JP2009057225A - Method for manufacturing autoclaved lightweight concrete - Google Patents

Method for manufacturing autoclaved lightweight concrete Download PDF

Info

Publication number
JP2009057225A
JP2009057225A JP2007223968A JP2007223968A JP2009057225A JP 2009057225 A JP2009057225 A JP 2009057225A JP 2007223968 A JP2007223968 A JP 2007223968A JP 2007223968 A JP2007223968 A JP 2007223968A JP 2009057225 A JP2009057225 A JP 2009057225A
Authority
JP
Japan
Prior art keywords
raw materials
silica
raw material
alc
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007223968A
Other languages
Japanese (ja)
Other versions
JP5030061B2 (en
Inventor
Fumiaki Matsushita
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2007223968A priority Critical patent/JP5030061B2/en
Publication of JP2009057225A publication Critical patent/JP2009057225A/en
Application granted granted Critical
Publication of JP5030061B2 publication Critical patent/JP5030061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing ALC where ALC excellent in properties such as strength and the like can be stably manufactured whatever raw materials used in ALC production are blended. <P>SOLUTION: In the method for manufacturing autoclaved lightweight concrete where a siliceous raw material and a calcareous raw material are main raw materials, the accumulation 30% particle diameter of a silica stone in the main raw materials is adjusted according to a molar ratio Ca/Si in blended all raw materials. In that case, it is favorable that the accumulation 30% particle diameter of the silica stone in the main raw materials is adjusted to be satisfied with an equation denoted as Y=120-160X±10 when a molar ratio Ca/Si in the blended all raw materials is described as X and the accumulation 30% particle diameter of the silica stone in the main raw materials is described as Y μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、建築物の壁、屋根、床などに使用される軽量気泡コンクリート(ALC)の製造方法に関する。   The present invention relates to a method for producing lightweight cellular concrete (ALC) used for building walls, roofs, floors and the like.

軽量気泡コンクリート(ALC)は、内部に気泡と細孔を含み、絶乾かさ比重が0.5程度と非常に軽量でありながら、強度が比較的高いという優れた性質を有している。このように、ALCは軽量であると同時に、比較的強度が高く、耐火性、断熱性、施工性にも優れているため、建築材料などとして広く使用されている。   Lightweight cellular concrete (ALC) has excellent properties that it contains bubbles and pores inside, has an extremely dry specific gravity of about 0.5, and is relatively light, yet has a relatively high strength. Thus, ALC is widely used as a building material and the like because it is lightweight and has relatively high strength and excellent fire resistance, heat insulation, and workability.

ALCの製造は、珪石等の珪酸質原料とセメントや生石灰等の石灰質原料を主原料とし、これら主原料の微粉末に水及び発泡剤としてのアルミニウム粉末等の添加物を加えてスラリー状とした後、型枠に投入してアルミニウム粉末の反応により発泡させ、且つ石灰質原料の反応により半硬化させる。次に、所定寸法に切断し、オートクレーブによる高温高圧水蒸気養生を行って、ALCが製造されている。   The production of ALC is mainly made of siliceous raw materials such as silica and calcareous raw materials such as cement and quicklime, and water and additives such as aluminum powder as a blowing agent are added to the fine powder of these main raw materials to form a slurry. Thereafter, it is put into a mold and foamed by a reaction of aluminum powder, and semi-cured by a reaction of a calcareous raw material. Next, it cut | disconnects to a predetermined dimension and performs high temperature high pressure steam curing by an autoclave, and ALC is manufactured.

ALCの強度を発現させているのは、オートクレーブによる高温高圧水蒸気養生である。この養生過程において、珪石等の珪酸質原料とセメントや生石灰等の石灰質原料から、珪酸カルシウム水和物のトバモライトが生成する。トバモライトの生成過程であるオートクレーブ中では、珪石の溶解が反応を律速することが広く知られている。   It is the high temperature and high pressure steam curing by autoclave that develops the strength of ALC. In this curing process, calcium silicate hydrate tobermorite is generated from siliceous raw materials such as silica and calcareous raw materials such as cement and quicklime. In an autoclave, which is a tobermorite production process, it is widely known that dissolution of silica stones controls the reaction.

従って、珪石の粒度、単結晶サイズ、純度、不純物の種類と含有量などが、得られるALCの物性値に大きな影響を持っている。特に珪石の粒度については、微粒分による結晶核の生成、中粒分による結晶の成長、粗粒分が残存することによる骨材効果など、それぞれ物性値に影響を与えることが分っている。そのため、珪石の粒度を規定することによって、物性的に優れたALCを製造する方法が種々検討されている。   Therefore, the particle size, single crystal size, purity, type and content of impurities, etc. of the silica have a great influence on the physical properties of the obtained ALC. In particular, it has been found that the particle size of quartzite affects the physical property values such as generation of crystal nuclei by fine particles, growth of crystals by medium particles, and aggregate effect due to remaining coarse particles. Therefore, various methods for producing ALC having excellent physical properties by regulating the particle size of silica have been studied.

例えば、特開昭59−128254公報には珪石の粒度を重量平均径で15μm以下とする方法が記載され、特開平4−197605号公報には珪砂を2000〜2,500ブレーンと6,000〜12,000ブレーンにピークを有する分布とする方法が記載されている。また、特開2001−019571号公報には、平均石英結晶粒径が10μm未満の珪石と10〜500μmの珪石を混合し、その混合珪石の平均石英結晶粒径を15〜300μmとすると共に、10μm未満の珪石の混合割合を60重量%以下とする方法が提案されている。   For example, Japanese Patent Laid-Open No. 59-128254 describes a method for adjusting the particle size of silica stone to 15 μm or less in weight average diameter, and Japanese Patent Laid-Open No. 4-197605 discloses silica sand from 2000 to 2,500 branes and 6,000 to 6,000. A method is described in which the distribution has a peak at 12,000 branes. Japanese Patent Application Laid-Open No. 2001-019571 discloses a method in which silica having an average quartz crystal grain size of less than 10 μm and 10-500 μm silica are mixed, the average quartz crystal grain size of the mixed silica is 15 to 300 μm, and 10 μm. A method has been proposed in which the mixing ratio of less than or equal to silica is 60% by weight or less.

しかしながら、これら従来の方法においては、ALC製造で使用される原料配合の違いは全く考慮されていない。そのため、ある原料配合条件では良好な珪石粒度分布が、他の原料配合条件では良好なALCの製造に適していない場合がある。
特開昭59−128254号公報 特開平4−197605号公報 特開2001−019571号公報
However, in these conventional methods, the difference in the raw material composition used in ALC production is not considered at all. For this reason, a good silica particle size distribution may not be suitable for the production of a good ALC under some raw material blending conditions.
JP 59-128254 A JP-A-4-197605 JP 2001-019571 A

本発明は、ALC製造で使用される原料配合の如何にかかわらず、強度等の諸物性に優れたALCを安定して製造することができる方法を提供することを目的とするものである。   An object of this invention is to provide the method which can manufacture stably ALC excellent in various physical properties, such as intensity | strength, irrespective of the raw material mixing | blending used by ALC manufacture.

上記目的を達成するため、本発明が提供する軽量気泡コンクリートの製造方法は、珪酸質原料と石灰質原料を主原料とする軽量気泡コンクリートの製造方法において、該主原料中の珪石の累積30%粒径を全原料配合中のCa/Siモル比に応じて調整することを特徴とするものである。   In order to achieve the above object, a lightweight cellular concrete manufacturing method provided by the present invention is a lightweight cellular concrete manufacturing method using a siliceous raw material and a calcareous raw material as main raw materials, and a cumulative 30% grain of silica stone in the main raw material. The diameter is adjusted according to the Ca / Si molar ratio in the total raw material composition.

上記本発明による軽量気泡コンクリートの製造方法においては、前記Ca/Siモル比をX、珪石の累積30%粒径をY(μm)とするとき、Y=120−160X±10の関係となるように調整することが好ましい。   In the method for producing lightweight aerated concrete according to the present invention, when the Ca / Si molar ratio is X and the cumulative 30% particle size of silica is Y (μm), the relationship is Y = 120−160X ± 10. It is preferable to adjust to.

本発明によれば、ALC製造で使用される原料配合の如何にかかわらず、強度等の諸物性に優れたALCを安定して製造することができる。   According to the present invention, ALC excellent in various physical properties such as strength can be stably produced regardless of the raw material composition used in ALC production.

高温高圧の水蒸気養生過程において、珪石等の珪酸質原料とセメントや生石灰等の石灰質原料とから、珪酸カルシウム水和物であるトバモライトが生成し、このトバモライトによりALCの強度が発現する。トバモライトは、化学式では5CaO・6SiO・5HOであり、Ca/Siモル比の理論値は5/6=0.83である。尚、ALCの工業生産では、オートクレーブ養生に要する時間を短縮するため、Ca/Siモル比は上記理論値0.83よりも小さめに、即ち0.3〜0.7の範囲に設定されることがほとんどである。 In the high temperature and high pressure steam curing process, tobermorite, which is a calcium silicate hydrate, is produced from a siliceous raw material such as silica and a calcareous raw material such as cement and quicklime, and the strength of ALC is expressed by this tobermorite. Tobermorite is 5CaO · 6SiO 2 · 5H 2 O in chemical formula, and the theoretical value of the Ca / Si molar ratio is 5/6 = 0.83. In the ALC industrial production, the Ca / Si molar ratio should be set smaller than the theoretical value 0.83, that is, in the range of 0.3 to 0.7 in order to shorten the time required for autoclave curing. Is almost.

本発明者は、様々な原料配合において、粒度の異なる珪石を適宜使用して製造したALCサンプルを評価した。その結果、全原料配合中のCa/Siモル比に応じて、主原料中の適切な珪石粒度の範囲が異なることを見出した。即ち、Ca/Siモル比が0.3〜0.4程度と低い場合には、オートクレーブ養生中での溶解量の少ない粗い珪石粒度が適しており、逆にCa/Siモル比が0.6〜0.7程度と高い場合には、オートクレーブ養生中での溶解量の多い細かい珪石粒度が適していることが分った。   The present inventor evaluated ALC samples produced by appropriately using silica stones having different particle sizes in various raw material blends. As a result, it was found that the range of the appropriate silica particle size in the main raw material varies depending on the Ca / Si molar ratio in the total raw material blend. That is, when the Ca / Si molar ratio is as low as about 0.3 to 0.4, a coarse silica particle size with a small amount of dissolution in the autoclave curing is suitable, and conversely, the Ca / Si molar ratio is 0.6. When it was as high as about 0.7, it was found that a fine silica particle size with a large amount of dissolution in the autoclave curing was suitable.

加えて、珪石粒度の指標として、ブレーン値や、累積20%、累積30%、累積40%、累積50%、累積60%の粒径、あるいは30μm以下、40μm以下、50μm以下の頻度など、様々な指標を検討した結果、累積30%粒径が指標として最も適していることを見出した。ここで、累積30%粒径とは、珪石の粒度分布において、細粒側から各々の粒径での重量を順次累積し、その累積した重量比が全体重量の30%に達したときの粒径を意味する。   In addition, as an index of silica particle size, there are various values such as brane value, cumulative 20%, cumulative 30%, cumulative 40%, cumulative 50%, cumulative 60% particle size, or frequency of 30μm, 40μm, 50μm or less As a result of examining various indices, it was found that a cumulative 30% particle size is most suitable as an index. Here, the cumulative 30% particle size means the particle size distribution when the weight at each particle size is sequentially accumulated from the fine particle side in the silica particle size distribution, and the accumulated weight ratio reaches 30% of the total weight. Means diameter.

即ち、全原料配合中のCa/Siモル比をX、主原料中の珪石の累積30%粒径をY(μm)としたとき、Y=120−160X±10の関係を満足するように、全原料配合中のCa/Siモル比に応じて主原料中の珪石の累積30%粒径を調整することが好ましい。尚、珪石の累積30%粒径の調整は、粒度の異なる2種類以上の珪石を混合して簡単に調整することができる。   That is, when the Ca / Si molar ratio in all raw materials is X and the cumulative 30% particle size of silica in the main raw material is Y (μm), the relationship of Y = 120−160X ± 10 is satisfied. It is preferable to adjust the cumulative 30% particle size of the silica in the main raw material according to the Ca / Si molar ratio in the total raw material blend. In addition, the adjustment of the cumulative 30% particle size of silica can be easily adjusted by mixing two or more types of silica with different particle sizes.

珪酸質原料として愛知県の同一鉱山から産出した珪石を、予めボールミルにして粉砕した後、分級して5種類の粒度とした。これら5種類の粒度の珪石における累積30%粒径は、それぞれ4.5μm、10.2μm、25.4μm、47.7μm、85.4μmであった。これら5種類の珪石を適宜混合して、任意の累積30%粒径が得られるように粒度調整した。   Silica stones produced from the same mine in Aichi Prefecture as a siliceous raw material were pulverized in advance with a ball mill and classified into five types of particle sizes. The cumulative 30% particle size of these five types of silica was 4.5 μm, 10.2 μm, 25.4 μm, 47.7 μm, and 85.4 μm, respectively. These five types of silica were mixed as appropriate to adjust the particle size so that an arbitrary cumulative 30% particle size was obtained.

次に、下記表1に示す実施例1〜38及び比較例1〜29の各条件となるように、全原料配合中のCa/Siモル比に応じて、それぞれの累積30%粒径を有する珪石と、生石灰、普通ポルトランドセメント、繰り返し原料を混合した。これら固体原料の合計100重量部に、水60重量部と少量のアルミニウム粉末及び界面活性剤を加え、混練してスラリーを作製した。   Next, according to the Ca / Si molar ratio in all the raw material mix | blends, it has each cumulative 30% particle size so that it may become each condition of Examples 1-38 and Comparative Examples 1-29 shown in following Table 1. Silica stone, quicklime, ordinary Portland cement, and repeated raw materials were mixed. 60 parts by weight of water, a small amount of aluminum powder and a surfactant were added to 100 parts by weight of these solid raw materials, and kneaded to prepare a slurry.

Figure 2009057225
Figure 2009057225

上記各スラリーを型枠に注入し、発泡させると共に半硬化させ、切断した後、180℃、10気圧のオートクレーブにおいて6時間の高温高圧水蒸気養生を施した。得られた各ALCブロックを、100mm角の立方体に成形し、JISA5416に準じて圧縮強度を測定した。得られた圧縮強度を下記表2に示す。   Each slurry was poured into a mold, foamed, semi-cured, cut, and then subjected to high temperature and high pressure steam curing for 6 hours in an autoclave at 180 ° C. and 10 atmospheres. Each of the obtained ALC blocks was molded into a 100 mm square cube, and the compressive strength was measured according to JIS A5416. The obtained compressive strength is shown in Table 2 below.

Figure 2009057225
Figure 2009057225

ALCの圧縮強度のJISA5416における規格値は3.0N/mm以上であるが、通常は安全側管理として4.0N/mm以上の確保を目安としている。そこで、圧縮強度の評価は、4.0N/mm以上を「適」、4.0N/mm未満を「不適」と判定した。この評価による表2の結果を、図1に「適」を○及び「不適」を×としてプロットした。 The standard value of ALC compression strength according to JISA5416 is 3.0 N / mm 2 or more, but usually 4.0 N / mm 2 or more is a standard for safety management. Therefore, in the evaluation of the compressive strength, 4.0 N / mm 2 or more was determined as “appropriate” and less than 4.0 N / mm 2 was determined as “unsuitable”. The results of Table 2 by this evaluation are plotted in FIG. 1 with “appropriate” as ◯ and “unsuitable” as x.

これらの結果から、原料である珪石の累積30%粒径を全原料配合のCa/Siモル比に応じて調整することで、圧縮強度など優れた性質を持つALCが得られることが認められる。即ち、全原料配合のCa/Siモル比をX、珪石の累積30%粒径をY(μm)とすると、図1における「適」の範囲はY=120−160X±10で示されることが分った。   From these results, it is recognized that an ALC having excellent properties such as compressive strength can be obtained by adjusting the cumulative 30% particle size of the raw material silica according to the Ca / Si molar ratio of all raw materials. That is, if the Ca / Si molar ratio of all raw materials is X and the cumulative 30% particle size of silica is Y (μm), the range of “suitable” in FIG. 1 is represented by Y = 120−160X ± 10. I understand.

実施例と比較例におけるCa/Siモル比と使用した珪石の累積30%粒径の関係を、得られたALCの評価が適のものを○及び不適のものを×としてプロットしたグラフである。It is the graph which plotted the relationship of Ca / Si molar ratio in an Example and a comparative example, and the accumulation 30% particle diameter of the used silica stone as (circle) in which evaluation of the obtained ALC was appropriate, and (x) inadequate.

Claims (2)

珪酸質原料と石灰質原料を主原料とする軽量気泡コンクリートの製造方法において、該主原料中の珪石の累積30%粒径を全原料配合中のCa/Siモル比に応じて調整することを特徴とする軽量気泡コンクリートの製造方法。   In the method for producing lightweight aerated concrete using a siliceous raw material and a calcareous raw material as main raw materials, the cumulative 30% particle size of silica in the main raw material is adjusted according to the Ca / Si molar ratio in all raw material blends. A method for producing lightweight cellular concrete. 前記Ca/Siモル比をX、珪石の累積30%粒径をY(μm)とするとき、Y=120−160X±10の関係に調整することを特徴とする、請求項1に記載の軽量気泡コンクリートの製造方法。   The light weight according to claim 1, wherein when the Ca / Si molar ratio is X and the cumulative 30% particle size of silica is Y (μm), the relationship is adjusted to Y = 120−160X ± 10. A method for producing cellular concrete.
JP2007223968A 2007-08-30 2007-08-30 Method for producing lightweight cellular concrete Active JP5030061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223968A JP5030061B2 (en) 2007-08-30 2007-08-30 Method for producing lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223968A JP5030061B2 (en) 2007-08-30 2007-08-30 Method for producing lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JP2009057225A true JP2009057225A (en) 2009-03-19
JP5030061B2 JP5030061B2 (en) 2012-09-19

Family

ID=40553315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223968A Active JP5030061B2 (en) 2007-08-30 2007-08-30 Method for producing lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP5030061B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321609A (en) * 1993-05-19 1994-11-22 Kajima Corp Production of moisture adjusting building material
JP2000351663A (en) * 1999-06-07 2000-12-19 Inax Corp Production of unburned cured product
JP2001302325A (en) * 2000-04-18 2001-10-31 Sumitomo Kinzoku Kozan Siporex Kk Production process of alc(autoclaved lightweight concrete)
JP2006069868A (en) * 2004-09-03 2006-03-16 Sumitomo Kinzoku Kozan Siporex Kk Method of producing lightweight cellular concrete having excellent carbonation resistance
JP2007099546A (en) * 2005-10-03 2007-04-19 Sumitomo Kinzoku Kozan Siporex Kk Method of producing autoclaved light-weight concrete

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321609A (en) * 1993-05-19 1994-11-22 Kajima Corp Production of moisture adjusting building material
JP2000351663A (en) * 1999-06-07 2000-12-19 Inax Corp Production of unburned cured product
JP2001302325A (en) * 2000-04-18 2001-10-31 Sumitomo Kinzoku Kozan Siporex Kk Production process of alc(autoclaved lightweight concrete)
JP2006069868A (en) * 2004-09-03 2006-03-16 Sumitomo Kinzoku Kozan Siporex Kk Method of producing lightweight cellular concrete having excellent carbonation resistance
JP2007099546A (en) * 2005-10-03 2007-04-19 Sumitomo Kinzoku Kozan Siporex Kk Method of producing autoclaved light-weight concrete

Also Published As

Publication number Publication date
JP5030061B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2970003B1 (en) High-strength geopolymer composite cellular concrete
US9039830B2 (en) Cement composition containing dune sand and limestone powder, concrete products and method for making concrete products
JP4911580B2 (en) Low specific gravity lightweight foam concrete and method for producing the same
KR20120129951A (en) Hydraulic lime composition
KR20120017486A (en) Paste composition for marble and a method for manufacturing marble using thereof
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
RU2378218C2 (en) Raw composition for manufacturing of construction materials and products
JP4628237B2 (en) Method for producing lightweight cellular concrete
EP2878585A1 (en) Method for the manufacturing of cementitious C-S-H seeds
RU2378228C1 (en) Cellular concrete of autoclave hardening
JP4786272B2 (en) Method for producing lightweight cellular concrete
US9957197B1 (en) Porous geopolymers
JP5030061B2 (en) Method for producing lightweight cellular concrete
JP2009057227A (en) Method for manufacturing autoclaved lightweight concrete
JP2007217208A (en) Method of manufacturing xonotlite based calcium silicate hydrate porous formed body
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
JP2002114562A (en) Hydrothermal hardened body and method for manufacturing the same
KR101117780B1 (en) Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust
JP2001206762A (en) Calcium silicate-based formed body excellent in frost damage resistance and workability
JP6933422B2 (en) How to manufacture lightweight cellular concrete panels
KR20110072778A (en) Paste composition for manufacturing artificial stone, method of manufacturing artificial stone using the paste composition and inoragnic binder artificial stone manufactured the method
RU2375303C2 (en) Preparation method of ultrafine bonding material
JP2011020883A (en) Autoclaved lightweight cellular concrete and method for producing the same
JP2007131488A (en) Calcium silicate hydrate solidification product and its synthesis method
KR100212032B1 (en) Lightweight concrete composition and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

R150 Certificate of patent or registration of utility model

Ref document number: 5030061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3