12、GE13およびGE14は一般式(C−1)におけるGC11、GC12と同義であり、また好ましい範囲も同様である。
E11、JE12は、一般式(D−1)におけるJD12〜JD14と同義であり、また好ましい範囲も同様である。YE11、YE12、YE13およびYE14はそれぞれ対応する、一般式(C−2)におけるYC21〜YC24と同義であり、また好ましい範囲も同様である。
一般式(E−1)で表される化合物は、より好ましくは下記一般式(E−2)、又は一般式(E−3)で表される化合物である。
Figure 2007103493
一般式(E−2)中、ME2は金属イオンを表す。GE21、GE22、GE23およびGE24はそれぞれ独立に、窒素原子、置換もしくは無置換の炭素原子を表す。YE21、YE22、YE23、YE24、YE25およびYE26はそれぞれ独立に、窒素原子、置換もしくは無置換の炭素原子を表す。
E21およびXE22は、それぞれ独立に酸素原子、硫黄原子、−NRE21−、−C(RE22)RE23−を表す。RE21、RE22およびRE23は、それぞれ独立に水素原子または置換基を表す。
Figure 2007103493
一般式(E−3)中、ME3は金属イオンを表す。GE31、GE32 、GE33およびGE34はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。YE31、YE32、YE33、YE34、YE35およびYE36はそれぞれ独立に窒素原子、置換もしくは無置換の炭素原子を表す。XE31およびXE32は、それぞれ独立に酸素原子、硫黄原子、−NRE31−、−C(RE32)RE33−を表す。RE31、RE32およびRE33は、それぞれ独立に水素原子または置換基を表す。
一般式(E−2)について詳細に説明する。
一般式(E−2)中、ME2、GE21、GE22、GE23、GE24、YE21、YE22、YE23、YE24は、それぞれ対応する一般式(E−1)におけるME1、GE11、GE12、GE13、GE14、YE11、YE12、YE13、YE14と同義であり、また好ましい範囲も同様である。XE21、XE22は一般式(D−2)におけるXD21、XD22と同義であり、また好ましい範囲も同様である。
一般式(E−3)について詳細に説明する。
一般式(E−3)中、ME3、GE31、GE32、GE33、GE34、YE31、YE32、YE33、YE34は、それぞれ対応する、一般式(E−1)におけるME1、GE11、GE12、GE13、GE14、YE11、YE12、YE13、YE14と同義であり、また好ましい範囲も同様である。XE31、XE32は対応する、一般式(E−2)におけるXE21、XE22と同義であり、また好ましい範囲も同様である。
一般式(E−1)で表される化合物の具体例を以下に列挙するが、本発明はこれらの化合物に限定されることはない。
Figure 2007103493
Figure 2007103493
本発明における金属錯体の内、好ましい化合物の一つは、下記一般式(F−1)で表される化合物である。
Figure 2007103493
一般式(F−1)中、MF1は金属イオンを表す。LF11、LF12およびLF13は連結基を表す。RF11、RF12、RF13およびRF14は、それぞれ独立に、水素原子または置換基を表し、RF11とRF12、RF12とRF13、RF13とRF14は可能であれば互いに連結して環を形成してもよいが、RF11とRF12、RF13とRF14が形成する環は五員環である。QF11、QF12はMF1に共有結合で結合する原子を含有する部分構造を表す。
一般式(F−1)で表される化合物について詳細に説明する。
一般式(F−1)中、MF1、LF11、LF12、LF13、QF11、QF12はそれぞれ対応する、一般式(A−1)におけるMA1、LA11、LA12、LA13、QA11、QA12と同義であり、また好ましい範囲も同様である。RF11、RF12、RF13およびRF14は、それぞれ独立に水素原子または置換基を表し、RF11とRF12、RF12とRF13、RF13とRF14は可能であれば互いに連結して環を形成してもよいが、RF11とRF12、RF13とRF14が形成する環は五員環である。RF11、RF12、RF13およびRF14で表される置換基としては、それぞれ対応する一般式(C−1)におけるRC11〜RC14で表される置換基として挙げたものが適用できる。RF11、RF12、RF13およびRF14として好ましくは、RF11とRF12、RF13とRF14が互いに結合して五員環を形成する基もしくは、RF12とRF13が互いに結合して芳香環を形成する基である。
一般式(F−1)で表される化合物は、より好ましくは下記一般式(F−2)、一般式(F−3)、又は一般式(F−4)で表される化合物である。
Figure 2007103493
一般式(F−2)中、MF2は金属イオンを表す。LF21、LF22およびLF23は連結基を表す。RF21、RF22、RF23およびRF24は置換基を表し、RF21とRF22、RF22とRF23、RF23とRF24は可能であれば互いに連結して環を形成してもよいが、RF21とRF22、RF23とRF24が形成する環は五員環である。ZF21、ZF22、ZF23、ZF24、ZF25およびZF26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
Figure 2007103493
一般式(F−3)中、MF3は金属イオンを表す。LF31、LF32およびLF33は連結基を表す。RF31、RF32、RF33およびRF34は置換基を表し、RF31とRF32、RF32とRF33、RF33とRF34は可能であれば互いに連結して環を形成してもよいが、RF31とRF32、RF33とRF34が形成する環は五員環である。ZF31、ZF32、ZF33およびZF34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。
Figure 2007103493
