JP2007096499A - 光受信装置及び光受信装置における分散補償方法 - Google Patents

光受信装置及び光受信装置における分散補償方法 Download PDF

Info

Publication number
JP2007096499A
JP2007096499A JP2005280400A JP2005280400A JP2007096499A JP 2007096499 A JP2007096499 A JP 2007096499A JP 2005280400 A JP2005280400 A JP 2005280400A JP 2005280400 A JP2005280400 A JP 2005280400A JP 2007096499 A JP2007096499 A JP 2007096499A
Authority
JP
Japan
Prior art keywords
signal light
received signal
dispersion
dispersion compensation
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005280400A
Other languages
English (en)
Inventor
Masakazu Ozaki
正和 尾▲崎▼
Katsumi Fukumitsu
勝巳 福滿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005280400A priority Critical patent/JP2007096499A/ja
Priority to US11/313,966 priority patent/US20070071447A1/en
Publication of JP2007096499A publication Critical patent/JP2007096499A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0294Dedicated protection at the optical channel (1+1)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】受信信号光の光伝送ルート別に分散補償量を高速に最適化できるようにする。
【解決手段】受信信号光のルート変更の発生を検出するルート変更検出手段24,25,26と、上記ルート変更前後の受信信号光についての最適分散補償量を予め記憶しておくメモリ27と、上記受信信号光の分散を補償する可変分散補償器22と、ルート変更検出手段24,25,26で上記ルート変更の発生が検出されると、メモリ27に予め記憶されている、上記ルート変更後の受信信号光についての最適分散補償量に応じて可変分散補償器22による分散補償量を制御する制御手段229とをそなえるように構成する。
【選択図】 図3

