JP2001019571A - Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same - Google Patents

Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same

Info

Publication number
JP2001019571A
JP2001019571A JP19532099A JP19532099A JP2001019571A JP 2001019571 A JP2001019571 A JP 2001019571A JP 19532099 A JP19532099 A JP 19532099A JP 19532099 A JP19532099 A JP 19532099A JP 2001019571 A JP2001019571 A JP 2001019571A
Authority
JP
Japan
Prior art keywords
silica
crystal grain
quartz crystal
grain size
alc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19532099A
Other languages
Japanese (ja)
Other versions
JP2001019571A5 (en
Inventor
Mitsuo Suda
光生 須田
Masao Nojiri
正男 野尻
Mototaka Niwa
基敬 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Kenzai Gijutsu Kenkyusho KK
Original Assignee
Clion Co Ltd
Kenzai Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clion Co Ltd, Kenzai Gijutsu Kenkyusho KK filed Critical Clion Co Ltd
Priority to JP19532099A priority Critical patent/JP2001019571A/en
Publication of JP2001019571A publication Critical patent/JP2001019571A/en
Publication of JP2001019571A5 publication Critical patent/JP2001019571A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing by which an autoclaved lightweight concrete(ALC) scarcely causing cracking, etc., especially in an ALC panel and excellent in dimensional stability and bending strength, etc., is obtained while using the largest possible amount of a readily available and inexpensive siliceous raw material in a method for producing the ALC and to produce the ALC panel obtained by the method. SOLUTION: A mixed siliceous stone prepared by mixing a siliceous stone having <10 μm average quartz crystal grain diameter with a siliceous stone having 10-500 μm average quartz crystal grain diameter and regulating the average quartz crystal grain diameter of the mixed siliceous stone to 15-300 μm and the mixing ratio of the siliceous stone having <10 μm average quartz crystal grain diameter to <=60 wt.% is used as a siliceous stone in a siliceous raw material in a method for producing an ALC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、軽量気泡コンクリート
の製造方法及びその製法によって得られる軽量気泡コン
クリートパネルに関する。より詳しくは、使用する珪酸
質原料の珪石として平均石英結晶粒径が少なくとも2水
準以上から成る混合珪石を使用することにより、品質を
低下せしめること無く入手し易い安価な珪酸質原料を用
いることが可能になる軽量気泡コンクリートの製法及び
それによって得られる軽量気泡コンクリートパネルに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing lightweight cellular concrete and a lightweight cellular concrete panel obtained by the method. More specifically, it is possible to use an inexpensive siliceous raw material that can be easily obtained without deteriorating the quality by using a mixed silica stone having an average quartz crystal grain diameter of at least two levels or more as the siliceous raw material silica used. The present invention relates to a method for producing lightweight cellular concrete and a lightweight cellular concrete panel obtained thereby.

【0002】[0002]

【従来の技術】軽量気泡コンクリート(以下、ALCと
いう)は一般に珪石等の珪酸質原料と生石灰、セメント
等の石灰質原料を主原料とし、さらに、石膏、発泡剤と
水を加え混合してできたスラリーを型枠に流し込み、発
泡、半硬化させた後、オートクレーブ養生して製造す
る。このALCを製造するにあたり、品質安定、向上の
ためには、珪酸質原料の品質が重要な要因となる。特に
その結晶粒径は、ALCパネルの亀裂の原因となる乾燥
収縮率及び圧縮強度に影響する。そして珪酸質原料とし
ては、一般的にSiO2含有量が高く、珪石の結晶粒径
が約10μm〜100μm程度の範囲が好ましいことが
知られている。
2. Description of the Related Art Light-weight cellular concrete (hereinafter referred to as ALC) is generally made of a silicate material such as silica stone and a calcareous material such as quicklime and cement as a main material, and further added with gypsum, a foaming agent and water and mixed. The slurry is poured into a mold, foamed, semi-cured, and then autoclaved for production. In producing this ALC, the quality of the siliceous raw material is an important factor for the quality stability and improvement. In particular, the crystal grain size affects the drying shrinkage and compressive strength that cause cracking of the ALC panel. It is known that the siliceous raw material generally has a high SiO 2 content and preferably has a crystal grain size of silica in a range of about 10 μm to 100 μm.