一般式(F−4)中、MF4は金属イオンを表す。LF41、LF42およびLF43は連結基を表す。RF41、RF42、RF43およびRF44は置換基を表し、RF41とRF42、RF42とRF43、RF43とRF44は可能であれば互いに連結して環を形成してもよいが、RF41とRF42、RF43とRF44が形成する環は五員環である。ZF41、ZF42、ZF43、ZF44、ZF45、およびZF46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。XF41、XF42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。
一般式(F−2)で表される化合物について詳細に説明する。
F2、LF21、LF22、LF23、RF21、RF22、RF23およびRF24はそれぞれ対応する一般式(F−1)におけるMF1、LF11、LF12、LF13、RF11、RF12、RF13およびRF14と同義であり、また好ましい範囲も同様である。
F21、ZF22、ZF23、ZF24、ZF25およびZF26はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZF21、ZF22、ZF23、ZF24、ZF25およびZF26として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(F−3)で表される化合物について詳細に説明する。
一般式(F−3)中、MF3、LF31、LF32、LF33、RF31、RF32、RF33およびRF34はそれぞれ対応する、一般式(F−1)におけるMF1、LF11、LF12、LF13、RF11、RF12、RF13およびRF14と同義であり、また好ましい範囲も同様である。ZF31、ZF32、ZF33およびZF34はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZF31、ZF32、ZF33およびZF34として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
一般式(F−4)で表される化合物について詳細に説明する。
一般式(F−4)中、MF4、LF41、LF42、LF43、RF41、RF42、RF43およびRF44は一般式(F−1)におけるMF1、LF11、LF12、LF13、RF11、RF12、RF13およびRF14と同義であり、また好ましい範囲も同様である。
F41、ZF42、ZF43、ZF44、ZF45およびZF46はそれぞれ独立に窒素原子または置換もしくは無置換の炭素原子を表す。ZF41、ZF42、ZF43、ZF44、ZF45およびZF46として好ましくは置換もしくは無置換の炭素原子であり、より好ましくは無置換の炭素原子である。炭素原子に置換される置換基としては一般式(A−1)におけるLA11、LA12、LA13、LA14で表される二価の連結基の置換基としてあげたものが適用できる。
F41、XF42はそれぞれ独立に酸素原子、硫黄原子、置換もしくは無置換の窒素原子を表す。XF41、XF42として好ましくは酸素原子、硫黄原子であり、より好ましくは酸素原子である。
一般式(F−1)で表される化合物の具体例を以下に列挙するが、本発明はこれらの化合物に限定されることはない。
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
Figure 2007103493
前記一般式(A−1)〜(F−1)で表される化合物は公知の方法により合成することができる。
次に、本発明の有機電界発光素子の構成に関して説明する。
本発明の有機電界発光素子は、一対の電極間に、2以上の発光ユニットと、前記発光ユニット間に介在する中間接触層とを有し、前記2以上の発光ユニットがそれぞれ独立に発光層を含む有機化合物層を有して構成される。
前記発光ユニットは前記有機化合物層から構成され、該有機化合物層としては、前記発光層以外に正孔注入層、正孔輸送層、電荷(電子ブロック層、正孔ブロック層、励起子ブロック層)電子輸送層、電子注入層などが挙げられる。
また、中間接触層としては、電荷発生層又は内部電極であることが好ましい。
前記2以上の発光ユニットの数は、2以上であれば特に限定されないが、発光効率を向上させる・高輝度を得るという観点と、素子作製の工程数増加による歩留まりなどの観点から2〜20が好ましく、2〜10がより好ましい。
また、これらの各層はそれぞれ他の機能を備えたものであってもよく、同層が積層されいてもよい。
また、本発明の有機電界発光素子は、前記発光ユニット、中間接触層の他に、基板、保護層、中間層等を有してもよい。
本発明の有機電界発光素子の好ましい態様としては、例えば、
(1)陽極、発光ユニット1、中間接触層(電荷発生層)、発光ユニット2、陰極、
(2)陽極、発光ユニット1、中間接触層(内部電極)、発光ユニット2、陰極、
(3)陽極、発光ユニット1、中間接触層1(電荷発生層1)、発光ユニット2、中間接触層2(電荷発生層2)、発光ユニット3、陰極、
(4)陽極、発光ユニット1、中間接触層1(内部電極1)、発光ユニット2、中間接触層2(内部電極2)、発光ユニット3、陰極、
等が挙げらる。
前記各層の形成には、それぞれ種々の材料を用いることができる。
本発明の有機電界発光素子は、システム、駆動方法、利用形態などは特に問わない。
また、本発明の有機電界発光素子は、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板・ITO層・有機化合物層の屈折率を制御する、基板・ITO層・有機化合物層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
本発明の有機電界発光素子は、陰極側から発光を取り出す、所謂、トップエミッション方式(特開2003−208109号、同2003−248441号、同2003−257651号、同2003−282261号の各公報などに記載)であってもよい。
