JP2007085781A - Illuminator for inspecting substrate - Google Patents

Illuminator for inspecting substrate Download PDF

Info

Publication number
JP2007085781A
JP2007085781A JP2005272425A JP2005272425A JP2007085781A JP 2007085781 A JP2007085781 A JP 2007085781A JP 2005272425 A JP2005272425 A JP 2005272425A JP 2005272425 A JP2005272425 A JP 2005272425A JP 2007085781 A JP2007085781 A JP 2007085781A
Authority
JP
Japan
Prior art keywords
illumination
light source
light
inspection
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005272425A
Other languages
Japanese (ja)
Other versions
JP3831744B1 (en
Inventor
Yasuo Imamura
村 保 夫 今
Tsutomu Kubota
田 勉 窪
Junichi Yamaguchi
口 純 一 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2005272425A priority Critical patent/JP3831744B1/en
Priority to KR1020050100125A priority patent/KR100795080B1/en
Priority to TW095132318A priority patent/TWI314642B/en
Application granted granted Critical
Publication of JP3831744B1 publication Critical patent/JP3831744B1/en
Publication of JP2007085781A publication Critical patent/JP2007085781A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2201/00Contacts
    • H01H2201/022Material
    • H01H2201/026Material non precious
    • H01H2201/028Indium tin oxide [ITO]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Liquid Crystal (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illuminator for inspecting a substrate constituted so as to miniaturize a liquid crystal scattering plate for changing over the illumination light thrown on an inspection substrate to spot light source illumination and surface light source illumination while preventing the broken pieces of the liquid crystal scattering plate from falling on the inspection substrate even if the liquid crystal scattering plate is broken and to obtain a bright diffracted bright line by irradiating the inspection substrate with scattered light when the spot light source illumination is set. <P>SOLUTION: The liquid crystal scattering plate (4) is arranged at a position, where the cross-sectional shape of an illumination luminous flux becomes equal to or larger than the inspection substrate (K), on the side of a light source device (2) from a Flesnel lens (3) and the non-scattered light emitted from the light source device (2) is thrown on the liquid crystal scattering plate (4) to selectively irradiate the inspection substrate (K) with the non-scattered light becoming the spot light source illumination and the scattered light becoming the surface light source illumination. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非散乱光を照射する光源装置から検査基板に至る照明光軸上に、検査基板全体に照明光が照射されるように光を収束化又は平行化するフレネルレンズが配されて成る基板検査用照明装置に関する。   In the present invention, a Fresnel lens that converges or collimates light is arranged on an illumination optical axis from a light source device that irradiates non-scattered light to an inspection substrate so that the entire inspection substrate is irradiated with illumination light. The present invention relates to a lighting device for substrate inspection.

液晶ディスプレイパネルや大型プリント配線基板などの製造ラインにおいては、任意の工程終了後に検査工程を設け、基板に点光源照明と面光源照明を切り換えて照射し、その反射光を目視したり、あるいはその像を撮像して画像処理することにより製品検査を行っている。   In production lines such as liquid crystal display panels and large printed wiring boards, an inspection process is provided after the completion of any process, and the substrate is switched between point light source illumination and surface light source illumination, and the reflected light is visually observed or Product inspection is performed by capturing an image and processing the image.

この場合に、点光源照明は検査基板に照射され、塵埃その他のパーティクルなどの異物の付着、ピンホールの有無、オーバーコートの下層の不均一性、下層に形成されたITO(透明電極)の不良の有無などが検査される。
また、点光源光により検査基板表面に回折輝線が生じ、検査基板の光軸に対する傾きを変えながら回折輝線を移動させ、その輝線上で、回路パターンの断線・ショートの有無、レジスト膜の剥がれや除去不良の有無などが検査される。
さらに、面光源照明により、検査基板の表面に形成されたレジスト膜の膜厚のムラや、表層に形成されたITOの不良の有無などが検査される。
In this case, point light source illumination is applied to the inspection substrate, adhesion of foreign matters such as dust and other particles, presence of pinholes, non-uniformity of the lower layer of the overcoat, and defective ITO (transparent electrode) formed on the lower layer The presence or absence of such is inspected.
In addition, diffractive emission lines are generated on the surface of the inspection substrate by the point light source light, and the diffraction emission lines are moved while changing the tilt with respect to the optical axis of the inspection substrate. The presence or absence of defective removal is inspected.
Further, the surface light source illumination inspects the unevenness of the film thickness of the resist film formed on the surface of the inspection substrate, the presence or absence of defects of the ITO formed on the surface layer, and the like.

