JP2007098268A - Method and apparatus for disposing waste water - Google Patents

Method and apparatus for disposing waste water Download PDF

Info

Publication number
JP2007098268A
JP2007098268A JP2005291165A JP2005291165A JP2007098268A JP 2007098268 A JP2007098268 A JP 2007098268A JP 2005291165 A JP2005291165 A JP 2005291165A JP 2005291165 A JP2005291165 A JP 2005291165A JP 2007098268 A JP2007098268 A JP 2007098268A
Authority
JP
Japan
Prior art keywords
tower
exchange resin
water
treated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005291165A
Other languages
Japanese (ja)
Inventor
Teruhide Matsuura
照秀 松浦
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2005291165A priority Critical patent/JP2007098268A/en
Publication of JP2007098268A publication Critical patent/JP2007098268A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for disposing waste water, in each of which particularly stable and excellent disposing water (high-purity disposing water) can be obtained while saving the installation space of the apparatus for disposing waste water when waste water having an acid component is disposed. <P>SOLUTION: The method for disposing waste water comprises the steps of disposing waste water having the acid component in an activated carbon column, in a weak basic anion exchange resin column and then in a double-layered column in one unit of which a strong acidic cation exchange resin layer and a strong basic anion exchange resin layer are formed separately. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、塩酸やふっ酸などの酸成分を含有する排水を処理して、各種用水(特に、純水製造用)の原水として回収するための排水の処理方法および装置に関し、特に、半導体デバイス、フラットパネルディスプレイ、シリコンウエハ、プリント基板等の電子部品産業において発生する排水の処理に好適な方法および装置に関する。   TECHNICAL FIELD The present invention relates to a wastewater treatment method and apparatus for treating wastewater containing acid components such as hydrochloric acid and hydrofluoric acid and recovering it as raw water for various types of water (especially for producing pure water), and in particular, semiconductor devices. The present invention relates to a method and apparatus suitable for treating wastewater generated in the electronic component industry such as flat panel displays, silicon wafers, and printed circuit boards.

2 2 等の酸化剤、塩酸やふっ酸などの酸成分を含有する排水を処理して回収する方法として、各種の方法が知られている。例えば、特許文献1には、半導体製造工程等から排出される排水を、活性炭塔(以下、CFと略称することもある。)、弱塩基性陰イオン交換樹脂塔(以下、WAと略称することもある。)、強酸性陽イオン交換樹脂塔(以下、SCと略称することもある。)、強塩基性陰イオン交換樹脂塔(以下、SAと略称することもある。)の順に処理した後、純水製造装置に通水処理して回収再利用するようにした方法が開示されている。特許文献2には、WAとして第四級アンモニウム基が30当量%超50当量%以下である(メタ)アクリル−ジビニルベンゼン共重合体を母体とすることを特徴とした方法が開示されている。特許文献3には、酸と純水で前処理したCFを用いてCF+WAで処理する方法が開示されている。特許文献4には、有機アルカリを含む排水について、CF+WA+SA+SCの順に処理する方法が開示されている。また、回収処理水の純度を上げるために、CF+WA+MB(強塩基性陰イオン交換樹脂と強酸性陽イオン交換樹脂を混合した混床に形成した塔)とすることもある。更に、特許文献2に開示されている、UV(紫外線処理装置)+CF+MF(精密ろ過装置)のように、TOC成分除去を目的とした紫外線酸化装置などを後段に設置することもある。 Various methods are known as a method for treating and recovering wastewater containing an oxidizing agent such as H 2 O 2 and acid components such as hydrochloric acid and hydrofluoric acid. For example, in Patent Document 1, wastewater discharged from a semiconductor manufacturing process or the like is an activated carbon tower (hereinafter sometimes abbreviated as CF) or a weakly basic anion exchange resin tower (hereinafter abbreviated as WA). ), A strongly acidic cation exchange resin tower (hereinafter also abbreviated as SC), and a strongly basic anion exchange resin tower (hereinafter abbreviated as SA) in this order. In addition, a method is disclosed in which water is treated through a pure water production apparatus and recovered and reused. Patent Document 2 discloses a method characterized in that the base material is a (meth) acryl-divinylbenzene copolymer having a quaternary ammonium group of more than 30 equivalent% and 50 equivalent% or less as WA. Patent Document 3 discloses a method of treating with CF + WA using CF pretreated with acid and pure water. Patent Document 4 discloses a method of treating wastewater containing organic alkali in the order of CF + WA + SA + SC. Further, in order to increase the purity of the recovered treated water, CF + WA + MB (a tower formed in a mixed bed in which a strongly basic anion exchange resin and a strongly acidic cation exchange resin are mixed) may be used. Furthermore, an ultraviolet oxidizer for the purpose of removing the TOC component, such as UV (ultraviolet ray processing apparatus) + CF + MF (microfiltration apparatus) disclosed in Patent Document 2, may be installed in the subsequent stage.

