JP2007099546A - Method of producing autoclaved light-weight concrete - Google Patents

Method of producing autoclaved light-weight concrete Download PDF

Info

Publication number
JP2007099546A
JP2007099546A JP2005289526A JP2005289526A JP2007099546A JP 2007099546 A JP2007099546 A JP 2007099546A JP 2005289526 A JP2005289526 A JP 2005289526A JP 2005289526 A JP2005289526 A JP 2005289526A JP 2007099546 A JP2007099546 A JP 2007099546A
Authority
JP
Japan
Prior art keywords
particles
alc
medium
silica
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005289526A
Other languages
Japanese (ja)
Other versions
JP4628237B2 (en
Inventor
Fumiaki Matsushita
文明 松下
Koichi Imazawa
公一 今澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2005289526A priority Critical patent/JP4628237B2/en
Publication of JP2007099546A publication Critical patent/JP2007099546A/en
Application granted granted Critical
Publication of JP4628237B2 publication Critical patent/JP4628237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of producing an ALC (Autoclaved Light-weight Concrete) having excellent physical properties such as strength only by adjusting the grain size of silica stone used as a siliceous raw material. <P>SOLUTION: In the method of producing the ALC, the pulverized silica stone used as a silica stone raw material contains all of fine grains, medium grains and coarse grains when the fine grain is defined to have <10 μm particle diameter, the medium grain is defined to have ≥10 μm and <100 μm particle diameter and the coarse grain is defined to have ≥100 μm particle diameter, wherein the content of the coarse grain is adjusted 9-15% by weight, the ratio (fine grain)/(medium grain) is adjusted to 0.9-1.2 and the content of the fine grain is preferably 40-50% by weight. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、建築物の壁、屋根、床などに使用される軽量気泡コンクリート(ALC)の製造方法に関する。   The present invention relates to a method for producing lightweight cellular concrete (ALC) used for building walls, roofs, floors and the like.

ALCの製造においては、生石灰、セメント及び珪石からなる各主原料と、石膏や繰り返し原料(オートクレーブ前の切断屑並びにALC廃材)などの副原料とを、水と混合撹拌して、得られた原料スラリーにアルミニウム粉末などの発泡剤を加え、補強鉄筋を配した型枠内に流し込んで発泡させる。更に、所定時間を経てケーキ状半硬化体となった後、ピアノ線で所定寸法に切断し、オートクレーブにより高温高圧での水蒸気養生を行って製造される。   In the production of ALC, raw materials obtained by mixing and stirring each main raw material consisting of quick lime, cement and silica and auxiliary raw materials such as gypsum and repetitive raw materials (cut scraps and ALC waste before autoclave) with water. A foaming agent such as aluminum powder is added to the slurry, and the slurry is poured into a mold having reinforcing reinforcing bars to foam. Furthermore, after it becomes a cake-like semi-cured body after a predetermined time, it is cut into a predetermined dimension with a piano wire, and steam curing at high temperature and high pressure is performed by an autoclave.

このようにして製造されたALCは、内部に気泡と細孔を含むため絶乾かさ比重が0.5程度と非常に軽量でありながら、高い耐火性及び断熱性を備え、強度も比較的高いという優れた特性を持っている。そのため、ALCは建築材料として広く使用され、例えば、仕様に沿った各種寸法に切断され、場合によっては様々な加工や仕上げを行うことによって、壁、屋根、床などの用途に応じたパネルなどのALC建築材料製品とされる。   The ALC produced in this way contains bubbles and pores inside, and is extremely lightweight with an absolute dryness specific gravity of about 0.5, while having high fire resistance and heat insulation properties and relatively high strength. Has excellent properties. For this reason, ALC is widely used as a building material. For example, it is cut into various dimensions according to specifications, and by performing various processing and finishing depending on the case, such as panels according to applications such as walls, roofs, floors, etc. ALC building material product.