Description

本発明は、光受信装置及び光受信装置における分散補償方法に関し、例えば、40Gbps(ギガビット毎秒)等の大容量光伝送時の受信端での分散補償を行なうのに好適な技術に関する。
従来、光伝送路のルーティングの変更が行なわれる光通信システムにおいても分散補償が可能な光受信器として、下記特許文献1により提案されている技術がある。この特許文献1の光受信器では、受信信号光を光電変換した電気信号から総分散量を見積もり、その総分散量に基づき、受信データの識別閾値と識別タイミングとを決定することにより、光伝送路のルーティング情報を使用せずに、等価的に、光波長の分散補償を行なって、光伝送路のルーティングの変更に対処できるようにしている。
特開2004−15552号公報
40Gbps等の大容量波長多重(WDM:Wavelength Division Multplex)伝送を行なう際に、受信端での分散許容量は、既存の10Gbps伝送における分散許容量(±1600ピコ秒(ps)程度)に比べて非常に厳しくなる(±30ps程度)。そのため、40Gbps等の大容量伝送になると、信号受信端では、受信信号光の分散量をいかに補償して信号を最適に受信できるかが重要になる。つまり、分散補償量を最適化する必要がある。
ここで、受信信号光の伝送ルートに変化がないシステムであれば、信号受信端において最適な分散補償量を固定的に設定しておけばよいが、光伝送システムのネットワーク構成(形態)としては、光UPSR(Optical Unidirectional Path Switched Ring)等のリングネットワークや、現用系及び予備系の回線が設定されたポイント・ツー・ポイントネットワーク等が存在し、それぞれ、信号光が伝送する回線の距離も必ずしも一定ではなく、その回線における分散量もまちまちである。
例えば、現用系で回線異常が生じた際に、予備系に回線を切替える処理等を行なって通信を維持することがよく行なわれるが、40Gbps等の大容量光伝送になると、個々(現用系及び予備系)の回線状態によって受信端で分散を補償し、分散補償量の最適化を行なわないと、最悪の場合、ネットワークの通信断が生じてしまう。
かかる事象は、回線切替を検出せずに受信信号光を光電変換した電気信号から総分散量を見積もって受信データの識別閾値と識別タイミングとを決定する上記特許文献1の技術を適用したとしても、ルーティング変更後に最適な分散補償値に安定するまで(スイープ動作)に時間を要し、長時間の通信断状態が生じてしまうことになる。
本発明は、このような課題に鑑み創案されたもので、受信信号光の光伝送ルート変更を検出し、これをトリガにして分散補償器による分散補償量を制御することにより、受信信号光の光伝送ルート別に分散補償量を高速に最適化できるようにすることを目的とする。
上記の目的を達成するために、本発明では、下記の光受信装置及び光受信装置における分散補償方法を用いることを特徴としている。
(1)即ち、本発明の光受信装置は、受信信号光のルート変更の発生を検出するルート変更検出手段と、上記ルート変更前後の受信信号光についての最適分散補償量を予め記憶しておくメモリと、上記受信信号光の分散を補償する可変分散補償器と、該ルート変更検出手段で上記ルート変更の発生が検出されると、該メモリに予め記憶されている、上記ルート変更後の受信信号光についての最適分散補償量に応じて該可変分散補償器による分散補償量を制御する制御手段とをそなえたことを特徴としている。
(2)ここで、該ルート変更検出手段は、上記受信信号光をルート情報のマッピングされた光フレームにより受信して、当該光フレームから該ルート情報を抽出するルート情報抽出部と、該ルート情報抽出部により抽出された該ルート情報の変化を監視することにより上記ルート変更の発生を検出するルート情報監視部とをそなえて構成されていてもよい。
(3)また、該ルート変更検出手段は、上記ルート変更前後の各受信信号光パワーを監視して、一方の受信信号光パワーが断状態に遷移したことを検出することにより、上記ルート変更の発生を検出する受光パワー監視部をそなえて構成されていてもよい。
(4)さらに、該可変分散補償器が、バーチャリ・イメージド・フェーズド・アレイ(VIPA)素子を用いて構成されていてもよい。
(5)また、本発明の光受信装置における分散補償方法は、受信信号光の分散を補償する可変分散補償器をそなえた光受信装置において、上記受信信号光のルート変更前後についての最適分散補償量を予めメモリに記憶しておき、上記受信信号光のルート変更の発生を監視し、上記ルート変更の発生が検出されると、該メモリにおける上記ルート変更後の受信信号光についての最適分散補償量に応じて該可変分散補償器による分散補償量を制御することを特徴としている。
上記本発明によれば、受信信号光のルート変更(回線切替)を検出すると、事前にメモリに記憶しておいたルート変更後の受信信号光に最適な分散補償量に応じて可変分散補償器による分散補償量を調整(最適化)するので、ルート変更が発生しても通信途絶を生じさせることなく最良な信号光受信を実現することができる。
〔1〕第1実施形態の説明
図1及び図2はそれぞれ本発明の第1実施形態に係る光伝送システム(ネットワーク)の一例を示すブロック図で、図1はOUPSRネットワーク、図2はポイント・ツー・ポイントネットワークの構成を示している。図1に示すOUPSRネットワークは、例えば、2台の端局ノード装置(LTE:Lite Terminating Equipment)1,2と、2台の中継装置(Regenerator)3,4とが2本の光伝送路(光ファイバ)5a,5bを介してリング状に接続されて構成されており、信号光の送信端である一方のLTE1から両方向(即ち、各中継装置3,4側)へ異なる(現用系及び予備系の)光伝送路5a,5b経由で同一信号光を伝送し、信号光の受信端である他方のLTE2で当該信号光を異なる光伝送路5a,5b経由で両方向(各中継装置3,4側)から受信し、信号品質の良い方の信号光を選択受信するようになっている。また、2本の光伝送路5a,5bの一方(現用系)が断線等した場合には、必然的に、断線等が生じていない他方向からの予備系の光伝送路5b経由の信号光のみがLTE2で受信されることになる。
一方、図2に示すポイント・ツー・ポイントネットワークは、信号光の送信端である端局ノード装置(LTE)1と、信号光の受信端である端局ノード装置(LTE)2とが2本(現用系及び予備系)の光伝送路5a,5bを介して相互に対向して接続されて構成され、現用系の光伝送路5aが断線等した場合には、LTE1は、予備系の光伝送路5b経由で信号光をLTE2へ伝送するようになっている。
そして、本実施形態の受信端であるLTE2(以下、「受信側LTE2」、あるいは、単に「受信端2」と表記する)は、上述したような回線切替(受信信号光の光伝送ルート変更)発生時の受信信号光の分散補償量の最適化を行なって長時間の通信途絶を回避すべく構成されている。即ち、例えば図3に示すように、本実施形態の受信端2は、光スイッチ21と、分散補償器(可変分散補償器)22と、受光器23と、OTNフレーム監視LSI24と、メモリ25と、TTI(Trail Trace Identifier)比較部26と、分散補償量記憶用のメモリ27とをそなえて構成されている。なお、光スイッチ21と分散補償器22との間は光ファイバ6により接続されており、分散補償器22と受光器23との間も、光ファイバ7により接続されている。
ここで、光スイッチ21は、現用系の光伝送路5a及び予備系の光伝送路5bからそれぞれ伝送されてくる信号光のいずれか一方を選択的に光ファイバ6(分散補償器22)へ出力するもので、後述するTTI比較部26からの切替信号によって現用系及び予備系の信号光の選択出力が制御されるようになっている。
分散補償器22は、光ファイバ6を通じて入力される信号光の分散を補償するもので、本例では、TTI比較部26から回線切替発生時に供給される制御信号をトリガにして、メモリ27に予め記憶されている現用系又は予備系の最適分散補償量を読み出して、当該分散補償量に基づく上記信号光の分散補償を行なうものである。
