JP7398225B2 - lightweight aerated concrete - Google Patents

lightweight aerated concrete Download PDF

Info

Publication number
JP7398225B2
JP7398225B2 JP2019159580A JP2019159580A JP7398225B2 JP 7398225 B2 JP7398225 B2 JP 7398225B2 JP 2019159580 A JP2019159580 A JP 2019159580A JP 2019159580 A JP2019159580 A JP 2019159580A JP 7398225 B2 JP7398225 B2 JP 7398225B2
Authority
JP
Japan
Prior art keywords
less
mass
weight
parts
insoluble residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019159580A
Other languages
Japanese (ja)
Other versions
JP2020040871A (en
Inventor
晃博 小川
晴義 土屋
裕隆 高瀬
由紀子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp, Asahi Kasei Homes Corp filed Critical Asahi Kasei Construction Materials Corp
Publication of JP2020040871A publication Critical patent/JP2020040871A/en
Application granted granted Critical
Publication of JP7398225B2 publication Critical patent/JP7398225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、軽量気泡コンクリート(以下、ALCともいう。)に関する。より詳しくは、本発明は、表面目地(切削溝)加工における微欠損が少なく、意匠性の高い表面剥離加工特性に優れる、比重0.2以上0.45未満の低比重の軽量気泡コンクリート(以下、低比重ALCともいう。)に関する。 The present invention relates to lightweight aerated concrete (hereinafter also referred to as ALC). More specifically, the present invention is directed to lightweight aerated concrete (hereinafter referred to as "lightweight cellular concrete") with a specific gravity of 0.2 or more and less than 0.45, which has few micro-defects in surface joint (cutting groove) processing and has excellent surface peeling processing characteristics with high design. , also referred to as low specific gravity ALC).

ALCは、嵩比重が0.45~0.55と軽量でありながら、結晶性の高いトバモライト(5CaO・6SiO2・5H2O)を多量に含むことから、建築材料として必要な強度を有し、長期の耐候性、耐火性、耐不朽性に優れ、軽量、かつ、加工性に優れるために施工が容易であり、建築物の外壁材、床材、内壁材、屋根材等として広く利用されており、例えば、建築物の設計仕様に基づいて各種寸法に切断したり、長辺小口面に溝を切削加工したり、縁部の面取り加工等を施したりする場合がある。さらに、近年においては、例えば、図3に示すように、ALCの表面に複雑なデザイン模様を切削加工や剥離加工により施し、高付加価値化等を図る場合もある。
ALCは、セメント及び珪石粉を主原料とし、これに必要により生石灰粉、石膏等を加え、水を添加してスラリー状とし、大気圧下でアルミニウム粉末等の気泡剤により発泡した後、型枠で成形してオートクレーブ養生して製造される。ALCの圧縮強度は、通常、4~5N/mm2の範囲にあり、曲げ強度は1~1.5N/mm2の範囲にある。
Although ALC is lightweight with a bulk specific gravity of 0.45 to 0.55, it has the strength necessary as a building material because it contains a large amount of highly crystalline tobermorite (5CaO 6SiO 2 5H 2 O). It has excellent long-term weather resistance, fire resistance, and immortality, and is lightweight and easy to construct due to its excellent workability, and is widely used as exterior wall materials, floor materials, interior wall materials, roofing materials, etc. of buildings. For example, it may be cut into various dimensions based on the design specifications of the building, grooves may be cut on the long sides, edges may be chamfered, etc. Furthermore, in recent years, for example, as shown in FIG. 3, complex designs are sometimes applied to the surface of ALC by cutting or peeling to increase added value.
ALC uses cement and silica powder as the main raw materials, and if necessary, quicklime powder, gypsum, etc. are added to this, and water is added to form a slurry. After foaming with a foaming agent such as aluminum powder under atmospheric pressure, it is made into a mold. It is manufactured by molding and curing in an autoclave. The compressive strength of ALC is usually in the range of 4 to 5 N/mm 2 and the bending strength is in the range of 1 to 1.5 N/mm 2 .

通常のコンクリートは、比重が2.0程度であるのに対し、ALCは比重が0.45~0.55であり、その軽量化は内部に多くの空隙を含有させることによって実現されている。ALCでは、体積分率で約80%が空隙であるが、0.2以上0.45未満の低比重ALCでは、通常、従来のALCよりもさらに空隙量が多い。 While normal concrete has a specific gravity of about 2.0, ALC has a specific gravity of 0.45 to 0.55, and its weight reduction is achieved by containing many voids inside. In ALC, about 80% of the volume fraction is voids, but low specific gravity ALCs of 0.2 or more and less than 0.45 usually have a larger amount of voids than conventional ALCs.

以下の特許文献1には、珪酸質原料として用いる珪石の粒度を調整することにより、強度などの諸物性に優れたALCを製造できる方法を提供することを目的として、珪石原料として用いる粉砕後の珪石が、粒径10μm未満を微粒、10μm以上100μm未満を中粒、100μm以上を粗粒と規定したとき、微粒、中粒、粗粒の全てを含み、粗粒の質量百分率が9~15%で、微粒/中粒の質量比が0.9~1.2であることを特徴とするALCの製造方法が開示されている。
特許文献1には、微粒と中粒の質量比を0.9~1.2に調整することで、トバモライトの結晶核の生成と結晶成長とがバランス良く促進され、十分なトバモライトが生成すると同時に、粗粒の質量百分率を9~15%とすることによって、残留する粗粒が骨材効果を果たし、これらが相乗してALCの強度が向上するとの考察がなされている。
特許文献1に記載されたALCは、4.8N/mm以上の圧縮強度を達成しているものの、原料としての粉砕珪石の粗粒を9質量%以上含むため、以下に説明する不溶残分の比率は全固形分に対して35質量%程度、不溶残分中の粗粒珪石は10質量%以上であると推定され、また、その絶乾嵩比重は0.5程度である。すなわち、特許文献1には、比重0.2~0.45未満の低比重ALCは開示されておらず、また、低比重ALCにおける表面目地加工における微欠損の発生の問題や表面意匠性の高い剥離加工特性については一切記載されていない。
The following Patent Document 1 discloses a method for producing ALC with excellent physical properties such as strength by adjusting the particle size of silica stone used as a silica raw material. When silica stone is defined as fine grains with a grain size of less than 10 μm, medium grains with a grain size of 10 μm or more and less than 100 μm, and coarse grains with a grain size of 100 μm or more, it includes all of fine grains, medium grains, and coarse grains, and the mass percentage of coarse grains is 9 to 15%. discloses a method for producing ALC characterized in that the mass ratio of fine particles to medium particles is 0.9 to 1.2.
Patent Document 1 discloses that by adjusting the mass ratio of fine grains to medium grains to 0.9 to 1.2, the generation of tobermorite crystal nuclei and crystal growth are promoted in a well-balanced manner, and sufficient tobermorite is generated. It has been considered that by setting the mass percentage of coarse particles to 9 to 15%, the remaining coarse particles will act as an aggregate, and these will work together to improve the strength of ALC.
Although the ALC described in Patent Document 1 achieves a compressive strength of 4.8 N/mm 2 or more, it contains 9% by mass or more of coarse particles of crushed silica stone as a raw material, so it contains insoluble residues as described below. The proportion of coarse silica stone in the insoluble residue is estimated to be about 35% by mass based on the total solid content, and 10% by mass or more, and its absolute dry bulk specific gravity is about 0.5. That is, Patent Document 1 does not disclose a low specific gravity ALC with a specific gravity of less than 0.2 to 0.45, and also has problems with the occurrence of micro-defects in surface joint processing in low specific gravity ALC, and problems with high surface design. There is no mention of peeling properties.