ALCの強度物性を発現させているのが、オートクレーブによる高温高圧水蒸気養生で生成するトバモライトである。トバモライトは、高温高圧水蒸気養生の過程において、セメントと生石灰の水和で生成した低結晶性の珪酸カルシウム水和物(CSH)が、水蒸気養生中に珪石から供給される珪酸成分と反応して結晶化したものである。一般に、トバモライトの生成過程であるオートクレーブでの高温高圧水蒸気養生では、珪石の溶解が反応を律速することが広く知られている。従って、珪酸質原料として使用する珪石の粒度、単結晶サイズ、純度、不純物の種類と含有量などが、ALCの物性に大きな影響を及ぼす。   It is tobermorite produced by high temperature and high pressure steam curing with an autoclave that expresses the strength properties of ALC. Tobermorite is a low crystallinity calcium silicate hydrate (CSH) produced by hydration of cement and quicklime during the process of high temperature and high pressure steam curing, and reacts with the silicic acid component supplied from silica during steam curing. It has become. In general, in high-temperature and high-pressure steam curing in an autoclave, which is a production process of tobermorite, it is widely known that dissolution of silica stones controls the reaction. Accordingly, the particle size, single crystal size, purity, type and content of impurities, etc. of the silica used as the siliceous raw material have a great influence on the physical properties of ALC.

そこで従来から、珪酸質原料としての珪石、特に珪石の粒度について多くの検討がなされている。例えば、珪石の粒度を規定したALCの製造方法として、特開昭59−128254号公報には重量平均径で15μm以下とすることが、特開平04−197605号公報には2000〜2500と6000〜12000ブレーンにピークを有する粒度分布の珪砂を用いることが記載されている。また、特開2001−019571号公報には、平均石英結晶粒径が10μm未満の珪石と10〜500μmの珪石を混合し、その混合珪石の平均石英結晶粒径を15〜300μmとすると共に、10μm未満の珪石の混合割合を60重量%以下にした混合珪石を使用することが記載されている。   Thus, many studies have been made on the particle size of silica, particularly silica, as a siliceous raw material. For example, as a method for producing ALC in which the particle size of silica is defined, JP-A-59-128254 discloses that the weight average diameter is 15 μm or less, JP-A-4-197605 discloses 2000-2500 and 6000-2000. The use of silica sand having a particle size distribution having a peak at 12,000 branes is described. Japanese Patent Application Laid-Open No. 2001-019571 discloses a method in which silica having an average quartz crystal grain size of less than 10 μm and 10-500 μm silica are mixed, the average quartz crystal grain size of the mixed silica is 15 to 300 μm, and 10 μm. The use of mixed silica with a mixing ratio of less than 60% by weight or less is described.

特開昭59−128254号公報JP 59-128254 A 特開平04−197605号公報Japanese Patent Laid-Open No. 04-197605 特開2001−019571号公報JP 2001-019571 A

本発明は、このような従来の事情に鑑み、珪酸質原料として用いる珪石の粒度を調整することにより、強度などの諸物性に優れたALCを製造できる方法を提供することを目的とする。   In view of such conventional circumstances, an object of the present invention is to provide a method capable of producing ALC excellent in various physical properties such as strength by adjusting the particle size of silica used as a siliceous raw material.

上記目的を達成するため、本発明が提供する軽量気泡コンクリート(ALC)の製造方法は、珪石原料として用いる粉砕後の珪石が、粒径10μm未満を微粒、10μm以上100μm未満を中粒、100μm以上を粗粒と規定したとき、微粒、中粒、粗粒の全てを含み、粗粒の重量百分率が9〜15%で、微粒/中粒の重量比が0.9〜1.2であることを特徴とする。   In order to achieve the above object, the lightweight aerated concrete (ALC) production method provided by the present invention is a crushed silica used as a raw material of silica, fine particles having a particle size of less than 10 μm, medium particles of 10 μm or more and less than 100 μm, 100 μm or more. Is defined as coarse particles, all of fine particles, medium particles and coarse particles are included, the weight percentage of coarse particles is 9 to 15%, and the weight ratio of fine particles / medium particles is 0.9 to 1.2. It is characterized by.