本発明の有機電界発光素子における、基板、一対の電極、各有機化合物層、その他の層、等の他の構成要素については、例えば、特開2004−221068号の[0013]から[0082]、特開2004−214178号の[0017]から[0091]、特開2004−146067号の[0024]から[0035]、特開2004−103577号の[0017]から[0068]、特開2003−323987号の[0014]から[0062]、特開2002−305083号の[0015]から[0077]、特開2001−172284号の[0008]から[0028]、特開2000−186094号の[0013]から[0075]、特表2003−515897号の[0016]から[0118]等に記載のものが本発明においても同様に適用することができる。ただし、本発明はこれらに限定されるものではない。
[発光ユニット]
本発明の有機電界発光素子における発光ユニットは、前述の通り、2以上発光ユニットを有し、該2以上の発光ユニットは、それぞれ独立に少なくとも一層の発光層を含む有機化合物層を有する。
前記2以上の発光ユニットのそれぞれの層構成、層の構成要素は、同一でも異なってもよい。
<有機化合物層>
本発明における有機化合物層について説明する。
本発明における有機化合物層は、少なくとも一層の発光層を有するが、発光層以外に他の有機層を有していても良く、好ましく用いられる他の有機層としては、前記正孔輸送層、電子輸送層、正孔注入層、及び電子注入層の他、電荷ブロック層、励起子ブロック層等の各層が挙げられる。
該3座以上の配位子を有する金属錯体(本発明の金属錯体)を含有する有機層は、蒸着法により蒸着して形成されることが好ましく、特に、該層が発光層であることが好ましい。
該本発明の金属錯体を含有しない他の有機層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、ディッピング、スピンコート法、ディップコート法、キャスト法、ダイコート法、ロールコート法、バーコート法、グラビアコート法等の湿式製膜法、転写法、印刷法等いずれによっても好適に成膜することができるが、均一で一定の膜厚の薄膜が形成できる点で、蒸着法が好ましい。
本発明における有機化合物層中の3座以上の配位子を有する金属錯体の含有率は、特に限定されず用いることができるが、耐久性、発光効率の観点から、全固形物質量に対して0.1質量%〜20質量%が好ましく、1質量%〜15質量%がより好ましく、2質量%〜12質量%が特に好ましい。
本発明の金属錯体を含む有機化合物層が複数層である場合は、個々の層が前記範囲となることが耐久性、発光効率の点で好ましい。
(発光層)
本発明における前記発光層が本発明の金属錯体を含有することが耐久性向上の観点から好ましく、更に発光材料として含有することが好ましい。
本発明の金属錯体を発光材料(ドーパント)として含有する場合、更に、ホスト材料を含有することが好ましい。
ホスト材料としては、特に限定されるものではないが、電荷輸送材料を含むことが好ましい。また、電荷輸送に寄与しない、例えばバンドギャップが大きな材料を含んでいてもよい。
また、発光層はお互い異なる材料を含む複数の2次層に分かれていてもよい。
また、本発明における発光層に含有されるホスト材料としては、例えば、カルバゾール骨格を有するもの、ジアリールアミン骨格を有するもの、ピリジン骨格を有するもの、ピラジン骨格を有するもの、トリアジン骨格を有するもの及びアリールシラン骨格を有するもの等が挙げられ、特に限定されるものではないが、中でも、素子耐久性の観点から、カルバゾール骨格(カルバゾール基ともいう)を有するものが好ましい。
ホスト材料のT1(最低多重項励起状態のエネルギーレベル)は、ドーパント材料のT1レベルより大きいことが好ましい。なお、ホスト材料とドーパント材料とを共蒸着することによって、ドーパント材料がホスト材料にドープされた発光層を好適に形成することができる。
発光層に含まれるホスト材料のイオン化ポテンシャルは、素子の発光効率の向上、及び駆動電圧を低下させる観点から、5.4eV以上、6.3eV以下であることが好ましく、5.5eV以上、6.25eV以下であることがより好ましく、5.6eV以上6.2eV以下であることがさらに好ましい。
ここで、イオン化ポテンシャルはAC−1(理研計器社)を用いて室温・大気下で測定した値で規定する。AC−1の測定原理については、安達千波矢等著「有機薄膜仕事関数データ集」シーエムシー出版社2004年発行に記載されている。
本発明における発光層に含まれるホスト材料、後述の電子輸送層に含まれる電子輸送材料、及び、後述のホール輸送層に含まれるホール輸送材料のガラス転移点は、素子の熱安定性を向上させる観点から、90℃以上400℃以下であることが好ましく、100℃以上380℃以下であることがより好ましく、120℃以上370℃以下であることがさらに好ましく、140℃以上360℃以下であることが特に好ましい。
本発明における前記2以上の発光ユニットに含まれる発光層は同色相で発光しても、また、異なる色相で発光してもよい。これらは、用いる用途に応じて選択することができる。例えば、マルチカラー発光に用いる場合は、異なる色相に発光することが必要であり、発光光源として用いる場合は、同色であっても異なる色相に発光しても良い。
本発明において、ホスト材料を含有する場合は、発光層中に、50〜90質量%含有されることが好ましく、70〜90質量%含有されることがより好ましく、80〜90質量%含有されることが特に好ましい。
発光層の形成方法は、特に限定されるものではないが、前述した有機化合物層の形成方法の中でも、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、コーティング法、インクジェット法、印刷法、LB法、転写法などの方法が用いられ、好ましくは抵抗加熱蒸着、コーティング法である。
本発明における2以上の発光ユニットの発光層は、同一の発光材料を含有しても、それぞれ異なる発光材料を含有してもよく、用途に応じて選択することが好ましい。
本発明の有機電界発光素子は所望の色相の発光をさせることが可能であるが、白色発光を得る場合は、前記発光ユニットは異なる本発明の金属錯体を燐光発光材料として用いることが好ましい。