このような従来方法には、以下のような問題がある。代表的な従来形態についてみるに、CF+WA+SC+SAの順に処理する方法では、
・処理水の導電率は10μS/cm程度以下(比抵抗:0.1MΩcm程度以上)で回収水としているものの、純度が十分ではない。
・SC+SAがそれぞれの塔を設置する複床構成のため大きな設置スペースが必要となる。
Such conventional methods have the following problems. In a typical conventional embodiment, in the method of processing in the order of CF + WA + SC + SA,
-Although the treated water has a conductivity of about 10 μS / cm or less (specific resistance: about 0.1 MΩcm or more) and recovered water, the purity is not sufficient.
・ SC + SA requires a large installation space due to the multi-floor configuration in which each tower is installed.

また、CF+WA+MBの順に処理する方法では、
・SC+SAの2塔分をMB1塔とするため、省スペース化でき、かつ、処理水の初期の純度は比抵抗で3〜5MΩcm程度と良好ではあるが、クランピングによる再生逆洗時の樹脂分離不良が原因で処理水の純度不良が起こることがあり(例えば、導電率が100μS/cm以上〔比抵抗にて0.01MΩcm以下〕)、良好な処理水(高純度の処理水)を安定して得ることが困難であった。
In the method of processing in the order of CF + WA + MB,
・ Since the two towers of SC + SA are MB1, the space can be saved, and the initial purity of the treated water is good at a specific resistance of about 3 to 5 MΩcm, but the resin separation at the time of regeneration backwashing by clamping Defects may cause poor purity of treated water (for example, conductivity is 100 μS / cm or more [specific resistance is 0.01 MΩcm or less]), and good treated water (high purity treated water) is stabilized. It was difficult to obtain.

一方、本出願人は、一つの塔内を上部と下部に仕切り、それぞれに別種のイオン交換樹脂がフリー空間の無い状態で充填(満充填)されている、つまり、別種のイオン交換樹脂を一つの塔内に個別の層として形成した複層塔(以下、SBと略称することもある。)を製作している。このSBにおいては、通水は一般に上向流であり、向流再生が行われている。SBの特徴としては、(1)採水時に樹脂を流動させることがなく、かつ、向流再生できるため効率よく高度に再生できる。よって、シリカ除去率がMBに対して優れている(例えば、SB:<1.0ppb、MB:0.5〜2.0ppb)。(2)逆洗・混合工程がないため再生排水量が削減できる(約20%低減)。(3)樹脂を混合しないため樹脂の機械的な消耗がなく、長期間安定して使用できる。欠点としては、(1)逆洗工程がないためSSなどの濁質成分がある水を処理する場合、通水差圧が上昇しやすいこと、(2)処理水の純度がMBに比べて若干低いことである。
特公昭61−1192号公報 特開2000−153165号公報 特開平8−281256号公報 特開平8−39059号公報
On the other hand, the present applicant partitions the inside of one tower into an upper part and a lower part, and each of them is filled with a different type of ion exchange resin in a state where there is no free space. A multi-layer tower (hereinafter also abbreviated as SB) formed as individual layers in one tower is manufactured. In this SB, water flow is generally upward flow, and countercurrent regeneration is performed. The characteristics of SB are as follows: (1) Since the resin does not flow during sampling and can be regenerated countercurrently, it can be regenerated efficiently and highly. Therefore, the silica removal rate is superior to MB (for example, SB: <1.0 ppb, MB: 0.5 to 2.0 ppb). (2) Since there is no backwashing / mixing process, the amount of reclaimed wastewater can be reduced (about 20% reduction). (3) Since no resin is mixed, there is no mechanical consumption of the resin, and it can be used stably for a long period of time. Disadvantages include: (1) When there is no backwashing process, when water with turbid components such as SS is treated, the water flow differential pressure is likely to increase, and (2) the purity of the treated water is slightly higher than MB. It is low.
Japanese Patent Publication No. 61-1192 JP 2000-153165 A JP-A-8-281256 JP-A-8-39059