本発明によれば、珪酸質原料として用いる珪石の粒度を調整するだけで、強度などの諸物性に優れるALCを製造することができる。従って、本発明のALCを建築用パネルなどとして用いることによって、近年の特殊な工法に対応でき、例えばALCパネルを強い力で把持してクレーンなどで吊り上げたり、ALCパネルを小型の取付金具を用いて建築物に施行したりすることが可能になる。   According to the present invention, ALC excellent in various physical properties such as strength can be produced only by adjusting the particle size of silica used as a siliceous raw material. Therefore, by using the ALC of the present invention as a building panel or the like, it is possible to cope with a recent special construction method, for example, holding the ALC panel with a strong force and lifting it with a crane or using a small mounting bracket. And can be enforced on buildings.

ALCは内部に気泡と細孔を含むため絶乾かさ比重が0.5程度と非常に軽量でありながら、強度も比較的高いという優れた性質を持っている。この強度を発現させているのが、オートクレーブによる高温高圧水蒸気養生の過程で生成する珪酸カルシウム水和物のトバモライトである。このトバモライトの生成過程では、珪石の溶解が反応を律速することが広く知られている。   Since ALC contains bubbles and pores inside, ALC has an excellent property of having a relatively high strength while having an extremely dry specific gravity of about 0.5. This strength is manifested in calcium silicate hydrate tobermorite produced during the high temperature and high pressure steam curing process using an autoclave. In this tobermorite production process, it is widely known that the dissolution of silica stones controls the reaction.

本発明者らは、珪石の粒度について検討し、種々の方法で粉砕して粒度を変えた珪石を用いてALCを製造し、それぞれ得られたALCの物性値を調べた。その結果、微粒が結晶核の生成に寄与し、中粒が結晶の成長に寄与すること、残存する粗粒が骨材効果などにより物性値に影響することと共に、これら微粒、中粒、粗粒が一定の条件を満たした場合にALCが優れた強度を発現することを見出し、本発明をなすに至ったものである。   The present inventors examined the particle size of silica stone, manufactured ALC using silica stone pulverized by various methods to change the particle size, and examined the physical property values of the obtained ALC. As a result, the fine grains contribute to the formation of crystal nuclei, the medium grains contribute to crystal growth, and the remaining coarse grains affect the physical property values due to the aggregate effect, etc., and these fine grains, medium grains, and coarse grains Has been found that ALC exhibits excellent strength when a certain condition is satisfied, and has led to the present invention.

即ち、粉砕後の珪石について、粒径10μm未満を微粒、10μm以上100μm未満を中粒、100μm以上を粗粒と規定したとき、微粒、中粒、粗粒の全てを含み、粗粒の重量百分率が9〜15%で、微粒/中粒の重量比が0.9〜1.2である珪石を珪石原料として使用したとき、高い強度のALCが得られることが分かった。更に、粉砕後の珪石における微粒の重量百分率が40〜50%であれば、高い強度のALCが安定して得られるため一層好ましい。   That is, for the silica after pulverization, when the particle size of less than 10 μm is defined as fine particles, 10 μm or more and less than 100 μm as medium particles, and 100 μm or more as coarse particles, all the fine particles, medium particles, and coarse particles are included, and the weight percentage of the coarse particles It was found that high strength ALC can be obtained when quartzite having a fine / medium grain weight ratio of 0.9 to 1.2 is used as the quartzite raw material. Furthermore, if the weight percentage of fine particles in the crushed silica is 40 to 50%, it is more preferable because high-strength ALC can be stably obtained.

上記の微粒、中粒、粗粒の全てを含む珪石について、その粒度を上記範囲内に調整した場合にALCの強度が高くなる原因は明らかではないが、微粒と中粒の重量比を0.9〜1.2に調製することで、トバモライトの結晶核の生成と結晶成長とがバランス良く促進され、十分なトバモライトが生成すると同時に、粗粒の重量百分率を9〜15%とすることによって、残留する粗粒が骨材効果を果たし、これらが相乗してALCの強度が向上するものと考えられる。   The reason why the ALC strength becomes high when the particle size is adjusted within the above range is not clear for the silica including all of the fine particles, medium particles, and coarse particles, but the weight ratio of the fine particles to the medium particles is 0. By adjusting to 9-1.2, the generation of crystal nuclei and crystal growth of tobermorite are promoted in a well-balanced manner, and sufficient tobermorite is generated, and at the same time, the weight percentage of coarse particles is 9-15%, The remaining coarse particles play an aggregate effect, and these are considered to be synergistic to improve the strength of ALC.