白色発光を得るための発光材料としては、青色発光材料と橙色発光材料の組み合わせにより得ることができるが、高発光効率及び高発光輝度であり、且つ、色度に優れた白色発光素子とするためには、3以上の発光ユニットに構造の相異なる3種以上の発光材料を適切に選ぶことが好ましい。
このような発光材料としては、発光波長400〜500nmの青色発光材料、500〜570nmの緑色発光材料、580〜670nmの赤色発光材料から、それぞれ選ぶことが好ましい。これらの発光材料を、それぞれ別個の発光ユニットの発光層に含ませることにより白色発光素子を得ることができる。
これらの発光材料は前述の例より適切に選ぶことができる。
また、前記青色発光する素子と、緑色、赤色で発光する蛍光体を用いて、白色発光素子を得ることもできる。
発光ユニットにおける発光層が複数の場合は、少なくとも一層の発光層には前記ホスト材料及び少なくとも一種の燐光発光材料を含有することが好ましい。その他の発光層がホスト材料及び/又は燐光発光材料の単一材料で形成されていてもよいし、複数の化合物で形成されていてもよい。これらの中でも、いずれの発光層にもホスト材料及び燐光発光材料を含有することが好ましい。
発光層は、複数のドメイン構造を有していてもよい。発光層中に他のドメイン構造を有していてもよい。例えば、発光層が、ホスト材料A及びリン光発光材料Bの混合物からなる約1nm3の領域と、ホスト材料C及びリン光発光材料Dの混合物からなる約1nm3の領域で構成されていてもよい。各ドメインの径は、0.2nm以上10nm以下が好ましく、0.3nm以上5nm以下がより好ましく、0.5nm以上3nm以下がさらに好ましく、0.7nm以上2nm以下が特に好ましい。
発光層は、更に、本発明の効果を損なわない範囲で、燐光材料と共に蛍光材料が含まれていてもよい。
本発明に使用できる蛍光発光材料の例としては、特に制限はなく、公知のものから適宜選択することができる。例えば、特開2004−146067号の[0027]、特開2004−103577号の[0057]等に記載のものを挙げることができるが、本発明はこれに限定されない。
また、青色蛍光化合物を含有する青色発光素子と、本発明の有機電界発光素子とを同時に用いて、マルチカラー発光デバイス、フルカラー発光デバイスを作製してもよい。
(中間接触層)
中間接触層は、発光輝度、発光効率を向上させるために前記発光ユニット間に接するようにその中間に形成される。
中間接触層は、(1)電界印加時に電荷を発生する機能を有し、かつ、発生した電荷を隣接層に注入する機能を有する層(電荷発生層)であっても、または、(2)前記2以上の発光ユニットのそれぞれに独立にバイアス電圧が付与できる機能を有する層(内部電極)であってもよい。
まず、前記(1)中間接触層が電荷発生層である態様について、図1を用いて説明する。
図1は、中間接触層として電荷発生層を有する本発明の有機電界発光素子の一例を示す概略構成図である。
電荷発生層を有する有機電界発光素子の一態様について、発光ユニットの数nを3として、有機電界発光素子の製造を通じて以下に説明する。この場合の、電荷発生層の数はn-1=2となる。
(A)図1の陽極(例えば、ITO電極)10を有する基板(図示なし)の陽極10上に、第一の発光ユニット(発光ユニット1)11を形成し、続いて電荷発生層12aを形成する。
(B)さらに、上記と同様にして、第二の発光ユニット(発光ユニット2)13を形成し、続いて電荷発生層14aを形成する。
(C)続いて、上記と同様にして、第三の発光ユニット(発光ユニット3)15を形成する。
(D)最後に、陰極を形成する。
以上により、発光ユニットが3ユニットの場合の有機電界発光素子を得ることができる。
発光ユニットnを有する有機電界発光素子の製造の場合は、前記(A)工程をn−1回繰り返した後、(C)のn番目の発光ユニットnとして(C)を行い、続いて(D)工程を行うことにより、発光ユニットnを有する本発明の有機電界発光素子を得ることができる。
前記各発光ユニットの有機化合物層が正孔注入層・輸送層、電子注入層・輸送層、電子・正孔ブロック層から構成される場合、陽極側から、正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層、電子注入層の層順とすることが好ましい。その他の層構成であっても同様の層順となる。
前記電荷発生層に含まれる材料としては、電界印加時に電荷(正孔及び電子)を発生する機能を有すると共に、発生した電荷を電荷発生層と隣接する層に注入させる機能を有する層を形成することができるものであれば何でもよい。
電荷発生層は単一化合物で形成されてもよいし、複数の化合物で形成されてもよい。また、単層であっても積層構造を有していてもよい。
電荷発生層に含まれる材料としては、導電性を有するものであっても、ドープされた有機層のように半導電性を有するものであっても、また、電気絶縁性を有するものであってもよく、特開平11−329748の段落番号(0024)〜(0025)の記載や、特開2003−272860の段落番号(0018)〜(0021)の記載や、特開2004−39617の段落番号(0027)〜(0034)の記載にある材料が挙げられ、具体的には、ITO、IZOなどの透明導電材料、Ca、Ag、Al、Mg:Ag合金、Al:Li合金、Mg:Li合金などの金属材料、F4−TCNQをドープした2−TNATA、V25などが挙げられる。
また、正孔伝導性材料と、電子伝導性材料を組み合わせたものでもよい。前記正孔伝導性材料は、正孔輸送有機材料にF4−TCNQ、TCNQ、FeCl3などの電子求引性を有する酸化剤をドープさせたものや、P型導電性高分子、P型半導体などが挙げられ、前記電子伝導性材料は電子輸送有機材料に4.0eV未満の仕事関数を有する金属もしくは金属化合物をドープしたものや、N型導電性高分子、N型半導体が挙げられる。N型半導体としては、N型Si、N型CdS、N型ZnSなどが挙げられ、P型半導体としては、P型Si、P型CdTe、P型CuOなどが挙げられる。
更にまた、透明伝導材料や金属材料などの導電性を有する材料と正孔伝導性材料、または、電子伝導性材料を組み合わせたものでも良い。