本発明の課題は、上記のような複層塔(SB)の特徴に着目してこれを処理システムに組み込むことにより、酸成分を含有する排水を処理するに際し、省スペース化しつつ、とくに安定して良好な処理水(高純度の処理水)を得ることのできる排水の処理方法および装置を提供することにある。   The object of the present invention is to focus particularly on the characteristics of the multi-layer tower (SB) as described above, and to incorporate it into a treatment system, so that when wastewater containing acid components is treated, it is particularly stable while saving space. Another object of the present invention is to provide a wastewater treatment method and apparatus capable of obtaining good treated water (high-purity treated water).

上記課題を解決するために、本発明に係る排水の処理方法は、酸成分を含有する排水を、活性炭塔、弱塩基性陰イオン交換樹脂塔、および強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂を一つの塔内に個別の層として形成した複層塔(以下、単にSBと略称することもある。)にて、この順に処理することを特徴とする方法からなる。   In order to solve the above-mentioned problems, the wastewater treatment method according to the present invention comprises treating an wastewater containing an acid component with an activated carbon tower, a weakly basic anion exchange resin tower, a strongly acidic cation exchange resin and a strongly basic anion. It consists of a method characterized in that it is processed in this order in a multi-layered column (hereinafter sometimes simply referred to as SB) in which ion exchange resins are formed as individual layers in one column.

また、本発明に係る排水の処理装置は、酸成分を含有する排水を処理する処理塔として、活性炭塔、弱塩基性陰イオン交換樹脂塔、および強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂を一つの塔内に個別の層として形成した複層塔を、この順に配置したことを特徴とする装置からなる。   Further, the wastewater treatment apparatus according to the present invention includes an activated carbon tower, a weakly basic anion exchange resin tower, and a strongly acidic cation exchange resin and a strongly basic anion as a treatment tower for treating wastewater containing an acid component. It consists of an apparatus characterized by arranging a multi-layered tower in which exchange resins are formed as individual layers in one tower in this order.

上記本発明に係る排水の処理方法および装置においては、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂を一つの塔内に個別の層として形成した複層塔(SB)を用いるので、従来のCF+WA+SC+SA方式に比べて塔数が削減され、システム全体として省スペース化が可能になる。また、CF+WA+MB方式に比べると、処理水の水質変動を抑えることができ、目標とする良好な水質を安定して得ることが可能になる。   In the wastewater treatment method and apparatus according to the present invention, a multi-layered tower (SB) in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are formed as separate layers in one tower is used. Compared to the conventional CF + WA + SC + SA system, the number of towers is reduced, and the entire system can be saved in space. Moreover, compared with the CF + WA + MB system, it is possible to suppress fluctuations in the quality of the treated water, and it is possible to stably obtain a desired good water quality.

上記複層塔の上流側の層は強酸性陽イオン交換樹脂層であることが好ましい。SBの上流側の層を強酸性陽イオン交換樹脂層とする利点としては、WA処理水は弱アルカリ性であるために、強酸性陽イオン交換樹脂、強塩基性陰イオン交換樹脂の順に処理することが最適であることが挙げられる。   The upstream layer of the multi-layer tower is preferably a strongly acidic cation exchange resin layer. As an advantage of making the upstream layer of SB a strong acid cation exchange resin layer, since the WA-treated water is weakly alkaline, it is processed in the order of strong acid cation exchange resin and strong basic anion exchange resin. Is optimal.

また、上記複層塔への被処理水の通水は下降流で行うことが好ましい。このようにSBを下降流とする利点としては、回収系の処理は高水質(導電率)を得る必要が少なく、ON/OFF運転となるために、任意の段階で停止が可能な下降流運転が適していることが挙げられる。   Moreover, it is preferable that the water to be treated be passed through the multi-layer tower in a downward flow. As described above, the advantage of the SB as a downflow is that the recovery system process requires less high water quality (conductivity) and is ON / OFF operation, so it can be stopped at any stage. Is suitable.

さらに、被処理水である排水の性状としては、(酸化剤及び)酸成分あるいは酸成分および酸化剤を含有する排水である限りとくに限定されないが、排水導電率が100〜2000μS/cm、pHが2〜6である排水を処理対象とする場合に、とくに本発明による効果が大きい。   Furthermore, the properties of the wastewater that is to be treated are not particularly limited as long as it is wastewater containing an (oxidizer and) acid component or an acid component and an oxidizer, but the drainage conductivity is 100 to 2000 μS / cm, and the pH is The effect of the present invention is particularly great when wastewater of 2 to 6 is treated.

このように本発明に係る排水の処理方法および装置によれば、省スペースにて、とくに安定して良好な処理水(高純度の処理水)を得ることのでき、電子部品産業等において発生する排水を安定して回収することが可能になる。   As described above, according to the wastewater treatment method and apparatus according to the present invention, it is possible to obtain particularly stable treated water (high-purity treated water) in a space-saving manner, which occurs in the electronic component industry and the like. It becomes possible to collect the wastewater stably.

以下に、本発明について、望ましい実施の形態とともに、詳細に説明する。
本発明に係る排水の処理方法および装置においては、酸成分を含有する排水が、活性炭塔(CF)、弱塩基性陰イオン交換樹脂塔(WA)、および強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂を一つの塔内に個別の層として形成した複層塔(SB)にて、この順に処理される。好ましくは、複層塔の上流側の層は強酸性陽イオン交換樹脂層とされ、複層塔への被処理水の通水は下降流とされる。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
In the wastewater treatment method and apparatus according to the present invention, wastewater containing an acid component is activated carbon tower (CF), weakly basic anion exchange resin tower (WA), and strongly acidic cation exchange resin and strongly basic. The treatment is performed in this order in a multi-layered column (SB) in which an anion exchange resin is formed as individual layers in one column. Preferably, the upstream layer of the multi-layer tower is a strong acid cation exchange resin layer, and the flow of water to be treated to the multi-layer tower is a downward flow.

例えば半導体工場をはじめとする電子部品工場では、(酸化剤および)酸成分を含有する排水が排出される。例えば、硫酸/H2 2 、塩酸/H2 2 、HF/H2 2 等の混合液を用いた洗浄工程等からの排水で、酸成分としては、希ふっ酸、硝酸、酢酸、りん酸などを含有している。活性炭塔では、酸化剤の分解除去や有機物の吸着除去が行われる。H2 2 は活性炭塔でその大部分が除去される。また、活性炭はオゾンや塩素系の酸化剤を分解除去することもできる。弱塩基性陰イオン交換樹脂塔では酸成分の除去が行われる。酸成分を含んでいるため排水のpHは通常2から6程度の酸性を示すので、WAで効率的に酸成分の除去が行える。排水といっても工程排水のSSはもともと低い。また、WA自身がろ過器としても機能するため、SSが混入しても除去できる。WAに捕捉されたSSは逆洗により除去できる。従って、SBへのSS負荷はほとんどないので、長期間運転してもSBの差圧が大きく上昇することはない。つまり、SBの適用になんら問題は生じない。 For example, in electronic parts factories such as semiconductor factories, wastewater containing (oxidant and) acid components is discharged. For example, waste water from a washing process using a mixed solution of sulfuric acid / H 2 O 2 , hydrochloric acid / H 2 O 2 , HF / H 2 O 2, etc., and the acid components include dilute hydrofluoric acid, nitric acid, acetic acid, Contains phosphoric acid. In the activated carbon tower, the oxidizing agent is decomposed and organic substances are removed by adsorption. Most of the H 2 O 2 is removed by the activated carbon tower. Activated carbon can also decompose and remove ozone and chlorine-based oxidants. In the weakly basic anion exchange resin tower, the acid component is removed. Since the acid component is contained, the pH of the waste water usually shows an acidity of about 2 to 6, so that the acid component can be efficiently removed by WA. Even if it is said to be drainage, the SS of process wastewater is originally low. Moreover, since WA itself functions also as a filter, even if SS is mixed, it can be removed. SS captured by WA can be removed by backwashing. Therefore, since there is almost no SS load on the SB, the differential pressure of the SB does not increase greatly even if it is operated for a long time. That is, no problem occurs in the application of SB.

本発明のシステムによる処理水質は、比抵抗にて1MΩcm程度であり、初期のMB処理水質(3〜5MΩcm)に比べると若干劣るが、処理水質としては十分に満足できる水質である。そして、MBに代えてSBとしたことにより、長期間安定した水質を確保でき(つまり、前述の如くMBでは水質が安定しない)、本発明による極めて優れた効果、つまり、省スペース化を達成しつつ良好な水質を安定して維持できるという効果が得られることになる。また、処理水の水質(例えば、比抵抗にて1MΩcm程度)は、回収水として十分高い純度(純水装置に受け入れられて、2床3塔式装置や逆浸透膜装置(RO)、MBなどで処理される)なので、初期のMB処理水と比較しても全く問題はない。   The treated water quality by the system of the present invention is about 1 MΩcm in specific resistance, which is slightly inferior to the initial MB treated water quality (3 to 5 MΩcm), but is sufficiently satisfactory as the treated water quality. And, by using SB instead of MB, it is possible to secure a stable water quality for a long period of time (that is, the water quality is not stable in MB as described above), and the extremely excellent effect by the present invention, that is, space saving is achieved. However, the effect that the good water quality can be stably maintained is obtained. In addition, the quality of the treated water (for example, about 1 MΩcm in specific resistance) is sufficiently high in purity as recovered water (accepted by a deionized water device, a two-bed / three-column device, a reverse osmosis membrane device (RO), MB, etc. Therefore, there is no problem even when compared with the initial MB treated water.

図1に、本発明の一実施態様に係る排水の処理装置の概略機器系統図を示す。図1に示した排水の処理装置1においては、被処理水としての原水が活性炭塔(CF)2に導入され、そこから、弱塩基性陰イオン交換樹脂塔(WA)3、下降流方式の、強酸性陽イオン交換樹脂層4と強塩基性陰イオン交換樹脂層5が一つの塔内に個別の層として形成された複層塔(SB)6へとこの順に送られて処理される。複層塔(SB)6からの処理水は、純水原水や雑用水に再利用可能であり、TOC除去装置7(例えば、UV酸化装置やオゾン処理装置、RO(逆浸透膜装置)等)を通せば、より高純度な純水原水として再利用可能である。   FIG. 1 shows a schematic equipment system diagram of a wastewater treatment apparatus according to an embodiment of the present invention. In the wastewater treatment apparatus 1 shown in FIG. 1, raw water as treated water is introduced into an activated carbon tower (CF) 2, from which a weakly basic anion exchange resin tower (WA) 3, a downflow type The strongly acidic cation exchange resin layer 4 and the strongly basic anion exchange resin layer 5 are sent in this order to a multi-layered column (SB) 6 formed as individual layers in one column and processed. The treated water from the multi-layered tower (SB) 6 can be reused as pure water raw water or miscellaneous water, and a TOC removal device 7 (for example, a UV oxidation device, an ozone treatment device, a RO (reverse osmosis membrane device), etc.) Can be reused as pure water with higher purity.

より具体的な実施形態としては、例えば以下のような条件を採用できる。
(1)活性炭としては、特に限定されないが、例えば三菱化学社製”Diahope”006Nが使用できる。活性炭塔の設計条件としては、SV:1〜50での使用を採用できる。特に、SV:10〜20程度が好適である。
(2)WAとしては、特に限定されないが、例えばロームアンドハース社製IRA−96RFを使用できる。設計条件としては、LV:10〜100m/Hでの使用を採用できる。特に、LV:20〜30m/H程度が好適である。
(3)SBとしては、特に限定されないが、例えばロームアンドハース社製”AMBERJET”1500Hおよび”AMBERJET”4400OHを使用できる。設計条件としては、LV:10〜100m/Hでの使用を採用できる。特に、LV:20〜30m/H程度でも良好な水質(比抵抗にて1MΩcm以上)を得ることができる。
(4)このような本発明に係る装置による処理水は、純水用原水のほか多目的用途(ボイラー、クーリングタワー等)に使用できる。しかし、原水TOC濃度が高い場合や高純度な水質を求められた場合は、図1に示したように、後段にTOC除去を目的とした装置(UV酸化+活性炭、オゾン酸化+活性炭、RO等)を設置する場合もある。その処理水は純水装置の原水として再利用できる。
As a more specific embodiment, for example, the following conditions can be adopted.
(1) Although it does not specifically limit as activated carbon, For example, "Diahope" 006N by Mitsubishi Chemical Corporation can be used. As a design condition of the activated carbon tower, use at SV: 1 to 50 can be adopted. In particular, SV: about 10 to 20 is suitable.
(2) Although it does not specifically limit as WA, For example, IRA-96RF by Rohm and Haas company can be used. As a design condition, use at LV: 10 to 100 m / H can be adopted. Particularly, LV: about 20 to 30 m / H is preferable.
(3) The SB is not particularly limited. For example, “AMBERJET” 1500H and “AMBERJET” 4400OH manufactured by Rohm and Haas can be used. As a design condition, use at LV: 10 to 100 m / H can be adopted. In particular, good water quality (1 MΩcm or more in specific resistance) can be obtained even at about LV: 20 to 30 m / H.
(4) The treated water by the apparatus according to the present invention can be used for multipurpose applications (boilers, cooling towers, etc.) in addition to raw water for pure water. However, when the raw water TOC concentration is high or high-purity water quality is required, as shown in FIG. 1, a device for removing the TOC in the subsequent stage (UV oxidation + activated carbon, ozone oxidation + activated carbon, RO, etc.) ) May be installed. The treated water can be reused as raw water for a pure water device.

次に、実施例に基づいて本発明を説明する。
実施例1
半導体製造工程からの排水(導電率:1000〜1500μS/cm、pH2〜4、H2 2 :1ppm、フッ素イオン:5ppmを含む)を、三菱化学社製”DIAHOPE”006Nを充填した活性炭塔にてSV10の条件で処理し、次いでロームアンドハース社製IRA−96RFを充填したWAでLV30m/Hの条件で処理した。その水を、ロームアンドハース社製”AMBERJET”1500Hおよび”AMBERJET”4400OHを充填したSBでLV30m/Hの条件で処理した。
Next, the present invention will be described based on examples.
Example 1
Waste water from the semiconductor manufacturing process (conductivity: 1000-1500 μS / cm, pH 2-4, H 2 O 2 : 1 ppm, fluorine ion: 5 ppm included) is put into an activated carbon tower packed with “DIAHOPE” 006N manufactured by Mitsubishi Chemical Corporation. Then, it was treated under the condition of SV10, and then treated with WA filled with IRA-96RF made by Rohm and Haas under the condition of LV 30 m / H. The water was treated with SB filled with “AMBERJET” 1500H and “AMBERJET” 4400OH manufactured by Rohm and Haas under the condition of LV 30 m / H.

比較例1
実施例1と同じ半導体製造工程からの排水を、三菱化学社製”DIAHOPE”006Nを充填した活性炭塔にてSV10の条件で処理し、次いでロームアンドハース社製IRA−96RFを充填したWAでLV30m/Hの条件で処理した。その水を、ロームアンドハース社製”AMBERJET”1500Hおよび”AMBERJET”4400OHを充填したMBでLV30m/Hの条件で処理した。
Comparative Example 1
Wastewater from the same semiconductor manufacturing process as in Example 1 was treated under the condition of SV10 in an activated carbon tower filled with “DIAHOPE” 006N manufactured by Mitsubishi Chemical Corporation, and then LV30 m with WA filled with IRA-96RF manufactured by Rohm and Haas. Treated under the conditions of / H. The water was treated with MB filled with “AMBERJET” 1500H and “AMBERJET” 4400OH manufactured by Rohm and Haas under the condition of LV 30 m / H.

比較例2
実施例1と同じ半導体製造工程からの排水を、三菱化学社製”DIAHOPE”006Nを充填した活性炭塔にてSV10の条件で処理し、次いでロームアンドハース社製IRA−96RFを充填したWAでLV30m/Hの条件で処理した。その水を、ロームアンドハース社製”AMBERJET”1500Hを充填したSCでLV30m/Hの条件で処理し、更にロームアンドハース社製”AMBERJET”4400OHを充填したSAでLV30m/Hの条件で処理した。
Comparative Example 2
Wastewater from the same semiconductor manufacturing process as in Example 1 was treated under the condition of SV10 in an activated carbon tower filled with “DIAHOPE” 006N manufactured by Mitsubishi Chemical Corporation, and then LV30 m with WA filled with IRA-96RF manufactured by Rohm and Haas. Treated under the conditions of / H. The water was treated with an SC filled with “AMBERJET” 1500H made by Rohm and Haas, under the condition of LV30 m / H, and further treated with SA filled with “AMBERJET” 4400OH made by Rohm and Haas under the condition of LV30 m / H. .

結果、実施例1では、1年以上にわたり、比抵抗にて2〜3MΩcmの水質が安定して得られた。また、比較例2と比べ、一塔なので設置スペースが小さい。比較例1では、初期は5MΩcm程度の水質が得られたものの、再生サイクルを繰り返すにつれて水質が悪化し、1カ月後には、再生しても水質が0.01MΩcm程度しか上がらず採水できなくなった(再生不良)。比較例2は、長期間にわたり0.03〜0.05MΩcm以上の水質が安定して得られたが、実施例1に比べて、水質ははるかに劣り、しかも、設置スペースが大きいという問題が残されたままであった。   As a result, in Example 1, a water quality of 2 to 3 MΩcm was stably obtained with a specific resistance over one year or more. Moreover, compared with the comparative example 2, since it is one tower, installation space is small. In Comparative Example 1, although the water quality of about 5 MΩcm was obtained in the initial stage, the water quality deteriorated as the regeneration cycle was repeated, and after one month, even after regeneration, the water quality increased only about 0.01 MΩcm and water could not be collected. (Reproduction failure). In Comparative Example 2, a water quality of 0.03 to 0.05 MΩcm or more was stably obtained over a long period of time, but the water quality was much inferior to that of Example 1 and the problem of a large installation space remained. Remained.

本発明の一実施態様に係る排水の処理装置の概略機器系統図である。1 is a schematic equipment diagram of a wastewater treatment apparatus according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 排水の処理装置
2 活性炭塔(CF)
3 弱塩基性陰イオン交換樹脂塔(WA)
4 強酸性陽イオン交換樹脂層
5 強塩基性陰イオン交換樹脂層
6 複層塔(SB)
7 TOC除去装置
1 Wastewater treatment equipment 2 Activated carbon tower (CF)
3 Weakly basic anion exchange resin tower (WA)
4 Strongly acidic cation exchange resin layer 5 Strongly basic anion exchange resin layer 6 Multi-layer tower (SB)
7 TOC removal device

Claims (8)

酸成分を含有する排水を、活性炭塔、弱塩基性陰イオン交換樹脂塔、および強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂を一つの塔内に個別の層として形成した複層塔にて、この順に処理することを特徴とする排水の処理方法。   An activated carbon tower, a weakly basic anion exchange resin tower, and a multi-layer tower in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are formed as separate layers in a single tower. In this method, the wastewater is treated in this order. 前記複層塔の上流側の層が強酸性陽イオン交換樹脂層であることを特徴とする、請求項1に記載の排水の処理方法。   The wastewater treatment method according to claim 1, wherein the upstream layer of the multi-layered tower is a strongly acidic cation exchange resin layer. 前記複層塔への被処理水の通水を下降流で行うことを特徴とする、請求項1または2に記載の排水の処理方法。   The wastewater treatment method according to claim 1 or 2, wherein the water to be treated is passed through the multi-layer tower in a downward flow. 被処理水である排水の性状として、導電率が100〜2000μS/cm、pHが2〜6であることを特徴とする、請求項1〜3のいずれかに記載の排水の処理方法。   The wastewater treatment method according to any one of claims 1 to 3, wherein the property of the wastewater to be treated is an electrical conductivity of 100 to 2000 µS / cm and a pH of 2 to 6. 酸成分を含有する排水を処理する処理塔として、活性炭塔、弱塩基性陰イオン交換樹脂塔、および強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂を一つの塔内に個別の層として形成した複層塔を、この順に配置したことを特徴とする排水の処理装置。   As a treatment tower for treating wastewater containing acid components, activated carbon tower, weakly basic anion exchange resin tower, and strongly acidic cation exchange resin and strong basic anion exchange resin as separate layers in one tower A wastewater treatment apparatus in which the formed multi-layer towers are arranged in this order. 前記複層塔の上流側の層が強酸性陽イオン交換樹脂層であることを特徴とする、請求項5に記載の排水の処理装置。   The waste water treatment apparatus according to claim 5, wherein the upstream layer of the multi-layer tower is a strongly acidic cation exchange resin layer. 前記複層塔への被処理水の通水が下降流で行われることを特徴とする、請求項5または6に記載の排水の処理装置。   The wastewater treatment apparatus according to claim 5 or 6, wherein water to be treated is passed through the multi-layer tower in a downward flow. 被処理水である排水の性状として、導電率が100〜2000μS/cm、pHが2〜6であることを特徴とする、請求項5〜7のいずれかに記載の排水の処理装置。   The wastewater treatment apparatus according to any one of claims 5 to 7, wherein the wastewater being treated water has a conductivity of 100 to 2000 µS / cm and a pH of 2 to 6.
JP2005291165A 2005-10-04 2005-10-04 Method and apparatus for disposing waste water Pending JP2007098268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291165A JP2007098268A (en) 2005-10-04 2005-10-04 Method and apparatus for disposing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291165A JP2007098268A (en) 2005-10-04 2005-10-04 Method and apparatus for disposing waste water

Publications (1)

Publication Number Publication Date
JP2007098268A true JP2007098268A (en) 2007-04-19

Family

ID=38025731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291165A Pending JP2007098268A (en) 2005-10-04 2005-10-04 Method and apparatus for disposing waste water

Country Status (1)

Country Link
JP (1) JP2007098268A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195879A (en) * 2008-02-25 2009-09-03 Teijin Engineering Ltd Water purifying apparatus
JP2010227888A (en) * 2009-03-27 2010-10-14 Nippon Rensui Co Ltd Method for recovering of wastewater, and recovery apparatus of the wastewater
JP2011041878A (en) * 2009-08-19 2011-03-03 Disco Abrasive Syst Ltd Waste working liquid treatment apparatus
JP2014064971A (en) * 2012-09-25 2014-04-17 Japan Organo Co Ltd Treatment apparatus of peracetic acid-containing effluent and treatment method of peracetic acid-containing effluent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611192B2 (en) * 1980-06-30 1986-01-14 Nippon Rensui Kk
JP2004141805A (en) * 2002-10-25 2004-05-20 Japan Organo Co Ltd Method of producing ultrapure water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611192B2 (en) * 1980-06-30 1986-01-14 Nippon Rensui Kk
JP2004141805A (en) * 2002-10-25 2004-05-20 Japan Organo Co Ltd Method of producing ultrapure water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195879A (en) * 2008-02-25 2009-09-03 Teijin Engineering Ltd Water purifying apparatus
JP2010227888A (en) * 2009-03-27 2010-10-14 Nippon Rensui Co Ltd Method for recovering of wastewater, and recovery apparatus of the wastewater
JP2011041878A (en) * 2009-08-19 2011-03-03 Disco Abrasive Syst Ltd Waste working liquid treatment apparatus
JP2014064971A (en) * 2012-09-25 2014-04-17 Japan Organo Co Ltd Treatment apparatus of peracetic acid-containing effluent and treatment method of peracetic acid-containing effluent

Similar Documents

Publication Publication Date Title
JP3671644B2 (en) Photoresist developing waste liquid recycling method and apparatus
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
US20100288308A1 (en) Method and system for producing ultrapure water, and method and system for washing electronic component members
JP2003205299A (en) Hydrogen dissolved water manufacturing system
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP2008272713A (en) Method for producing ultrapure water, and production device therefor
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP4480061B2 (en) Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
JP2007098268A (en) Method and apparatus for disposing waste water
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
US5874204A (en) Process for rejuvenation treatment of photoresist development waste
JP2012210568A (en) Regeneration apparatus and regeneration method of development waste liquid
JP4447212B2 (en) Ultrapure water production method and ultrapure water production apparatus
JP3417052B2 (en) Ultrapure water production method
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JP4810757B2 (en) Ultrafiltration membrane for ultrapure water production and its pre-cleaning method
JPH09253638A (en) Ultrapure water making apparatus
JP3992996B2 (en) Wastewater treatment method and apparatus
JP3459718B2 (en) Silicon wafer cleaning equipment
JP4826777B2 (en) Pure water production method
WO2011074495A1 (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
JP2004091224A (en) Recovery apparatus of fluorine aqueous solution or hydrofluoric acid aqueous solution, its recovery method, and circulating and using system of the same
JP3826497B2 (en) Pure water production method
JP3674475B2 (en) Pure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110520