以下の特許文献2には、かさ比重が0.45~0.55と軽量でありながら、建築材料として必要な強度を有し、長期の耐候性、耐火性及び耐不朽性に優れるALCにおいて、建築物の設計仕様に基づいて各種寸法に切断したり、長辺小口面に溝を切削加工したり、縁部の面取り加工等を施す場合において発生する欠損やひび割れを防止することを目的として、珪石及び珪砂を主成分とする珪酸質原料と、石灰質原料と、水と、発泡剤と、を含有するALCであって、当該軽量気泡コンクリート中の不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒とした場合に、上記不溶残分における上記粗粒の含有率が0.1~40質量%であり、上記中粒に対する上記微粒の質量比が0.01~0.7であるALCが開示されている。
特許文献2には、粉砕後の珪石及び珪砂の粒径が10μm未満である微粒には、ある一定量まではトバモライトの生成を促す性質があるが(一定量より多くなると逆にトバモライトの生成を阻害する性質がある)、その反面、ALC中の不溶残分が微粒になり、ALCの加工時における欠損やひび割れの発生を増大させる性質があること;粒径が10μm以上100μm未満である中粒には、トバモライトの生成を促す性質があると共に、ALC中の不溶残分も適度な粒径となることにより、ALCの加工時における欠損やひび割れの発生を抑制できること;そして粒径が100μm以上である粗粒には、微粒(ある一定量まで)及び中粒ほど、トバモライトの生成を促す性質はないが、ALC中の不溶残分が粗粒になるため、ALCの加工時における欠損やひび割れの発生を大きく抑制できること;が記載されている。そして、不溶残分中の微粒/中粒質量比として0.1~0.7を教示し、不溶残分中の粗粒の含有率として0.1~40質量%を教示している。また、特許文献2の実施例における不溶残分中の粗粒の含有率は、4.2~19.5質量%である。
特許文献2に記載されたALCは、欠損やひび割れの極めて低い発生率を達成しているものの、原料としての粉砕珪石の粗粒を4.3~17.0質量%含むため、不溶残分比率は全固形分に対して30質量%程度であると推定され、また、その絶乾嵩比重も0.5程度である。すなわち、特許文献2には、比重0.2~0.45未満の低比重ALCは開示されておらず、また、低比重ALCにおける表面目地加工における微欠損の発生の問題や表面意匠性の高い剥離加工特性については一切記載されていない。
Patent Document 2 below describes ALC, which is lightweight with a bulk specific gravity of 0.45 to 0.55, yet has the strength required as a building material, and has excellent long-term weather resistance, fire resistance, and immortality. The purpose is to prevent chips and cracks that occur when cutting into various dimensions based on the design specifications of the building, cutting grooves on the long side edges, chamfering the edges, etc. An ALC containing a siliceous raw material mainly composed of silica stone and silica sand, a calcareous raw material, water, and a blowing agent, in which the particle size of the insoluble residue in the lightweight cellular concrete is less than 10 μm. When fine particles are defined as medium particles with a diameter of 10 μm or more and less than 100 μm, and coarse particles are defined as coarse particles with a diameter of 100 μm or more, the content of the coarse particles in the insoluble residue is 0.1 to 40% by mass, and An ALC in which the mass ratio of the fine particles is 0.01 to 0.7 is disclosed.
Patent Document 2 states that fine particles of silica stone and silica sand with a particle size of less than 10 μm after crushing have the property of promoting the formation of tobermorite up to a certain amount (on the contrary, when the amount exceeds a certain amount, it promotes the formation of tobermorite). On the other hand, the insoluble residue in ALC becomes fine particles, which increases the occurrence of defects and cracks during ALC processing; medium grains with a particle size of 10 μm or more and less than 100 μm has the property of promoting the formation of tobermorite, and the undissolved residue in ALC has an appropriate particle size, thereby suppressing the occurrence of defects and cracks during processing of ALC; Some coarse grains do not have the property of promoting the formation of tobermorite as fine grains (up to a certain amount) and medium grains, but since the insoluble residue in ALC becomes coarse grains, they are less likely to cause defects or cracks during processing of ALC. It is stated that the occurrence can be greatly suppressed. It also teaches that the mass ratio of fine particles to medium particles in the insoluble residue is 0.1 to 0.7, and that the content of coarse particles in the insoluble residue is 0.1 to 40% by mass. Furthermore, the content of coarse particles in the insoluble residue in the Examples of Patent Document 2 is 4.2 to 19.5% by mass.
Although the ALC described in Patent Document 2 achieves an extremely low incidence of defects and cracks, it contains 4.3 to 17.0 mass% of coarse particles of crushed silica stone as a raw material, so the insoluble residue ratio is low. is estimated to be about 30% by mass based on the total solid content, and its absolute dry bulk specific gravity is also about 0.5. That is, Patent Document 2 does not disclose a low specific gravity ALC with a specific gravity of less than 0.2 to 0.45, and also has problems with the occurrence of micro-defects in surface joint processing in low specific gravity ALC, and problems with high surface design. There is no mention of peeling properties.

ところで、近年、建築物のさらなる軽量化への要望、現場作業時の安全性向上や作業者への負担低減の観点から、従来のALCの特長を保持したまま、さらに比重の低い低比重ALCが求められている。低比重ALCとしては、従来よりも気泡剤に起因する気泡の量を多く含有するものが一般的である。低比重化を実現する方法として、気泡を多く含有させると、気泡径が巨大化し、全容積に対する気泡剤による粗大気泡割合が大きくなり、強度の大幅な低下を招く。そこで、熱可塑性樹脂やアルカリ土類金属炭酸塩を含有させたり、比表面積の大きな珪石粉を用いることが提案されているが、嵩比重の低減に伴う圧縮強度の低下をまぬがれず、例えば、嵩比重0.35~0.40では圧縮強度が1.5~3.25N/mm2程度であり、従来のALCと比較して強度が弱いものが一般的である。 By the way, in recent years, from the viewpoint of further weight reduction of buildings, improvement of safety during on-site work, and reduction of burden on workers, low specific gravity ALC, which maintains the features of conventional ALC but has an even lower specific gravity, has been developed. It has been demanded. Low specific gravity ALC generally contains a larger amount of bubbles caused by a foaming agent than conventional ones. As a method for achieving a low specific gravity, if a large number of bubbles are included, the bubble diameter becomes large and the proportion of coarse bubbles caused by the foaming agent to the total volume increases, leading to a significant decrease in strength. Therefore, it has been proposed to contain thermoplastic resins or alkaline earth metal carbonates, or to use silica powder with a large specific surface area. When the specific gravity is 0.35 to 0.40, the compressive strength is about 1.5 to 3.25 N/mm 2 , which is generally lower than that of conventional ALC.

特開2007-99546号公報Japanese Patent Application Publication No. 2007-99546 特許第6134278号公報Patent No. 6134278

前記したように、ALCは、建築物の設計仕様に基づいて各種寸法に切断したり、長辺小口面に溝を切削加工したり、縁部の面取り加工等を施したりする場合があり、さらに、近年においてはALCの表面に複雑なデザイン模様を切削加工や剥離加工により施し、高付加価値化等を図る場合があるが、この際、ALCの切断や切削、面取り加工、表面切削・剥離加工の際、欠損やひび割れが生じることがある。しかしながら、従来のALCとは比重や、不溶残分、該不溶残分中の粒度分布等が異なる低比重ALCに関して、欠損やひび割れを抑制する目的で、原料である珪石や珪砂の粒度や生成物であるALC中の不溶残分の粒度を検討したものはない。
かかる状況下、本発明が解決しようとする課題は、低比重ALCにおいても、長時間、表面目地加工や溝切削加工しても微欠損が少なく、かつ、表面意匠性の高い剥離加工特性に優れる軽量気泡コンクリートを提供することである。
As mentioned above, ALC may be cut into various dimensions based on the design specifications of the building, grooves may be cut on the long sides, edges may be chamfered, etc. In recent years, complex design patterns are applied to the surface of ALC by cutting or peeling in order to increase added value. During this process, chips and cracks may occur. However, regarding low specific gravity ALC, which differs from conventional ALC in specific gravity, insoluble residue, particle size distribution in the insoluble residue, etc., in order to suppress chips and cracks, the particle size of the raw material silica stone and silica sand and the product There is no study on the particle size of the insoluble residue in ALC.
Under such circumstances, the problem to be solved by the present invention is to create a low specific gravity ALC that has few micro-defects even when surface joint processing or groove cutting is performed for a long period of time, and has excellent peel processing characteristics with high surface design. The purpose is to provide lightweight aerated concrete.

本願発明者らは、上記課題を解決すべく鋭意研究し実験を重ねた結果、従来、低比重ではない通常のALCにおいて、粉砕後の珪石及び珪砂の粒径が10μm未満である微粒は、一定量より多くなるとトバモライトの生成を阻害する性質があり、ALC中の不溶残分の微粒比率が高くなると、ALCの加工時における欠損やひび割れの発生を増大させ、また、不溶残分中の粗粒の割合が高くなると、ALCの加工時における欠損やひび割れの発生を大きく抑制できると教示されていたところ、かかる教示に反し、嵩比重0.2以上~0.45未満の低比重ALCにおいて、不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、不溶残分中の粗粒の含有率が2.0質量%以下である場合に、長時間切削加工した時でも微細な欠損(微欠損)が少なく、また、不溶残分中の微粒/中粒比率が0.75以上1.40以下と(特許文献2に教示された0.1~0.7の範囲よりも)高い場合に、溝部に挿入した刃物の揺動や打撃などのはつりによる表面剥離加工特性が良好となり表面デザイン性や意匠性が高い軽量気泡コンクリートの製造が可能になることを予想外に見出し、本発明を完成するに至ったものである。 As a result of intensive research and repeated experiments to solve the above problems, the inventors of the present application have found that conventionally, in normal ALC that is not low specific gravity, fine particles with a particle size of less than 10 μm of silica stone and silica sand after crushing are fixed at a constant level. If the amount exceeds the amount, it has the property of inhibiting the formation of tobermorite, and if the proportion of fine particles in the insoluble residue in ALC increases, the occurrence of defects and cracks during processing of ALC will increase, and the coarse particles in the insoluble residue will increase. It has been taught that if the proportion of When the ratio of the residue is 5% by mass or more and less than 20% by mass based on the total solid content, and the content of coarse particles in the insoluble residue is 2.0% by mass or less, the product has been subjected to long-term cutting. In addition, the fine/medium particle ratio in the insoluble residue is 0.75 or more and 1.40 or less (0.1 to 0.7 as taught in Patent Document 2). It is unexpected that when the surface temperature is higher than the above range), the surface peeling properties due to rocking or blowing of a knife inserted into the groove become good, making it possible to produce lightweight aerated concrete with high surface design and design. This discovery led to the completion of the present invention.

すなわち、本発明は以下のとおりのものである。
[1]比重0.2以上0.45未満の軽量気泡コンクリートであって、該軽量気泡コンクリート中の不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であることを特徴とする軽量気泡コンクリート。
[2]前記中粒に対する前記微粒の質量比(微粒/中粒)が0.75以上1.40以下である、前記[1]に記載の軽量気泡コンクリート。
That is, the present invention is as follows.
[1] A lightweight cellular concrete with a specific gravity of 0.2 or more and less than 0.45, in which the ratio of insoluble residue in the lightweight cellular concrete is 5% by mass or more and less than 20% by mass based on the total solid content, and When the insoluble residue has a particle size of less than 10 μm as fine particles, 10 μm or more and less than 100 μm as medium particle, and 100 μm or more as coarse particle, the content of coarse particles in the insoluble residue is 2. A lightweight aerated concrete characterized by having a content of .0% by mass or less.
[2] The lightweight cellular concrete according to [1] above, wherein the mass ratio of the fine particles to the medium particles (fine particles/medium particles) is 0.75 or more and 1.40 or less.