前記電荷発生層の膜厚は、特に限定されるものではないが、0.5〜200nmが好ましく、1〜100nmがより好ましく、3〜50nmがさらに好ましく、5〜30nmが特に好ましい。
電荷発生層の形成方法は、特に限定されるものではないが、前述した有機化合物層の形成方法の中でも、形成真空蒸着法やLB法、前記電荷発生層の材料を溶媒に溶解又は分散させてコーティングする方法、インクジェット法、印刷法、転写法が用いられる。コーティング法の場合、樹脂成分と共に溶解又は分散することができ、樹脂成分としては例えば、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N−ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂などが挙げられる。
電荷発生層は、前記発光層のような複数のドメイン構造を有していてもよい。電荷発生層中に他のドメイン構造を有していても良い。
電荷発生層は前記二層以上の発光層間に形成するが、電荷発生層の陽極側および陰極側には、隣接する層に電荷を注入する機能を有する材料を含んでいても良い。陽極側に隣接する層への注入性を上げるため、例えば、BaO、SrO、Li2O、LiCl、LiF、MgF2、MgO、CaF2などの電子注入性化合物を電荷発生層の陽極側に積層させてもよい。
次に、前記(2)中間接触層が内部電極である態様について、図2を用いて説明する。
図2は、中間接触層として内部電極を有する本発明の有機電界発光素子の一例を示す概略構成図である。
内部電極を有する有機電界発光素子の一態様について、発光ユニットの数nを3として、有機電界発光素子の製造を通じて以下に説明する。この場合の、内部電極の数はn-1=2となる。
(A’)図2の陽極(例えば、ITO電極)20を有する基板(図示なし)の陽極20上に、第一の発光ユニット(発光ユニット1)21を形成し、続いて内部電極22bを形成する。
(B’)さらに、上記と同様にして、第二の発光ユニット(発光ユニット2)23を形成し、続いて内部電極24bを形成する。
(C’)続いて、上記と同様にして、第三の発光ユニット(発光ユニット3)25を形成する。
(D’)最後に、陰極を形成する。
ここで、前記内部電極(22b、24b)は、それぞれ別個の電源(28−1、28−2)から別個のバイアス電圧が入力できるように形成される。
以上により、発光ユニットが3ユニットの場合の有機電界発光素子を得ることができる。
発光ユニットnを有する有機電界発光素子の製造の場合は、前記(A)工程をn−1回繰り返した後、(C)のn番目の発光ユニットnとして(C)を行い、続いて(D)工程を行うことにより、発光ユニットnを有する本発明の有機電界発光素子を得ることができる。
前記各発光ユニットの有機化合物層が正孔注入層・輸送層、電子注入層・輸送層、電子・正孔ブロック層から構成される場合、陽極側から、正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層、電子注入層の層順とすることが好ましい。その他の層構成であっても同様の層順となる。
前記内部電極は、透明又は半透明であることが好ましく、用いられる材料としては、前述の一対の電極で用いられる材料が挙げられるが、金属材料を用いる場合は、光透過率が50%以上となるような膜厚とすることが好ましい。
内部電極は単一化合物で形成されてもよいし、複数の化合物で形成されてもよい。また、単層であっても積層構造を有していてもよい。
内部電極の形成方法は、特に限定されるものではないが、前述の一対の電極の形成方法と同様の方法を用いることができ、好ましい方法も同様である。
本発明の発光素子は、発光効率を上げる目的で、前述の中間接触層に加えて、機能層を前記発光ユニットに隣接させて設けてもよい。前記機能層は耐久性の観点から、0.1nm〜3nmであることが好ましく、0.3〜2nmがより好ましく、0.5〜2nmが更に好ましい。
前記機能層としては、電子ブロック層、正孔ブロック層と同様の物質が挙げられる。
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧、又は直流電流を印加することにより、発光を得ることができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
本発明における有機電界発光素子の駆動耐久性は、特定の輝度における輝度半減時間(耐久性半減時間)により測定することができる。例えば、KEITHLEY社製ソースメジャーユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させ、連続駆動試験をおこない、輝度が半分になった時間を耐久性半減時間T(1/2)として、該半減時間を従来発光素子と比較することにより求めることができる。本発明においては、この数値を用いた。
本発明の有機電界発光素子の用途は特に限定されないが、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等の分野に好適に使用できる。
以下に、本発明について、実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
[有機電界発光素子の作製]
<中間接触層(電荷発生層)として、V25を用いた場合>
−発光ユニット1の形成−
0.5mm厚み、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。
この透明陽極(ITO膜)上に真空蒸着法にて4,4'−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(NPD)を60nm蒸着した。
この上に、4,4'−N,N'−ジカルバゾール−ビフェニル(CBP)と下記多座錯体Aとを比率90:10で30nm共蒸着し、この上に、アルミニウム(III)ビス(2−メチル−8−キノリナト)4−フェニルフェノレート(BAlq2)を10nm蒸着し、その上にバソキュプロイン(BCP)とCsを共蒸着させて20nmの層を作成した。