珪酸質原料として、徳島県の同一鉱山から産出する珪石を用いて、ALCを製造した。その際、珪石を予めボールミルで粉砕して、微粒(粒径10μm未満)、中粒(粒径10μm以上100μm未満)、粗粒(粒径100μm以上)の割合を調整することにより、下記表1に示す粒度分布を有する試料1〜7の珪石を準備し、これを珪酸質原料として使用した。   ALC was produced using siliceous material produced from the same mine in Tokushima Prefecture as a siliceous raw material. At that time, the silica is previously pulverized by a ball mill to adjust the ratio of fine particles (particle size of less than 10 μm), medium particles (particle size of 10 μm or more and less than 100 μm), and coarse particles (particle size of 100 μm or more). The silica stones of Samples 1 to 7 having the particle size distribution shown in Table 1 were prepared and used as siliceous raw materials.

Figure 2007099546
Figure 2007099546

上記の珪石45重量部に、石灰質原料として生石灰5重量部とセメント30重量部、繰り返し原料20重量部を混合し、これらの固体原料の合計100重量部に対し水60重量部と、少量のアルミニウム粉末及び界面活性剤を加え、混練してスラリーを作成した。このスラリーを型枠に流し込んで発泡させ、水和により硬化してケーキ状半硬化体とした後、180℃、10気圧のオートクレーブにおいて6時間の高温高圧水蒸気養生を施した。   As a calcareous raw material, 5 parts by weight of quick lime, 30 parts by weight of cement, and 20 parts by weight of repetitive raw materials are mixed with 45 parts by weight of the above silica, 60 parts by weight of water and a small amount of aluminum for a total of 100 parts by weight of these solid raw materials. Powder and surfactant were added and kneaded to prepare a slurry. The slurry was poured into a mold and foamed, cured by hydration to obtain a cake-like semi-cured product, and then subjected to high-temperature high-pressure steam curing for 6 hours in an autoclave at 180 ° C. and 10 atm.

得られたALCブロックを100mm角の立方体に成形し、JIS A5416に準じて圧縮強度を測定した。その結果を、微粒、中粒、粗粒の重量百分率及び微粒/中粒の重量比と共に、下記表2に示した。尚、圧縮強度のJIS A5416における規格値は3.0N/mm以上であるが、実際には近年開発されているクレーンでの吊り上げや小型の取付金具を用いる特殊な工法に対応するため、4.5N/mm以上が必要である。そこで、表2中の評価では、圧縮強度4.5N/mm以上を適(○)、3.0N/mm以上4.5N/mm未満を不適(△)、3.0N/mm未満を不可(×)と判定した。 The obtained ALC block was molded into a 100 mm square cube, and the compressive strength was measured according to JIS A5416. The results are shown in Table 2 below together with the weight percentage of fine particles, medium particles and coarse particles and the weight ratio of fine particles / medium particles. The standard value of compressive strength in JIS A5416 is 3.0 N / mm 2 or more. However, in order to cope with a special construction method using a crane or a small mounting bracket, which is actually developed in recent years, 4 0.5 N / mm 2 or more is required. Therefore, in the evaluation in Table 2, it applies the compressive strength 4.5 N / mm 2 or more (○), 3.0N / mm 2 or more 4.5 N / mm 2 under improper (△), 3.0N / mm 2 Less than was judged as impossible (x).

Figure 2007099546
Figure 2007099546

本発明による試料1〜2においては、圧縮強度の判定は全て可であった。これらの試料では、粗粒が9〜15%の範囲で比較的多く、且つ微粒/中粒の重量比が0.9〜1.2とほぼ同等であった。一方、比較例である試料3〜7では、圧縮強度は全て不適であった。試料3〜5では粗粒が10%以上で比較的多いが、微粒/中粒の重量比が0.9未満で微粒が少な過ぎる。また、試料6〜7では粗粒が9%未満と少なく、且つ微粒/中粒の重量比も0.9未満であった。   In the samples 1 and 2 according to the present invention, all the determinations of the compressive strength were possible. In these samples, the coarse particles were relatively large in the range of 9 to 15%, and the weight ratio of fine particles / medium particles was substantially equal to 0.9 to 1.2. On the other hand, in the samples 3 to 7 as comparative examples, all the compressive strengths were unsuitable. In Samples 3 to 5, the coarse particles are 10% or more and relatively large, but the weight ratio of fine particles / medium particles is less than 0.9 and the fine particles are too few. In Samples 6 to 7, the coarse particles were less than 9% and the weight ratio of fine particles / medium particles was less than 0.9.