本発明に係る比重0.2以上~0.45未満の低比重ALCは、不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であることで、切削加工時における微細な欠損(微欠損)が少なくなり、さらに、不溶残分中の微粒/中粒比率が0.75以上1.40以下と高いことで、溝部に挿入した刃物の揺動や打撃などのはつりによる、デザイン性や意匠性が高い表面剥離加工特性が良好となる。
通常、切削加工に用いる刃物は摩耗するため、約1万m切断で新品に交換する。また、通常、切削初期の刃物状態では、切削加工装置のモーター負荷に特段の変化はないが、使用開始後の後半、5千~1万m加工時には、モーター負荷が上がり、切削時に小さな欠損(微欠損)が生じる。これに反し、本実施態様の低比重ALCでは、切削加工時の刃物の摩耗が軽減され、1.5万mまでの使用が可能となる。
The low specific gravity ALC with a specific gravity of 0.2 or more and less than 0.45 according to the present invention has an insoluble residue ratio of 5% by mass or more and less than 20% by mass based on the total solid content, and the insoluble residue is granular. When those with a diameter of less than 10 μm are considered fine particles, those with a diameter of 10 μm or more and less than 100 μm are considered medium particles, and those with a diameter of 100 μm or more are considered coarse particles, the content of the coarse particles in the insoluble residue is 2.0% by mass or less. This reduces the number of microscopic defects during cutting, and furthermore, the fine/medium particle ratio in the insoluble residue is high at 0.75 or more and 1.40 or less, making it easier for cutlery inserted into the groove. The surface peeling process property with high designability and designability due to chiseling such as rocking and hitting is improved.
Normally, the blades used for cutting wear out, so they are replaced with a new one after approximately 10,000 meters of cutting. In addition, normally there is no particular change in the motor load of the cutting equipment when the blade is in the initial state of cutting, but in the later stages of use, when machining 5,000 to 10,000 m, the motor load increases and small defects ( A slight defect) occurs. On the other hand, the low specific gravity ALC of this embodiment reduces the wear of the blade during cutting and can be used up to 15,000 m.

剥離性の評価方法を説明するための図面である。It is a drawing for explaining the evaluation method of peelability. 切削加工に用いた切削刃の概要図である。FIG. 3 is a schematic diagram of a cutting blade used for cutting. 表面剥離加工の一例の平面図である。50×100mmのブロック単位で剥離した石割調デザインのパネルである。It is a top view of an example of surface exfoliation processing. It is a panel with a stone split design that is peeled off in blocks of 50 x 100 mm.

以下、本発明を実施するための形態(以下、「実施形態」という。)について詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as "embodiments") will be described in detail. Note that the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist.

本実施形態の軽量気泡コンクリートは、比重0.2以上~0.45未満の低比重ALCであって、該低比重ALC中の不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であることを特徴とし、前記不溶残分中の粗粒の含有率は、好ましくは0.5質量%以下であり、前記不溶残分の比率は、好ましくは5質量%以上15質量%以下であり、前記中粒に対する前記微粒の質量比(微粒/中粒)は、好ましくは0.75以上1.40以下、より好ましくは0.75以上1.20以下である。 The lightweight cellular concrete of this embodiment is a low specific gravity ALC with a specific gravity of 0.2 or more and less than 0.45, and the ratio of insoluble residue in the low specific gravity ALC is 5% by mass or more and 20% by mass based on the total solid content. % and the particle size of the insoluble residue is less than 10 μm as fine particles, 10 μm or more and less than 100 μm as medium particles, and 100 μm or more as coarse particles. The content of coarse particles is preferably 2.0% by mass or less, the content of coarse particles in the insoluble residue is preferably 0.5% by mass or less, and the ratio of the insoluble residue is , preferably 5% by mass or more and 15% by mass or less, and the mass ratio of the fine grains to the medium grains (fine grains/medium grains) is preferably 0.75 or more and 1.40 or less, more preferably 0.75 or more and 1 .20 or less.

不溶残分の比率が全固形分に対し5質量%以上20質量%未満であれば、切削加工時、使用開始後の後半、5千~1万m加工時に、モーター負荷が上がり、切削時に小さな欠損(微欠損)が生じることがない。
不溶残分の比率が5質量%以上であれば、量産性、品質安定化を損なうおそれがない。他方、不溶残分の比率が20質量%未満であれば、切削加工時のモーター負荷を抑えることができる。不溶残分の比率が15質量%以下であれば、切削加工時のモーター負荷の上昇と微欠損の発生の低減を両立できる点から好ましいものとなる。
If the ratio of insoluble residue is 5% by mass or more and less than 20% by mass based on the total solid content, the motor load will increase during cutting, in the latter half of use, and when machining 5,000 to 10,000 m, and small No defects (minor defects) occur.
If the ratio of insoluble residue is 5% by mass or more, there is no risk of impairing mass productivity and quality stabilization. On the other hand, if the ratio of insoluble residue is less than 20% by mass, the motor load during cutting can be suppressed. It is preferable that the ratio of the insoluble residue is 15% by mass or less, since it is possible to both increase the motor load during cutting and reduce the occurrence of micro-defects.

不溶残分中の粗粒の含有率が2.0質量%以下であれば、切削加工時、使用開始後の後半、5千~1万m加工時に、モーター負荷が上がり、切削時に小さな欠損(微欠損)が生じることがない。 If the content of coarse particles in the insoluble residue is 2.0% by mass or less, the motor load will increase during cutting, in the latter half of use, and when machining 5,000 to 10,000 m, and small defects ( (minor defects) will not occur.

不溶残分中の中粒に対する微粒の質量比(微粒/中粒)が0.75以上であれば、剥離性が高くなるため、剥離加工性が良好となり、他方、1.20以下であれば、剥離性が高くなりすぎる(全剥離)ことを回避することができる。例えば、以下の実施例の欄で説明する剥離性試験において、剥離度を60~75%に制御することができる。例えば、図3に示すような石割調デザインのパネルを作製することができるが、剥離加工時、剥離度が60~75%程度であれば、デザイン・意匠上好ましいものとなる。剥離度が80%以上となると、全面が剥離する(全剥離)する可能性が高くなり、全面が剥離した箇所が発生するとデザイン上好ましくない。 If the mass ratio of fine particles to medium particles in the insoluble residue (fine particles/medium particles) is 0.75 or more, the peelability will be high and therefore the peelability will be good; on the other hand, if it is 1.20 or less, , it is possible to avoid excessively high peelability (total peeling). For example, in the peelability test described in the Examples section below, the degree of peeling can be controlled to 60 to 75%. For example, a panel with a stone split design as shown in FIG. 3 can be produced, but it is preferable in terms of design if the degree of peeling during peeling is about 60 to 75%. When the degree of peeling is 80% or more, there is a high possibility that the entire surface will peel off (total peeling), and if a portion where the entire surface peels occurs, it is not desirable in terms of design.

本実施形態の低比重ALCの(嵩)比重は、0.20以上0.45未満であるが、建築材料として好適な強度を得るという観点から、好ましくは0.23以上である。また、嵩比重は、軽量性、現場作業時の安全性向上や作業者への負担低減効果の観点から、好ましくは0.40以下である。本明細書中、「嵩比重」又は「比重」とは、105℃で24時間乾燥させた際の嵩比重、すなわち、絶乾比重をいう。
嵩比重又は比重がこの範囲にあれば、切削加工時のモーターの負荷が大きくなり、また、切削抵抗が大きくなりすぎることがない。
The (bulk) specific gravity of the low specific gravity ALC of this embodiment is 0.20 or more and less than 0.45, but is preferably 0.23 or more from the viewpoint of obtaining strength suitable as a building material. Further, the bulk specific gravity is preferably 0.40 or less from the viewpoint of lightness, improvement of safety during on-site work, and effect of reducing burden on workers. In this specification, "bulk specific gravity" or "specific gravity" refers to the bulk specific gravity when dried at 105° C. for 24 hours, that is, the absolute dry specific gravity.
If the bulk specific gravity or specific gravity is within this range, the load on the motor during cutting will not become large, and cutting resistance will not become too large.

以下、本実施形態の低比重ALCの製造方法を説明する。
本実施形態の低比重ALCの製造方法は、少なくとも珪酸質原料とセメントと石灰質原料を含む水性スラリーに、気泡剤として金属アルミニウム粉を加えて型枠に注入し、予備硬化した後にオートクレーブ養生する工程を含み、該珪酸質原料として、結晶性珪酸質原料を主体とし、結晶性珪酸質原料を粉砕後の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒とした場合に、粗粒の含有率を、1.5質量%未満、好ましくは0.8質量%以下に、中粒に対する微粒の質量比を、0.75以上2.0未満にしたものを用いることが好ましい。
The method for manufacturing the low specific gravity ALC of this embodiment will be described below.
The method for producing low specific gravity ALC of this embodiment includes the steps of adding metal aluminum powder as a foaming agent to an aqueous slurry containing at least a silicate raw material, cement, and a calcareous raw material, injecting the mixture into a mold, pre-curing it, and then curing it in an autoclave. The silicic raw material is mainly composed of crystalline silicic raw material, and those with a particle size of less than 10 μm after crushing the crystalline silicic raw material are fine particles, those with a particle size of 10 μm or more and less than 100 μm are classified as medium particles, and those with a particle size of 10 μm or more and less than 100 μm are classified as medium particles. When the material is made into coarse particles, the content of coarse particles is less than 1.5% by mass, preferably 0.8% by mass or less, and the mass ratio of fine particles to medium particles is 0.75 or more and less than 2.0. It is preferable to use a

また、珪酸質原料とセメントと石灰質原料の比率は、CaO/SiO2 モル比として0.5以上1.2以下であることが好ましい。CaO/SiO2 モル比が0.5以上であれば、前記した不溶残分の比率を20%未満とすることができる。他方、CaO/SiO2 モル比が1.2以下であれば、トバモライトの生成が十分に進み、品質上の問題が生じない。
前記したように、本実施形態の製造方法に使用される原料は、トバモライトを多く生成し、強度を十分に発揮するという観点、及び、不溶残分を20質量%未満とする観点から、CaO/SiO2モル比が0.55以上となるように混合することがより好ましい。他方、CaO/SiO2モル比は、高結晶性のトバモライトを多く生成するという観点から、より好ましくは1.0以下、最も好ましくは0.8以下である。
Further, the ratio of the siliceous raw material to the cement to the calcareous raw material is preferably 0.5 or more and 1.2 or less as a CaO/SiO 2 molar ratio. If the CaO/SiO 2 molar ratio is 0.5 or more, the ratio of the above-mentioned insoluble residue can be made less than 20%. On the other hand, if the CaO/SiO 2 molar ratio is 1.2 or less, the production of tobermorite will proceed sufficiently and no quality problems will occur.
As described above, the raw materials used in the production method of this embodiment are CaO/ It is more preferable to mix so that the SiO 2 molar ratio is 0.55 or more. On the other hand, from the viewpoint of producing a large amount of highly crystalline tobermorite, the CaO/SiO 2 molar ratio is more preferably 1.0 or less, most preferably 0.8 or less.

また、型枠に注入する前のスラリー中の全固形原料中において、硫酸化合物のSO換算での含有量に対するアルミニウム化合物の酸化物換算(Al換算)での含有量は、質量比0.92以上3以下であることが好ましい。尚、気泡剤として用いる金属アルミニウム粉末もアルミニウム化合物源として作用するため、アルミニウム化合物の酸化物換算(Al換算)での含有量として含める。 In addition, in the total solid raw materials in the slurry before being poured into the mold, the content of aluminum compounds in terms of oxides (in terms of Al 2 O 3 ) with respect to the content of sulfuric compounds in terms of SO 3 is the mass ratio. It is preferably 0.92 or more and 3 or less. In addition, since the metal aluminum powder used as a foaming agent also acts as a source of aluminum compounds, it is included as the content in terms of oxides of aluminum compounds (in terms of Al 2 O 3 ).

[珪酸質原料]
珪酸質原料としては、例えば、結晶質の珪石、珪砂、石英、及びそれらの含有率の高い岩石等を使用することができる。
本明細書中、「結晶性珪酸質原料を主体とする」とは、用いる珪酸質原料のうち65質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上が、結晶質の珪石、珪砂、石英及びそれらの含有率の高い岩石であることをいう。
[Silicate raw material]
As the siliceous raw material, for example, crystalline silica stone, silica sand, quartz, and rocks with a high content thereof can be used.
In the present specification, "based mainly on crystalline silicic raw materials" means 65% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass of the silicic raw materials used. % or more is crystalline silica stone, silica sand, quartz, and rocks with a high content thereof.

結晶性の珪酸質原料の中でも、用いる結晶質珪酸質原料のうち、石英結晶成分が80質量%以上である高結晶性珪酸質原料が好ましい。石英結晶成分が高い高結晶性珪酸質原料を多く用いると、低比重軽量気泡コンクリート中に生成するトバモライトの結晶性が高い傾向がある。
結晶質珪酸質原料中の石英結晶成分の割合は、結晶性珪酸質原料の粉末X線回折を用いて評価される。石英粉末の粉末X線回折で観測される石英の回折強度の総和に対する、結晶性珪酸質原料の粉末X線回折の石英の回折強度の総和の比率を以て石英結晶成分の割合とする。
Among the crystalline silicic raw materials used, highly crystalline silicic raw materials in which the quartz crystal component is 80% by mass or more are preferred. When a large amount of highly crystalline silicic acid raw material with a high quartz crystal component is used, tobermorite produced in low specific gravity lightweight cellular concrete tends to have high crystallinity.
The proportion of the quartz crystal component in the crystalline siliceous raw material is evaluated using powder X-ray diffraction of the crystalline siliceous raw material. The ratio of the sum of the quartz diffraction intensities in the powder X-ray diffraction of the crystalline silicate material to the sum of the quartz diffraction intensities observed in the powder X-ray diffraction of the quartz powder is defined as the ratio of the quartz crystal component.

本実施形態の低比重ALCの製造方法の原料として使用する珪酸質原料は、粉砕後の粒径は、10μm未満であるものを微粒、10μm以上100μm未満であるものを中粒、100μm以上であるものを粗粒とした場合に、粗粒の含有率は、珪石及び珪砂の全質量の1.5質量%未満、好ましくは0.8質量%以下であることが好ましい。粗粒の含有率が1.5質量%未満であれば、不溶残分中の粗粒の含有率を2.0質量%以下、好ましくは0.5質量%以下にすることができる。
また、粉砕後の珪酸質原料における中粒に対する上記微粒の質量比が0.75以上であれば、不溶残分中の中粒に対する微粒の質量比を0.75以上にすることができる。他方、粉砕後の珪酸質原料における中粒に対する微粒の質量比が2.0未満であれば、不溶残分中の中粒に対する微粒の質量比を1.40以下にすることができる。さらに好ましくは粉砕後の珪酸質原料における中粒に対する微粒の質量比が1.4未満であれば、不溶残分中の中粒に対する微粒の質量比を1.20以下にすることができる。
The siliceous raw material used as a raw material for the method for producing low specific gravity ALC of this embodiment has a particle size after pulverization of fine particles if it is less than 10 μm, medium particles if it is 10 μm or more and less than 100 μm, and 100 μm or more. When coarse grains are used, the content of coarse grains is preferably less than 1.5% by mass, preferably 0.8% by mass or less, based on the total mass of silica stone and silica sand. If the content of coarse particles is less than 1.5% by mass, the content of coarse particles in the insoluble residue can be 2.0% by mass or less, preferably 0.5% by mass or less.
Further, if the mass ratio of the fine particles to the medium particles in the pulverized siliceous raw material is 0.75 or more, the mass ratio of the fine particles to the medium particles in the insoluble residue can be 0.75 or more. On the other hand, if the mass ratio of fine particles to medium particles in the pulverized siliceous raw material is less than 2.0, the mass ratio of fine particles to medium particles in the insoluble residue can be 1.40 or less. More preferably, if the mass ratio of fine particles to medium particles in the pulverized siliceous raw material is less than 1.4, the mass ratio of fine particles to medium particles in the insoluble residue can be 1.20 or less.

粉砕後の珪石及び珪砂の粒度及び粒度分布は、レーザー光回折・散乱式の粒度分布計を用いて測定することができる。測定の形式は特に限定されないが、例えば湿式測定であってもよい。また、測定範囲も適宜設定することができ、例えば、0.12μm~704μmに設定することができる。 The particle size and particle size distribution of the silica stone and silica sand after crushing can be measured using a laser light diffraction/scattering type particle size distribution meter. The type of measurement is not particularly limited, but may be a wet measurement, for example. Furthermore, the measurement range can be set as appropriate, for example, from 0.12 μm to 704 μm.

[セメント]
セメントは、特に限定されるものではなく、普通ポルトランドセメント、早強ポルトランドセメント、ビーライトセメント等の珪酸成分とカルシウム成分を主体とするものである。但し、生産性の観点から、用いるセメントのうち30質量%以上が水和反応性の早いセメントであることが好ましい。
[cement]
The cement is not particularly limited, and may be one mainly composed of silicic acid components and calcium components, such as ordinary Portland cement, early-strength Portland cement, and Belite cement. However, from the viewpoint of productivity, it is preferable that 30% by mass or more of the cement used is a cement having a fast hydration reactivity.

[石灰質原料]
石灰質原料としては、生石灰及び消石灰が挙げられる。
本実施形態の製造方法においては、セメントに対する石灰質原料の質量比は、特に限定されるものではないが、強度の観点から0.3以上、スラリー粘度、成型性の観点から1.0以下であることが好ましい。
[Calcareous raw material]
Calcareous raw materials include quicklime and slaked lime.
In the manufacturing method of this embodiment, the mass ratio of calcareous raw material to cement is not particularly limited, but is 0.3 or more from the viewpoint of strength and 1.0 or less from the viewpoint of slurry viscosity and moldability. It is preferable.

[アルミニウム化合物]
アルミニウム化合物原料も特に限定されるものではなく、硫酸アルミニウム又はその含水物、γ-アルミナ、水酸化アルミニウム、炭酸アルミニウム、硝酸アルミニウム等を用いることができるが、硫酸化合物とのバランスを取る上で硫酸アルミニウム又はその含水物或いは水酸化アルミニウムが好ましい。低比重軽量気泡コンクリートの気泡剤として用いる金属アルミニウム粉末もアルミニウム化合物源として作用する。
[Aluminum compound]
The aluminum compound raw material is not particularly limited, and aluminum sulfate or its hydrate, γ-alumina, aluminum hydroxide, aluminum carbonate, aluminum nitrate, etc. can be used, but in order to maintain a balance with the sulfuric acid compound, sulfuric acid Aluminum or its hydrates or aluminum hydroxide are preferred. Metallic aluminum powder used as a foaming agent in low specific gravity lightweight cellular concrete also acts as a source of aluminum compounds.

[硫酸化合物(石膏)]
本実施形態の製造方法においては、含有する硫酸化合物量、アルミニウム化合物の絶対量は特に限定されるものではないが、硫酸化合物の量が少ないとトバモライトの生成が遅くなる、予備硬化時間が長くなってプロセス性が低下する等の傾向があり、多すぎると適正な細孔構造を得られにくい、高い結晶性のトバモライトを得にくい等の傾向がある。そのため、型枠に注入する前のスラリー中の全固形原料中の硫酸化合物の絶対含有量は、SO換算で好ましくは、トバモライトの生成速度、予備硬化時間等プロセス性の観点から、1.5質量%以上、適切な細孔構造、高い結晶性のトバモライトを得るという観点から、5質量%以下であることが好ましく、1.5~4.5質量%であることがより好ましい。
[Sulfate compound (gypsum)]
In the manufacturing method of this embodiment, the amount of sulfuric compounds and the absolute amount of aluminum compounds contained are not particularly limited, but if the amount of sulfuric compounds is small, the formation of tobermorite will be slow and the pre-curing time will be longer. If the amount is too large, it tends to be difficult to obtain an appropriate pore structure, and it is difficult to obtain highly crystalline tobermorite. Therefore, the absolute content of sulfuric compounds in all solid raw materials in the slurry before being poured into the formwork is preferably 1.5 in terms of SO 3 from the viewpoint of processability such as tobermorite production rate and pre-curing time. From the viewpoint of obtaining tobermorite with an appropriate pore structure and high crystallinity, the content is preferably 5% by mass or less, and more preferably 1.5 to 4.5% by mass.

本実施形態の製造方法で用いられる硫酸化合物原料は特に限定されるものではなく、SO又はSOを含有する化合物であれば構わない。例えば、亜硫酸、硫酸、無水石膏(CaSO)、二水石膏(CaSO・2HO)、半水石膏(CaSO4・1/2H2O)、硫酸マグネシウムなどのアルカリ土類金属の硫酸塩、硫酸ナトリウムなどのアルカリ金属の硫酸塩、硫酸アルミニウム(Al(SO))又はその含水物、硫酸銅や硫酸銀などの金属硫酸塩等であり、これらを単独で用いても、複数同時に用いてもよい。これら硫酸化合物原料のうち、その構成元素が、通常、ALCに含まれる点から、二水石膏、硫酸アルミニウム(Al(SO)又はその含水物が好ましい。 The sulfuric acid compound raw material used in the production method of this embodiment is not particularly limited, and any compound containing SO 3 or SO 4 may be used. For example, sulfates of alkaline earth metals such as sulfurous acid, sulfuric acid, anhydrite (CaSO 4 ), dihydrate gypsum (CaSO 4.2H 2 O), hemihydrate gypsum (CaSO 4 .1 /2H 2 O), magnesium sulfate, etc. , alkali metal sulfates such as sodium sulfate, aluminum sulfate (Al 2 (SO 4 ) 3 ) or its hydrates, metal sulfates such as copper sulfate and silver sulfate, etc. May be used simultaneously. Among these sulfate compound raw materials, dihydrate gypsum, aluminum sulfate (Al 2 (SO 4 ) 3 ), or a hydrated product thereof is preferable since the constituent elements thereof are usually included in ALC.

[気泡剤(発泡剤)]
発泡剤は、珪酸質原料、石灰質原料及び水を含むスラリーを発泡できるものであれば特に限定されることなく用いることができ、例えば、金属アルミニウム粉末などを用いることができる。
[Bubbling agent (foaming agent)]
The foaming agent is not particularly limited as long as it can foam a slurry containing a silicate raw material, a calcareous raw material, and water, and for example, metal aluminum powder can be used.

[撥水性物質]
本実施形態の気泡コンクリートには、必要に応じて撥水性物質を0.1~3.0質量%含有させてもよい。撥水性物質とは、特に限定されるものではなく、シロキサン化合物、アルコキシシラン化合物、脂肪酸、脂肪酸塩、エポキシ系樹脂、ウレタン系樹脂、シリコーン系樹脂、酢酸ビニル系樹脂、アクリル系樹脂、スチレン-ブタジエン系樹脂等の樹脂エマルジョン等であり、このうち一種又は二種以上の混合物を用いることもできる。中でも特に、シロキサン化合物、すなわち、ポリジメチルシロキサンやポリジメチルシロキサンのメチル基の一部が水素、フェニル基、トリフロロプロピル基等で置換されたシリコーンオイル、アルコキシシラン化合物、すなわち、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン等のアルキルアルコキシシラン化合物を使用することが好ましい。
[Water repellent substance]
The cellular concrete of this embodiment may contain 0.1 to 3.0% by mass of a water-repellent substance, if necessary. Water-repellent substances are not particularly limited, and include siloxane compounds, alkoxysilane compounds, fatty acids, fatty acid salts, epoxy resins, urethane resins, silicone resins, vinyl acetate resins, acrylic resins, and styrene-butadiene. These include resin emulsions such as resins, and one or a mixture of two or more of these may also be used. In particular, siloxane compounds, i.e., polydimethylsiloxane or polydimethylsiloxane, in which a portion of the methyl groups are substituted with hydrogen, phenyl groups, trifluoropropyl groups, etc., silicone oils, alkoxysilane compounds, i.e., methyltriethoxysilane, Preferably, alkyl alkoxysilane compounds such as ethyltriethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane and the like are used.

[その他成分]
また、上記以外の原料であっても、所望の効果に影響を及ぼさない範囲で各種材料を適宜用いてもよい。例えば、補強繊維、メチルセルロース等の界面活性剤、ポリアクリル酸、ポリビニルアルコール等の増粘剤、減水剤、高性能減水剤等のセメント系材料において一般に用いられる分散剤、リグニンスルホン酸、グルコン酸塩等のセメント系材料において一般に用いられる硬化遅延剤、リン酸塩等の発泡遅延剤が挙げられる。
[Other ingredients]
In addition, various materials other than those mentioned above may be used as appropriate within a range that does not affect the desired effect. For example, reinforcing fibers, surfactants such as methyl cellulose, thickeners such as polyacrylic acid and polyvinyl alcohol, dispersants commonly used in cement materials such as water reducers and high performance water reducers, lignin sulfonic acid, and gluconate. Examples include hardening retarders and foaming retarders such as phosphates, which are commonly used in cementitious materials such as.

本実施形態の製造方法においては、珪酸質原料、セメント、石灰質原料、アルミニウム化合物原料、硫酸化合物原料、アルカリ化合物原料、他の原料の投入方法、投入順序、混合時間は特に限定されるものではない。
例えば、従来のように、それら原料を同時に投入して短時間混合し、界面活性剤、金属アルミニウム粉もしくはそのスラリーを添加して型枠に注入してもよく、原料を同時に投入して一定時間の混合後に界面活性剤、金属アルミニウム粉又はそのスラリーを添加して型枠に注入してもよい。また、例えば、珪酸質原料と水と必要に応じて石灰質原料の一部、アルミニウム化合物原料、アルカリ化合物原料を混合する第一工程に引き続き、セメント、硫酸化合物原料及び残りの石灰質原料を加えてさらに混合する第二工程の後にアルミニウム粉等の気泡剤を添加して型枠に注入する方法を用いてもよい。このような方法を用いる場合においても、混合時の方法や、混合時の温度、混合時間は特に限定されるものではない。
In the manufacturing method of this embodiment, there are no particular limitations on the method, order, and mixing time of the silicic raw material, cement, calcareous raw material, aluminum compound raw material, sulfuric compound raw material, alkali compound raw material, and other raw materials. .
For example, as in the past, these raw materials may be introduced at the same time and mixed for a short time, and a surfactant, metal aluminum powder or a slurry thereof may be added and then poured into the mold, or the raw materials may be introduced at the same time and mixed for a certain period of time. After mixing, a surfactant, metal aluminum powder, or a slurry thereof may be added and poured into the mold. For example, following the first step of mixing the siliceous raw material, water, and if necessary, a part of the calcareous raw material, the aluminum compound raw material, and the alkali compound raw material, cement, the sulfuric acid compound raw material, and the remaining calcareous raw material may be added. A method may also be used in which a foaming agent such as aluminum powder is added after the second step of mixing and injected into the mold. Even when such a method is used, the mixing method, mixing temperature, and mixing time are not particularly limited.

本実施形態の製造方法においては、従来のALCと同様に補強鉄筋又は補強金網を気泡コンクリート内に埋設させるように成型することが好ましく行われる。ここで補強鉄筋とは、鉄筋を所望の形状に配列し、交叉接点を溶接加工したものをいう。補強金網とは、鉄を網状に加工したもので、例えば、ラス網等がその代表的な例である。補強鉄筋又は補強金網の形状、寸法、鉄筋の太さ、金網の目の大きさ、さらに軽量コンクリート中に埋設する際の位置等、配筋の仕方については、限定されるものではなく、板の大きさ、用途等によって適宜選択されることが好ましい。
これら補強鉄筋又は補強金網は、耐久性上有効な防錆剤処理が施されていることが好ましい。防錆剤としては合成樹脂系等、公知のものを使用できる。この様に鉄筋または金網を内部に配置することにより破壊時の耐力が著しく向上する。
In the manufacturing method of this embodiment, it is preferable to mold reinforcing reinforcing bars or reinforcing wire mesh so as to bury them in aerated concrete, similar to conventional ALC. Here, the reinforcing reinforcing bars refer to reinforcing bars arranged in a desired shape and welded at the crossing points. Reinforcement wire mesh is made by processing iron into a mesh shape, and a typical example thereof is lath mesh. There are no limitations to the shape and dimensions of the reinforcing reinforcing bars or reinforcing wire mesh, the thickness of the reinforcing bars, the mesh size of the wire mesh, and the position when embedding them in lightweight concrete. It is preferable to select it appropriately depending on the size, purpose, etc.
These reinforcing reinforcing bars or reinforcing wire meshes are preferably treated with a rust preventive agent that is effective in terms of durability. As the rust preventive agent, known ones such as synthetic resins can be used. By arranging reinforcing bars or wire mesh inside in this way, the strength at the time of destruction is significantly improved.

型枠に注入されたスラリーは、アルミニウム粉に由来して発泡、生石灰及びセメントの自己発熱により、好ましくは50~85℃の間で1時間以上かけて予備硬化される。予備硬化は、蒸気養生室等の水分が蒸発を抑制した環境下で行うことが好ましい。得られた予備硬化体は、必要に応じて任意の形状に切断された後に、オートクレーブを用いて高温高圧養生される。切断は軽量気泡コンクリートの製造に一般に用いられるワイヤーによる切断法も使用できる。オートクレーブの条件としては160℃(ゲージ圧力:約5.3kgf/cm2)以上、220℃(ゲージ圧力:約22.6kgf/cm2)以下が好ましい。 The slurry injected into the formwork is precured, preferably at a temperature of 50 to 85° C., over an hour or more by foaming from the aluminum powder and self-heating of quicklime and cement. Preferably, the preliminary curing is performed in an environment where moisture evaporation is suppressed, such as in a steam curing chamber. The obtained precured body is cut into any shape as required, and then cured at high temperature and high pressure using an autoclave. For cutting, a wire cutting method commonly used in the production of lightweight aerated concrete can also be used. The autoclave conditions are preferably 160° C. (gauge pressure: about 5.3 kgf/cm 2 ) or more and 220° C. (gauge pressure: about 22.6 kgf/cm 2 ) or less.

以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例に限定解釈されるべきでないことはいうまでもない。
以下、実施例、比較例に用いた原料、及び各種の測定方法を説明する。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but it goes without saying that the present invention should not be construed as limited to these Examples.
The raw materials used in Examples and Comparative Examples and various measurement methods will be described below.

[(嵩)比重]
オートクレーブ後の硬化体を、105℃にて24時間乾燥させた時の重量と寸法から算出した。
[(Bulk) specific gravity]
The cured product after autoclaving was calculated from the weight and dimensions when dried at 105° C. for 24 hours.

[珪酸質原料]
珪酸質原料として、国内外8箇所の鉱山から産出する珪石又は珪砂(A~H)を用いた。
尚、珪酸質原料の粉砕後の粒径の測定方法は、以下に説明する不溶残分の粒径の測定方法と同じであった。
[Silicate raw material]
As the siliceous raw material, silica stone or silica sand (A to H) produced from eight mines in Japan and overseas was used.
The method for measuring the particle size of the siliceous raw material after pulverization was the same as the method for measuring the particle size of the insoluble residue described below.

[全固形分に対する不溶残分の比率]
不溶残分の抽出方法は、JIS R5202のポルトランドセメントの化学分析方法に記載の塩酸-炭酸ナトリウム方法による不溶残分の定量方法に準拠した方法により行ったが、この定量方法における処理のうち、不溶残分の粒度に影響を与える処理については処理内容を変更した。具体的には、JIS R5202に規定されているろ紙による不溶残分とろ液の分離を遠心分離機(製品名:インバータ・テーブルトップ遠心機 形式8400 久保田製作所社製)による分離に変更した。遠心分離条件は、3000rpm×10分間とした。また、JIS R5202の上記定量方法に規定されている温水による不溶残分の洗浄は、温水量を50mlとし、上記遠心分離機による洗浄に変更した。遠心分離条件は、3000rpm×10分間とし、洗浄回数を5回とした。また、JIS R5202の上記定量方法に規定されている電気炉での950±25℃×30分間の強熱処理を、乾燥機による110℃×48時間の処理に変更した。また、JIS R5202の上記定量方法に規定されている水浴上での加熱処理について、その温度条件を80℃に変更した。
不溶残分の比率を、オートクレーブ養生後の気泡コンクリートの重量に対する不溶残分の質量%として求めた。
[Ratio of insoluble residue to total solids]
The extraction method for insoluble residues was carried out in accordance with the method for quantifying insoluble residues using the hydrochloric acid-sodium carbonate method described in JIS R5202, Chemical Analysis Methods for Portland Cement. The processing contents that affect the particle size of the residue have been changed. Specifically, the separation of insoluble residue and filtrate using filter paper as specified in JIS R5202 was changed to separation using a centrifuge (product name: Inverter Table Top Centrifuge Type 8400, manufactured by Kubota Seisakusho Co., Ltd.). The centrifugation conditions were 3000 rpm x 10 minutes. In addition, washing of the undissolved residue with hot water specified in the above-mentioned quantitative method of JIS R5202 was changed to washing using the above-mentioned centrifugal separator using 50 ml of hot water. The centrifugation conditions were 3000 rpm x 10 minutes, and the number of washings was 5 times. In addition, the ignition treatment at 950±25° C. for 30 minutes in an electric furnace specified in the above quantitative method of JIS R5202 was changed to treatment at 110° C. for 48 hours in a dryer. Furthermore, the temperature conditions for the heat treatment on a water bath specified in the above quantitative method of JIS R5202 were changed to 80°C.
The ratio of the insoluble residue was determined as the mass % of the insoluble residue to the weight of the aerated concrete after autoclave curing.

[不溶残分の粒径]
不溶残分の粒度分布測定は、レーザー光回折・散乱式の粒度分布計(製品名:マイクロトラック 9320 HRA X100、日機装社製)を用い、下記の条件で湿式にて測定した。
粒度測定範囲:0.12~704μm
流速:60ml/sec
超音波分散:25watts×60sec
物質情報:屈折率=1.54、物質=珪石(非球形粒子)
溶媒情報:屈折率=1.33、溶媒=水
ゼロ点調整時間:30sec
測定条件:60sec×2回
測定結果:測定2回の平均値
[Particle size of insoluble residue]
The particle size distribution of the insoluble residue was measured using a laser light diffraction/scattering type particle size distribution analyzer (product name: Microtrac 9320 HRA X100, manufactured by Nikkiso Co., Ltd.) under the following conditions in a wet manner.
Particle size measurement range: 0.12-704μm
Flow rate: 60ml/sec
Ultrasonic dispersion: 25 watts x 60 seconds
Material information: Refractive index = 1.54, material = silica (non-spherical particles)
Solvent information: Refractive index = 1.33, solvent = water Zero point adjustment time: 30 seconds
Measurement conditions: 60sec x 2 times Measurement result: Average value of 2 measurements

[5000~10000m切削加工時のモーター負荷[A]]
切削加工装置として以下の電気ルーターに、図2に示す先端部直径9mmの切削刃取り付け、低比重ALCの表面を溝深さ9mmで、5000~10000mの直線状の切削溝を形成した時のモーター負荷[A]を測定した。尚、形成された切削溝の長さは、所定のサイズの多数の低比重ALCパネルに形成された直線状切削溝の長さの累計である。通常、切削加工に用いる刃物は摩耗するため、約1万m切断で新品に交換する。また、切削初期の刃物状態では、切削加工装置のモーター負荷に特段の変化はないが、使用開始後の後半、5千~1万m加工時には、モーター負荷が上がり、切削時に小さな欠損(微欠損)が生じる。本実施例、比較例では、約7500m切削加工時のモーター負荷を測定した。
[電気ルーター]
モーター型式:富士電機 MVH6107L
回転数:6000rpm
送り速度:5m/分
[Motor load [A] during cutting 5000-10000m]
As a cutting device, the following electric router is equipped with a cutting blade with a tip diameter of 9 mm as shown in Figure 2, and the motor is used when a linear cutting groove of 5000 to 10000 m is formed on the surface of the low specific gravity ALC with a groove depth of 9 mm. Load [A] was measured. Note that the length of the cut grooves formed is the total length of the linear cut grooves formed in a large number of low specific gravity ALC panels of a predetermined size. Normally, the blades used for cutting wear out, so they are replaced with a new one after approximately 10,000 meters of cutting. In addition, there is no particular change in the motor load of the cutting equipment when the blade is in the initial state of cutting, but in the latter half of use, when machining 5,000 to 10,000 m, the motor load increases and small defects (micro-defects) occur during cutting. ) occurs. In the present example and comparative example, the motor load during cutting of approximately 7500 m was measured.
[Electric router]
Motor model: Fuji Electric MVH6107L
Rotation speed: 6000rpm
Feed speed: 5m/min

[切削加工時の微欠損数/m]
前記[5000~10000m切削加工時のモーター負荷[A]]の測定における約7500m切削加工時の微欠損の発生率を、切削溝1m当たりの数で評価した。
ここで、「微欠損」とは、図2に示す切削刃を用いて溝深さ9mmに表面を切削加工するとき、断面において、凹部の壁と表面が交わる点(平面図では直線状に見える)における角部が該直線方向において5mm以上欠けて、平面図状での直線の連続性が失われた状態をいう。
[Number of micro-defects/m during cutting]
In the measurement of the motor load [A] during cutting of 5000 to 10000 m, the incidence of micro-defects during cutting of approximately 7500 m was evaluated in terms of the number per 1 m of cutting groove.
Here, "minor defect" refers to the point where the wall of the recess and the surface intersect in the cross section (which appears linear in the plan view) when cutting the surface to a groove depth of 9 mm using the cutting blade shown in Figure 2. ) is missing by 5 mm or more in the straight line direction, and the continuity of the straight line in a plan view is lost.

[剥離度(%)、全剥離(%)]
図1に示すように、気泡コンクリートパネルの溝にプレート状の刃物(チップ(2))を挿入し、揺動させる(こじる)ことによって、パネル表面を欠けさせた。チップ幅(W)を50mm、溝深さ(D)を9mmとした。
図1中、2つの刃物間の、剥離前パネル表面に対する、欠けたパネル表面の面積の百分率を剥離度(%)とした。サンプル数を100とし、平均値を求めた。また、全剥離(%)とは、サンプル数100当たりの、2つの刃物間のパネル表面が100%の剥離度であったサンプル数の百分率である。
尚、上記揺動を2つの刃物の外側にも実施すれば、例えば、図3に示すような石割調デザインのパネルを作製することができる。
[Degree of peeling (%), total peeling (%)]
As shown in FIG. 1, a plate-shaped cutter (chip (2)) was inserted into the groove of the aerated concrete panel and swung (pried) to chip the panel surface. The chip width (W) was 50 mm, and the groove depth (D) was 9 mm.
In FIG. 1, the percentage of the area of the chipped panel surface between the two blades with respect to the panel surface before peeling was defined as the degree of peeling (%). The number of samples was set to 100, and the average value was determined. Further, the total peeling (%) is the percentage of the number of samples in which the panel surface between two blades had a degree of peeling of 100% per 100 samples.
Incidentally, if the above-mentioned swinging is performed also on the outside of the two cutlery, it is possible to produce, for example, a panel with a stone split pattern design as shown in FIG. 3.

[実施例1]
珪酸質原料として珪石A(石英結晶成分割合75質量%)、珪石B(石英結晶成分割合92質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が53質量%、10μm未満の微粒の比率が47質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部を加え、混合、攪拌した。
次いで、該水性スラリーに早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入し、さらに混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 1]
Silica stone A (quartz crystal component ratio: 75% by mass) and silica B (quartz crystal component ratio: 92% by mass) are separately ground in a mill as siliceous raw materials, and then mixed, and the ratio of coarse particles of 100 μm or more is 0. A silica powder was obtained in which the proportion of medium particles of 10 μm or more and less than 100 μm was 53% by mass, and the proportion of fine particles of less than 10 μm was 47% by mass. To 92.1 parts by weight of water at 45°C, 46.3 parts by weight of the above silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum dodecahydrate were added, mixed, and stirred.
Next, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by preliminarily mixing 2.0 parts by weight of water and 0.0095 parts by weight of a surfactant were added to the aqueous slurry, The mixture was further mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.09 parts by weight of metal aluminum powder was dispersed in 0.72 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain a low specific gravity lightweight cellular concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.78.

[実施例2]
珪酸質原料として珪石A(石英結晶成分割合75質量%)、珪石C(石英結晶成分割合94質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が50.7質量%、10μm未満の微粒の比率が49.3質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部を加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 2]
As siliceous raw materials, silica A (quartz crystal component ratio: 75% by mass) and silica C (quartz crystal component ratio: 94% by mass) are separately ground in a mill and then mixed, and the ratio of coarse particles of 100 μm or more is 0. A silica powder was obtained in which the ratio of medium particles of 10 μm or more and less than 100 μm was 50.7% by mass, and the ratio of fine particles of less than 10 μm was 49.3% by mass. To 92.1 parts by weight of water at 45°C, 46.3 parts by weight of the above silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum dodecahydrate were added, mixed, and stirred.
Next, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by preliminarily mixing 0.0095 parts by weight of a surfactant in 2.0 parts by weight of water were added to the aqueous slurry. Mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.09 parts by weight of metal aluminum powder was dispersed in 0.72 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain a low specific gravity lightweight cellular concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.78.

[実施例3]
珪酸質原料として珪石D(石英結晶成分割合82質量%)、珪石C(石英結晶成分割合94質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が53.1質量%、10μm未満の微粒の比率が46.9質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 3]
As siliceous raw materials, silica D (quartz crystal component ratio: 82% by mass) and silica C (quartz crystal component ratio: 94% by mass) are separately ground in a mill and then mixed, and the ratio of coarse particles of 100 μm or more is 0. A silica powder was obtained in which the proportion of medium particles of 10 μm or more and less than 100 μm was 53.1% by mass, and the proportion of fine particles of less than 10 μm was 46.9% by mass. To 92.1 parts by weight of water at 45°C, 46.3 parts by weight of the above silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum dodecahydrate were added, mixed, and stirred.
Next, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by preliminarily mixing 0.0095 parts by weight of a surfactant in 2.0 parts by weight of water were added to the aqueous slurry. Mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.09 parts by weight of metal aluminum powder was dispersed in 0.72 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain a low specific gravity lightweight cellular concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.78.

参考例4]
珪酸質原料として珪石A(石英結晶成分割合75質量%)をミルにて粉砕し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が39.1質量%、10μm未満の微粒の比率が60.9質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[ Reference example 4]
Silica stone A (quartz crystal component ratio: 75% by mass) is pulverized in a mill as a siliceous raw material, and the proportion of coarse particles of 100 μm or more is 0% by mass, the proportion of medium particles of 10 μm or more and less than 100 μm is 39.1% by mass, and less than 10 μm. A silica powder with a fine particle ratio of 60.9% by mass was obtained. To 92.1 parts by weight of water at 45°C, 46.3 parts by weight of the above silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum dodecahydrate were added, mixed, and stirred.
Next, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by preliminarily mixing 0.0095 parts by weight of a surfactant in 2.0 parts by weight of water were added to the aqueous slurry. Mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.09 parts by weight of metal aluminum powder was dispersed in 0.72 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain a low specific gravity lightweight cellular concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.78.

[実施例5]
珪酸質原料として珪石D(石英結晶成分割合82質量%)をミルにて粉砕し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が39.1質量%、10μm未満の微粒の比率が60.9質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 5]
Silica stone D (quartz crystal component ratio: 82% by mass) is milled as a siliceous raw material, and the proportion of coarse particles of 100 μm or more is 0% by mass, the proportion of medium particles of 10 μm or more and less than 100 μm is 39.1% by mass, and less than 10 μm. A silica powder with a fine particle ratio of 60.9% by mass was obtained. To 92.1 parts by weight of water at 45°C, 46.3 parts by weight of the above silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum dodecahydrate were added, mixed, and stirred.
Next, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by preliminarily mixing 0.0095 parts by weight of a surfactant in 2.0 parts by weight of water were added to the aqueous slurry. Mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.09 parts by weight of metal aluminum powder was dispersed in 0.72 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain a low specific gravity lightweight cellular concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.78.

[実施例6]
珪酸質原料として珪石A(石英結晶成分割合75質量%)、珪石B(石英結晶成分割合92質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が0.8質量%、10μm以上100μm未満の中粒の比率が55.1質量%、10μm未満の微粒の比率が44.1質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部を加え、混合、攪拌した。
次いで、該水性スラリーに早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入し、さらに混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 6]
As siliceous raw materials, silica A (75% by mass of quartz crystal component) and silica B (92% by mass of quartz crystal component) were separately ground in a mill and then mixed, and the ratio of coarse particles of 100 μm or more was 0.8. A silica powder was obtained in which the proportion of medium particles of 10 μm or more and less than 100 μm was 55.1% by mass, and the proportion of fine particles of less than 10 μm was 44.1% by mass. To 92.1 parts by weight of water at 45°C, 46.3 parts by weight of the above silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum dodecahydrate were added, mixed, and stirred.
Next, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by preliminarily mixing 2.0 parts by weight of water and 0.0095 parts by weight of a surfactant were added to the aqueous slurry, The mixture was further mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.09 parts by weight of metal aluminum powder was dispersed in 0.72 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain a low specific gravity lightweight cellular concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.78.

[比較例1]
珪酸質原料として珪石E(石英結晶成分割合81質量%)、珪石F(石英結晶成分割合85質量%)を1:1に混合し、ミルにて粉砕し100μm以上の粗粒の比率が9.4質量%、10μm以上100μm未満の中粒の比率が68.2質量%、10μm未満の微粒の比率が22.4質量%の珪石粉を得た。45℃の水75重量部に、この珪石粉を60.8重量部、生石灰7.5重量部、早強ポルトランドセメント29.2重量部、二水石膏2.5重量部を混合し、攪拌した。
続いて、予め水0.48重量部に金属アルミニウム粉末0.06重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.45とした。
[Comparative example 1]
As a siliceous raw material, silica E (quartz crystal component ratio: 81% by mass) and silica F (quartz crystal component ratio: 85% by mass) were mixed at a ratio of 1:1, and ground in a mill to obtain a product with a ratio of coarse particles of 100 μm or more by mass of 9.4 mass%. %, the proportion of medium particles of 10 μm or more and less than 100 μm was 68.2% by mass, and the proportion of fine particles of less than 10 μm was 22.4% by mass. 60.8 parts by weight of this silica powder, 7.5 parts by weight of quicklime, 29.2 parts by weight of early strength Portland cement, and 2.5 parts by weight of gypsum dihydrate were mixed with 75 parts by weight of water at 45°C and stirred.
Subsequently, a metal aluminum slurry in which 0.06 parts by weight of metal aluminum powder was dispersed in 0.48 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain lightweight aerated concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.45.

[比較例2]
珪酸質原料として珪石A(石英結晶成分割合75質量%)、珪石G(石英結晶成分割合75質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が1.5質量%、10μm以上100μm未満の中粒の比率が56.7質量%、10μm未満の微粒の比率が41.8質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物1.27重量部を加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Comparative example 2]
As siliceous raw materials, silica A (quartz crystal component ratio: 75% by mass) and silica G (quartz crystal component ratio: 75% by mass) were separately ground in a mill and then mixed, and the ratio of coarse particles of 100 μm or more was 1.5. A silica powder was obtained in which the proportion of medium particles of 10 μm or more and less than 100 μm was 56.7% by mass, and the proportion of fine particles of less than 10 μm was 41.8% by mass. 46.3 parts by weight of the above silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum dodecahydrate were added to 92.1 parts by weight of water at 45°C, mixed and stirred.
Next, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by preliminarily mixing 0.0095 parts by weight of a surfactant in 2.0 parts by weight of water were added to the aqueous slurry. Mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.09 parts by weight of metal aluminum powder was dispersed in 0.72 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain a low specific gravity lightweight cellular concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.78.