−中間接触層の形成−
続いて、V25の層を20nm設けて中間接触層を形成した。
−発光ユニット2の形成−
この上に前記発光ユニット1の形成と同様にして、NPDを60nm蒸着した。この上にCBPと多座錯体Aとの比率(質量比)を100:5で30nm共蒸着し、この上にBAlq2を10nm蒸着し、更にこの上に、BCPとCsを共蒸着して20nmの層を形成して、発光素子の第2ユニットを作製した。
この上に、アルミニウム100nmを蒸着し、2つの発光ユニットを有する有機電界発光素子を作製した。
上記で用いた、NPD、CBP、多座錯体A、BAlq2、BCPの構造を以下に示す。
Figure 2007103493
次に、得られた素子を空気に晒すことなく、窒素ガスで置換したグローブボックス内に入れた。内側に凹部を設けたステンレス製の封止カバーに、前記グローブボックス内で水分吸収剤(サエスゲッターズ製)を貼り付け、接着剤として紫外線硬化型接着剤(XNR5516HV、長瀬チバ製)を用いて、この封止カバーで素子を封止した。
以上のようにして、実施例1の有機EL素子を得た。
(比較例1)
実施例1の発光ユニット1、発光ユニット2において、CBPと多座錯体Aを共蒸着させて30nmの層を作成し、BAlq2の層を10nm積層させる代わりに、Alq3と有機化合物Aを100:1で共蒸着させ、40nmの層を形成することによって、有機電界発光素子を得た。
Figure 2007103493
得られた有機電界発光素子に対し、駆動耐久性試験を行った。KEITHLEY社製ソースメジャーユニット2400型を用いて、初期輝度10000cd/m2になるように直流電圧を発光素子に印加し、連続駆動試験をおこない、輝度が5000cd/m2になった時間を輝度半減時間T(1/2)とした。比較例1の時間を基準とし、1.5倍以上であれば○、1.5倍未満であれば×とした。結果は表1に示す。
Figure 2007103493
(実施例2)
[有機電界発光素子の作製]
<中間接触層(電荷発生層)に導電性材料を用いた場合>
−発光ユニット1の形成−
洗浄したITO基板を蒸着装置に入れ、CuPCを10nm蒸着し、この上に、NPDを30nm蒸着した。
この上に、mCPと前記多座錯体Aとの比率(質量比)を90:10(%)で30nm共蒸着し、この上に、BAlq2を10nm蒸着し、この上に、トリス(8−ヒドロキシキノリン)アルミニウム錯体(Alq3)を40nm蒸着した。CuPCからAlq3蒸着までの層を発光ユニット1とする。
−中間接触層の形成−
続いて、Mg−Ag(質量比、10:1)で5nm共蒸着し、この上に、Agを5nm蒸着し、更に、スパッタにてITO20nmの層を設けて中間接触層を形成した。
−発光ユニット2の形成−
この上に前記発光ユニット1の形成と同様にして、CuPCを10nm蒸着し、この上に、NPDを50nm蒸着した。この上に、mCPと多座錯体Aとの比率(質量比)を90:10(%)で30nm共蒸着し、この上に、BAlq2を10nm蒸着し、この上に、Alq3を40nm蒸着して、発光素子の第2ユニットを作製した。
この上に、フッ化リチウムを1nm蒸着した後、アルミニウム60nmを蒸着し、2つの発光ユニットを有する有機電界発光素子を作製した。
次に、実施例1と同様に、得られた素子を空気に晒すことなく、窒素ガスで置換したグローブボックス内に入れ、素子を封止した。以上のようにして、実施例3の有機EL素子を得た。
Figure 2007103493
(比較例2)
実施例2の発光ユニット1、発光ユニット2において、多座錯体Aの代わりに、Ir(ppy)3を用いた以外は、実施例2と同様に行い、有機電界発光素子を得た。得られた素子を同様に評価した。
得られた有機電界発光素子に対し、同様の駆動耐久性試験を行った。初期輝度10000cd/m2になるように直流電圧を発光素子に印加し、連続駆動試験をおこない、輝度が5000cd/m2になった時間を輝度半減時間T(1/2)とした。
比較例2の時間を基準とし、1.5倍以上であれば○、1.5倍未満であれば×とした。結果は表2のようになった。
Figure 2007103493
Figure 2007103493
上記表1,2から明らかなとおり、10000cd/m2という高輝度において、本発明の一対の電極間に、2以上の発光ユニットと、前記2以上の発光ユニット間に介在する形成される中間接触層とを有する有機電界発光素子であって、前記2以上の発光ユニットがそれぞれ独立に発光層を含む有機化合物層を有し、前記有機化合物層が3座以上の配位子を有する金属錯体を含有する素子を用いることにより、長寿命の素子が得られる。
(実施例3、比較例3)
また、実施例1において、多座錯体Aを下記に示す多座錯体Bに変え、CBPをmCPに変えたものを実施例3とし、多座錯体Aを下記に示すFirpicに変えたものを比較例3として、実施例1と同様に発光素子を作製し、同様の評価を行っても同様の効果が得られる。
Figure 2007103493
(実施例4、比較例4)
また、中間接触層に導電性材料を用いた場合も同様に、実施例2の多座錯体Aを多座錯体Bに変えたものを実施例4とし、多座錯体BをFirpicに変えたものを比較例4として、実施例2と同様に発光素子を作製し、同様の評価を行っても同様の効果が得られる。
中間接触層として電荷発生層を有する本発明の有機電界発光素子の一例を示す概略構成図である。 中間接触層として内部電極を有する本発明の有機電界発光素子の別の一例を示す概略構成図である。
符号の説明
10、20 陽極
11、21 発光ユニット1
12a 中間接触層1(電荷発生層1)
22b 中間接触層1(内部電極1)
13、23 発光ユニット2
14a 中間接触層2(電荷発生層2)
24b 中間接触層2(内部電極2)
15、25 発光ユニット3
16、26 発光ユニットn
17、27 陰極
18、28−1〜28−n 電源

Claims (11)

  1. 一対の電極間に、2以上の発光ユニットと、前記2以上の発光ユニット間に介在する中間接触層とを有する有機電界発光素子であって、前記2以上の発光ユニットがそれぞれ独立に発光層を含む有機化合物層を有し、前記有機化合物層が3座以上の配位子を有する金属錯体を含有することを特徴とする有機電界発光素子。