そのため、本例の分散補償器22は、例えば図4に示すように、光サーキュレータ221,コリメーティングレンズ223,ラインフォーカスレンズ(シリンドリカルレンズ)224,光素子225,フォーカシングレンズ226,3次元自由曲面ミラー226,アクチュエータ228およびコントローラ(分散補償制御部)229をそなえて構成されている。
ここで、光サーキュレータ221は、光ファイバ6(光スイッチ21)から入力された光については、コリメーティングレンズ223に出射するとともに、コリメーティングレンズ223からの光については光ファイバ7(受光器23)へ出射するものである。つまり、光スイッチ21から光サーキュレータ41に入力された光は、コリメーティングレンズ223,ラインフォーカスレンズ224,光素子225およびフォーカシングレンズ226を通じて3次元自由曲面ミラー(以下、単にミラーと称する場合がある)227で反射され、逆の経路を辿って光サーキュレータ221に入射された反射戻り光は光ファイバ7を通じて受光器23へ出射される。
ここで、光サーキュレータ221から3次元自由曲面ミラー227で反射するまでの光に着目すると、コリメーティングレンズ223は、光サーキュレータ221からの光を平行光に集光(コリメート)するものであり、ラインフォーカスレンズ224は、コリメーティングレンズ223からの平行光をラインフォーカス光(焦点がライン状に分布した光)にして光素子225に入射させるものである。
また、光素子225は、平行平板により構成され、ラインフォーカスレンズ223から入射される光を、上記平行平板内で多重反射させて自己干渉を行なわせることにより、波長によって異なる出力角度で放出して、階段状に並んだ虚像、即ち、バーチャリ・イメージド・フェーズド・アレイ(Virtually Imaged Phased Array)を作るもので、一般にVIPA素子とも称される。なお、VIPA素子225の動作原理自体については公知であるので、詳細な説明については省略する。
フォーカシングレンズ226は、VIPA素子225から放出されたライン状の信号光を、後段のミラー227の表面において点状に集束させるものである。即ち、図4中ミラー227のX軸に平行なライン状(帯状)の光を、長波長光はミラー227上の紙面下側周辺において、中間波長光はミラー227上の中心周辺において、短波長光はミラー227上の紙面上側周辺において、それぞれ点状に集束させるようになっている。
ミラー227は、上記フォーカシングレンズ226からの光を反射して、その反射戻り光をフォーカシングレンズ226に出射するものである。具体的には、フォーカシングレンズ226にて集束した光を同じレンズ226に反射して戻すことによって、戻された信号光(反射戻り光)がVIPA素子225内で多重反射を受けることにより、受光器23への信号光として出力されるようにするとともに、レンズ226にて集束した信号光の反射面位置によって、受光器23への光に異なる波長分散を与えうるものである。
ここで、ミラー227の反射面は、フォーカシングレンズ226からの光の入射位置をアクチュエータ228の駆動により変化させる(動かす)と、上述の反射戻り光による反射角度を任意に調節しうる3次元曲面を有して構成されている。
すなわち、アクチュエータ228の駆動によりフォーカシングレンズ226からの光に対する反射戻り光による反射角度を調節することができるので、この反射戻り光のVIPA素子225における反射膜上の入射位置についても設定することができる。即ち、反射戻り光のVIPA素子225における反射膜上の入射位置に応じて、VIPA素子225を構成する平行平板内での戻り反射光の多重反射による光路長差を設けることができるようになっている。
なお、VIPA素子225で波長ごとの光路長差が設けられた反射戻り光は、ラインフォーカスレンズ224およびコリメーティングレンズ223を通じてファイバ端部222に入射して再び光サーキュレータ221に入射し、光ファイバ7(受光器23)へ出力される。従って、上述のコリメーティングレンズ223,ラインフォーカスレンズ224,VIPA素子225,フォーカシングレンズ226およびミラー227による光学系により、実際に接続される伝送路がもちうる分散特性と等価の分散特性を得ることができるようになっている。
また、VIPA素子225を用いた分散補償器22は、その分散補償量可変幅として200ps程度を実現することができる。
そして、分散補償制御部(制御手段)229は、TTI比較部26から入力される制御信号をトリガとして、メモリ27に予め記憶されている現用系又は予備系の最適分散補償量を読み出して、当該補償量に応じて上記アクチュエータ228を駆動(制御)することにより、上述のごとくミラー227位置を制御して分散量を調整するものである。例えば、上記TTI比較部26からの制御信号が現用系の光伝送路5aから予備系の光伝送路5bへの回線切替を示す場合には、予備系の最適分散補償量に応じてミラー227位置が制御され、逆に、上記制御信号が、予備系の光伝送路5bから現用系の光伝送路5aへの回線切替を示す場合には、現用系の最適分散補償量に応じてミラー227位置が制御されるようになっている。
次に、図3に戻って、受光器23は、上記分散補償器22(光ファイバ7)から入力された光をフォトダイオード(PD)等の受光素子により受光して、その受光量に応じた電気信号を出力するものであり、OTN(Optical Transport Network)フレーム監視LSI(ルート情報抽出部)24は、受光器23から電気信号として入力されるOTNフレーム(光フレーム)を監視して当該OTNフレームのオーバヘッドに含まれる信号光のルート情報であるTTI情報(64バイト)を抽出する機能を有するものである。
具体的に、OTNフレームは、例えば図5の(A)に示すように、4行(Row)×14列(Column)(バイト)の光チャンネルデータユニット(ODUk:Optical channel Data Unit)オーバヘッド部10と、このODUkオーバヘッド部10に続く4行×2列の光チャンネルペイロードユニット(OPUk:Optical channel Payload Unit)オーバヘッド部11と、このOPUkオーバヘッド部11に続く4行×3808列のOPUkペイロード部12とを有して構成され、上記オーバヘッド部10,11に各種保守運用のための監視制御信号がマッピングされ、OPUkペイロード部12に各種ユーザデータ(クライアント信号)がマッピングされて伝送されるようになっている。
そして、上記のTTI情報は、図5の(A)及び(B)に示すごとく、ODUkオーバヘッド部10の第3行第10〜12列に位置するPM(Path Monitoring)フィールドの1バイト目にマッピングされており、したがって、上記OTNフレーム監視LSI24は、当該PMフィールドからTTI情報(バイト)を抽出することになる。TTI情報は、図5の(B)に示すごとく、送信元アクセスポイント識別子(SAPI:Source Access Point Identifier),送信先アクセスポイント識別子(DAPI:Destination Access Point Identifier)及びオペレータ仕様情報(Operator Specific)から構成され、上記SAPI及びDAPIの内容変化を監視することで、信号光のルート変更を検出できることになる。ただし、上記SAPI,DAPI及びオペレータ仕様情報は、OTNフレームを64フレーム分受信して初めて揃う情報(計64バイト)であるため、OTNフレーム監視LSI24は、TTI情報の抽出に最低でもOTNフレームが64フレーム分受信されるまでの期間(16ns程度)を要することになる。
なお、図5の(B)では、PMフィールドの3バイト目には、BEI(Backward Error Indecation),BDI(Backward Defect Indication)及びSTAT(Status)の各情報がマッピングされ、TCM(Tandem Connection Monitoring)i(i=1〜6)フィールドの3バイト目には、それぞれ、BEI/BIAE(Backward Incoming Alignment Error),BDI及びSTATの各情報がマッピングされることも併せて示している。また、図5の(C)には、前記OPUkオーバヘッド部11にマッピングされる情報を示している。
ここで、図5の(B)からTTI情報は6種のTCMiフィールドのいずれにもマッピングされるが、TCM1,TCM2,TCM3の各フィールドは、SONETにおいてリジェネレータ(中継)セクションと称されるセクションのために用意されたフィールド(中継装置で終端される情報フィールド)であり、TCM4,TCM5,TCM6の各フィールドは、SONETにおいてラインセクションと称されるセクションのために用意されたフィールド(端局装置で終端される情報フィールド)である。
したがって、本実施形態のように、受信端2でTTI情報の監視を行なう場合には、監視LSI24は、PMフィールドの代わりに、TCM4,TCM5,TCM6のいずれかのフィールドにマッピングされたTTI情報を監視(抽出)するように設定することもできる。
次に、図3において、メモリ25は、ネットワーク立上げ時等に、OTNフレーム監視LSI(以下、単に「監視LSI」という)24によって抽出された正常状態のTTI情報を予め記憶しておくもので、例えば、EEPROM(ElectricallyErasable Programmable Read-Only Memory)等の所要の記憶デバイスにより構成することができる。
TTI比較部26は、このメモリ25に保持されているTTI情報と、監視LSI24で抽出されたTTI情報とを比較するもので、両情報が一致しない(差分が生じている)場合に、現用系から予備系(又は、その逆)への回線切替(受信信号光のルート変更)が生じたと認識して、その旨を制御信号により分散補償器22(分散補償制御部229)及び光スイッチ21へ供給するものである。
つまり、上記のメモリ25及びTTI比較部26は、監視LSI24により抽出されたTTI情報の変化を監視することにより回線切替(ルート変更)の発生を検出するルート情報監視部としての機能を果たし、監視LSI24とともに、受信信号光のルート変更の発生を検出するルート変更検出手段としての機能を果たすのである。
メモリ27は、現用系の光伝送路5aから受信される受信信号光についての最適分散補償量と、予備系の光伝送路5bから受信される受信信号光についての最適分散補償量とをシステム立上げ時等に予め記憶しておくもので、上記メモリ25と同様に、例えば、EEPROM等の所要の記憶デバイスにより構成することができる。
以下、上述のごとく構成された本実施形態の受信端2での動作について、図6に示すフローチャートを参照しながら説明する。
まず、ネットワーク立上げ時(ステップS1)に、現用系の光伝送路5a及び予備系の光伝送路5bの双方についての最適分散補償量をメモリ27に記憶させておく(ステップS2)。その後、ネットワークの運用が開始されると(ステップS3)、受信端2では、回線監視処理を開始する。即ち、受信端2では、現用系の光伝送路5aからの信号光が受信信号光として光スイッチ21により選択されて分散補償器22に入力され、メモリ27における現用系の最適分散補償量に応じて受信信号光の分散補償が行なわれる。この分散補償器22による分散補償後の受信信号光は、受光器23で電気信号に変換されて監視LSI24に入力され、当該監視LSI24にて上述したごとくOTNフレームのODUkオーバヘッド部10からTTI情報が抽出されてTTI比較部26に入力される。
TTI比較部26では、上記監視LSI24からのTTI情報と、メモリ25に予め記憶されているTTI情報とを比較して不一致であるか(回線異常が発生したか)否かをチェックする(ステップS4)。その結果、不一致であれば、回線異常が発生したとして回線切替信号(現用系→予備系)を制御信号として光スイッチ21及び分散補償器22に出力する(ステップS4のYESルートからステップS5)。
これにより、光スイッチ21の入力が予備系の光伝送路5bに切り替えられて、以後、予備系の光伝送路5bからの信号光が受信信号光として選択されて分散補償器22に入力されることになる。このとき、分散補償器22では、上記回線切替信号が、分散補償制御部229へ入力され、これにより、分散補償制御部229は、メモリ27にアクセスして、予備系の最適分散補償量を読み出し(ステップS6)、当該予備系の最適分散補償量に応じてアクチュエータ228を駆動してミラー227位置を制御することにより、予備系の受信信号光についての分散量の最適化を行なう(ステップS7)。
以降、受信端2は、上記ステップS4以降の処理を繰り返して、回線切替の有無をTTI情報の変化を監視することで検出し、回線切替が生じる毎に、光スイッチ21の切替及び分散量の最適化を現用系及び予備系の別に実施する。なお、現用系の障害が復旧した場合、予備系での運用を継続する(復旧した現用系への回線切り戻しは行なわない)態様もある。
以上のように、本実施形態によれば、OTNフレームのODUkオーバヘッド部10にマッピングされているTTI情報の変化を監視(検出)することで、受信信号光のルート変更(回線切替)を検出し、これをトリガとして分散補償器22による分散補償量を、事前にメモリ27に記憶しておいた回線切替後のルートに最適な分散補償量に応じて調整(最適化)するので、回線切替が発生しても通信途絶を生じさせることなく最良な信号光受信を実現することができる。特に、分散許容量が±30ps程度以下となる40Gpbs以上の大容量ネットワークにおける受信信号光についても、ルート別に分散補償量を高速に最適化することが可能であり、ネットワークの通信途絶の発生を有効に防止することができる。
なお、上述した例では、OTNフレームのODUkオーバヘッド部10にマッピングされているTTI情報の変化を監視することで、受信信号光のルート変更(回線切替)を検出しているが、例えば、OTNフレームの空きフィールドである未定義バイト(RES:Reserved for future international standardization)に回線のルート情報を挿入し、この空きバイトを上述した実施形態と同様に監視することで、受信信号光のルート変更(回線切替)を検出するようにしてもよい。この場合は、TTI情報の場合のように、OTNフレームを64フレーム分受信しなくてもルート情報を取得できるので、回線切替(ルート変更)の発生を早期に検出することが可能となる。
〔2〕第2実施形態の説明
図7は本発明の第2実施形態に係る受信側LTEの構成を示すブロック図で、この図7に示す受信側LTE2は、図3に示す構成に比して、現用系及び予備系に対応して2台の分散補償器(可変分散補償器)22a,22bが光スイッチ21の入力にそれぞれ光ファイバ7を介して接続されるとともに、光スイッチ21の出力に光ファイバ8を介して受光器23の入力が接続され、かつ、前記分散補償量記憶用のメモリ27が、現用系及び予備系の別に分散補償量記憶用のメモリ27a,27bとして設けられている点が異なる。なお、他の構成要素(既述の符号と同一符号を付したもの)は、特に断らない限り、既述のものと同一若しくは同様のものである。
ここで、分散補償器22a,22bは、それぞれ、図3及び図4により前述したものと同様に、VIPA素子225を用いて構成されたものであり、分散補償器22aは、現用系の光伝送路5aからの受信信号光についての分散補償を行ない、分散補償器22bは、予備系の光伝送路5bからの受信信号光についての分散補償を行なうように配置されている。
また、メモリ27aは、分散補償器22aのため、即ち、現用系の光伝送路5aからの受信信号光のための最適分散補償量を予め記憶しておくものであり、メモリ27bは、分散補償器22bのため、即ち、予備系の光伝送路5bからの受信信号光のための最適分散補償量を予め記憶しておくものである。なお、これらのメモリ27a,27bも、例えば、EEPROM等の所要の記憶デバイスを用いて構成することができる。また、これらのメモリ27a,27は、図3に示す構成と同様に、現用系と予備系とで共用化されていてもよい。
つまり、本実施形態の受信端2は、現用系及び予備系に対応してそれぞれ分散補償器22a,22bと、メモリ27a,27bとをそなえているのである。
上述のごとく構成された受信端2では、第1実施形態(図6のフローチャート)と同様に、監視LSI24にて、OTMフレームのODUkオーバヘッド部10にマッピングされているTTI情報が抽出され、当該TTI情報とメモリ25に予め記憶されているTTI情報とを比較することにより、回線切替(ルート変更)の発生を監視し、TTI情報の不一致により例えば現用系から予備系への回線切替の発生を検出すると、当該検出をトリガとして制御信号が光スイッチ21及び分散補償器22b(分散補償制御部229)へそれぞれ出力される。
これにより、分散補償器22bの分散補償制御部229は、メモリ27bにアクセスして、予備系の光伝送路5bについての最適分散補償量を読み出し、当該補償量に応じてアクチュエータ228を駆動してミラー227位置を制御することにより、光伝送路5bからの受信信号光についての分散補償量の最適化を行なう。そして、光スイッチ21は、分散補償器22bの出力光を選択して受光器23へ出力する。
なお、予備系から現用系への回線切替(復旧)が生じた場合は、TTI比較部26から分散補償器22aに対して制御信号が与えられることにより、同様に、現用系の光伝送路5aからの受信信号光についての分散補償量の最適化が行なわれる。
以上のように、本実施形態においても、第1実施形態と同様の効果ないし利点が得られるほか、分散補償器22a,22bが現用系及び予備系の別にそなえられているので、それぞれの最適分散補償量への安定までに要する時間の短縮化を図ることが可能となる。
〔3〕第3実施形態の説明
図8は本発明の第2実施形態に係る受信側LTEの構成を示すブロック図で、この図8に示す受信側LTE2は、図3に示す構成に比して、光スイッチ21の2入力に、それぞれ、受光素子としてのフォトダイオード20a及び20bが接続されるとともに、監視LSI24,メモリ25及びTTI比較部26に代えて、光受信器28及び光スイッチ制御部29がそなえられている点が異なる。なお、この図8においても、既述の符号と同一符号を付したものは、特に断らない限り、既述のものと同一若しくは同様のものである。
ここで、PD20aは、現用系の光伝送路5aからの受信信号光を受光して、その受光量に応じた電気信号を分散補償器22の分散補償制御部229へ出力するものであり、PD20bは、予備系の光伝送路5bからの受信信号光を受光して、その受光量に応じた電気信号を同じく分散補償器22の分散補償制御部229へ出力するものである。
また、光受信器28は、分散補償器22(光ファイバ7)から出力光を受光して光電変換等の所要の受信処理を行なうものであり、光スイッチ制御部29は、PD20a及びPD20bから電気信号をモニタして現用系及び予備系の光伝送路5a,5bの光断状態を検出し、その検出結果に応じて光スイッチ21の切り替えを制御するものである。例えば、現用系の光伝送路5aが断線する等してPD20aで光が受光されなくなると、光スイッチ制御部29は、光スイッチ21を予備系の光伝送路5b(PD20b)側へ切り替えるようになっている。
つまり、本例の受信端2は、回線切替(ルート変更)の発生を、前記OTNフレーム等の光フレームに依存しないで、PD20a,20bにより直接検出できる構成になっており、上記のPD20a及び20bは、上記回線切替(ルート変更)前後の各受信信号光パワーを監視して、一方の受信信号光パワーが断状態に遷移したことを検出することにより、上記ルート変更の発生を検出する受光パワー監視部(ルート変更検出手段)としての機能を果たすのである。
また、本例の場合、分散補償器22の分散補償制御部229は、各PD20a,20bから入力される電気信号の状態(ON/OFF状態)に応じて、メモリ27から現用系又は予備系の最適分散補償量を読み出すことになる。
即ち、例えば、PD20aからの電気信号がOFF状態でPD20bからの電気信号がON状態となれば、現用系から予備系への回線切替が発生したと認識して、メモリ27から予備系の最適分散補償量を読み出して、当該補償量に応じてアクチュエータ228を駆動してミラー227位置を制御することにより、予備系の光伝送路5bからの受信信号光についての分散補償量の最適化を行なう。
逆に、PD20aからの電気信号がON状態でPD20bからの電気信号がOFF状態となれば、予備系から現用系への回線切替が発生したと認識して、メモリ27から現用系の最適分散補償量を読み出して、当該補償量に応じてアクチュエータ228を駆動してミラー227位置を制御することにより、予備系の光伝送路5bからの受信信号光についての分散補償量の最適化を行なう。
なお、現用系(又は予備系)の光伝送路5a,5bが復旧して、両PD20a,20bからの電気信号が共にON状態となった場合、復旧した回線への切り戻しが行なわれる態様とそうでない態様とがあるが、回線切り戻しが行なわれる態様の場合には、上記と同様に、回線切り戻し先の光伝送路5a又は5bに対応する最適分散補償量がメモリ27から分散補償制御部229へ読み出されることになる。
したがって、第1実施形態と同様の効果ないし利点が得られるほか、本例の場合は、回線切替(ルート変更)の発生を、前記OTNフレーム等の光フレームに依存しないで、PD20a,20bにより直接検出できるので、第1実施形態よりも装置構成を簡易化して低コスト化を図ることが可能となるとともに、分散補償制御の時間を短縮化することが可能となる。
〔4〕第4実施形態の説明
図9は本発明の第4実施形態に係る受信側LTEの構成を示すブロック図で、この図9に示す受信側LTE2は、図3に示す構成に比して、OTNフレーム監視LSI24,メモリ25及びTTI比較部26に代えて、監視制御LSI24′がそなえられている点が異なる。なお、この図9においても、既述の符号と同一符号を付したものは、特に断らない限り、既述のものと同一若しくは同様のものである。
ここで、監視制御LSI(回線切替情報検出部)24′は、図10に示すネットワーク監視システム9から通知される回線切替情報を受けることにより、回線切替(ルート変更)の発生を検出し、これをトリガとして、光スイッチ21及び分散補償器22(分散補償制御部229;図4参照)へ制御信号(回線切替信号)を与えるもので、例えば図10中に示すように、LTE1と中継装置4との間の現用の光伝送路5aが断線等して光断が発生すると、その旨が中継装置4で検出されて、中継装置4からネットワーク監視システム9へ通知され、この通知を受けたネットワーク監視システム9は、受信端2(監視制御LSI24′)に対して現用系の光伝送路5aの断状態を回線異常情報により通知することになるので、光スイッチ21及び分散補償器22の分散補償制御部229へ現用系から予備系の回線切替信号を上記制御信号としてそれぞれ供給することになる。
なお、ネットワーク監視システム9は、OPUSRネットワークを構成する各ノード(LTE1,2及び中継装置3,4)を監視して、各ノード1,2,3,4から通知される回線断情報を収集することができるもので、他のノード間の光伝送路5a,5bに障害が発生した場合についても、上記と同様に、受信端2(監視制御LSI24′)に上記回線異常情報を通知することができるようになっている。
つまり、本例の受信端2(監視制御LSI24′)は、回線切替(ルート変更)の発生をネットワーク監視システム9からの上記回線異常情報の通知を受けることで検出し、これをトリガとして、現用系及び予備系の光伝送路5a,5bの別に分散補償器22の分散補償量の最適化を行なうようになっているのである。
より詳細な動作を説明すると、例えば、上述のごとく現用系の光伝送路5aに障害が発生して、ネットワーク監視システム9から回線異常情報が受信端2(監視制御LSI24′)に通知されると、監視制御LSI24′は、現用系から予備系への回線切替の発生を認識して、光スイッチ21及び分散補償器22の分散補償制御部229へ現用系から予備系の回線切替信号を上記制御信号としてそれぞれ供給する。
これにより、光スイッチ21の入力が予備系の光伝送路5b側へ切り替えられて、予備系の光伝送路5bからの信号光が受信信号光として選択され、分散補償器22に入力される。このとき、分散補償器22では、分散補償制御部229が、上記制御信号を監視制御LSI24′から受けることにより、メモリ27にアクセスして、予備系の最適分散補償量を読み出し、当該補償量に応じてアクチュエータ228を駆動してミラー227位置を制御することにより、予備系の光伝送路5bからの受信信号光についての分散補償量の最適化を行なう。
なお、予備系から現用系への回線切替が発生した場合も、上記と同様に、ネットワーク監視システム9からの通知を受信端2の監視制御LSI24′が受けることにより、監視制御LSI24′から光スイッチ21及び分散補償器22(分散補償制御部229)へそれぞれ制御信号が供給されて、現用系の光伝送路5aからの受信信号光についての分散補償量の最適化が実施される。
なお、本例においても、現用系(又は予備系)の光伝送路5a,5bが復旧した場合、復旧した回線への切り戻しが行なわれる態様とそうでない態様とがあるが、回線切り戻しが行なわれる態様の場合には、上記と同様に、回線切り戻し先の光伝送路5a又は5bに対応する最適分散補償量がメモリ27から分散補償制御部229へ読み出されることになる。
〔5〕その他
本発明は、上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば、上述した実施形態においては、分散補償器22(22a,22b)として、VIPA素子225を用いた構成を適用しているが、可変分散補償機能を有するデバイスであれば同様に適用される。
また、本発明は、WDM伝送システムへの適用に限定されるものではなく、分散補償器を有する光ネットワークであれば同様に適用される。
〔6〕付記
(付記1)
受信信号光のルート変更の発生を検出するルート変更検出手段と、
上記ルート変更前後の受信信号光についての最適分散補償量を予め記憶しておくメモリと、
上記受信信号光の分散を補償する可変分散補償器と、
該ルート変更検出手段で上記ルート変更の発生が検出されると、該メモリに予め記憶されている、上記ルート変更後の受信信号光についての最適分散補償量に応じて該可変分散補償器による分散補償量を制御する制御手段とをそなえたことを特徴とする、光受信装置。
(付記2)
該ルート変更検出手段が、
上記受信信号光をルート情報のマッピングされた光フレームにより受信して、当該光フレームから該ルート情報を抽出するルート情報抽出部と、
該ルート情報抽出部により抽出された該ルート情報の変化を監視することにより上記ルート変更の発生を検出するルート情報監視部とをそなえて構成されたことを特徴とする、付記1記載の光受信装置。
(付記3)
該光フレームが、OTN(Optical Transport Network)フレームであり、該ルート情報が、該OTNフレームのオーバヘッド部にマッピングされているTTI(Trail Trace Identifier)情報であることを特徴とする、付記2記載の光受信装置。
(付記4)
該光フレームが、OTN(Optical Transport Network)フレームであり、該ルート情報が、該OTNフレームのオーバヘッド部の空きフィールドにマッピングされていることを特徴とする、付記2記載の光受信装置。
(付記5)
該ルート変更検出手段が、
上記ルート変更前後の各受信信号光パワーを監視して、一方の受信信号光パワーが断状態に遷移したことを検出することにより、上記ルート変更の発生を検出する受光パワー監視部をそなえて構成されたことを特徴とする、付記1記載の光受信装置。
(付記6)
該ルート変更検出手段が、
上位システムとしての光ネットワーク監視システムからの回線切替情報を受信することにより、上記ルート変更の発生を検出する回線切替情報検出部をそなえて構成されたことを特徴とする、付記1記載の光受信装置。
(付記7)
該可変分散補償器が、バーチャリ・イメージド・フェーズド・アレイ(VIPA)素子を用いて構成されたことを特徴とする、付記1〜6のいずれか1項に記載の光受信装置。
(付記8)
受信信号光の分散を補償する可変分散補償器をそなえた光受信装置において、
上記受信信号光のルート変更前後についての最適分散補償量を予めメモリに記憶しておき、
上記受信信号光のルート変更の発生を監視し、
上記ルート変更の発生が検出されると、該メモリにおける上記ルート変更後の受信信号光についての最適分散補償量に応じて該可変分散補償器による分散補償量を制御することを特徴とする、光受信装置における分散補償方法。
以上詳述したように、本発明によれば、受信信号光のルート変更の発生が検出されると、メモリに予め記憶されている、ルート変更後の受信信号光についての最適分散補償量に応じて可変分散補償器による分散補償量を制御して最適化するので、回線異常等によりルート変更が発生しても通信途絶を生じさせることなく最良な信号光受信を実現することができ、光通信技術分野において極めて有用と考えられる。
本発明の第1実施形態に係る光伝送システム(OPUSRネットワーク)の一例を示すブロック図である。 本発明の第1実施形態に係る光伝送システム(ポイント・ツー・ポイントネットワーク)の一例を示すブロック図である。 図1及び図2に示す受信側LTEの構成を示すブロック図である。 図3に示す分散補償器の構成を示すブロック図である。 本実施形態に係るOTNフレームのフレームフォーマットを示す図である。 本実施形態の受信側LTEの動作を説明するためのフローチャートである。 本発明の第2実施形態に係る受信側LTEの構成を示すブロック図である。 本発明の第3実施形態に係る受信側LTEの構成を示すブロック図である。 本発明の第4実施形態に係る受信側LTEの構成を示すブロック図である。 本発明の第4実施形態に係る光伝送システムの構成を示すブロック図である。
符号の説明
1,2 端局ノード装置(LTE:Lite Terminating Equipment)
3,4 中継装置(Regenerator)
5a 現用系の光伝送路(光ファイバ)
5b 予備系の光伝送路(光ファイバ)
6,7,8 光ファイバ
9 ネットワーク監視システム
10 光チャンネルデータユニット(ODUk:Optical channel Data Unit)オーバヘッド部
11 光チャンネルペイロードユニット(OPUk:Optical channel Payload Unit)オーバヘッド部
12 OPUkペイロード部
20a,20b 受光素子(フォトダイオード:PD)
21 光スイッチ
22,22a,22b 分散補償器(可変分散補償器)
221 光サーキュレータ
222 ファイバ端部
223 コリメーティングレンズ
224 ラインフォーカスレンズ(シリンドリカルレンズ)
225 光素子(VIPA素子)
226 フォーカシングレンズ
227 3次元自由曲面ミラー
228 アクチュエータ
229 コントローラ(分散補償制御部)
23 受光器
24 OTNフレーム監視LSI(ルート情報抽出部;ルート変更検出手段)
24′ 監視制御LSI(回線切替情報検出部;ルート変更検出手段)
25 メモリ(ルート変更検出手段)
26 TTI比較部(ルート情報監視部)
27,27a,27b 分散補償量記憶用のメモリ
28 光受信器
29 光スイッチ制御部

Claims (5)

  1. 受信信号光のルート変更の発生を検出するルート変更検出手段と、
    上記ルート変更前後の受信信号光についての最適分散補償量を予め記憶しておくメモリと、
    上記受信信号光の分散を補償する可変分散補償器と、
    該ルート変更検出手段で上記ルート変更の発生が検出されると、該メモリに予め記憶されている、上記ルート変更後の受信信号光についての最適分散補償量に応じて該可変分散補償器による分散補償量を制御する制御手段とをそなえたことを特徴とする、光受信装置。
  2. 該ルート変更検出手段が、
    上記受信信号光をルート情報のマッピングされた光フレームにより受信して、当該光フレームから該ルート情報を抽出するルート情報抽出部と、
    該ルート情報抽出部により抽出された該ルート情報の変化を監視することにより上記ルート変更の発生を検出するルート情報監視部とをそなえて構成されたことを特徴とする、請求項1記載の光受信装置。
  3. 該ルート変更検出手段が、
    上記ルート変更前後の各受信信号光パワーを監視して、一方の受信信号光パワーが断状態に遷移したことを検出することにより、上記ルート変更の発生を検出する受光パワー監視部をそなえて構成されたことを特徴とする、請求項1記載の光受信装置。
  4. 該可変分散補償器が、バーチャリ・イメージド・フェーズド・アレイ(VIPA)素子を用いて構成されたことを特徴とする、請求項1〜3のいずれか1項に記載の光受信装置。
  5. 受信信号光の分散を補償する可変分散補償器をそなえた光受信装置において、
    上記受信信号光のルート変更前後についての最適分散補償量を予めメモリに記憶しておき、
    上記受信信号光のルート変更の発生を監視し、
    上記ルート変更の発生が検出されると、該メモリにおける上記ルート変更後の受信信号光についての最適分散補償量に応じて該可変分散補償器による分散補償量を制御することを特徴とする、光受信装置における分散補償方法。
JP2005280400A 2005-09-27 2005-09-27 光受信装置及び光受信装置における分散補償方法 Withdrawn JP2007096499A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005280400A JP2007096499A (ja) 2005-09-27 2005-09-27 光受信装置及び光受信装置における分散補償方法
US11/313,966 US20070071447A1 (en) 2005-09-27 2005-12-22 Optical receiving apparatus and dispersion compensating method therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280400A JP2007096499A (ja) 2005-09-27 2005-09-27 光受信装置及び光受信装置における分散補償方法

Publications (1)

Publication Number Publication Date
JP2007096499A true JP2007096499A (ja) 2007-04-12

Family

ID=37894108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280400A Withdrawn JP2007096499A (ja) 2005-09-27 2005-09-27 光受信装置及び光受信装置における分散補償方法

Country Status (2)

Country Link
US (1) US20070071447A1 (ja)
JP (1) JP2007096499A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081449A1 (ja) * 2007-12-20 2009-07-02 Fujitsu Limited 波長分割多重装置及び光信号の分散補償方法
JP2009147416A (ja) * 2007-12-11 2009-07-02 Mitsubishi Electric Corp 光伝送システム
JP2012526432A (ja) * 2009-05-05 2012-10-25 アルカテル−ルーセント コヒーレント光パケット受信機を動作させる方法および機器
JP2013504910A (ja) * 2009-09-14 2013-02-07 アルカテル−ルーセント 光トランスポートネットワークでの自動発見のための方法および装置
JP2013197777A (ja) * 2012-03-19 2013-09-30 Fujitsu Ltd 光伝送装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160453B1 (en) * 2006-03-30 2012-04-17 Rockstar Bidco, LP Protection switching with transmitter compensation function
JP2009117921A (ja) * 2007-11-01 2009-05-28 Sumitomo Electric Ind Ltd 光受信器、及び、光受信器の制御方法
FR2957215B1 (fr) * 2010-03-05 2012-03-02 Alcatel Lucent Procede de restauration d'une connexion optique
US8457490B2 (en) * 2010-03-26 2013-06-04 Cisco Technology, Inc. Use of subcarrier deactivation in a multi-subcarrier channel to improve reach in an optical network
EP2493101A1 (en) * 2011-02-24 2012-08-29 Alcatel Lucent Fast OMSP setup optimized for coherent detection
WO2012154703A1 (en) * 2011-05-06 2012-11-15 Ofs Fitel, Llc Methods and systems for bulk dispersion monitoring
JP5703949B2 (ja) * 2011-05-12 2015-04-22 富士通株式会社 Wdm光伝送システムおよび波長分散補償方法
CN103997426B (zh) * 2013-02-17 2018-11-16 中兴通讯股份有限公司 一种反向复用中子帧错序的检测方法及节点
CN104009802A (zh) * 2013-02-22 2014-08-27 中兴通讯股份有限公司 一种延长无源光网络系统传输距离的方法和光线路终端
JP6427992B2 (ja) * 2014-06-30 2018-11-28 富士通株式会社 光伝送システム、送信機、受信機、及び、光伝送方法
KR102045866B1 (ko) * 2015-01-30 2019-11-18 한국전자통신연구원 광 전달 망의 관리 방법 및 이를 수행하는 네트워크 장비
CN109981166B (zh) * 2017-12-27 2021-03-05 中国移动通信集团公司 一种错误连接光纤的定位方法及装置
CN116318378A (zh) * 2021-03-31 2023-06-23 北京百度网讯科技有限公司 信号处理方法及信号处理系统
US11962345B2 (en) * 2022-01-21 2024-04-16 Precision Optical Technologies, Inc. Configurable dispersion compensation in a pluggable optical transceiver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096712A3 (en) * 1999-10-29 2005-09-07 Nippon Telegraph and Telephone Corporation Path network and path network operation method using conversion of protection path into working path
US6343866B1 (en) * 2000-05-23 2002-02-05 Fujitsu Limited Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
JP3833684B2 (ja) * 2002-11-14 2006-10-18 富士通株式会社 光受信装置
ATE455438T1 (de) * 2002-11-19 2010-01-15 Alcatel Lucent Die fehlerlokalisierung in einem übertragungsnetzwerk

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147416A (ja) * 2007-12-11 2009-07-02 Mitsubishi Electric Corp 光伝送システム
WO2009081449A1 (ja) * 2007-12-20 2009-07-02 Fujitsu Limited 波長分割多重装置及び光信号の分散補償方法
JPWO2009081449A1 (ja) * 2007-12-20 2011-05-06 富士通株式会社 波長分割多重装置及び光信号の分散補償方法
JP2012526432A (ja) * 2009-05-05 2012-10-25 アルカテル−ルーセント コヒーレント光パケット受信機を動作させる方法および機器
JP2013504910A (ja) * 2009-09-14 2013-02-07 アルカテル−ルーセント 光トランスポートネットワークでの自動発見のための方法および装置
US9203540B2 (en) 2009-09-14 2015-12-01 Alcatel Lucent Method and apparatus for automatic discovery in optical transport networks
JP2013197777A (ja) * 2012-03-19 2013-09-30 Fujitsu Ltd 光伝送装置

Also Published As

Publication number Publication date
US20070071447A1 (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP2007096499A (ja) 光受信装置及び光受信装置における分散補償方法
US6925219B2 (en) Device for a passive optical network
US6650803B1 (en) Method and apparatus for optical to electrical to optical conversion in an optical cross-connect switch
JP5267191B2 (ja) 光リングネットワークシステム及び光伝送装置
US9338528B2 (en) Optimal positioning of reflecting optical devices
US8687956B2 (en) Standby restoration signaling for optical networks
EP2405596B1 (en) Optical transmission apparatus
EP2117138A1 (en) An optical source link transmission device and method
KR101100775B1 (ko) 수동 광 네트워크에서의 결함들을 격리시키기 위한 안전 광 스플리터 및 방법
US7787764B2 (en) Optical network transmission channel failover switching device
US6597826B1 (en) Optical cross-connect switching system with bridging, test access and redundancy
US20090238574A1 (en) Apparatus and method for monitoring optical gate device, and optical switch system
TW201334438A (zh) 被動光學網路中提供保護的裝置及方法
EP1277294B1 (en) Optical transponder
EP1195939A1 (en) Redundant optical multiple-branch communication system
JP5070597B2 (ja) 光伝送システム、光伝送方法、光スイッチ装置、センター装置、光カプラ装置、加入者装置及び光通信システム
JP2012257167A (ja) 通信制御装置、終端装置及び通信制御システム
JP6079095B2 (ja) 局側装置の制御方法、局側装置および光通信システム
JP4919067B2 (ja) 光バースト信号中継装置及び光通信システム
JP2009212668A (ja) 光伝送システム
US20020168129A1 (en) System and method for bridge and roll in a photonic switch
JP4768474B2 (ja) 冗長化端局装置
US20230361878A1 (en) Systems and methods for increasing availability in optical networks
US20240259106A1 (en) Communication Network Optical Apparatus and Method of Providing an Optical Signal
JP4999759B2 (ja) 光パス切替え装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080619

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080930