【0003】しかし、珪石の結晶粒径が上記範囲の珪酸
質原料の産地は地域的に限られており、また埋蔵量も少
なくなってきているため、入手が徐々に困難になり、A
LCおよびそのパネルのコストアップの要因にもなって
きている。そこで、近年その対策案が種々提案されてお
り、その方法として、石英結晶粒径が10μm未満の珪
石をALCの珪酸質原料として使用し、石灰質原料の一
部に早強セメントを使用する方法(特開平8−2593
47号公報)や石英結晶粒径が10μm未満の珪石と火
成岩、堆積岩等の砕石粉末とを使用する方法(特開平8
−259348号公報)等が提案、開示されている。
[0003] However, the production source of siliceous raw materials having a crystal grain size of silica within the above range is locally limited, and reserves are decreasing, so that it becomes gradually difficult to obtain.
It is also a factor in increasing the cost of LCs and their panels. In recent years, various countermeasures have been proposed, and as a method of using silica having a quartz crystal grain size of less than 10 μm as a siliceous raw material for ALC, and using a high strength cement as a part of the calcareous raw material ( JP-A-8-2593
No. 47) and a method using silica stone having a quartz crystal particle diameter of less than 10 μm and crushed stone powder such as igneous rock and sedimentary rock (Japanese Patent Laid-Open No.
No. 259348) has been proposed and disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記いずれの
製造方法によっても、得られるALCの品質は必ずしも
満足するものではなく、珪石の結晶粒径が約10μm〜
100μmの珪石のみを珪酸質原料として製造したAL
Cと対比して、特にそのパネルの亀裂発生に影響する乾
燥収縮率の面がまだ不十分であり、長期間に亘って亀裂
発生の無い寸法安定性及び曲げ強度等の長期的物性に優
れたALCを得るためには、さらに他の工夫を要するも
のであった。しかも、特開平8−259347号公報の
製造方法においては、高価な早強セメントを必要とする
ため、もう一つの課題であるコストダウンの点でも問題
があった。
However, the quality of ALC obtained by any of the above production methods is not always satisfactory, and the crystal grain size of silica is about 10 μm or less.
AL manufactured using only 100 μm silica as a siliceous raw material
Compared with C, especially the surface of the drying shrinkage which affects the crack generation of the panel is still insufficient, and the panel has excellent long-term physical properties such as dimensional stability and bending strength without crack generation for a long time. In order to obtain ALC, other measures were required. In addition, the production method of Japanese Patent Application Laid-Open No. Hei 8-259347 requires expensive early-strength cement, and thus has another problem in terms of cost reduction, which is another problem.

【0005】そこで、本発明の課題は、珪酸質原料と石
灰質原料とからなる主原料に石膏、発泡剤を加えてスラ
リーとなし、成形、オートクレーブ養生するALCの製
造方法において、入手し易い安価な珪酸質原料をできる
だけ多量に使用しつつ、特にALCパネルに亀裂などが
生じにくい寸法安定性及び曲げ強度等の長期的物性の優
れたALCが得られ、またコストアップとなる早強セメ
ントを必ずしも必要とせず、普通セメントを使用して製
造可能なALCの製造方法及びそれによって得られるA
LCパネルを提供することにある。
Accordingly, an object of the present invention is to provide an ALC production method in which gypsum and a foaming agent are added to a main raw material composed of a siliceous raw material and a calcareous raw material to form a slurry, which is formed and autoclaved, and which is easy to obtain and inexpensive. ALC with excellent long-term physical properties such as dimensional stability and flexural strength, especially in the absence of cracks in the ALC panel, is required while using as much siliceous raw material as possible. Method for producing ALC that can be produced using ordinary cement and A obtained by the method
An object of the present invention is to provide an LC panel.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は珪石を主成分とする珪酸質原料と石灰質原
料とからなる主原料に水、石膏及び発泡剤を加えてスラ
リーと成し、それを型枠に注入した後、成形された半硬
化体をオートクレーブ養生するALCの製造方法におい
て、前記珪酸質原料中の珪石として、石英結晶粒径が1
0μm未満の珪石と10μm〜500μmの珪石を混合
してその混合珪石の平均石英結晶粒径を15μm〜30
0μmとするとともに、前記10μm未満の珪石の混合
割合を60重量%以下にした混合珪石を使用することを
特徴とするALCの製造方法を採用する。
In order to solve the above-mentioned problems, the present invention provides a slurry obtained by adding water, gypsum and a foaming agent to a main raw material composed of a siliceous raw material mainly composed of silica and a calcareous raw material. Then, after injecting it into a mold, the molded semi-cured product is subjected to autoclave curing in an ALC production method, wherein the quartz in the siliceous raw material has a quartz crystal particle size of 1%.
A mixture of silica having a particle size of less than 0 μm and silica having a particle size of 10 μm to 500 μm has an average quartz crystal grain size of 15 μm to 30 μm.
An ALC manufacturing method is adopted, wherein a mixed silica having a mixing ratio of silica of less than 10 μm and 60 wt% or less is used.

【0007】また、もう一つの発明として、乾燥収縮率
0.03%以下、全成分中の未反応珪石のうち平均石英
結晶粒径10μm未満の珪石が5〜50重量%であるこ
とを特徴とするALCパネルに関する。
Another aspect of the present invention is characterized in that the dry shrinkage is 0.03% or less, and 5 to 50% by weight of unreacted silica in all the components has an average quartz crystal grain size of less than 10 μm. ALC panel.

【0008】[0008]

【発明の実施の形態】ALC製造工程中の反応のうち、
実用的な寸法安定性及び長期的物性を有するALCを製
造するために最も重要な反応は、オートクレーブ養生中
に発泡硬化したスラリー中のカルシウムとシリカの反応
によりトバモライトを生成する反応である。
BEST MODE FOR CARRYING OUT THE INVENTION Among the reactions in the ALC manufacturing process,
The most important reaction for producing an ALC having practical dimensional stability and long-term physical properties is a reaction that generates tobermorite by a reaction between calcium and silica in a foam-hardened slurry during autoclave curing.

【0009】このとき、乾燥収縮率が小さく、亀裂発生
の少ないALCパネルを得るためには、結晶度の高いト
バモライトを形成させる必要があり、そのためには平均
石英結晶粒径の大きい珪石を原料として使用する必要が
ある。
At this time, in order to obtain an ALC panel having a small drying shrinkage and a small number of cracks, it is necessary to form tobermorite having a high degree of crystallinity. Must be used.