以上の結果から、十分な強度を有するALCを製造するためには、珪酸質原料として用いる珪石について、粒径10μm未満を微粒、10μm以上100μm未満を中粒、100μm以上を粗粒と規定したとき、微粒、中粒、粗粒の全てを含み、粗粒の重量百分率を9〜15%とし、且つ微粒/中粒の重量比を0.9〜1.2とする必要があることが明らかとなった。


From the above results, in order to produce ALC having sufficient strength, when silica stone used as a siliceous raw material is defined as fine particles having a particle size of less than 10 μm, medium particles having a particle size of 10 μm or more but less than 100 μm, and coarse particles having a particle size of 100 μm or more. It is clear that it is necessary to include all of fine particles, medium particles, and coarse particles, the coarse particle weight percentage to be 9 to 15%, and the fine particle / medium particle weight ratio to be 0.9 to 1.2. became.


Claims (2)

珪石原料として用いる粉砕後の珪石が、粒径10μm未満を微粒、10μm以上100μm未満を中粒、100μm以上を粗粒と規定したとき、微粒、中粒、粗粒の全てを含み、粗粒の重量百分率が9〜15%で、微粒/中粒の重量比が0.9〜1.2であることを特徴とする軽量気泡コンクリートの製造方法。   When the crushed silica used as a raw material for silica is defined as fine particles having a particle size of less than 10 μm, medium particles of 10 μm or more and less than 100 μm, and coarse particles of 100 μm or more, all of fine particles, medium particles, and coarse particles are included. A method for producing a lightweight aerated concrete having a weight percentage of 9 to 15% and a weight ratio of fine particles / medium particles of 0.9 to 1.2. 前記微粒の重量百分率が40〜50%であることを特徴とする、請求項1に記載の軽量気泡コンクリートの製造方法。


The lightweight cellular concrete manufacturing method according to claim 1, wherein a weight percentage of the fine particles is 40 to 50%.


JP2005289526A 2005-10-03 2005-10-03 Method for producing lightweight cellular concrete Expired - Fee Related JP4628237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289526A JP4628237B2 (en) 2005-10-03 2005-10-03 Method for producing lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289526A JP4628237B2 (en) 2005-10-03 2005-10-03 Method for producing lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JP2007099546A true JP2007099546A (en) 2007-04-19
JP4628237B2 JP4628237B2 (en) 2011-02-09

Family

ID=38026842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289526A Expired - Fee Related JP4628237B2 (en) 2005-10-03 2005-10-03 Method for producing lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP4628237B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057225A (en) * 2007-08-30 2009-03-19 Sumitomo Kinzoku Kozan Siporex Kk Method for manufacturing autoclaved lightweight concrete
JP2011032105A (en) * 2009-07-29 2011-02-17 Sumitomo Metal Mining Siporex Kk Method of producing autoclaved lightweight concrete
JP2015168604A (en) * 2014-03-07 2015-09-28 旭化成建材株式会社 Autoclaved lightweight concrete
JP2016160116A (en) * 2015-02-27 2016-09-05 アイカテック建材株式会社 Cement sheet excellent in durability and cement composition therefor
JP2020040871A (en) * 2018-09-10 2020-03-19 旭化成ホームズ株式会社 Lightweight cellular concrete