  2. 前記3座以上の配位子を有する金属錯体が下記一般式(I)で表されることを特徴とする請求項1に記載の有機電界発光素子。
    Figure 2007103493
    (一般式(I)中、M11は金属イオンを表し、L11〜L15はそれぞれM11に配位する配位子を表す。L11とL14との間に原子群がさらに存在して環状配位子を形成してもよい。L15はL11及びL14の両方と結合して環状配位子を形成してもよい。Y11、Y12、Y13はそれぞれ連結基、単結合、または二重結合を表す。また、Y11、Y12、又はY13が連結基である場合、L11とY12、Y12とL12、L12とY11、Y11とL13、L13とY13、Y13とL14の間の結合は、それぞれ独立に、単結合又は二重結合を表す。n11は0〜4を表す。M11とL11〜L15との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。)
  3. 前記3座以上の配位子が、鎖状配位子であることを特徴とする請求項1又は2に記載の有機電界発光素子。
  4. 前記3座以上の配位子を有する金属錯体が、下記一般式(II)で表されることを特徴とする請求項1に記載の有機電界発光素子。
    Figure 2007103493
    (一般式(II)中、MX1は金属イオンを表す。QX11〜QX16はMX1に配位する原子またはMX1に配位する原子を含んだ原子群を表す。LX11〜LX14は単結合、二重結合または連結基を表す。すなわち、QX11−LX11−QX12−LX12−QX13からなる原子群およびQX14−LX13−QX15−LX14−QX16からなる原子群はそれぞれ三座の配位子である。MX1とQX11〜QX16との結合は、それぞれ配位結合、イオン結合、共有結合のいずれでもよい。)
  5. 前記3座以上の配位子を有する金属錯体が、下記一般式(III)で表されることを特徴とする請求項1に記載の有機電界発光素子。
    Figure 2007103493
    (一般式(III)中、Q11は含窒素へテロ環を形成する原子群を表し、Z11、Z12、Z13はそれぞれ置換又は無置換の、炭素原子又は窒素原子を表し、MY1は更に配位子を有しても良い金属イオンを表す。)
  6. 前記3座以上の配位子を有する金属錯体中の金属イオンが、遷移金属イオンであることを特徴とする請求項1〜5のいずれか1項に記載の有機電界発光素子。
  7. 前記3座以上の配位子を有する金属錯体中の金属イオンが、イリジウムイオン、白金イオン、金イオン、レニウムイオン、タングステンイオン、ロジウムイオン、ルテニウムイオン、オスミウムイオン、パラジウムイオン、銀イオン、銅イオン、コバルトイオン、亜鉛イオン、ニッケルイオン、鉛イオン、アルミニウムイオン、及びガリウムイオンの群から選ばれる一種以上であることを特徴とする請求項6に記載の有機電界発光素子。
  8. 前記3座以上の配位子を有する金属錯体中の金属イオンが、希土類金属イオンであることを特徴とする請求項1〜5のいずれか1項に記載の有機電界発光素子。
  9. 前記中間接触層が電荷発生層であることを特徴とする請求項1〜8のいずれか1項に記載の有機電界発光素子。
  10. 前記中間接触層がバイアス電圧の付与可能な内部電極であることを特徴とする請求項1〜8のいずれか1項に記載の有機電界発光素子。
  11. 前記3座以上の配位子を有する金属錯体を含有する有機化合物層が発光層であることを特徴とする請求項1〜10ののずれか1項にに記載の有機電界発光素子。
JP2005288903A 2005-09-30 2005-09-30 有機電界発光素子 Pending JP2007103493A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288903A JP2007103493A (ja) 2005-09-30 2005-09-30 有機電界発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288903A JP2007103493A (ja) 2005-09-30 2005-09-30 有機電界発光素子

Publications (1)

Publication Number Publication Date
JP2007103493A true JP2007103493A (ja) 2007-04-19

Family

ID=38030166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288903A Pending JP2007103493A (ja) 2005-09-30 2005-09-30 有機電界発光素子

Country Status (1)

Country Link
JP (1) JP2007103493A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016184A (ja) * 2007-07-04 2009-01-22 Fujifilm Corp 有機電界発光素子
WO2009017210A1 (en) * 2007-07-27 2009-02-05 Fujifilm Corporation Organic electroluminescent device
WO2009017211A1 (en) * 2007-07-27 2009-02-05 Fujifilm Corporation Organic electroluminescent device
JP2009032976A (ja) * 2007-07-27 2009-02-12 Fujifilm Corp 有機電界発光素子
WO2010058787A1 (ja) * 2008-11-21 2010-05-27 富士フイルム株式会社 有機電界発光素子
JP2014068038A (ja) * 2014-01-06 2014-04-17 Udc Ireland Ltd 有機電界発光素子
WO2020110665A1 (ja) * 2018-11-27 2020-06-04 ソニー株式会社 発光素子、投影型表示装置及び面発光装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016184A (ja) * 2007-07-04 2009-01-22 Fujifilm Corp 有機電界発光素子
US8362691B2 (en) 2007-07-27 2013-01-29 Udc Ireland Limited Organic electroluminescent device
KR101487751B1 (ko) 2007-07-27 2015-01-29 유디씨 아일랜드 리미티드 유기 전계발광 소자
JP2009032977A (ja) * 2007-07-27 2009-02-12 Fujifilm Corp 有機電界発光素子
JP2009032988A (ja) * 2007-07-27 2009-02-12 Fujifilm Corp 有機電界発光素子
JP2009032976A (ja) * 2007-07-27 2009-02-12 Fujifilm Corp 有機電界発光素子
WO2009017211A1 (en) * 2007-07-27 2009-02-05 Fujifilm Corporation Organic electroluminescent device
WO2009017210A1 (en) * 2007-07-27 2009-02-05 Fujifilm Corporation Organic electroluminescent device
US9209417B2 (en) 2007-07-27 2015-12-08 Udc Ireland Limited Organic electroluminescent device
KR101563016B1 (ko) 2007-07-27 2015-10-23 유디씨 아일랜드 리미티드 유기 전계 발광 소자
WO2010058787A1 (ja) * 2008-11-21 2010-05-27 富士フイルム株式会社 有機電界発光素子
EP2360752A1 (en) * 2008-11-21 2011-08-24 FUJIFILM Corporation Organic electroluminescent element
JP2010153820A (ja) * 2008-11-21 2010-07-08 Fujifilm Corp 有機電界発光素子
EP2360752A4 (en) * 2008-11-21 2012-05-09 Fujifilm Corp ORGANIC ELECTROLUMINESCENCE ELEMENT
JP2014068038A (ja) * 2014-01-06 2014-04-17 Udc Ireland Ltd 有機電界発光素子
CN113168079B (zh) * 2018-11-27 2023-05-09 索尼集团公司 发光元件、投影型显示装置和平面发光装置
US11895866B2 (en) 2018-11-27 2024-02-06 Sony Group Corporation Light emitting element, projection type display device, and planar light emitting device
WO2020110665A1 (ja) * 2018-11-27 2020-06-04 ソニー株式会社 発光素子、投影型表示装置及び面発光装置
CN113168079A (zh) * 2018-11-27 2021-07-23 索尼集团公司 发光元件、投影型显示装置和平面发光装置
JPWO2020110665A1 (ja) * 2018-11-27 2021-10-14 ソニーグループ株式会社 発光素子、投影型表示装置及び面発光装置
JP7380588B2 (ja) 2018-11-27 2023-11-15 ソニーグループ株式会社 発光素子、投影型表示装置及び面発光装置

Similar Documents

Publication Publication Date Title
JP5484690B2 (ja) 有機電界発光素子
JP5014036B2 (ja) 有機電界発光素子
US7501190B2 (en) Organic electroluminescent device
JP4969086B2 (ja) 有機電界発光素子
EP2174364B1 (en) Organic electroluminescent device
US20060105202A1 (en) Organic electroluminescent device
JP2007080677A (ja) 有機電界発光素子及びその製造方法
JP2007073900A (ja) 有機電界発光素子
JP2009016184A (ja) 有機電界発光素子
JP2007088105A (ja) 有機電界発光素子
JP2009267244A (ja) 有機電界発光素子
JP5551369B2 (ja) 有機電界発光素子
JP2007073620A (ja) 有機電界発光素子
KR20100014603A (ko) 유기 전계발광 소자
JP2009032989A (ja) 有機電界発光素子
JP2006256999A (ja) 有機電界発光素子
JP2009211892A (ja) 有機電界発光素子
JP2008244012A (ja) 有機電界発光素子
JP2009267176A (ja) 有機電界発光素子
JP2009267170A (ja) 有機電界発光素子
JP2007103493A (ja) 有機電界発光素子
JP2006140182A (ja) 有機電界発光素子
JP5740075B2 (ja) 有機電界発光素子
JP4903416B2 (ja) 有機電界発光素子
JP2007096066A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070206