【0010】逆に、平均石英結晶粒径の小さい珪石は、
オートクレーブ養生中の反応において、養生初期に容易
に溶出して、低カルシウムのCSHを形成し、そのCS
Hが養生中期以降トバモライトの結晶成長を遅らせるた
め、トバモライトの反応性が悪くなり、乾燥収縮率が大
きくなる。
Conversely, silica having a small average quartz crystal grain size is
In the reaction during autoclave curing, it is easily eluted in the early stage of curing to form low calcium CSH,
Since H delays the crystal growth of tobermorite from the middle stage of curing, the reactivity of tobermorite deteriorates and the drying shrinkage increases.

【0011】そこで、本発明においては珪酸質原料中の
珪石として、平均石英結晶粒径の小さい珪石と、平均石
英結晶粒径の大きい珪石とを混合して、平均石英結晶粒
径を特定範囲と成した混合珪石を使用することにより本
発明の課題を解決した。
Therefore, in the present invention, as the silica in the siliceous raw material, silica having a small average quartz crystal grain size and silica having a large average quartz crystal grain size are mixed to make the average quartz crystal grain size within a specific range. The object of the present invention has been solved by using the mixed silica stone formed.

【0012】すなわち、平均石英結晶粒径が10μm未
満の珪石と10μm〜500μmである珪石と混合して
平均石英結晶粒径15μm〜300μm、より好ましく
は25μm〜200μmの混合珪石と成して使用するこ
ととし、またその際、平均石英結晶粒径が10μm未満
の珪石を混合珪石中の60重量%以下に制限することに
より、この2つの要素が相俟ってトバモライト生成の反
応性が良くなり、その結果、入手し易い安価な珪石をも
使用しつつ乾燥収縮率が小さく、得られるALCパネル
の亀裂発生が少なく、また曲げ強度の大きいALCパネ
ルを得ることが可能となるのである。
That is, silica having an average quartz crystal grain diameter of less than 10 μm and silica having an average quartz crystal grain diameter of 15 μm to 300 μm, more preferably 25 μm to 200 μm, are used by mixing with silica having an average quartz crystal grain diameter of 10 μm to 500 μm. In this case, by limiting the silica having an average quartz crystal grain size of less than 10 μm to 60% by weight or less in the mixed silica, the reactivity of tobermorite formation is improved by combining these two factors, As a result, it is possible to obtain an ALC panel having a small drying shrinkage ratio, a small crack generation of the obtained ALC panel, and a high bending strength while using inexpensive silica stone which is easily available.

【0013】言い換えれば、混合珪石の平均石英結晶粒
径が15μm未満とすると、得られるALCの乾燥収縮
率が低下せず、そのパネルに亀裂が発生し易くなる。ま
た平均石英結晶粒径が300μmを超えると、得られる
ALCの圧縮強度が低下するとともに平均石英結晶粒径
が10μm未満の珪石を少量しか使用できず、結局、品
質上の面及び入手し易い安価な珪石の有効利用という面
で問題になる。
In other words, if the average quartz crystal grain size of the mixed silica is less than 15 μm, the resulting ALC does not have a reduced drying shrinkage, and cracks are likely to occur in the panel. Further, when the average quartz crystal grain size exceeds 300 μm, the compressive strength of the obtained ALC decreases, and only a small amount of silica having an average quartz crystal grain size of less than 10 μm can be used. This is a problem in the effective use of natural silica.

【0014】さらに、平均石英結晶粒径10μm未満の
珪石が、混合珪石中の60重量%を超えると、やはり乾
燥収縮率が大きくなり所望の品質のALCおよびそのパ
ネルを得ることができなくなる。しかし、平均石英結晶
粒径10μm未満の珪石の有効利用によるコストダウン
という課題を解決するためには、少なくとも10重量%
以上とすることが望ましい。
Further, when the silica having an average quartz crystal grain diameter of less than 10 μm exceeds 60% by weight in the mixed silica, the drying shrinkage is also increased, so that it is impossible to obtain an ALC having a desired quality and a panel thereof. However, in order to solve the problem of cost reduction by effective use of silica having an average quartz crystal grain size of less than 10 μm, at least 10% by weight is required.
It is desirable to make the above.

【0015】なお、本発明において、混合珪石の使用割
合が珪酸質原料の70〜100重量%とし、また混合前
の各珪石中のSiO2含有量が85重量%以上である珪
石を使用し、さらに石膏は、スラリーの固形分に対し2
〜8重量%加えるようにすると、トバモライトの結晶度
がさらに高くなり、得られるALCの乾燥収縮率がより
小さくなって本発明の効果が顕著になる。石膏として
は、無水石膏や二水石膏が通常使用される。また、その
他の特性を付加するため、他の材料を添加しても良い。
In the present invention, the mixed silica is used in an amount of 70 to 100% by weight of the siliceous raw material, and silica having a SiO 2 content of 85% by weight or more in each silica before mixing is used. In addition, gypsum is 2% based on the solid content of the slurry.
When the content is added to 88% by weight, the crystallinity of tobermorite is further increased, the drying shrinkage of the obtained ALC is further reduced, and the effect of the present invention is remarkable. As gypsum, anhydrous gypsum and gypsum are usually used. Further, other materials may be added to add other characteristics.

【0016】本発明における平均石英結晶粒径の異なる
各珪石は、2種以上使用してもよくまた、産地が異なっ
ていても良い。さらに珪砂も使用可能である。また珪酸
質原料としては、珪石以外に珪藻土やフライアッシュ、
高炉スラグ等の非晶質シリカなどを一部混合することも
可能である。
In the present invention, two or more kinds of silica having different average quartz crystal grain diameters may be used, and their production areas may be different. Silica sand can also be used. In addition, as the siliceous material, diatomaceous earth, fly ash,
It is also possible to partially mix amorphous silica such as blast furnace slag.