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144632B2 (en) * 2003-06-11 2006-12-05 E. I. Du Pont De Nemours And Company Aliphatic-aromatic polyetherester compositions, articles, films, coating and laminates and processes for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259348A (en) * 1995-03-20 1996-10-08 Asahi Chem Ind Co Ltd Production of light-weight foamed concrete
JP2001019571A (en) * 1999-07-09 2001-01-23 Clion Co Ltd Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same
JP2001302367A (en) * 2000-04-26 2001-10-31 Clion Co Ltd Method for manufacturing lightweight foamed concrete
JP2004244279A (en) * 2003-02-14 2004-09-02 Sumitomo Kinzoku Kozan Siporex Kk Method of manufacturing alc
JP2005104791A (en) * 2003-10-01 2005-04-21 Sumitomo Kinzoku Kozan Siporex Kk Method of manufacturing lightweight cellular concrete
JP2006069868A (en) * 2004-09-03 2006-03-16 Sumitomo Kinzoku Kozan Siporex Kk Method of producing lightweight cellular concrete having excellent carbonation resistance
JP2007084365A (en) * 2005-09-21 2007-04-05 Sumitomo Kinzoku Kozan Siporex Kk Method for producing lightweight cellular concrete

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259348A (en) * 1995-03-20 1996-10-08 Asahi Chem Ind Co Ltd Production of light-weight foamed concrete
JP2001019571A (en) * 1999-07-09 2001-01-23 Clion Co Ltd Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same
JP2001302367A (en) * 2000-04-26 2001-10-31 Clion Co Ltd Method for manufacturing lightweight foamed concrete
JP2004244279A (en) * 2003-02-14 2004-09-02 Sumitomo Kinzoku Kozan Siporex Kk Method of manufacturing alc
JP2005104791A (en) * 2003-10-01 2005-04-21 Sumitomo Kinzoku Kozan Siporex Kk Method of manufacturing lightweight cellular concrete
JP2006069868A (en) * 2004-09-03 2006-03-16 Sumitomo Kinzoku Kozan Siporex Kk Method of producing lightweight cellular concrete having excellent carbonation resistance
JP2007084365A (en) * 2005-09-21 2007-04-05 Sumitomo Kinzoku Kozan Siporex Kk Method for producing lightweight cellular concrete

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057225A (en) * 2007-08-30 2009-03-19 Sumitomo Kinzoku Kozan Siporex Kk Method for manufacturing autoclaved lightweight concrete
JP2011032105A (en) * 2009-07-29 2011-02-17 Sumitomo Metal Mining Siporex Kk Method of producing autoclaved lightweight concrete
JP2015168604A (en) * 2014-03-07 2015-09-28 旭化成建材株式会社 Autoclaved lightweight concrete
JP2016160116A (en) * 2015-02-27 2016-09-05 アイカテック建材株式会社 Cement sheet excellent in durability and cement composition therefor
JP2020040871A (en) * 2018-09-10 2020-03-19 旭化成ホームズ株式会社 Lightweight cellular concrete
JP7398225B2 (en) 2018-09-10 2023-12-14 旭化成ホームズ株式会社 lightweight aerated concrete

Also Published As

Publication number Publication date
JP4628237B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
EP2970003B1 (en) High-strength geopolymer composite cellular concrete
JP4628237B2 (en) Method for producing lightweight cellular concrete
JP2022530193A (en) Manufacture of wet-cast slag-based concrete products
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
JP4786272B2 (en) Method for producing lightweight cellular concrete
JP5440905B2 (en) Ultra-early strong cement composition and manufacturing method thereof
JP2014043379A (en) Manufacturing method of light-weight foam concrete
GB2540619A (en) Monolithic building block
KR20120069324A (en) Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
JP2007145670A (en) Expansive admixture for resin-finished floor, and its use
JP2011256094A (en) Aluminum powder for autoclaved lightweight cellular concrete
JP2002114562A (en) Hydrothermal hardened body and method for manufacturing the same
KR101117780B1 (en) Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust
JP2012091962A (en) Method for producing autoclaved lightweight concrete panel
JP2007063091A (en) Autoclaved lightweight concrete
JP5030061B2 (en) Method for producing lightweight cellular concrete
JP2009057227A (en) Method for manufacturing autoclaved lightweight concrete
JP2011020883A (en) Autoclaved lightweight cellular concrete and method for producing the same
JP2011025646A (en) Manufacturing method of autoclaved lightweight concrete
JP6933422B2 (en) How to manufacture lightweight cellular concrete panels
JP2001261466A (en) Production process of lightweight cellular concrete
JP2010047446A (en) Concrete structure
JPH05310454A (en) Production of light-weight concrete having low shrinkage
JP2000313679A (en) Lightweight block and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4628237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees