JP2020040871A - Lightweight cellular concrete - Google Patents

Lightweight cellular concrete Download PDF

Info

Publication number
JP2020040871A
JP2020040871A JP2019159580A JP2019159580A JP2020040871A JP 2020040871 A JP2020040871 A JP 2020040871A JP 2019159580 A JP2019159580 A JP 2019159580A JP 2019159580 A JP2019159580 A JP 2019159580A JP 2020040871 A JP2020040871 A JP 2020040871A
Authority
JP
Japan
Prior art keywords
mass
less
weight
particles
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019159580A
Other languages
Japanese (ja)
Other versions
JP7398225B2 (en
Inventor
小川 晃博
Akihiro Ogawa
晃博 小川
晴義 土屋
Haruyoshi Tsuchiya
晴義 土屋
裕隆 高瀬
Hirotaka Takase
裕隆 高瀬
林 由紀子
Yukiko Hayashi
由紀子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp, Asahi Kasei Homes Corp filed Critical Asahi Kasei Construction Materials Corp
Publication of JP2020040871A publication Critical patent/JP2020040871A/en
Application granted granted Critical
Publication of JP7398225B2 publication Critical patent/JP7398225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a lightweight cellular concrete reduced in minute defects in processing surface joints (cut grooves) and having highly designable surface peeling processability.SOLUTION: A lightweight cellular concrete having a specific gravity of 0.2 or more and less than 0.45, wherein a ratio of an insoluble residue in the lightweight cellular concrete is 5 mass% or more and less than 20 mass% based on the whole solid content, and assuming that particles having a diameter of less than 10 μm in the insoluble residue are fine particles, that particles having a diameter of 10 μm or more and less than 100 μm are middle particles and that particles having a diameter of 100 μm or more are coarse particles, a content of the coarse particles in the insoluble residue is 2.0 mass% or less.SELECTED DRAWING: Figure 1

Description

本発明は、軽量気泡コンクリート(以下、ALCともいう。)に関する。より詳しくは、本発明は、表面目地(切削溝)加工における微欠損が少なく、意匠性の高い表面剥離加工特性に優れる、比重0.2以上0.45未満の低比重の軽量気泡コンクリート(以下、低比重ALCともいう。)に関する。   The present invention relates to lightweight cellular concrete (hereinafter, also referred to as ALC). More specifically, the present invention provides a lightweight cellular concrete (hereinafter, referred to as a low specific gravity of 0.2 to less than 0.45), which has a small number of small defects in surface joint (cutting groove) processing and is excellent in surface peeling processing characteristics having high designability. , Low specific gravity ALC).

ALCは、嵩比重が0.45〜0.55と軽量でありながら、結晶性の高いトバモライト(5CaO・6SiO2・5H2O)を多量に含むことから、建築材料として必要な強度を有し、長期の耐候性、耐火性、耐不朽性に優れ、軽量、かつ、加工性に優れるために施工が容易であり、建築物の外壁材、床材、内壁材、屋根材等として広く利用されており、例えば、建築物の設計仕様に基づいて各種寸法に切断したり、長辺小口面に溝を切削加工したり、縁部の面取り加工等を施したりする場合がある。さらに、近年においては、例えば、図3に示すように、ALCの表面に複雑なデザイン模様を切削加工や剥離加工により施し、高付加価値化等を図る場合もある。
ALCは、セメント及び珪石粉を主原料とし、これに必要により生石灰粉、石膏等を加え、水を添加してスラリー状とし、大気圧下でアルミニウム粉末等の気泡剤により発泡した後、型枠で成形してオートクレーブ養生して製造される。ALCの圧縮強度は、通常、4〜5N/mm2の範囲にあり、曲げ強度は1〜1.5N/mm2の範囲にある。
ALC is bulk while a specific gravity of 0.45 to 0.55 and weight, since containing a large amount of highly crystalline tobermorite (5CaO · 6SiO 2 · 5H 2 O), has the necessary strength as a building material Excellent in long-term weather resistance, fire resistance, indestructibility, lightweight, and easy to work because of excellent workability, widely used as exterior materials, floor materials, interior materials, roof materials, etc. For example, there are cases in which cutting is performed to various dimensions based on a design specification of a building, a groove is cut in a small side surface of a long side, chamfering of an edge is performed, or the like. Further, in recent years, as shown in FIG. 3, for example, a complex design pattern may be formed on the surface of the ALC by cutting or peeling to increase added value.
ALC is mainly composed of cement and silica stone powder, and if necessary, quicklime powder, gypsum, etc. are added thereto, water is added to form a slurry, and the mixture is foamed with a foaming agent such as aluminum powder at atmospheric pressure. It is manufactured by molding and autoclaving. The compressive strength of ALC is usually in the range of 4-5 N / mm 2 , and the flexural strength is in the range of 1-1.5 N / mm 2 .

通常のコンクリートは、比重が2.0程度であるのに対し、ALCは比重が0.45〜0.55であり、その軽量化は内部に多くの空隙を含有させることによって実現されている。ALCでは、体積分率で約80%が空隙であるが、0.2以上0.45未満の低比重ALCでは、通常、従来のALCよりもさらに空隙量が多い。   Normal concrete has a specific gravity of about 2.0, whereas ALC has a specific gravity of 0.45 to 0.55, and its weight is reduced by including many voids inside. In the ALC, about 80% of the volume is voids, but in the low specific gravity ALC of 0.2 or more and less than 0.45, the void volume is usually larger than that of the conventional ALC.

以下の特許文献1には、珪酸質原料として用いる珪石の粒度を調整することにより、強度などの諸物性に優れたALCを製造できる方法を提供することを目的として、珪石原料として用いる粉砕後の珪石が、粒径10μm未満を微粒、10μm以上100μm未満を中粒、100μm以上を粗粒と規定したとき、微粒、中粒、粗粒の全てを含み、粗粒の質量百分率が9〜15%で、微粒/中粒の質量比が0.9〜1.2であることを特徴とするALCの製造方法が開示されている。
特許文献1には、微粒と中粒の質量比を0.9〜1.2に調整することで、トバモライトの結晶核の生成と結晶成長とがバランス良く促進され、十分なトバモライトが生成すると同時に、粗粒の質量百分率を9〜15%とすることによって、残留する粗粒が骨材効果を果たし、これらが相乗してALCの強度が向上するとの考察がなされている。
特許文献1に記載されたALCは、4.8N/mm以上の圧縮強度を達成しているものの、原料としての粉砕珪石の粗粒を9質量%以上含むため、以下に説明する不溶残分の比率は全固形分に対して35質量%程度、不溶残分中の粗粒珪石は10質量%以上であると推定され、また、その絶乾嵩比重は0.5程度である。すなわち、特許文献1には、比重0.2〜0.45未満の低比重ALCは開示されておらず、また、低比重ALCにおける表面目地加工における微欠損の発生の問題や表面意匠性の高い剥離加工特性については一切記載されていない。
Patent Literature 1 below discloses a method for producing a ALC having excellent physical properties such as strength by adjusting the particle size of silica used as a siliceous raw material. When the silica stone is defined as a fine particle having a particle diameter of less than 10 μm, a medium particle having a particle size of 10 μm or more and less than 100 μm, and a coarse particle having a particle size of 100 μm or more, the mass percentage of the coarse particle is 9 to 15%. A method for producing ALC, wherein the mass ratio of fine particles / medium particles is 0.9 to 1.2 is disclosed.
Patent Document 1 discloses that by adjusting the mass ratio of fine particles to medium particles to 0.9 to 1.2, the formation of crystal nuclei and crystal growth of tobermorite are promoted in a well-balanced manner, and sufficient tobermorite is generated. It has been considered that by setting the mass percentage of the coarse particles to 9 to 15%, the remaining coarse particles serve as an aggregate effect, and synergistically improve the ALC strength.
Although the ALC described in Patent Literature 1 achieves a compressive strength of 4.8 N / mm 2 or more, it contains 9% by mass or more of coarse particles of ground silica as a raw material. Is estimated to be about 35% by mass with respect to the total solid content, the coarse silica in the insoluble residue is estimated to be at least 10% by mass, and the absolute dry bulk specific gravity is about 0.5. That is, Patent Literature 1 does not disclose a low specific gravity ALC having a specific gravity of less than 0.2 to 0.45, and has a problem of generation of minute defects in surface joint processing in the low specific gravity ALC and a high surface design. No mention is made of the release processing characteristics.

以下の特許文献2には、かさ比重が0.45〜0.55と軽量でありながら、建築材料として必要な強度を有し、長期の耐候性、耐火性及び耐不朽性に優れるALCにおいて、建築物の設計仕様に基づいて各種寸法に切断したり、長辺小口面に溝を切削加工したり、縁部の面取り加工等を施す場合において発生する欠損やひび割れを防止することを目的として、珪石及び珪砂を主成分とする珪酸質原料と、石灰質原料と、水と、発泡剤と、を含有するALCであって、当該軽量気泡コンクリート中の不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒とした場合に、上記不溶残分における上記粗粒の含有率が0.1〜40質量%であり、上記中粒に対する上記微粒の質量比が0.01〜0.7であるALCが開示されている。
特許文献2には、粉砕後の珪石及び珪砂の粒径が10μm未満である微粒には、ある一定量まではトバモライトの生成を促す性質があるが(一定量より多くなると逆にトバモライトの生成を阻害する性質がある)、その反面、ALC中の不溶残分が微粒になり、ALCの加工時における欠損やひび割れの発生を増大させる性質があること;粒径が10μm以上100μm未満である中粒には、トバモライトの生成を促す性質があると共に、ALC中の不溶残分も適度な粒径となることにより、ALCの加工時における欠損やひび割れの発生を抑制できること;そして粒径が100μm以上である粗粒には、微粒(ある一定量まで)及び中粒ほど、トバモライトの生成を促す性質はないが、ALC中の不溶残分が粗粒になるため、ALCの加工時における欠損やひび割れの発生を大きく抑制できること;が記載されている。そして、不溶残分中の微粒/中粒質量比として0.1〜0.7を教示し、不溶残分中の粗粒の含有率として0.1〜40質量%を教示している。また、特許文献2の実施例における不溶残分中の粗粒の含有率は、4.2〜19.5質量%である。
特許文献2に記載されたALCは、欠損やひび割れの極めて低い発生率を達成しているものの、原料としての粉砕珪石の粗粒を4.3〜17.0質量%含むため、不溶残分比率は全固形分に対して30質量%程度であると推定され、また、その絶乾嵩比重も0.5程度である。すなわち、特許文献2には、比重0.2〜0.45未満の低比重ALCは開示されておらず、また、低比重ALCにおける表面目地加工における微欠損の発生の問題や表面意匠性の高い剥離加工特性については一切記載されていない。
Patent Literature 2 below discloses an ALC that has a strength required as a building material while being lightweight with a bulk specific gravity of 0.45 to 0.55, and is excellent in long-term weather resistance, fire resistance and endurance resistance. For the purpose of cutting or cutting into various dimensions based on the design specifications of the building, cutting grooves on the small side of the long side, or preventing chipping or cracking that occurs when performing chamfering of the edge, etc. An ALC containing a siliceous raw material mainly composed of silica stone and silica sand, a calcareous raw material, water and a foaming agent, wherein the particle size of an insoluble residue in the lightweight cellular concrete is less than 10 μm. When fine particles having a size of 10 μm or more and less than 100 μm are medium particles and those having a size of 100 μm or more are coarse particles, the content of the coarse particles in the insoluble residue is 0.1 to 40% by mass, The mass ratio of the fine particles is ALC is disclosed a .01~0.7.
According to Patent Document 2, fine particles having a particle size of the crushed silica stone and silica sand of less than 10 μm have a property of promoting generation of tobermorite up to a certain amount. On the other hand, on the other hand, the insoluble residue in the ALC becomes fine particles and has the property of increasing the occurrence of defects and cracks during ALC processing; medium particles having a particle size of 10 μm or more and less than 100 μm Has the property of promoting the generation of tobermorite, and the insoluble residue in ALC has an appropriate particle size, so that the generation of defects and cracks during the processing of ALC can be suppressed; and when the particle size is 100 μm or more, Certain coarse particles do not have the property to promote the formation of tobermorite as fine particles (up to a certain amount) and medium particles, but because the insoluble residue in ALC becomes coarse, It can be greatly suppressed generation of definitive defect or crack; is described. The teaching teaches 0.1 to 0.7 as the mass ratio of fine particles / medium grains in the insoluble residue, and teaches 0.1 to 40% by mass as the content of coarse particles in the insoluble residue. The content of the coarse particles in the insoluble residue in Examples of Patent Document 2 is 4.2 to 19.5% by mass.
Although the ALC described in Patent Document 2 achieves an extremely low occurrence rate of defects and cracks, it contains 4.3 to 17.0% by mass of coarse particles of ground silica as a raw material. Is estimated to be about 30% by mass with respect to the total solid content, and its absolute dry bulk specific gravity is also about 0.5. That is, Patent Literature 2 does not disclose a low specific gravity ALC having a specific gravity of less than 0.2 to 0.45, and has a problem of generation of minute defects in surface joint processing in the low specific gravity ALC and a high surface design. No mention is made of the release processing characteristics.

ところで、近年、建築物のさらなる軽量化への要望、現場作業時の安全性向上や作業者への負担低減の観点から、従来のALCの特長を保持したまま、さらに比重の低い低比重ALCが求められている。低比重ALCとしては、従来よりも気泡剤に起因する気泡の量を多く含有するものが一般的である。低比重化を実現する方法として、気泡を多く含有させると、気泡径が巨大化し、全容積に対する気泡剤による粗大気泡割合が大きくなり、強度の大幅な低下を招く。そこで、熱可塑性樹脂やアルカリ土類金属炭酸塩を含有させたり、比表面積の大きな珪石粉を用いることが提案されているが、嵩比重の低減に伴う圧縮強度の低下をまぬがれず、例えば、嵩比重0.35〜0.40では圧縮強度が1.5〜3.25N/mm2程度であり、従来のALCと比較して強度が弱いものが一般的である。 By the way, in recent years, from the viewpoint of demand for further weight reduction of buildings, improvement of safety at the time of on-site work and reduction of burden on workers, a low specific gravity ALC having a lower specific gravity has been developed while maintaining the features of the conventional ALC. It has been demanded. As the low specific gravity ALC, those containing a larger amount of bubbles due to the foaming agent than before are generally used. As a method of realizing a low specific gravity, when a large amount of air bubbles is contained, the air bubble diameter becomes large and the ratio of the coarse air bubbles due to the foaming agent to the total volume becomes large, resulting in a significant decrease in strength. Therefore, it has been proposed to use a thermoplastic resin or an alkaline earth metal carbonate or to use silica powder having a large specific surface area. However, the reduction in compressive strength accompanying the reduction in bulk specific gravity cannot be avoided. When the specific gravity is 0.35 to 0.40, the compressive strength is about 1.5 to 3.25 N / mm 2 , and the strength is generally lower than that of the conventional ALC.

特開2007−99546号公報JP 2007-99546 A 特許第6134278号公報Japanese Patent No. 6134278

前記したように、ALCは、建築物の設計仕様に基づいて各種寸法に切断したり、長辺小口面に溝を切削加工したり、縁部の面取り加工等を施したりする場合があり、さらに、近年においてはALCの表面に複雑なデザイン模様を切削加工や剥離加工により施し、高付加価値化等を図る場合があるが、この際、ALCの切断や切削、面取り加工、表面切削・剥離加工の際、欠損やひび割れが生じることがある。しかしながら、従来のALCとは比重や、不溶残分、該不溶残分中の粒度分布等が異なる低比重ALCに関して、欠損やひび割れを抑制する目的で、原料である珪石や珪砂の粒度や生成物であるALC中の不溶残分の粒度を検討したものはない。
かかる状況下、本発明が解決しようとする課題は、低比重ALCにおいても、長時間、表面目地加工や溝切削加工しても微欠損が少なく、かつ、表面意匠性の高い剥離加工特性に優れる軽量気泡コンクリートを提供することである。
As described above, ALC may be cut into various dimensions based on the design specification of the building, may be cut into a groove on a long side small face, or may be subjected to chamfering of an edge, and the like. In recent years, there is a case where a complex design pattern is applied to the surface of the ALC by cutting or peeling to increase the value added. In this case, cutting, cutting, chamfering, surface cutting / peeling of the ALC are performed. In such a case, chipping or cracking may occur. However, with respect to the low specific gravity ALC having different specific gravity, insoluble residue, and particle size distribution in the insoluble residue from the conventional ALC, for the purpose of suppressing chipping and cracking, the particle size and product There is no study on the particle size of the insoluble residue in ALC.
Under such circumstances, the problem to be solved by the present invention is that, even in low specific gravity ALC, for a long time, even when surface joint processing or groove cutting is performed, there is little micro-defect, and the surface has excellent surface design and excellent peeling properties. It is to provide lightweight cellular concrete.

本願発明者らは、上記課題を解決すべく鋭意研究し実験を重ねた結果、従来、低比重ではない通常のALCにおいて、粉砕後の珪石及び珪砂の粒径が10μm未満である微粒は、一定量より多くなるとトバモライトの生成を阻害する性質があり、ALC中の不溶残分の微粒比率が高くなると、ALCの加工時における欠損やひび割れの発生を増大させ、また、不溶残分中の粗粒の割合が高くなると、ALCの加工時における欠損やひび割れの発生を大きく抑制できると教示されていたところ、かかる教示に反し、嵩比重0.2以上〜0.45未満の低比重ALCにおいて、不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、不溶残分中の粗粒の含有率が2.0質量%以下である場合に、長時間切削加工した時でも微細な欠損(微欠損)が少なく、また、不溶残分中の微粒/中粒比率が0.75以上1.40以下と(特許文献2に教示された0.1〜0.7の範囲よりも)高い場合に、溝部に挿入した刃物の揺動や打撃などのはつりによる表面剥離加工特性が良好となり表面デザイン性や意匠性が高い軽量気泡コンクリートの製造が可能になることを予想外に見出し、本発明を完成するに至ったものである。   The inventors of the present application have conducted intensive studies and repeated experiments to solve the above-mentioned problems. As a result, conventionally, in ordinary ALC that is not low in specific gravity, fine particles having a particle size of silica stone and silica sand of less than 10 μm after grinding are constant. If the amount is larger than the amount, it has a property of inhibiting the generation of tobermorite, and if the ratio of fine particles of the insoluble residue in ALC increases, the generation of defects and cracks during ALC processing increases, and the coarse particles in the insoluble residue also increase. It was taught that when the ratio of ALC was high, it was possible to greatly suppress the occurrence of cracks and cracks during the processing of ALC, but contrary to such teaching, insoluble in low specific gravity ALC having a bulk specific gravity of 0.2 or more and less than 0.45. When the ratio of the residue was 5% by mass or more and less than 20% by mass with respect to the total solid content, and when the content of coarse particles in the insoluble residue was 2.0% by mass or less, cutting was performed for a long time. Sometimes fine Small defects (fine defects), and the ratio of fine particles / medium particles in the insoluble residue is 0.75 or more and 1.40 or less (less than the range of 0.1 to 0.7 taught in Patent Document 2). Unexpectedly, it was found that when the height is high, the properties of the surface peeling process by the hanging such as the swinging and hitting of the blade inserted into the groove become good, and the production of lightweight cellular concrete with high surface design and design is possible. The present invention has been completed.

すなわち、本発明は以下のとおりのものである。
[1]比重0.2以上0.45未満の軽量気泡コンクリートであって、該軽量気泡コンクリート中の不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であることを特徴とする軽量気泡コンクリート。
[2]前記中粒に対する前記微粒の質量比(微粒/中粒)が0.75以上1.40以下である、前記[1]に記載の軽量気泡コンクリート。
That is, the present invention is as follows.
[1] A lightweight cellular concrete having a specific gravity of 0.2 or more and less than 0.45, wherein a ratio of an insoluble residue in the lightweight cellular concrete is 5% by mass or more and less than 20% by mass with respect to a total solid content, and When the particle size of the insoluble residue is less than 10 μm, fine particles, the particle size of 10 μm or more and less than 100 μm are medium particles, and the particle size of 100 μm or more are coarse particles, the content of the coarse particles in the insoluble residue is 2%. A lightweight cellular concrete characterized by being not more than 0.0% by mass.
[2] The lightweight cellular concrete according to [1], wherein a mass ratio of the fine particles to the medium particles (fine particles / medium particles) is 0.75 or more and 1.40 or less.

本発明に係る比重0.2以上〜0.45未満の低比重ALCは、不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であることで、切削加工時における微細な欠損(微欠損)が少なくなり、さらに、不溶残分中の微粒/中粒比率が0.75以上1.40以下と高いことで、溝部に挿入した刃物の揺動や打撃などのはつりによる、デザイン性や意匠性が高い表面剥離加工特性が良好となる。
通常、切削加工に用いる刃物は摩耗するため、約1万m切断で新品に交換する。また、通常、切削初期の刃物状態では、切削加工装置のモーター負荷に特段の変化はないが、使用開始後の後半、5千〜1万m加工時には、モーター負荷が上がり、切削時に小さな欠損(微欠損)が生じる。これに反し、本実施態様の低比重ALCでは、切削加工時の刃物の摩耗が軽減され、1.5万mまでの使用が可能となる。
In the low specific gravity ALC having a specific gravity of 0.2 or more and less than 0.45 according to the present invention, the ratio of the insoluble residue is 5% by mass or more and less than 20% by mass with respect to the total solid content, and the particles of the insoluble residue are When the particles having a diameter of less than 10 μm are fine particles, those having a diameter of 10 μm or more and less than 100 μm are medium particles, and those having a diameter of 100 μm or more are coarse particles, the content of the coarse particles in the insoluble residue is 2.0% by mass or less. With this, fine defects (fine defects) during cutting are reduced, and the ratio of fine particles / medium particles in the insoluble residue is as high as 0.75 or more and 1.40 or less. The surface peeling characteristics with high design and design characteristics due to the swing such as swinging and impact of the surface become good.
Usually, the cutting tool used for the cutting process is worn out, so that the cutting tool is replaced by a new one after cutting about 10,000 m. In addition, usually, in the state of the cutting tool in the initial stage of cutting, there is no particular change in the motor load of the cutting apparatus, but in the latter half of the use after 5,000 to 10,000 m, the motor load increases, and a small defect ( Microdefect) occurs. On the other hand, in the low specific gravity ALC of this embodiment, the wear of the cutting tool at the time of cutting is reduced, and it is possible to use the tool up to 15,000 m.

剥離性の評価方法を説明するための図面である。It is a drawing for explaining the evaluation method of the releasability. 切削加工に用いた切削刃の概要図である。It is a schematic diagram of the cutting blade used for cutting. 表面剥離加工の一例の平面図である。50×100mmのブロック単位で剥離した石割調デザインのパネルである。It is a top view of an example of surface separation processing. It is a panel with a stone split tone design that has been peeled off in units of 50 × 100 mm blocks.

以下、本発明を実施するための形態(以下、「実施形態」という。)について詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。   Hereinafter, embodiments for implementing the present invention (hereinafter, referred to as “embodiments”) will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist.

本実施形態の軽量気泡コンクリートは、比重0.2以上〜0.45未満の低比重ALCであって、該低比重ALC中の不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であることを特徴とし、前記不溶残分中の粗粒の含有率は、好ましくは0.5質量%以下であり、前記不溶残分の比率は、好ましくは5質量%以上15質量%以下であり、前記中粒に対する前記微粒の質量比(微粒/中粒)は、好ましくは0.75以上1.40以下、より好ましくは0.75以上1.20以下である。   The lightweight cellular concrete of the present embodiment is a low specific gravity ALC having a specific gravity of 0.2 or more to less than 0.45, and a ratio of an insoluble residue in the low specific gravity ALC is 5% by mass or more and 20% by mass relative to the total solid content. % And the particle size of the insoluble residue is less than 10 μm, the fine particles are 10 μm or more and less than 100 μm, and the coarse particles are 100 μm or more. The content of coarse particles is 2.0% by mass or less, the content of coarse particles in the insoluble residue is preferably 0.5% by mass or less, and the ratio of the insoluble residue is The mass ratio of the fine particles to the medium particles (fine particles / medium particles) is preferably 0.75 or more and 1.40 or less, more preferably 0.75 or more and 1 or less. .20 or less.

不溶残分の比率が全固形分に対し5質量%以上20質量%未満であれば、切削加工時、使用開始後の後半、5千〜1万m加工時に、モーター負荷が上がり、切削時に小さな欠損(微欠損)が生じることがない。
不溶残分の比率が5質量%以上であれば、量産性、品質安定化を損なうおそれがない。他方、不溶残分の比率が20質量%未満であれば、切削加工時のモーター負荷を抑えることができる。不溶残分の比率が15質量%以下であれば、切削加工時のモーター負荷の上昇と微欠損の発生の低減を両立できる点から好ましいものとなる。
If the proportion of the insoluble residue is 5% by mass or more and less than 20% by mass with respect to the total solid content, the motor load increases during machining, in the second half after starting use, and during machining at 5,000 to 10,000 m, and is small during machining. No loss (small loss) occurs.
When the proportion of the insoluble residue is 5% by mass or more, there is no possibility that mass productivity and quality stabilization are impaired. On the other hand, if the ratio of the insoluble residue is less than 20% by mass, the motor load during cutting can be reduced. When the proportion of the insoluble residue is 15% by mass or less, it is preferable from the viewpoint that the increase in the motor load at the time of cutting and the reduction in the occurrence of minute defects can both be achieved.

不溶残分中の粗粒の含有率が2.0質量%以下であれば、切削加工時、使用開始後の後半、5千〜1万m加工時に、モーター負荷が上がり、切削時に小さな欠損(微欠損)が生じることがない。   If the content of coarse particles in the insoluble residue is 2.0% by mass or less, the motor load increases during cutting, in the second half after use, and during machining at 5,000 to 10,000 m, and small defects ( Minor loss) does not occur.

不溶残分中の中粒に対する微粒の質量比(微粒/中粒)が0.75以上であれば、剥離性が高くなるため、剥離加工性が良好となり、他方、1.20以下であれば、剥離性が高くなりすぎる(全剥離)ことを回避することができる。例えば、以下の実施例の欄で説明する剥離性試験において、剥離度を60〜75%に制御することができる。例えば、図3に示すような石割調デザインのパネルを作製することができるが、剥離加工時、剥離度が60〜75%程度であれば、デザイン・意匠上好ましいものとなる。剥離度が80%以上となると、全面が剥離する(全剥離)する可能性が高くなり、全面が剥離した箇所が発生するとデザイン上好ましくない。   When the mass ratio of the fine particles to the medium particles in the insoluble residue (fine particles / medium particles) is 0.75 or more, the releasability is high, and the peelability is good. In addition, it is possible to prevent the peelability from becoming too high (total peeling). For example, in the peelability test described in the section of Examples below, the degree of peeling can be controlled to 60 to 75%. For example, a panel with a stone-tone design as shown in FIG. 3 can be manufactured. However, if the degree of peeling at the time of peeling is about 60 to 75%, it is preferable in terms of design and design. When the degree of peeling is 80% or more, the possibility that the entire surface is peeled (total peeling) increases, and if a part where the whole surface is peeled off occurs, it is not preferable in design.

本実施形態の低比重ALCの(嵩)比重は、0.20以上0.45未満であるが、建築材料として好適な強度を得るという観点から、好ましくは0.23以上である。また、嵩比重は、軽量性、現場作業時の安全性向上や作業者への負担低減効果の観点から、好ましくは0.40以下である。本明細書中、「嵩比重」又は「比重」とは、105℃で24時間乾燥させた際の嵩比重、すなわち、絶乾比重をいう。
嵩比重又は比重がこの範囲にあれば、切削加工時のモーターの負荷が大きくなり、また、切削抵抗が大きくなりすぎることがない。
The (bulk) specific gravity of the low specific gravity ALC of this embodiment is 0.20 or more and less than 0.45, but is preferably 0.23 or more from the viewpoint of obtaining strength suitable as a building material. In addition, the bulk specific gravity is preferably 0.40 or less from the viewpoint of lightness, improvement in safety at the time of on-site work, and an effect of reducing a burden on an operator. In the present specification, “bulk specific gravity” or “specific gravity” refers to bulk specific gravity when dried at 105 ° C. for 24 hours, that is, absolute dry specific gravity.
When the bulk specific gravity or the specific gravity is in this range, the load on the motor during cutting is increased, and the cutting resistance is not excessively increased.

以下、本実施形態の低比重ALCの製造方法を説明する。
本実施形態の低比重ALCの製造方法は、少なくとも珪酸質原料とセメントと石灰質原料を含む水性スラリーに、気泡剤として金属アルミニウム粉を加えて型枠に注入し、予備硬化した後にオートクレーブ養生する工程を含み、該珪酸質原料として、結晶性珪酸質原料を主体とし、結晶性珪酸質原料を粉砕後の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒とした場合に、粗粒の含有率を、1.5質量%未満、好ましくは0.8質量%以下に、中粒に対する微粒の質量比を、0.75以上2.0未満にしたものを用いることが好ましい。
Hereinafter, a method of manufacturing the low specific gravity ALC of the present embodiment will be described.
The method for producing a low specific gravity ALC of the present embodiment is a step of adding metal aluminum powder as a foaming agent to an aqueous slurry containing at least a siliceous raw material, cement and calcareous raw material, injecting it into a mold, pre-curing, and then curing in an autoclave. Containing, as the siliceous raw material, a crystalline siliceous raw material as a main component, fine particles having a particle size of less than 10 μm after pulverization of the crystalline siliceous material, medium particles having a particle size of 10 μm or more and less than 100 μm, and medium particles having a particle size of 100 μm or more. When the coarse particles are used, the content of coarse particles is less than 1.5% by mass, preferably 0.8% by mass or less, and the mass ratio of fine particles to medium particles is 0.75 or more and less than 2.0. It is preferable to use the above-mentioned one.

また、珪酸質原料とセメントと石灰質原料の比率は、CaO/SiO2 モル比として0.5以上1.2以下であることが好ましい。CaO/SiO2 モル比が0.5以上であれば、前記した不溶残分の比率を20%未満とすることができる。他方、CaO/SiO2 モル比が1.2以下であれば、トバモライトの生成が十分に進み、品質上の問題が生じない。
前記したように、本実施形態の製造方法に使用される原料は、トバモライトを多く生成し、強度を十分に発揮するという観点、及び、不溶残分を20質量%未満とする観点から、CaO/SiO2モル比が0.55以上となるように混合することがより好ましい。他方、CaO/SiO2モル比は、高結晶性のトバモライトを多く生成するという観点から、より好ましくは1.0以下、最も好ましくは0.8以下である。
Further, the ratio of the siliceous raw material, cement and calcareous raw material is preferably 0.5 or more and 1.2 or less as a CaO / SiO 2 molar ratio. If the CaO / SiO 2 molar ratio is 0.5 or more, the ratio of the insoluble residue can be made less than 20%. On the other hand, when the molar ratio of CaO / SiO 2 is 1.2 or less, generation of tobermorite proceeds sufficiently and no quality problem occurs.
As described above, the raw materials used in the production method of the present embodiment generate CaO / from the viewpoint of generating a large amount of tobermorite and sufficiently exhibiting strength, and reducing the insoluble residue to less than 20% by mass. It is more preferable to mix them so that the SiO 2 molar ratio becomes 0.55 or more. On the other hand, the CaO / SiO 2 molar ratio is more preferably 1.0 or less, and most preferably 0.8 or less, from the viewpoint of producing a large amount of highly crystalline tobermorite.

また、型枠に注入する前のスラリー中の全固形原料中において、硫酸化合物のSO換算での含有量に対するアルミニウム化合物の酸化物換算(Al換算)での含有量は、質量比0.92以上3以下であることが好ましい。尚、気泡剤として用いる金属アルミニウム粉末もアルミニウム化合物源として作用するため、アルミニウム化合物の酸化物換算(Al換算)での含有量として含める。 In addition, in the total solid raw material in the slurry before being injected into the mold, the content of the aluminum compound in terms of oxide (in terms of Al 2 O 3 ) with respect to the content in terms of SO 3 of the sulfate compound is a mass ratio. It is preferably 0.92 or more and 3 or less. Since the metal aluminum powder used as the foaming agent also acts as an aluminum compound source, it is included as the content of the aluminum compound in terms of oxide (in terms of Al 2 O 3 ).

[珪酸質原料]
珪酸質原料としては、例えば、結晶質の珪石、珪砂、石英、及びそれらの含有率の高い岩石等を使用することができる。
本明細書中、「結晶性珪酸質原料を主体とする」とは、用いる珪酸質原料のうち65質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上が、結晶質の珪石、珪砂、石英及びそれらの含有率の高い岩石であることをいう。
[Silicic raw material]
As the siliceous raw material, for example, crystalline silica stone, silica sand, quartz, and rocks having a high content thereof can be used.
In the present specification, "mainly composed of a crystalline siliceous raw material" means 65 mass% or more, preferably 70 mass% or more, more preferably 80 mass% or more, and further preferably 90 mass%, of the siliceous raw material used. % Or more refers to crystalline silica, quartz sand, quartz, and rocks having a high content thereof.

結晶性の珪酸質原料の中でも、用いる結晶質珪酸質原料のうち、石英結晶成分が80質量%以上である高結晶性珪酸質原料が好ましい。石英結晶成分が高い高結晶性珪酸質原料を多く用いると、低比重軽量気泡コンクリート中に生成するトバモライトの結晶性が高い傾向がある。
結晶質珪酸質原料中の石英結晶成分の割合は、結晶性珪酸質原料の粉末X線回折を用いて評価される。石英粉末の粉末X線回折で観測される石英の回折強度の総和に対する、結晶性珪酸質原料の粉末X線回折の石英の回折強度の総和の比率を以て石英結晶成分の割合とする。
Among the crystalline siliceous raw materials, among the crystalline siliceous raw materials, a highly crystalline siliceous raw material having a quartz crystal component of 80% by mass or more is preferable. When a large amount of a highly crystalline siliceous raw material having a high quartz crystal component is used, tobermorite produced in low-density and lightweight cellular concrete tends to have high crystallinity.
The proportion of the quartz crystal component in the crystalline siliceous raw material is evaluated using powder X-ray diffraction of the crystalline siliceous raw material. The ratio of the sum of the diffraction intensities of the quartz in the powder X-ray diffraction of the crystalline siliceous raw material to the sum of the diffraction intensities of the quartz observed in the powder X-ray diffraction of the quartz powder is defined as the ratio of the quartz crystal component.

本実施形態の低比重ALCの製造方法の原料として使用する珪酸質原料は、粉砕後の粒径は、10μm未満であるものを微粒、10μm以上100μm未満であるものを中粒、100μm以上であるものを粗粒とした場合に、粗粒の含有率は、珪石及び珪砂の全質量の1.5質量%未満、好ましくは0.8質量%以下であることが好ましい。粗粒の含有率が1.5質量%未満であれば、不溶残分中の粗粒の含有率を2.0質量%以下、好ましくは0.5質量%以下にすることができる。
また、粉砕後の珪酸質原料における中粒に対する上記微粒の質量比が0.75以上であれば、不溶残分中の中粒に対する微粒の質量比を0.75以上にすることができる。他方、粉砕後の珪酸質原料における中粒に対する微粒の質量比が2.0未満であれば、不溶残分中の中粒に対する微粒の質量比を1.40以下にすることができる。さらに好ましくは粉砕後の珪酸質原料における中粒に対する微粒の質量比が1.4未満であれば、不溶残分中の中粒に対する微粒の質量比を1.20以下にすることができる。
The siliceous raw material used as a raw material of the low specific gravity ALC production method of the present embodiment has fine particles having a particle size of less than 10 μm, fine particles having a particle size of 10 μm or more and less than 100 μm, and medium particles having a particle size of 100 μm or more. When the material is coarse, the content of the coarse particles is preferably less than 1.5% by mass, more preferably 0.8% by mass or less of the total mass of the silica stone and the silica sand. When the content of coarse particles is less than 1.5% by mass, the content of coarse particles in the insoluble residue can be 2.0% by mass or less, preferably 0.5% by mass or less.
When the mass ratio of the fine particles to the medium particles in the pulverized siliceous raw material is 0.75 or more, the mass ratio of the fine particles to the medium particles in the insoluble residue can be 0.75 or more. On the other hand, if the mass ratio of the fine particles to the medium particles in the pulverized siliceous raw material is less than 2.0, the mass ratio of the fine particles to the medium particles in the insoluble residue can be 1.40 or less. More preferably, if the mass ratio of the fine particles to the medium particles in the pulverized siliceous raw material is less than 1.4, the mass ratio of the fine particles to the medium particles in the insoluble residue can be 1.20 or less.

粉砕後の珪石及び珪砂の粒度及び粒度分布は、レーザー光回折・散乱式の粒度分布計を用いて測定することができる。測定の形式は特に限定されないが、例えば湿式測定であってもよい。また、測定範囲も適宜設定することができ、例えば、0.12μm〜704μmに設定することができる。   The particle size and particle size distribution of the crushed silica stone and silica sand can be measured using a laser light diffraction / scattering type particle size distribution meter. The type of measurement is not particularly limited, but may be, for example, a wet measurement. In addition, the measurement range can be set as appropriate, and for example, can be set to 0.12 μm to 704 μm.

[セメント]
セメントは、特に限定されるものではなく、普通ポルトランドセメント、早強ポルトランドセメント、ビーライトセメント等の珪酸成分とカルシウム成分を主体とするものである。但し、生産性の観点から、用いるセメントのうち30質量%以上が水和反応性の早いセメントであることが好ましい。
[cement]
The cement is not particularly limited, and is mainly composed of a silicate component and a calcium component such as ordinary Portland cement, early-strength Portland cement, and belite cement. However, from the viewpoint of productivity, it is preferable that 30% by mass or more of the cement used is a cement having high hydration reactivity.

[石灰質原料]
石灰質原料としては、生石灰及び消石灰が挙げられる。
本実施形態の製造方法においては、セメントに対する石灰質原料の質量比は、特に限定されるものではないが、強度の観点から0.3以上、スラリー粘度、成型性の観点から1.0以下であることが好ましい。
[Calcical raw materials]
Calcareous raw materials include quicklime and slaked lime.
In the production method of the present embodiment, the mass ratio of the calcareous raw material to cement is not particularly limited, but is 0.3 or more from the viewpoint of strength, and 1.0 or less from the viewpoint of slurry viscosity and moldability. Is preferred.

[アルミニウム化合物]
アルミニウム化合物原料も特に限定されるものではなく、硫酸アルミニウム又はその含水物、γ−アルミナ、水酸化アルミニウム、炭酸アルミニウム、硝酸アルミニウム等を用いることができるが、硫酸化合物とのバランスを取る上で硫酸アルミニウム又はその含水物或いは水酸化アルミニウムが好ましい。低比重軽量気泡コンクリートの気泡剤として用いる金属アルミニウム粉末もアルミニウム化合物源として作用する。
[Aluminum compound]
The aluminum compound raw material is not particularly limited, and aluminum sulfate or a hydrate thereof, γ-alumina, aluminum hydroxide, aluminum carbonate, aluminum nitrate, or the like can be used. Aluminum or its hydrate or aluminum hydroxide is preferred. Aluminum metal powder used as a foaming agent for low-density lightweight cellular concrete also acts as an aluminum compound source.

[硫酸化合物(石膏)]
本実施形態の製造方法においては、含有する硫酸化合物量、アルミニウム化合物の絶対量は特に限定されるものではないが、硫酸化合物の量が少ないとトバモライトの生成が遅くなる、予備硬化時間が長くなってプロセス性が低下する等の傾向があり、多すぎると適正な細孔構造を得られにくい、高い結晶性のトバモライトを得にくい等の傾向がある。そのため、型枠に注入する前のスラリー中の全固形原料中の硫酸化合物の絶対含有量は、SO換算で好ましくは、トバモライトの生成速度、予備硬化時間等プロセス性の観点から、1.5質量%以上、適切な細孔構造、高い結晶性のトバモライトを得るという観点から、5質量%以下であることが好ましく、1.5〜4.5質量%であることがより好ましい。
[Sulfuric acid compound (gypsum)]
In the production method of the present embodiment, the amount of the sulfuric acid compound to be contained and the absolute amount of the aluminum compound are not particularly limited, but when the amount of the sulfuric acid compound is small, the generation of tobermorite is delayed, and the pre-curing time is increased. If the amount is too large, it tends to be difficult to obtain an appropriate pore structure, and it is difficult to obtain highly crystalline tobermorite. Therefore, the absolute content of the sulfate compound in the total solid raw material in the slurry before being poured into the mold is preferably 1.5 in terms of SO 3 , from the viewpoint of processability such as tobermorite generation rate and preliminary curing time. From the viewpoint of obtaining a tobermorite having an appropriate pore structure and high crystallinity, the content is preferably 5% by mass or less, more preferably 1.5 to 4.5% by mass.

本実施形態の製造方法で用いられる硫酸化合物原料は特に限定されるものではなく、SO又はSOを含有する化合物であれば構わない。例えば、亜硫酸、硫酸、無水石膏(CaSO)、二水石膏(CaSO・2HO)、半水石膏(CaSO4・1/2H2O)、硫酸マグネシウムなどのアルカリ土類金属の硫酸塩、硫酸ナトリウムなどのアルカリ金属の硫酸塩、硫酸アルミニウム(Al(SO))又はその含水物、硫酸銅や硫酸銀などの金属硫酸塩等であり、これらを単独で用いても、複数同時に用いてもよい。これら硫酸化合物原料のうち、その構成元素が、通常、ALCに含まれる点から、二水石膏、硫酸アルミニウム(Al(SO)又はその含水物が好ましい。 The raw material of the sulfate compound used in the production method of the present embodiment is not particularly limited, and may be a compound containing SO 3 or SO 4 . For example, alkaline earth metal sulfates such as sulfurous acid, sulfuric acid, anhydrous gypsum (CaSO 4 ), gypsum dihydrate (CaSO 4 .2H 2 O), gypsum hemihydrate (CaSO 4 .1 / 2H 2 O), and magnesium sulfate And sulfates of alkali metals such as sodium sulfate, aluminum sulfate (Al 2 (SO 4 ) 3 ) or a hydrate thereof, and metal sulfates such as copper sulfate and silver sulfate. You may use simultaneously. Of these sulfate compound raw materials, gypsum dihydrate, aluminum sulfate (Al 2 (SO 4 ) 3 ), or a hydrate thereof is preferable because the constituent elements are usually included in ALC.

[気泡剤(発泡剤)]
発泡剤は、珪酸質原料、石灰質原料及び水を含むスラリーを発泡できるものであれば特に限定されることなく用いることができ、例えば、金属アルミニウム粉末などを用いることができる。
[Bubble agent (foaming agent)]
The foaming agent can be used without particular limitation as long as it can foam a slurry containing a siliceous raw material, a calcareous raw material, and water. For example, metal aluminum powder and the like can be used.

[撥水性物質]
本実施形態の気泡コンクリートには、必要に応じて撥水性物質を0.1〜3.0質量%含有させてもよい。撥水性物質とは、特に限定されるものではなく、シロキサン化合物、アルコキシシラン化合物、脂肪酸、脂肪酸塩、エポキシ系樹脂、ウレタン系樹脂、シリコーン系樹脂、酢酸ビニル系樹脂、アクリル系樹脂、スチレン−ブタジエン系樹脂等の樹脂エマルジョン等であり、このうち一種又は二種以上の混合物を用いることもできる。中でも特に、シロキサン化合物、すなわち、ポリジメチルシロキサンやポリジメチルシロキサンのメチル基の一部が水素、フェニル基、トリフロロプロピル基等で置換されたシリコーンオイル、アルコキシシラン化合物、すなわち、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン等のアルキルアルコキシシラン化合物を使用することが好ましい。
[Water-repellent substance]
The cellular concrete of the present embodiment may contain a water-repellent substance in an amount of 0.1 to 3.0% by mass as necessary. The water-repellent substance is not particularly limited, and includes a siloxane compound, an alkoxysilane compound, a fatty acid, a fatty acid salt, an epoxy resin, a urethane resin, a silicone resin, a vinyl acetate resin, an acrylic resin, and styrene-butadiene. A resin emulsion such as a system resin, etc., of which one kind or a mixture of two or more kinds can be used. Among them, particularly, a siloxane compound, that is, a silicone oil in which a part of the methyl group of polydimethylsiloxane or polydimethylsiloxane is substituted with hydrogen, a phenyl group, a trifluoropropyl group, or the like, an alkoxysilane compound, that is, methyltriethoxysilane, It is preferable to use an alkylalkoxysilane compound such as ethyltriethoxysilane, propyltriethoxysilane, or isobutyltriethoxysilane.

[その他成分]
また、上記以外の原料であっても、所望の効果に影響を及ぼさない範囲で各種材料を適宜用いてもよい。例えば、補強繊維、メチルセルロース等の界面活性剤、ポリアクリル酸、ポリビニルアルコール等の増粘剤、減水剤、高性能減水剤等のセメント系材料において一般に用いられる分散剤、リグニンスルホン酸、グルコン酸塩等のセメント系材料において一般に用いられる硬化遅延剤、リン酸塩等の発泡遅延剤が挙げられる。
[Other components]
In addition, various materials other than those described above may be appropriately used as long as the desired effects are not affected. For example, reinforcing fibers, surfactants such as methylcellulose, thickeners such as polyacrylic acid and polyvinyl alcohol, water reducing agents, dispersants generally used in cement materials such as high-performance water reducing agents, lignin sulfonic acid, gluconate And a foaming retarder such as a phosphate generally used in cement-based materials.

本実施形態の製造方法においては、珪酸質原料、セメント、石灰質原料、アルミニウム化合物原料、硫酸化合物原料、アルカリ化合物原料、他の原料の投入方法、投入順序、混合時間は特に限定されるものではない。
例えば、従来のように、それら原料を同時に投入して短時間混合し、界面活性剤、金属アルミニウム粉もしくはそのスラリーを添加して型枠に注入してもよく、原料を同時に投入して一定時間の混合後に界面活性剤、金属アルミニウム粉又はそのスラリーを添加して型枠に注入してもよい。また、例えば、珪酸質原料と水と必要に応じて石灰質原料の一部、アルミニウム化合物原料、アルカリ化合物原料を混合する第一工程に引き続き、セメント、硫酸化合物原料及び残りの石灰質原料を加えてさらに混合する第二工程の後にアルミニウム粉等の気泡剤を添加して型枠に注入する方法を用いてもよい。このような方法を用いる場合においても、混合時の方法や、混合時の温度、混合時間は特に限定されるものではない。
In the production method of the present embodiment, the method of charging, the charging order, and the mixing time of the siliceous raw material, cement, calcareous raw material, aluminum compound raw material, sulfate compound raw material, alkali compound raw material, and other raw materials are not particularly limited. .
For example, as in the conventional case, the raw materials may be simultaneously charged and mixed for a short time, a surfactant, a metal aluminum powder or a slurry thereof may be added and injected into a mold, or the raw materials may be simultaneously charged and fixed for a certain period of time. After mixing, a surfactant, metallic aluminum powder or a slurry thereof may be added and poured into a mold. Also, for example, following the first step of mixing the siliceous raw material and water and, if necessary, part of the calcareous raw material, the aluminum compound raw material, and the alkali compound raw material, cement, a sulfate compound raw material and the remaining calcareous raw material are added, and further added. After the second step of mixing, a method of adding a foaming agent such as aluminum powder and injecting into a mold may be used. Even when such a method is used, the method at the time of mixing, the temperature at the time of mixing, and the mixing time are not particularly limited.

本実施形態の製造方法においては、従来のALCと同様に補強鉄筋又は補強金網を気泡コンクリート内に埋設させるように成型することが好ましく行われる。ここで補強鉄筋とは、鉄筋を所望の形状に配列し、交叉接点を溶接加工したものをいう。補強金網とは、鉄を網状に加工したもので、例えば、ラス網等がその代表的な例である。補強鉄筋又は補強金網の形状、寸法、鉄筋の太さ、金網の目の大きさ、さらに軽量コンクリート中に埋設する際の位置等、配筋の仕方については、限定されるものではなく、板の大きさ、用途等によって適宜選択されることが好ましい。
これら補強鉄筋又は補強金網は、耐久性上有効な防錆剤処理が施されていることが好ましい。防錆剤としては合成樹脂系等、公知のものを使用できる。この様に鉄筋または金網を内部に配置することにより破壊時の耐力が著しく向上する。
In the manufacturing method of the present embodiment, it is preferable to form a reinforcing steel bar or a reinforcing wire mesh so as to be buried in cellular concrete similarly to the conventional ALC. Here, the reinforcing bar means a bar in which reinforcing bars are arranged in a desired shape and cross-contacts are welded. The reinforcing wire mesh is formed by processing iron into a net shape, and a lath mesh or the like is a typical example. The shape and dimensions of reinforcing bars or reinforcing wire mesh, the thickness of reinforcing bars, the size of wire mesh, and the position of embedding in lightweight concrete, etc. It is preferable to select as appropriate depending on the size, application, and the like.
It is preferable that these reinforcing steel bars or reinforcing metal meshes have been subjected to a rust preventive treatment effective for durability. Known rust preventives such as synthetic resins can be used. By arranging the reinforcing bar or the wire mesh inside in this manner, the strength at the time of breaking is remarkably improved.

型枠に注入されたスラリーは、アルミニウム粉に由来して発泡、生石灰及びセメントの自己発熱により、好ましくは50〜85℃の間で1時間以上かけて予備硬化される。予備硬化は、蒸気養生室等の水分が蒸発を抑制した環境下で行うことが好ましい。得られた予備硬化体は、必要に応じて任意の形状に切断された後に、オートクレーブを用いて高温高圧養生される。切断は軽量気泡コンクリートの製造に一般に用いられるワイヤーによる切断法も使用できる。オートクレーブの条件としては160℃(ゲージ圧力:約5.3kgf/cm2)以上、220℃(ゲージ圧力:約22.6kgf/cm2)以下が好ましい。 The slurry injected into the mold is pre-cured preferably at 50 to 85 ° C. for one hour or more due to foaming, quick lime and self-heating of cement derived from aluminum powder. The pre-curing is preferably performed in an environment in which moisture is suppressed from evaporating, such as a steam curing room. The obtained pre-cured product is cut into an arbitrary shape as needed, and then cured at high temperature and pressure using an autoclave. For the cutting, a wire cutting method generally used for producing lightweight cellular concrete can also be used. The conditions for the autoclave are preferably from 160 ° C. (gauge pressure: about 5.3 kgf / cm 2 ) to 220 ° C. (gauge pressure: about 22.6 kgf / cm 2 ).

以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例に限定解釈されるべきでないことはいうまでもない。
以下、実施例、比較例に用いた原料、及び各種の測定方法を説明する。
Hereinafter, the present invention will be described specifically with reference to Examples, but it is needless to say that the present invention should not be construed as being limited to such Examples.
Hereinafter, the raw materials used in Examples and Comparative Examples and various measurement methods will be described.

[(嵩)比重]
オートクレーブ後の硬化体を、105℃にて24時間乾燥させた時の重量と寸法から算出した。
[(Bulk) specific gravity]
It was calculated from the weight and dimensions when the cured product after autoclaving was dried at 105 ° C. for 24 hours.

[珪酸質原料]
珪酸質原料として、国内外8箇所の鉱山から産出する珪石又は珪砂(A〜H)を用いた。
尚、珪酸質原料の粉砕後の粒径の測定方法は、以下に説明する不溶残分の粒径の測定方法と同じであった。
[Silicic raw material]
As the siliceous raw material, silica stone or silica sand (A to H) produced from eight mines in Japan and overseas was used.
The method for measuring the particle size of the siliceous raw material after grinding was the same as the method for measuring the particle size of the insoluble residue described below.

[全固形分に対する不溶残分の比率]
不溶残分の抽出方法は、JIS R5202のポルトランドセメントの化学分析方法に記載の塩酸−炭酸ナトリウム方法による不溶残分の定量方法に準拠した方法により行ったが、この定量方法における処理のうち、不溶残分の粒度に影響を与える処理については処理内容を変更した。具体的には、JIS R5202に規定されているろ紙による不溶残分とろ液の分離を遠心分離機(製品名:インバータ・テーブルトップ遠心機 形式8400 久保田製作所社製)による分離に変更した。遠心分離条件は、3000rpm×10分間とした。また、JIS R5202の上記定量方法に規定されている温水による不溶残分の洗浄は、温水量を50mlとし、上記遠心分離機による洗浄に変更した。遠心分離条件は、3000rpm×10分間とし、洗浄回数を5回とした。また、JIS R5202の上記定量方法に規定されている電気炉での950±25℃×30分間の強熱処理を、乾燥機による110℃×48時間の処理に変更した。また、JIS R5202の上記定量方法に規定されている水浴上での加熱処理について、その温度条件を80℃に変更した。
不溶残分の比率を、オートクレーブ養生後の気泡コンクリートの重量に対する不溶残分の質量%として求めた。
[Ratio of insoluble residue to total solids]
The extraction of the insoluble residue was carried out by a method based on the method for quantifying the insoluble residue by the hydrochloric acid-sodium carbonate method described in JIS R5202 Chemical analysis method for Portland cement. The processing that affected the particle size of the residue was changed. Specifically, the separation of the insoluble residue and the filtrate by the filter paper specified in JIS R5202 was changed to the separation by a centrifuge (product name: inverter / tabletop centrifuge type 8400, manufactured by Kubota Seisakusho). Centrifugation conditions were 3000 rpm × 10 minutes. Washing of the insoluble residue with warm water specified in JIS R5202 in the above-described method for quantification was changed to washing with the above-mentioned centrifugal separator, with the amount of warm water being 50 ml. Centrifugation conditions were 3000 rpm × 10 minutes, and the number of washings was five. Further, the strong heat treatment in the electric furnace at 950 ± 25 ° C. × 30 minutes specified in the above-mentioned quantification method of JIS R5202 was changed to a treatment at 110 ° C. × 48 hours by a dryer. Further, the temperature condition of the heat treatment on the water bath specified in the above-mentioned quantification method of JIS R5202 was changed to 80 ° C.
The ratio of the insoluble residue was determined as the mass% of the insoluble residue relative to the weight of the cellular concrete after autoclaving.

[不溶残分の粒径]
不溶残分の粒度分布測定は、レーザー光回折・散乱式の粒度分布計(製品名:マイクロトラック 9320 HRA X100、日機装社製)を用い、下記の条件で湿式にて測定した。
粒度測定範囲:0.12〜704μm
流速:60ml/sec
超音波分散:25watts×60sec
物質情報:屈折率=1.54、物質=珪石(非球形粒子)
溶媒情報:屈折率=1.33、溶媒=水
ゼロ点調整時間:30sec
測定条件:60sec×2回
測定結果:測定2回の平均値
[Particle size of insoluble residue]
The particle size distribution of the insoluble residue was measured using a laser diffraction / scattering type particle size distribution meter (product name: Microtrac 9320 HRA X100, manufactured by Nikkiso Co., Ltd.) by a wet method under the following conditions.
Particle size measurement range: 0.12 to 704 μm
Flow rate: 60 ml / sec
Ultrasonic dispersion: 25 watts × 60 sec
Material information: refractive index = 1.54, material = silica (non-spherical particles)
Solvent information: refractive index = 1.33, solvent = water Zero point adjustment time: 30 sec
Measurement conditions: 60 sec x 2 Measurement results: Average of 2 measurements

[5000〜10000m切削加工時のモーター負荷[A]]
切削加工装置として以下の電気ルーターに、図2に示す先端部直径9mmの切削刃取り付け、低比重ALCの表面を溝深さ9mmで、5000〜10000mの直線状の切削溝を形成した時のモーター負荷[A]を測定した。尚、形成された切削溝の長さは、所定のサイズの多数の低比重ALCパネルに形成された直線状切削溝の長さの累計である。通常、切削加工に用いる刃物は摩耗するため、約1万m切断で新品に交換する。また、切削初期の刃物状態では、切削加工装置のモーター負荷に特段の変化はないが、使用開始後の後半、5千〜1万m加工時には、モーター負荷が上がり、切削時に小さな欠損(微欠損)が生じる。本実施例、比較例では、約7500m切削加工時のモーター負荷を測定した。
[電気ルーター]
モーター型式:富士電機 MVH6107L
回転数:6000rpm
送り速度:5m/分
[Motor load [A] when cutting 5000 to 10000 m]
A cutting blade with a diameter of 9 mm as shown in Fig. 2 was attached to the following electric router as a cutting device, and a motor for forming a linear cutting groove of 5,000 to 10,000 m on the surface of low specific gravity ALC with a groove depth of 9 mm. The load [A] was measured. The length of the formed cutting groove is the total length of the linear cutting grooves formed on a large number of low-specific-gravity ALC panels of a predetermined size. Usually, the cutting tool used for the cutting process is worn out, so that the cutting tool is replaced by a new one after cutting about 10,000 m. In addition, the motor load of the cutting device does not change significantly in the cutting tool state in the initial stage of cutting, but the motor load increases in the latter half of the use after 5,000 to 10,000 m, and small defects (small defects) occur during cutting. ) Occurs. In this example and the comparative example, the motor load at the time of cutting about 7,500 m was measured.
[Electric router]
Motor model: Fuji Electric MVH6107L
Rotation speed: 6000rpm
Feeding speed: 5m / min

[切削加工時の微欠損数/m]
前記[5000〜10000m切削加工時のモーター負荷[A]]の測定における約7500m切削加工時の微欠損の発生率を、切削溝1m当たりの数で評価した。
ここで、「微欠損」とは、図2に示す切削刃を用いて溝深さ9mmに表面を切削加工するとき、断面において、凹部の壁と表面が交わる点(平面図では直線状に見える)における角部が該直線方向において5mm以上欠けて、平面図状での直線の連続性が失われた状態をいう。
[Number of micro defects / m during cutting]
The occurrence rate of micro-defects at the time of cutting at about 7500 m in the measurement of the motor load [A] at the time of cutting at 5000 to 10000 m was evaluated in terms of the number per 1 m of cutting groove.
Here, the “small defect” means a point where the wall of the concave portion and the surface intersect in a cross section when the surface is cut to a groove depth of 9 mm using the cutting blade shown in FIG. ) Indicates a state in which the continuity of a straight line in a plan view is lost due to the corner portion being chipped by 5 mm or more in the straight line direction.

[剥離度(%)、全剥離(%)]
図1に示すように、気泡コンクリートパネルの溝にプレート状の刃物(チップ(2))を挿入し、揺動させる(こじる)ことによって、パネル表面を欠けさせた。チップ幅(W)を50mm、溝深さ(D)を9mmとした。
図1中、2つの刃物間の、剥離前パネル表面に対する、欠けたパネル表面の面積の百分率を剥離度(%)とした。サンプル数を100とし、平均値を求めた。また、全剥離(%)とは、サンプル数100当たりの、2つの刃物間のパネル表面が100%の剥離度であったサンプル数の百分率である。
尚、上記揺動を2つの刃物の外側にも実施すれば、例えば、図3に示すような石割調デザインのパネルを作製することができる。
[Peeling degree (%), total peeling (%)]
As shown in FIG. 1, a plate-shaped blade (tip (2)) was inserted into the groove of the cellular concrete panel, and the panel surface was chipped by rocking (prying). The chip width (W) was 50 mm, and the groove depth (D) was 9 mm.
In FIG. 1, the percentage of the area of the chipped panel surface with respect to the panel surface before peeling between the two blades was defined as the peeling degree (%). With the number of samples taken as 100, the average value was determined. The total peeling (%) is the percentage of the number of samples where the panel surface between the two blades has a peeling degree of 100% per 100 samples.
In addition, if the above-mentioned swinging is also performed outside the two blades, for example, a panel having a stone-cut design as shown in FIG. 3 can be manufactured.

[実施例1]
珪酸質原料として珪石A(石英結晶成分割合75質量%)、珪石B(石英結晶成分割合92質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が53質量%、10μm未満の微粒の比率が47質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部を加え、混合、攪拌した。
次いで、該水性スラリーに早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入し、さらに混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 1]
Silica A (quartz crystal component ratio: 75% by mass) and silica B (quartz crystal component ratio: 92% by mass) were each independently pulverized by a mill as a siliceous raw material, and then mixed. Silica powder having a mass ratio of 53% by mass of medium particles having a particle size of 10 μm or more and less than 100 μm and a mass ratio of 47% by mass of fine particles having a particle size of less than 10 μm was obtained. To 92.1 parts by weight of water at 45 ° C. were added 46.3 parts by weight of the silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum decahydrate, and mixed and stirred.
Next, 36.1 parts by weight of early-strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by previously mixing 0.0095 parts by weight of a surfactant with 2.0 parts by weight of water were added to the aqueous slurry, Further mixing and stirring were performed.
Subsequently, a metal aluminum slurry in which 0.09 part by weight of metal aluminum powder was previously dispersed in 0.72 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a low-density lightweight concrete. The siliceous raw material, cement and calcareous raw material had a CaO / SiO 2 molar ratio of 0.78.

[実施例2]
珪酸質原料として珪石A(石英結晶成分割合75質量%)、珪石C(石英結晶成分割合94質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が50.7質量%、10μm未満の微粒の比率が49.3質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部を加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 2]
Silica A (quartz crystal component ratio: 75% by mass) and silica C (quartz crystal component ratio: 94% by mass) were each independently pulverized by a mill as a siliceous raw material, and then mixed. By mass%, a ratio of medium grains of 10 μm or more and less than 100 μm was 50.7 mass%, and a ratio of fine grains of less than 10 μm was 49.3 mass% to obtain silica powder. To 92.1 parts by weight of water at 45 ° C. were added 46.3 parts by weight of the silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum decahydrate, and mixed and stirred.
Next, to the aqueous slurry, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, an aqueous slurry obtained by previously mixing 0.0095 parts by weight of a surfactant with 2.0 parts by weight of water, Mix and stir.
Subsequently, a metal aluminum slurry in which 0.09 part by weight of metal aluminum powder was previously dispersed in 0.72 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a low-density lightweight concrete. The siliceous raw material, cement and calcareous raw material had a CaO / SiO 2 molar ratio of 0.78.

[実施例3]
珪酸質原料として珪石D(石英結晶成分割合82質量%)、珪石C(石英結晶成分割合94質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が53.1質量%、10μm未満の微粒の比率が46.9質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 3]
Silica D (quartz crystal component ratio: 82% by mass) and silica C (quartz crystal component ratio: 94% by mass) were each independently pulverized by a mill as a siliceous raw material, and then mixed. By mass%, the ratio of medium particles of 10 μm or more and less than 100 μm was 53.1 mass%, and the ratio of fine particles of less than 10 μm was 46.9 mass% to obtain silica powder. To 92.1 parts by weight of water at 45 ° C., 46.3 parts by weight of the above silica stone powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum decahydrate were added, and mixed and stirred.
Next, to the aqueous slurry, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, an aqueous slurry obtained by previously mixing 0.0095 parts by weight of a surfactant with 2.0 parts by weight of water, Mix and stir.
Subsequently, a metal aluminum slurry in which 0.09 part by weight of metal aluminum powder was previously dispersed in 0.72 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a low-density lightweight concrete. The siliceous raw material, cement and calcareous raw material had a CaO / SiO 2 molar ratio of 0.78.

[実施例4]
珪酸質原料として珪石A(石英結晶成分割合75質量%)をミルにて粉砕し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が39.1質量%、10μm未満の微粒の比率が60.9質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 4]
Silica A (quartz crystal component ratio: 75% by mass) is pulverized by a mill as a siliceous material, and the ratio of coarse particles of 100 μm or more is 0% by mass, and the ratio of medium particles of 10 μm or more and less than 100 μm is 39.1% by mass and less than 10 μm. A silica powder having a fine particle ratio of 60.9% by mass was obtained. To 92.1 parts by weight of water at 45 ° C., 46.3 parts by weight of the above silica stone powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum decahydrate were added, and mixed and stirred.
Next, to the aqueous slurry, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, an aqueous slurry obtained by previously mixing 0.0095 parts by weight of a surfactant with 2.0 parts by weight of water, Mix and stir.
Subsequently, a metal aluminum slurry in which 0.09 part by weight of metal aluminum powder was previously dispersed in 0.72 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a low-density lightweight concrete. The siliceous raw material, cement and calcareous raw material had a CaO / SiO 2 molar ratio of 0.78.

[実施例5]
珪酸質原料として珪石D(石英結晶成分割合82質量%)をミルにて粉砕し、100μm以上の粗粒の比率が0質量%、10μm以上100μm未満の中粒の比率が39.1質量%、10μm未満の微粒の比率が60.9質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 5]
Silica D (quartz crystal component ratio: 82% by mass) is pulverized by a mill as a siliceous raw material, and the ratio of coarse particles of 100 μm or more is 0% by mass, and the ratio of medium particles of 10 μm to less than 100 μm is 39.1% by mass and less than 10 μm. A silica powder having a fine particle ratio of 60.9% by mass was obtained. To 92.1 parts by weight of water at 45 ° C., 46.3 parts by weight of the above silica stone powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum decahydrate were added, and mixed and stirred.
Next, to the aqueous slurry, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, an aqueous slurry obtained by previously mixing 0.0095 parts by weight of a surfactant with 2.0 parts by weight of water, Mix and stir.
Subsequently, a metal aluminum slurry in which 0.09 part by weight of metal aluminum powder was previously dispersed in 0.72 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a low-density lightweight concrete. The siliceous raw material, cement and calcareous raw material had a CaO / SiO 2 molar ratio of 0.78.

[実施例6]
珪酸質原料として珪石A(石英結晶成分割合75質量%)、珪石B(石英結晶成分割合92質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が0.8質量%、10μm以上100μm未満の中粒の比率が55.1質量%、10μm未満の微粒の比率が44.1質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉を46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物を1.27重量部を加え、混合、攪拌した。
次いで、該水性スラリーに早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入し、さらに混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Example 6]
Silica A (quartz crystal component ratio: 75% by mass) and silica B (quartz crystal component ratio: 92% by mass) were each independently pulverized by a mill as a siliceous raw material, and then mixed. By mass%, the ratio of medium grains of 10 μm or more and less than 100 μm was 55.1 mass%, and the ratio of fine particles of less than 10 μm was 44.1 mass% to obtain silica powder. To 92.1 parts by weight of water at 45 ° C. were added 46.3 parts by weight of the silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide, and 1.27 parts by weight of potassium alum decahydrate, and mixed and stirred.
Next, 36.1 parts by weight of early-strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, and an aqueous slurry obtained by previously mixing 0.0095 parts by weight of a surfactant with 2.0 parts by weight of water were added to the aqueous slurry, Further mixing and stirring were performed.
Subsequently, a metal aluminum slurry in which 0.09 part by weight of metal aluminum powder was previously dispersed in 0.72 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a low-density lightweight concrete. The siliceous raw material, cement and calcareous raw material had a CaO / SiO 2 molar ratio of 0.78.

[比較例1]
珪酸質原料として珪石E(石英結晶成分割合81質量%)、珪石F(石英結晶成分割合85質量%)を1:1に混合し、ミルにて粉砕し100μm以上の粗粒の比率が9.4質量%、10μm以上100μm未満の中粒の比率が68.2質量%、10μm未満の微粒の比率が22.4質量%の珪石粉を得た。45℃の水75重量部に、この珪石粉を60.8重量部、生石灰7.5重量部、早強ポルトランドセメント29.2重量部、二水石膏2.5重量部を混合し、攪拌した。
続いて、予め水0.48重量部に金属アルミニウム粉末0.06重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.45とした。
[Comparative Example 1]
Silica E (quartz crystal component ratio: 81% by mass) and silica F (quartz crystal component ratio: 85% by mass) are mixed 1: 1 as a siliceous raw material, pulverized in a mill, and the ratio of coarse particles of 100 μm or more is 9.4%. %, A ratio of medium particles of 10 μm or more and less than 100 μm was 68.2 mass%, and a ratio of fine particles of less than 10 μm was 22.4 mass%. To 75 parts by weight of water at 45 ° C., 60.8 parts by weight of the silica powder, 7.5 parts by weight of quicklime, 29.2 parts by weight of Portland cement, and 2.5 parts by weight of gypsum dihydrate were mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.06 part by weight of metal aluminum powder was previously dispersed in 0.48 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a lightweight cellular concrete. The siliceous raw material, cement and calcareous raw material were adjusted to CaO / SiO 2 molar ratio of 0.45.

[比較例2]
珪酸質原料として珪石A(石英結晶成分割合75質量%)、珪石G(石英結晶成分割合75質量%)をそれぞれ独立してミルにて粉砕した後に混合し、100μm以上の粗粒の比率が1.5質量%、10μm以上100μm未満の中粒の比率が56.7質量%、10μm未満の微粒の比率が41.8質量%の珪石粉を得た。45℃の水92.1重量部に、上記珪石粉46.3重量部、生石灰2.4重量部、水酸化アルミ0.47重量部、カリ明礬12水和物1.27重量部を加え、混合、攪拌した。
次いで、該水性スラリーに、早強ポルトランドセメント36.1重量部、二水石膏2.0重量部、生石灰12重量部、予め水2.0重量部に界面活性剤を0.0095重量部混合して得た水性スラリーを投入、混合、攪拌した。
続いて、予め水0.72重量部に金属アルミニウム粉末0.09重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して低比重軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.78とした。
[Comparative Example 2]
Silica A (quartz crystal component ratio: 75% by mass) and silica G (quartz crystal component ratio: 75% by mass) were independently pulverized by a mill as a siliceous raw material, and then mixed. In this case, a silica powder having a mass ratio of 56.7% by mass of medium particles having a particle size of 10 μm or more and less than 100 μm and a particle ratio of 41.8% by mass of fine particles having a particle size of less than 10 μm was obtained. To 92.1 parts by weight of water at 45 ° C., 46.3 parts by weight of the above-mentioned silica powder, 2.4 parts by weight of quicklime, 0.47 parts by weight of aluminum hydroxide and 1.27 parts by weight of potassium alum dodecahydrate were added, mixed and stirred.
Next, to the aqueous slurry, 36.1 parts by weight of early strength Portland cement, 2.0 parts by weight of gypsum dihydrate, 12 parts by weight of quicklime, an aqueous slurry obtained by previously mixing 0.0095 parts by weight of a surfactant with 2.0 parts by weight of water, Mix and stir.
Subsequently, a metal aluminum slurry in which 0.09 part by weight of metal aluminum powder was previously dispersed in 0.72 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a low-density lightweight concrete. The siliceous raw material, cement and calcareous raw material had a CaO / SiO 2 molar ratio of 0.78.

[比較例3]
珪酸質原料として珪石H(石英結晶成分割合68質量%)をミルにて粉砕し、100μm以上の粗粒の比率が13.8質量%、10μm以上100μm未満の中粒の比率が43.2質量%、10μm未満の微粒の比率が43.0質量%の珪石粉を得た。45℃の水75重量部に、この珪石粉を56重量部、生石灰6重量部、早強ポルトランドセメント36重量部、二水石膏2重量部を混合し、攪拌した。
続いて、予め水0.48重量部に金属アルミニウム粉末0.06重量部を分散させた金属アルミニウムスラリーを投入、攪拌し、型枠に注入して発泡させ、予備硬化を行った。所定の硬度となった予備硬化体をオートクレーブに入れ、飽和水蒸気雰囲気下180℃で4時間、オートクレーブ養生を行った。オートクレーブから出缶後、乾燥して軽量気泡コンクリートを得た。珪酸質原料、セメント及び石灰質原料は、CaO/SiOモル比で0.53とした。
[Comparative Example 3]
Silica H (quartz crystal component ratio 68% by mass) is pulverized in a mill as a siliceous raw material, and the ratio of coarse particles of 100 μm or more is 13.8% by mass, and the ratio of medium particles of 10 μm or more and less than 100 μm is 43.2% by mass and less than 10 μm. A silica powder having a fine particle ratio of 43.0% by mass was obtained. To 75 parts by weight of water at 45 ° C., 56 parts by weight of this silica powder, 6 parts by weight of quick lime, 36 parts by weight of early strength Portland cement, and 2 parts by weight of gypsum were mixed and stirred.
Subsequently, a metal aluminum slurry in which 0.06 part by weight of metal aluminum powder was previously dispersed in 0.48 part by weight of water was charged, stirred, poured into a mold, foamed, and pre-cured. The pre-cured body having a predetermined hardness was placed in an autoclave and autoclaved at 180 ° C. for 4 hours in a saturated steam atmosphere. After removing the can from the autoclave, it was dried to obtain a lightweight cellular concrete. The siliceous raw material, cement and calcareous raw material were adjusted to 0.53 in a CaO / SiO 2 molar ratio.

評価結果を以下の表1に示す。   The evaluation results are shown in Table 1 below.

Figure 2020040871
Figure 2020040871

本発明に係る比重0.2以上〜0.45未満の低比重ALCは、不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であるため、切削加工時における微細な欠損(微欠損)が少なく、さらに、不溶残分中の微粒/中粒比率が0.75以上1.40以下と高いことで、溝部に挿入した刃物の揺動や打撃などのはつりによる、表面デザイン性や意匠性が高い剥離加工特性が良好となる。それゆえ、本発明に係る比重0.2以上〜0.45未満の低比重ALCは、建築物の外壁材、床材、内壁材、屋根材等として好適に利用可能である。   In the low specific gravity ALC having a specific gravity of 0.2 or more and less than 0.45 according to the present invention, the ratio of the insoluble residue is 5% by mass or more and less than 20% by mass with respect to the total solid content, and the particles of the insoluble residue are When the particles having a diameter of less than 10 μm are fine particles, those having a diameter of 10 μm or more and less than 100 μm are medium particles, and those having a diameter of 100 μm or more are coarse particles, the content of the coarse particles in the insoluble residue is 2.0% by mass or less. Therefore, the number of fine defects (fine defects) during cutting is small, and the ratio of fine particles / medium particles in the insoluble residue is as high as 0.75 or more and 1.40 or less. Peeling characteristics with high surface design and design properties due to movement such as movement and impact are improved. Therefore, the low specific gravity ALC having a specific gravity of 0.2 to less than 0.45 according to the present invention can be suitably used as an outer wall material, a floor material, an inner wall material, a roof material and the like of a building.

W チップ幅
D 溝深さ
1 気泡コンクリート
2 チップ(プレート状の刃物)
W Chip width D Groove depth 1 Foam concrete 2 Chip (plate-shaped knife)

Claims (2)

比重0.2以上0.45未満の軽量気泡コンクリートであって、該軽量気泡コンクリート中の不溶残分の比率が全固形分に対し5質量%以上20質量%未満であり、かつ、該不溶残分の粒径が10μm未満のものを微粒、10μm以上100μm未満のものを中粒、100μm以上のものを粗粒としたとき、該不溶残分中の該粗粒の含有率が2.0質量%以下であることを特徴とする軽量気泡コンクリート。   A lightweight cellular concrete having a specific gravity of 0.2 or more and less than 0.45, wherein a ratio of an insoluble residue in the lightweight cellular concrete is 5% by mass or more and less than 20% by mass with respect to a total solid content, and When the particle size is less than 10 μm, the fine particles are 10 μm or more and less than 100 μm, the coarse particles are 100 μm or more, and the content of the coarse particles in the insoluble residue is 2.0 mass%. % Or less. 前記中粒に対する前記微粒の質量比(微粒/中粒)が0.75以上1.40以下である、請求項1に記載の軽量気泡コンクリート。   The lightweight cellular concrete according to claim 1, wherein a mass ratio of the fine grains to the medium grains (fine grains / medium grains) is 0.75 or more and 1.40 or less.
JP2019159580A 2018-09-10 2019-09-02 lightweight aerated concrete Active JP7398225B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018169034 2018-09-10
JP2018169034 2018-09-10

Publications (2)

Publication Number Publication Date
JP2020040871A true JP2020040871A (en) 2020-03-19
JP7398225B2 JP7398225B2 (en) 2023-12-14

Family

ID=69799158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159580A Active JP7398225B2 (en) 2018-09-10 2019-09-02 lightweight aerated concrete

Country Status (1)

Country Link
JP (1) JP7398225B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253758A (en) * 2000-03-13 2001-09-18 Clion Co Ltd Method for manufacturing super lightweight cellular concrete
JP2005179148A (en) * 2003-12-22 2005-07-07 Asahi Kasei Corp Lightweight cellular concrete and its producing method
JP2007099546A (en) * 2005-10-03 2007-04-19 Sumitomo Kinzoku Kozan Siporex Kk Method of producing autoclaved light-weight concrete
JP2015168604A (en) * 2014-03-07 2015-09-28 旭化成建材株式会社 Autoclaved lightweight concrete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253758A (en) * 2000-03-13 2001-09-18 Clion Co Ltd Method for manufacturing super lightweight cellular concrete
JP2005179148A (en) * 2003-12-22 2005-07-07 Asahi Kasei Corp Lightweight cellular concrete and its producing method
JP2007099546A (en) * 2005-10-03 2007-04-19 Sumitomo Kinzoku Kozan Siporex Kk Method of producing autoclaved light-weight concrete
JP2015168604A (en) * 2014-03-07 2015-09-28 旭化成建材株式会社 Autoclaved lightweight concrete

Also Published As

Publication number Publication date
JP7398225B2 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
KR101073892B1 (en) Repairing material composite having excellent durability and repairing method of the concrete structure using the composite
JP4911580B2 (en) Low specific gravity lightweight foam concrete and method for producing the same
KR101308084B1 (en) Repairing method of reinforced concrete structures using inorganic self-healing materials
CN106242327B (en) Regenerated micropowder cement admixture and preparation method thereof
JP7017444B2 (en) Admixture for salt damage prevention and cement composition using it
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
JP2005179148A (en) Lightweight cellular concrete and its producing method
JP4628237B2 (en) Method for producing lightweight cellular concrete
CN111056795B (en) High-flow-state environment-friendly anti-cracking premixed concrete
JP2014043379A (en) Manufacturing method of light-weight foam concrete
JP7398225B2 (en) lightweight aerated concrete
JP6563270B2 (en) Cementitious hardened body and method for producing the same
JP4786272B2 (en) Method for producing lightweight cellular concrete
JP6735624B2 (en) Concrete surface modifier and method for improving surface quality of concrete using the same
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
JP6134278B2 (en) Lightweight cellular concrete
JP2012206882A (en) Scaling-reduced concrete product, and method for producing the concrete product
JP2017222541A (en) Hydraulic composition
JP2006083039A (en) Cement composition
JP2002121053A (en) Cement/concrete admixture and its production process
JP2002326882A (en) Lightweight cellular concrete
JP7074527B2 (en) Cement composite
JP7158306B2 (en) cement composite
KR101618921B1 (en) Mortar for exterior insulation with excellent adhesive property and long-dated durability and exterior insulation system using the same
JP4309723B2 (en) Method for producing water-repellent ALC panel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R150 Certificate of patent or registration of utility model

Ref document number: 7398225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150