[比較例3]
珪酸質原料として珪石H(石英結晶成分割合68質量%)をミルにて粉砕し、100μm以上の粗粒の比率が13.8質量%、10μm以上100μm未満の中粒の比率が43.2質量%、10μm未満の微粒の比率が43.0質量%の珪石粉を得た。45℃の水75重量部に、この珪石粉を56重量部、生石灰6重量部、早強ポルトランドセメント36重量部、二水石膏2重量部を混合し、攪拌した。
続いて、予め水0.48重量部に金属アルミニウム粉末0.06重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.53とした。
[Comparative example 3]
As a siliceous raw material, silica H (quartz crystal component ratio: 68% by mass) is ground in a mill, and the proportion of coarse particles of 100 μm or more is 13.8% by mass, the proportion of medium particles of 10 μm or more and less than 100 μm is 43.2% by mass, and is less than 10 μm. A silica powder with a fine particle ratio of 43.0% by mass was obtained. 56 parts by weight of this silica powder, 6 parts by weight of quicklime, 36 parts by weight of early strength Portland cement, and 2 parts by weight of gypsum dihydrate were mixed with 75 parts by weight of water at 45°C and stirred.
Subsequently, a metal aluminum slurry in which 0.06 parts by weight of metal aluminum powder was dispersed in 0.48 parts by weight of water was added, stirred, poured into a mold, foamed, and precured. The pre-cured product that had reached a predetermined hardness was placed in an autoclave and autoclaved for 4 hours at 180° C. in a saturated steam atmosphere. After taking out the can from the autoclave, it was dried to obtain lightweight aerated concrete. The siliceous raw material, cement, and calcareous raw material had a CaO/SiO 2 molar ratio of 0.53.

評価結果を以下の表1に示す。 The evaluation results are shown in Table 1 below.

本発明に係る比重0.2以上~0.45未満の低比重ALCは、不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であるため、切削加工時における微細な欠損(微欠損)が少なく、さらに、不溶残分中の微粒/中粒比率が0.75以上1.40以下と高いことで、溝部に挿入した刃物の揺動や打撃などのはつりによる、表面デザイン性や意匠性が高い剥離加工特性が良好となる。それゆえ、本発明に係る比重0.2以上~0.45未満の低比重ALCは、建築物の外壁材、床材、内壁材、屋根材等として好適に利用可能である。 The low specific gravity ALC with a specific gravity of 0.2 or more and less than 0.45 according to the present invention has an insoluble residue ratio of 5% by mass or more and less than 20% by mass based on the total solid content, and the insoluble residue is granular. When those with a diameter of less than 10 μm are considered fine particles, those with a diameter of 10 μm or more and less than 100 μm are considered medium particles, and those with a diameter of 100 μm or more are considered coarse particles, the content of the coarse particles in the insoluble residue is 2.0% by mass or less. As a result, there are fewer microscopic defects (micro-defects) during cutting, and the fine/medium particle ratio in the insoluble residue is high at 0.75 to 1.40, making it difficult to shake the blade inserted into the groove. Peeling properties such as surface design and designability are good due to chiseling such as motion or impact. Therefore, the low specific gravity ALC of the present invention having a specific gravity of 0.2 or more and less than 0.45 can be suitably used as exterior wall materials, floor materials, interior wall materials, roofing materials, etc. of buildings.

W チップ幅
D 溝深さ
1 気泡コンクリート
2 チップ(プレート状の刃物)
W Chip width D Groove depth 1 Aerated concrete 2 Chip (plate-shaped cutter)

Claims (1)

比重0.2以上0.45未満の軽量気泡コンクリートであって、該軽量気泡コンクリート中の不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であり、かつ、該中粒に対する該微粒の質量比(微粒/中粒)が0.75以上1.20以下であることを特徴とする軽量気泡コンクリート、ここで、該不溶残分の比率は、JIS R5202のポルトランドセメントの化学分析方法に記載の塩酸-炭酸ナトリウム方法による不溶残分の定量方法に準拠した方法において、ろ紙による不溶残分とろ液の分離を、遠心分離機(製品名:インバータ・テーブルトップ遠心機 形式8400 久保田製作所社製)による分離に変更し、その遠心分離条件を、3000rpm×10分間とし、温水による不溶残分の洗浄において温水量を50mlとし、上記遠心分離機による洗浄に変更し、その遠心分離条件を、3000rpm×10分間とし、洗浄回数を5回とし、電気炉での950±25℃×30分間の強熱処理を、乾燥機による110℃×48時間の処理に変更し、水浴上での加熱処理における温度条件を80℃に変更し、そしてオートクレーブ養生後の気泡コンクリートの重量に対する不溶残分の質量%として求めたものであり、かつ、該軽量気泡コンクリートの組成と略対応する原料組成として、CaO/SiO 2 モル比が、0.5以上1.2以下であり、かつ、Al 換算量/SO 換算量比が、0.92以上3以下であるA lightweight cellular concrete with a specific gravity of 0.2 or more and less than 0.45, wherein the proportion of insoluble residue in the lightweight cellular concrete is 5% by mass or more and less than 20% by mass based on the total solid content, and the insoluble residue If the particle size is less than 10 μm as fine particles, 10 μm or more and less than 100 μm as medium particles, and 100 μm or more as coarse particles, the content of coarse particles in the insoluble residue is 2.0 mass % or less, and a mass ratio of the fine particles to the medium particles (fine particles/medium particles) is 0.75 or more and 1.20 or less, wherein the insoluble residue is The ratio is determined by separating the insoluble residue and filtrate using filter paper and using a centrifuge (product name : Inverter table top centrifuge type 8400 manufactured by Kubota Seisakusho Co., Ltd.), the centrifugation conditions were 3000 rpm x 10 minutes, the amount of hot water was 50 ml for washing the insoluble residue with hot water, and the above centrifugal separator The centrifugation conditions were 3000 rpm x 10 minutes, the number of washings was 5 times, ignition treatment in an electric furnace at 950 ± 25°C x 30 minutes, and ignition treatment at 110°C x 48 hours in a dryer. The temperature conditions in the heat treatment on a water bath were changed to 80°C, and the weight percentage of the insoluble residue was determined based on the weight of the cellular concrete after autoclave curing, and the lightweight cellular concrete was As a raw material composition that substantially corresponds to the composition of concrete, the CaO/SiO 2 molar ratio is 0.5 or more and 1.2 or less, and the Al 2 O 3 equivalent amount/SO 3 equivalent amount ratio is 0.92 or more. 3 or less .
JP2019159580A 2018-09-10 2019-09-02 lightweight aerated concrete Active JP7398225B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018169034 2018-09-10
JP2018169034 2018-09-10

Publications (2)

Publication Number Publication Date
JP2020040871A JP2020040871A (en) 2020-03-19
JP7398225B2 true JP7398225B2 (en) 2023-12-14

Family

ID=69799158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159580A Active JP7398225B2 (en) 2018-09-10 2019-09-02 lightweight aerated concrete

Country Status (1)

Country Link
JP (1) JP7398225B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253758A (en) 2000-03-13 2001-09-18 Clion Co Ltd Method for manufacturing super lightweight cellular concrete
JP2005179148A (en) 2003-12-22 2005-07-07 Asahi Kasei Corp Lightweight cellular concrete and its producing method
JP2007099546A (en) 2005-10-03 2007-04-19 Sumitomo Kinzoku Kozan Siporex Kk Method of producing autoclaved light-weight concrete
JP2015168604A (en) 2014-03-07 2015-09-28 旭化成建材株式会社 Autoclaved lightweight concrete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253758A (en) 2000-03-13 2001-09-18 Clion Co Ltd Method for manufacturing super lightweight cellular concrete
JP2005179148A (en) 2003-12-22 2005-07-07 Asahi Kasei Corp Lightweight cellular concrete and its producing method
JP2007099546A (en) 2005-10-03 2007-04-19 Sumitomo Kinzoku Kozan Siporex Kk Method of producing autoclaved light-weight concrete
JP2015168604A (en) 2014-03-07 2015-09-28 旭化成建材株式会社 Autoclaved lightweight concrete

Also Published As

Publication number Publication date
JP2020040871A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
EP2285750B1 (en) Durable magnesium oxychloride cement and process therefor
KR101389741B1 (en) Polymer modified high-performance quick-hardening cement concrete composite and overlay pavement method for concrete using the composite
JP4837237B2 (en) High strength hardened calcium silicate
KR101073892B1 (en) Repairing material composite having excellent durability and repairing method of the concrete structure using the composite
KR102133437B1 (en) Crack inhibition type latex modified ultra rapid harding cement concrete compositions and repairing method of road pavement using the same
JP4911580B2 (en) Low specific gravity lightweight foam concrete and method for producing the same
Khana et al. Strength and durability of mortar and concrete containing rice husk ash: a review
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
JP4628237B2 (en) Method for producing lightweight cellular concrete
JP7398225B2 (en) lightweight aerated concrete
JP2014043379A (en) Manufacturing method of light-weight foam concrete
EP2146940A1 (en) Gypsum based compositions
JP2001058888A (en) Lightweight calcium silicate hardened body
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
JP6134278B2 (en) Lightweight cellular concrete
JP2007084365A (en) Method for producing lightweight cellular concrete
JP4409281B2 (en) Method for producing lightweight cellular concrete
JP2002326882A (en) Lightweight cellular concrete
JP6305874B2 (en) Method for producing hardened cementitious body
JP6513419B2 (en) Process for producing a molded article formed by molding a composition for concrete having improved scaling resistance using blast furnace slag
KR100212032B1 (en) Lightweight concrete composition and production thereof
JP2001122674A (en) High strength calcium silicate-hardened body
JP7074527B2 (en) Cement composite
KR101618921B1 (en) Mortar for exterior insulation with excellent adhesive property and long-dated durability and exterior insulation system using the same
JP2006083039A (en) Cement composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R150 Certificate of patent or registration of utility model

Ref document number: 7398225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150