【0017】本発明の製造方法における珪石の平均石英
結晶粒径の測定方法は、珪石の薄片を3枚作成し、20
0〜400倍の偏光顕微鏡による写真を撮影してその5
カ所の横断直径を測定し、その平均値を算出して平均石
英単結晶粒径とする。混合珪石の平均石英結晶粒径は、
各々の珪石の結晶粒径とその使用割合から算出する。な
お、珪石のSiO2 含有率は、蛍光X線により測定す
る。
The method for measuring the average quartz crystal grain size of silica in the production method of the present invention is as follows.
Take a picture with a polarizing microscope of 0 to 400 times and
The cross-sectional diameter at each of the locations is measured, and the average value is calculated to be the average quartz single crystal grain size. The average quartz grain size of mixed silica is
It is calculated from the crystal grain size of each silica stone and its usage ratio. The SiO 2 content of the silica is measured by X-ray fluorescence.

【0018】石灰質原料としては、消石灰、生石灰及び
各種セメント等を使用できる。なお、このセメントは、
普通セメントの使用で充分に本発明の目的が達成され得
るが、早強セメントを用いると乾燥収縮率がさらに低下
し品質がより向上する。また、これらのセメント中に
は、通常20重量%程度の珪酸分を含むが、本発明にお
いては、この珪酸分は珪酸質原料には計上しない。発泡
剤としては、通常金属アルミニウム粉末を使用する。
As the calcareous raw material, slaked lime, quicklime and various cements can be used. This cement is
Although the purpose of the present invention can be sufficiently achieved by using ordinary cement, the use of the early-strength cement further reduces the drying shrinkage and improves the quality. In addition, these cements usually contain about 20% by weight of silicic acid, but in the present invention, this silicic acid is not included in the siliceous raw material. As the foaming agent, metal aluminum powder is usually used.

【0019】本発明におけるALCパネルは、乾燥収縮
率0.03%以下、全成分中の未反応珪石のうち平均石
英結晶粒径10μm未満の珪石(石英単結晶)が5〜5
0重量%含有しているものである。また、圧縮強度は
3.0N/mm2以上、密度300〜550kg/m3
あることがより好ましい。そして、このALCパネルは
乾燥収縮率が0.03%以下でかなり低いため、亀裂の
発生が起こりにくく、また曲げ強度も大きいものであ
る。なお、このALCパネルは、本発明の製造方法で得
られる。
In the ALC panel of the present invention, the dry shrinkage is 0.03% or less, and the unreacted silica in all the components contains 5 to 5 pieces of silica (quartz single crystal) having an average quartz crystal grain size of less than 10 μm.
0% by weight. More preferably, the compression strength is 3.0 N / mm 2 or more and the density is 300 to 550 kg / m 3 . Since the drying shrinkage of this ALC panel is quite low at 0.03% or less, cracks are unlikely to occur and the bending strength is high. In addition, this ALC panel is obtained by the manufacturing method of the present invention.

【0020】本発明のALCパネル中の未反応珪石のう
ち10μm未満の珪石(石英単結晶)の平均石英結晶粒
径の測定方法は、1000〜5000倍の走査型電子顕
微鏡にる写真を撮影して、その5カ所の横断直径を測定
し、その平均値を算出する。
The method for measuring the average quartz crystal grain size of the silica (quartz single crystal) having a size of less than 10 μm among the unreacted silica in the ALC panel of the present invention is to take a photograph taken with a scanning electron microscope at a magnification of 1000 to 5000 times. Then, the transverse diameters at the five locations are measured, and the average value is calculated.

【0021】また、本発明のALCの製造方法及びAL
CパネルにおけるALCとは、JISに規程している範
囲のものに限定されず、広義の軽量気泡コンクリートを
意味するものである。
The method for producing ALC of the present invention and AL
The ALC in the C panel is not limited to the range specified in JIS, but means a lightweight lightweight cellular concrete in a broad sense.

【0022】[0022]

【実施例】以下、本発明のALCの製造方法の実施例及
びその比較例について詳述する。 [実施例1]平均石英結晶粒径が3μmの群馬県大間々
産珪石が20重量%と平均石英結晶粒径30μmの栃木
県粟野町産珪石が80重量%となるように珪石を混合し
て粉砕した。この混合珪石の平均石英結晶粒径は約25
μmとなる。得られた混合珪石、生石灰、普通ポルトラ
ンドセメント及び二水石膏を原料として使用して表1の
配合条件でALCを製造した。
EXAMPLES Examples of the method for producing ALC of the present invention and comparative examples thereof will be described below in detail. [Example 1] Silica was mixed and crushed so that 20% by weight of silica from Oma, Gunma Prefecture having an average crystal grain size of 3 μm and 80% by weight of silica from Awano, Tochigi Prefecture with an average crystal grain size of 30 μm. did. The average quartz crystal grain size of this mixed silica is about 25.
μm. ALC was manufactured under the blending conditions shown in Table 1 using the obtained mixed silica, quicklime, ordinary Portland cement and gypsum dihydrate as raw materials.

【0023】このALCのパネルの圧縮強度、密度、お
よび乾燥収縮率をJISA5416に準じて測定し表2
に示した。また、このALC中のトバモライト結晶生成
状況を粉末X線回折法を用いトバモライト5強線(Cu
Kα 2θ=7.8゜、16.2゜、29.0゜、3
0.0゜、31.8゜)のピーク高さを測定し、その合
計を100とした。
The compressive strength, density, and drying shrinkage of this ALC panel were measured in accordance with JIS A5416.
It was shown to. The tobermorite crystal formation state in this ALC was determined by using powder X-ray diffraction method with tobermorite 5 strong line (Cu
Kα 2θ = 7.8 °, 16.2 °, 29.0 °, 3
0.0 °, 31.8 °), and the total was set to 100.

【0024】この場合のX線回折条件を以下に示す。 装置:モノクロメータ付粉末X線回折装置 測定角度:5〜45°(2θ) ステップサンプリング:0.02° スキャンスピード:2°/min 測定ポイント:CPS なお、以上の圧縮強度、密度、乾燥収縮率、トバモライ
ト結晶生成状況の測定方法は、以下の実施例および比較
例においてもすべて同一方法である。
The X-ray diffraction conditions in this case are shown below. Apparatus: Powder X-ray diffractometer with monochromator Measurement angle: 5 to 45 ° (2θ) Step sampling: 0.02 ° Scan speed: 2 ° / min Measurement points: CPS The above compressive strength, density, and dry shrinkage The method for measuring the state of tobermorite crystal formation is the same in all of the following examples and comparative examples.

【0025】本実施例によれば、表2の通り、十分な圧
縮強度が得られ、かつ0.018%というかなり低い乾
燥収縮率が得られた。さらに、ALCパネルを塗装しな
い素地のまま屋外に立てかけ曝露し、製造後8週間亀裂
の発生について観察したが、亀裂の発生がなかった。
According to this example, as shown in Table 2, sufficient compressive strength was obtained, and a considerably low dry shrinkage of 0.018% was obtained. Furthermore, the ALC panel was exposed outdoors against the uncoated substrate, and cracks were observed for 8 weeks after the production. No cracks were found.

【0026】[実施例2]平均石英結晶粒径が3μmの
群馬県大間々産珪石が20重量%と平均石英結晶粒径3
0μmの栃木県粟野町産珪石が80重量%となるように
珪石を混合して粉砕した。この混合珪石の平均石英結晶
粒径は約25μmとなる。得られた混合珪石、生石灰、
早強ポルトランドセメント及び二水石膏を原料として表
1の配合条件でALCパネルを製造した。
Example 2 20% by weight of silica from Oma, Gunma Prefecture having an average quartz crystal grain size of 3 μm, and an average quartz crystal grain size of 3
Silica was mixed and pulverized so that the silica of 0 μm from Awano-cho, Tochigi Prefecture became 80% by weight. The average quartz crystal grain size of the mixed silica is about 25 μm. The resulting mixed silica, quicklime,
An ALC panel was produced using the early strength Portland cement and gypsum dihydrate as raw materials under the blending conditions shown in Table 1.

【0027】表2の通り、圧縮強度、トバモライト5強
線のピーク高さ、乾燥収縮率のいずれも、実施例1より
もさらに優れたものであった。また、製造後8週間亀裂
の発生はなかった。
As shown in Table 2, all of the compressive strength, the peak height of the five strong lines of tobermorite, and the drying shrinkage were further superior to those of Example 1. No cracking occurred for 8 weeks after production.

【0028】[実施例3]平均石英結晶粒径が3μmの
群馬県大間々産珪石が50重量%と平均石英結晶粒径1
20μmの栃木県粟野町産珪石が80重量%となるよう
に珪石を混合して粉砕した。この混合珪石の平均結晶粒
径は約62μmとなる。得られた混合珪石、生石灰、普
通ポルトランドセメント及び二水石膏を原料として使用
して表1の配合条件でALCパネルを製造した。
Example 3 50% by weight of silica from Oma, Gunma Prefecture having an average quartz crystal grain size of 3 μm, and an average quartz crystal grain size of 1
Silica was mixed and pulverized so that the silica of 20 μm from Awano-cho, Tochigi Prefecture became 80% by weight. The average crystal grain size of the mixed silica is about 62 μm. An ALC panel was manufactured using the obtained mixed silica, quicklime, ordinary Portland cement and gypsum as a raw material under the blending conditions shown in Table 1.

【0029】表2の通り、本実施例においても優れた圧
縮強度、トバモライト5強線のピーク高さ、乾燥収縮率
が得られ、製造後8週間亀裂発生がなかった。
As shown in Table 2, also in this example, excellent compressive strength, peak height of Tobermorite 5 strong line, and drying shrinkage were obtained, and no crack was generated for 8 weeks after production.

【0030】[実施例4]平均石英結晶粒径が3μmの
群馬県大間々産珪石が50重量%と平均石英結晶粒径3
0μmの栃木県粟野町産珪石が50重量%となるように
珪石を混合して粉砕した。この混合珪石の平均結晶粒径
は約17μmとなる。得られた混合珪石、生石灰、普通
ポルトランドセメント及び二水石膏を原料として表1の
配合条件でALCを製造した。
Example 4 50% by weight of silica from Oma, Gunma prefecture having an average quartz crystal grain size of 3 μm, and an average quartz crystal grain size of 3
Silica was mixed and pulverized so that the silica of 0 μm from Awano-cho, Tochigi Prefecture became 50% by weight. The average crystal grain size of the mixed silica is about 17 μm. ALC was manufactured under the mixing conditions shown in Table 1 using the obtained mixed silica stone, quicklime, ordinary Portland cement and gypsum dihydrate as raw materials.

【0031】表2の通り、圧縮強度、トバモライト5強
線のピーク高さ、乾燥収縮率は実施例1とほぼ同じであ
った。また製造後8週間亀裂の発生はなかった。
As shown in Table 2, the compressive strength, the peak height of the five strong lines of tobermorite, and the drying shrinkage were almost the same as those in Example 1. In addition, no crack was generated for 8 weeks after the production.

【0032】[比較例1]平均石英結晶粒径が3μmの
群馬県大間々産珪石、生石灰、普通ポルトランドセメン
ト及び二水石膏を原料として表1の配合条件でALCを
製造した。このALCの圧縮強度、トバモライト5強線
のピーク高さ、乾燥収縮率を実施例1と同様の方法で測
定して表2に示した。
[Comparative Example 1] ALC was manufactured under the mixing conditions shown in Table 1 using as raw materials silica, quicklime, ordinary Portland cement and gypsum gypsum from Oma, Gunma Prefecture having an average quartz crystal grain size of 3 µm. The compressive strength of this ALC, the peak height of the five strong lines of tobermorite, and the drying shrinkage were measured in the same manner as in Example 1 and shown in Table 2.

【0033】表2の通り圧縮強度が小さく、乾燥収縮率
は、0.04%と大きく、また、トバモライト5強線の
ピーク高さは実施例1に対し70と小さかった。さら
に、実施例1と同様にして亀裂発生を観察した結果、製
造2週間後に亀裂の発生が見られた。
As shown in Table 2, the compressive strength was small, the dry shrinkage was as large as 0.04%, and the peak height of the tobermorite 5 strong line was as small as 70 as in Example 1. Further, as a result of observing the occurrence of cracks in the same manner as in Example 1, the occurrence of cracks was observed two weeks after production.

【0034】[比較例2]平均石英結晶粒径が3μmの
群馬県大間々産珪石が70重量%と平均石英結晶粒径3
0μmの栃木県粟野町産珪石が30重量%となるように
珪石を混合して粉砕した。この混合珪石の平均石英結晶
粒径は約11μmとなる。得られた混合珪石、生石灰、
普通ポルトランドセメント及び二水石膏を原料として表
1の配合条件でALCを製造した。表2の通りこのAL
Cの乾燥収縮率は0.037%と大きく、トバモライト
5強線のピーク高さは実施例1に対し77と小さかっ
た。また製造5週間後に亀裂の発生が見られた。
[Comparative Example 2] Silica from Oma, Gunma prefecture having an average quartz crystal grain size of 3 μm was 70% by weight, and the average quartz crystal grain size was 3
Silica was mixed and pulverized so that 0 μm of silica from Awano-cho, Tochigi Prefecture became 30% by weight. The average quartz crystal grain size of the mixed silica is about 11 μm. The resulting mixed silica, quicklime,
ALC was produced from ordinary Portland cement and gypsum dihydrate under the mixing conditions shown in Table 1. As shown in Table 2, this AL
The drying shrinkage of C was as large as 0.037%, and the peak height of the tobermorite 5 strong line was 77, which was smaller than that of Example 1. Five weeks after the production, cracks were observed.

【0035】[比較例3]平均石英結晶粒径が3μmの
群馬県大間々産珪石が70重量%と平均石英結晶粒径1
20μmの栃木県粟野町産珪石が30重量%となるよう
に珪石を混合して粉砕した。この混合珪石の平均石英結
晶粒径は約38μmとなる。得られた混合珪石、生石
灰、普通ポルトランドセメント及び二水石膏を原料とし
て表1の配合条件でALCを製造した。表2の通り、圧
縮強度は実施例並みであるが、乾燥収縮率は0.035
%と大きく、製造8週間後には亀裂の発生が見られた。
[Comparative Example 3] Silica from Oma, Gunma Prefecture having an average quartz crystal grain size of 3 μm was 70% by weight, and the average quartz crystal grain size was 1
Silica was mixed and pulverized so that 20 μm of silica from Awano-cho, Tochigi Prefecture became 30% by weight. The average quartz crystal grain size of the mixed silica is about 38 μm. ALC was manufactured under the mixing conditions shown in Table 1 using the obtained mixed silica stone, quicklime, ordinary Portland cement and gypsum dihydrate as raw materials. As shown in Table 2, the compressive strength is similar to that of the example, but the dry shrinkage is 0.035.
%, And cracks were observed after 8 weeks of production.

【0036】[比較例4]平均石英結晶粒径が3μmの
群馬県大間々産珪石が50重量%と砕石粉末(SiO2
含有量が75重量%)50重量%とを混合した。得られ
た混合物、生石灰、普通ポルトランドセメント及び二水
石膏を原料として表1の配合条件でALCを製造した。
表2の通り、圧縮強度は実施例よりも小さく、乾燥収縮
率は0.035%と大きく、製造8週間後には亀裂の発
生が見られた。
Comparative Example 4 50% by weight of silica from Oma, Gunma Prefecture having an average quartz crystal grain size of 3 μm was crushed powder (SiO 2
(The content is 75% by weight) and 50% by weight. An ALC was produced from the resulting mixture, quicklime, ordinary Portland cement and gypsum dihydrate under the mixing conditions shown in Table 1.
As shown in Table 2, the compressive strength was smaller than that of the example, the dry shrinkage was as large as 0.035%, and cracks were observed after 8 weeks of production.

【0037】[0037]

【表1】 なお、上記のすべての実施例及び比較例に使用した群馬
県大間々産珪石成分中のSiO2分は94重量%であ
り、栃木県粟野町産珪石成分中のSiO2分は92重量
%であった。
[Table 1] The SiO 2 content in the silica component from Oma, Gunma Prefecture used in all the above Examples and Comparative Examples was 94% by weight, and the SiO 2 content in the silica stone component from Awano Town, Tochigi Prefecture was 92% by weight. Was.

【0038】表1において、大間々産珪石と粟野町産珪
石の重量%は全珪酸質原料(すなわち全珪石)のうちの
割合であり、珪石、生石灰、セメント及び石膏の重量%
は全固形分中の割合である。また、セメント種類におい
て、普通は普通ポルトランドセメントを示し、早強は早
強ポルトランドセメントを示す。
In Table 1, the weight percentages of the Oma-tsuma and Awano-machi silica stones are percentages of the total siliceous raw material (ie, total silica stone), and the weight percentages of silica stone, quicklime, cement and gypsum
Is the ratio in the total solid content. In addition, the cement type usually indicates ordinary Portland cement, and the early strength indicates the early Portland cement.

【0039】[0039]

【表2】 以上のように、各実施例は各比較例に比べてALCパネ
ル製造後8週間たっても亀裂の発生がなく、この値は、
実質的に各実施例のALCパネルが長期的使用に耐えう
ることを示す。
[Table 2] As described above, in each of the examples, no crack was generated even after 8 weeks from the production of the ALC panel as compared with each of the comparative examples.
This shows that the ALC panels of the respective examples can substantially endure long-term use.

【0040】[0040]

【発明の効果】本発明のALCの製造方法によれば、珪
酸質原料として使用困難な平均石英結晶粒径の小さい珪
石、特に入手が容易で安価な10μm未満の珪石を、乾
燥収縮率等のALCの品質を低下させることなくかなり
多量に使用することができるようになる。また、早強セ
メントの使用を必ずしも必要とせす、普通セメントの使
用で充分な品質のALCが得られるようになる。その結
果、ALCおよびそのパネルを安価に製造可能になると
ともに、亀裂発生等が少なく、従来使用されている平均
石英結晶粒径が10μm以上の大きい珪石を100%使
用したALCパネルと同等の品質のものが得られる。
According to the method for producing ALC of the present invention, silica having a small average quartz crystal grain size which is difficult to use as a siliceous raw material, in particular, silica which is easily available and inexpensive and has a particle size of less than 10 μm, can be dried at a low shrinkage ratio. A considerable amount can be used without deteriorating the quality of ALC. Also, the use of ordinary cement, which does not necessarily require the use of early-strength cement, can provide ALC of sufficient quality. As a result, the ALC and its panel can be manufactured at a low cost, and the crack generation and the like are small, and the quality of the ALC panel is the same as that of a conventionally used ALC panel using 100% of large silica having an average quartz crystal grain size of 10 μm or more. Things are obtained.

【0041】また、本発明のALCパネルは、乾燥収縮
率がかなり小さいため、亀裂の発生が起こりにくく、か
つ曲げ強度も大きいものとなる。
Further, since the ALC panel of the present invention has a considerably small dry shrinkage, cracks are unlikely to occur and the bending strength is high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 基敬 愛知県尾張旭市下井町下井2035番地 株式 会社材テクノ研究所内 Fターム(参考) 4G012 MB23 PA04  ──────────────────────────────────────────────────続 き Continued from the front page (72) Inventor Mototaka Niwa 2035 Shimoi, Shioimachi, Owariasahi City, Aichi Prefecture F-term in the Materials and Technological Research Laboratories Co., Ltd. 4G012 MB23 PA04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】珪石を主成分とする珪酸質原料と石灰質原
料とからなる主原料に水、石膏及び発泡剤を加えてスラ
リーと成し、それを型枠に注入した後、成形された半硬
化体をオートクレーブ養生する軽量気泡コンクリートの
製造方法において、 前記珪酸質原料中の珪石として、平均石英結晶粒径が1
0μm未満の珪石と10μm〜500μmの珪石を混合
してその混合珪石の平均石英結晶粒径を15μm〜30
0μmとするとともに、前記10μm未満の珪石の混合
割合を60重量%以下にした混合珪石を使用することを
特徴とする軽量気泡コンクリートの製造方法。
1. A slurry obtained by adding water, gypsum and a foaming agent to a main raw material comprising a siliceous raw material mainly composed of silica and a calcareous raw material, forming a slurry, injecting the slurry into a mold, and forming a slurry. A method for producing lightweight cellular concrete in which a cured product is cured by autoclaving, wherein the silica in the siliceous raw material has an average quartz crystal grain size of 1
A mixture of silica having a particle size of less than 0 μm and silica having a particle size of 10 μm to 500 μm has an average quartz crystal grain size of 15 μm to 30 μm.
A method for producing lightweight cellular concrete, characterized in that a mixed silica having a mixing ratio of silica of less than 10 μm and 60 wt% or less is used.
【請求項2】前記混合珪石の使用割合が、前記珪酸質原
料の70〜100重量%とする請求項1記載の軽量気泡
コンクリートの製造方法。
2. The method for producing lightweight cellular concrete according to claim 1, wherein the mixed silica is used in an amount of 70 to 100% by weight of the siliceous raw material.
【請求項3】前記平均石英結晶粒径が10μm未満の珪
石および10μm〜500μmの珪石中のSiO2含有
量が85重量%以上である請求項1または2記載の軽量
気泡コンクリートの製造方法。
3. The method for producing lightweight cellular concrete according to claim 1, wherein the SiO 2 content in the silica stone having an average quartz crystal grain size of less than 10 μm and in the silica stone having an average crystal grain size of 10 μm to 500 μm is 85% by weight or more.
【請求項4】前記石膏は、前記スラリーの固形分に対し
2〜8重量%加える請求項1、2または3記載の軽量気
泡コンクリートの製造方法。
4. The method for producing lightweight cellular concrete according to claim 1, wherein the gypsum is added in an amount of 2 to 8% by weight based on the solid content of the slurry.
【請求項5】乾燥収縮率0.03%以下、全成分中の未
反応珪石のうち平均石英結晶粒径10μm未満の珪石が
5〜50重量%であることを特徴とする軽量気泡コンク
リートパネル。
5. A lightweight cellular concrete panel characterized in that the dry shrinkage is 0.03% or less, and 5-50% by weight of unreacted silica in all components has an average quartz crystal grain size of less than 10 μm.
JP19532099A 1999-07-09 1999-07-09 Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same Pending JP2001019571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19532099A JP2001019571A (en) 1999-07-09 1999-07-09 Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19532099A JP2001019571A (en) 1999-07-09 1999-07-09 Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same

Publications (2)

Publication Number Publication Date
JP2001019571A true JP2001019571A (en) 2001-01-23
JP2001019571A5 JP2001019571A5 (en) 2006-06-08

Family

ID=16339215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19532099A Pending JP2001019571A (en) 1999-07-09 1999-07-09 Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same

Country Status (1)

Country Link
JP (1) JP2001019571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084365A (en) * 2005-09-21 2007-04-05 Sumitomo Kinzoku Kozan Siporex Kk Method for producing lightweight cellular concrete
JP2007099546A (en) * 2005-10-03 2007-04-19 Sumitomo Kinzoku Kozan Siporex Kk Method of producing autoclaved light-weight concrete
JP2015168604A (en) * 2014-03-07 2015-09-28 旭化成建材株式会社 Autoclaved lightweight concrete
KR20200058836A (en) * 2018-11-20 2020-05-28 (주) 에스와이씨 Structure Pannel With Insulation Function Using Slag Mixed Type Calcium Silicated Inorganic Insulation And Connecting Unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084365A (en) * 2005-09-21 2007-04-05 Sumitomo Kinzoku Kozan Siporex Kk Method for producing lightweight cellular concrete
JP2007099546A (en) * 2005-10-03 2007-04-19 Sumitomo Kinzoku Kozan Siporex Kk Method of producing autoclaved light-weight concrete
JP4628237B2 (en) * 2005-10-03 2011-02-09 住友金属鉱山シポレックス株式会社 Method for producing lightweight cellular concrete
JP2015168604A (en) * 2014-03-07 2015-09-28 旭化成建材株式会社 Autoclaved lightweight concrete
KR20200058836A (en) * 2018-11-20 2020-05-28 (주) 에스와이씨 Structure Pannel With Insulation Function Using Slag Mixed Type Calcium Silicated Inorganic Insulation And Connecting Unit
KR102136467B1 (en) 2018-11-20 2020-07-21 (주) 에스와이씨 Structure Pannel With Insulation Function Using Slag Mixed Type Calcium Silicated Inorganic Insulation And Connecting Unit

Similar Documents

Publication Publication Date Title
Klyuev et al. The micro silicon additive effects on the fine-grassed concrete properties for 3-D additive technologies
EP0809613B1 (en) Fly ash cementitious material
CN111792902B (en) High-strength water-resistant phosphogypsum composite cementing material and preparation method thereof
JP2009528240A (en) Masonry member matrix and manufacturing method thereof
CN110642582A (en) Geopolymer-based concrete for block energy storage tower and preparation method thereof
CN110066160B (en) Artificial granite composite magnesium oxysulfate cementing material and preparation method and application thereof
Amin et al. Properties and microstructure of high strength concrete incorporating different supplementary cementitious materials
CN111620624A (en) Self-compacting concrete and preparation method thereof
CN111943626A (en) Gypsum-based wall leveling material and preparation method and use method thereof
EP2878585B1 (en) Method for the manufacturing of cementitious C-S-H seeds
CN1223235A (en) Improved processing additives for hydraulic cements
CN111548109A (en) Preparation method of natural brucite fiber modified lime-metakaolin composite mortar
JP2001019571A (en) Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same
CN114349418B (en) Fiber reinforced cement-based composite marble backing mortar and preparation method thereof
JP2004284873A (en) Hydraulic complex material
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
JP2002114562A (en) Hydrothermal hardened body and method for manufacturing the same
CN112225485A (en) Nucleating agent, copper tailing autoclaved aerated concrete product, preparation method and application
JP6933422B2 (en) How to manufacture lightweight cellular concrete panels
CN110642576B (en) Insulating expansion grouting mortar, preparation method thereof and application thereof in prefabricated staircase construction with adjustable step height
CN117209242B (en) Short-curing high-durability autoclaved aerated concrete and preparation method thereof
JPH08259348A (en) Production of light-weight foamed concrete
US8435342B2 (en) Concrete composition
JPH08259347A (en) Production of light-weight foamed concrete
JPH09301784A (en) Production of porous sound-absorbing material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090401