ところで、従来の基板検査用照明装置は、図4に示すように、光源51から照射された光を収束させ、その焦点位置に置かれた散乱板52を透過させた後、反射鏡53で反射させて平行化用フレネルレンズ54で平行化させた後、収束化用フレネルレンズ55で収束化させ、そのフレネルレンズ55の出射面側に配された液晶散乱板56を透明/不透明に切り換えることにより、点光源照明光/面光源照明光を選択的に検査基板57に照射させるようになっている。
特開2002−71571号公報
By the way, as shown in FIG. 4, the conventional substrate inspection illumination device converges the light emitted from the light source 51 and transmits it through the scattering plate 52 placed at the focal position, and then reflects it by the reflecting mirror 53. After being collimated by the collimating Fresnel lens 54, the light is converged by the converging Fresnel lens 55, and the liquid crystal scattering plate 56 disposed on the exit surface side of the Fresnel lens 55 is switched between transparent and opaque. The inspection substrate 57 is selectively irradiated with point light source illumination light / surface light source illumination light.
JP 2002-71571 A

欠陥の有無を発見し易くするためには強い光の方が良く、このため、検査基板57に照射される照明光を発散させずに収束化用フレネルレンズ55で収束させているが、このレンズ55は、当然、検査基板57より相当大きなものとなるため、液晶散乱板56も大型のものが必要になる。
しかし、液晶散乱板56は大型化すればするほどコストが嵩み、またガラス製であるため、割れ易くなるという問題があり、万一割れた場合には、その破片が検査基板57上に落下して製品と成るべき基板57が傷だらけになって廃棄処分しなければならないという無駄を生ずる。
In order to make it easy to detect the presence or absence of defects, strong light is better. For this reason, the illumination light irradiated on the inspection substrate 57 is converged by the converging Fresnel lens 55 without diverging. Naturally, 55 is considerably larger than the inspection substrate 57, so that the liquid crystal scattering plate 56 must also be large.
However, the larger the liquid crystal scattering plate 56 is, the higher the cost is. Further, since the liquid crystal scattering plate 56 is made of glass, there is a problem that the liquid crystal scattering plate 56 is easily broken. If it breaks, the broken piece falls on the inspection substrate 57. As a result, there is a waste that the substrate 57 to be a product becomes full of scratches and must be disposed of.

なお、図5に示すように、フレネルレンズ61を反射鏡53の近傍に配し、そのフレネルレンズ61で収束化された照明光の光軸上に液晶散乱板56をフレネルレンズ61から離して配することにより、液晶散乱板56を小型化することも試みられている。
特開2002−71571号公報
As shown in FIG. 5, the Fresnel lens 61 is arranged in the vicinity of the reflecting mirror 53, and the liquid crystal scattering plate 56 is arranged away from the Fresnel lens 61 on the optical axis of the illumination light converged by the Fresnel lens 61. Accordingly, attempts have been made to reduce the size of the liquid crystal scattering plate 56.
JP 2002-71571 A

しかし、前述したように、基板を検査する際に、検査基板57の光軸に対する傾きを変えながら回折輝線を移動させる必要があるため、そのスペースを確保しようとすると、図4の収束化用フレネルレンズ54の位置に液晶散乱板56を配さなければ成らない。
したがって、図4と同程度の大きさの検査基板27に照明光を照射しようとすると、図4と同程度の大きさの液晶散乱板56が必要になるだけでなく、反射鏡53及びフレネルレンズ61が図4に示す光学系に用いたものよりもより大型化し、結局、液晶散乱板56を小型化することはできず、液晶散乱板56が割れたときの問題点も解決できない。
However, as described above, when the substrate is inspected, it is necessary to move the diffraction emission line while changing the inclination of the inspection substrate 57 with respect to the optical axis. A liquid crystal scattering plate 56 must be disposed at the position of the lens 54.
Therefore, if the illumination light is to be irradiated onto the inspection substrate 27 having the same size as that of FIG. 4, not only the liquid crystal scattering plate 56 having the same size as that of FIG. 4 but also the reflecting mirror 53 and the Fresnel lens are required. 61 becomes larger than that used in the optical system shown in FIG. 4, and consequently the liquid crystal scattering plate 56 cannot be reduced in size, and the problem when the liquid crystal scattering plate 56 is broken cannot be solved.

さらに、従来は点光源照明を検査基板57全体に照射したときの配光特性(光分布)をフラット化するために光源51の焦点位置に散乱板52を配しているが、散乱板52は配向特性をフラット化する反面、光強度を全体的に低下させるという問題を有する。
そして、光強度の低下を抑えるために、フレネルレンズ55や61の収束角を大きくすれば、その分、各レンズ55及び61は大型化し、光源51として大光量のものを用いれば、設備費、ランニングコストが嵩み、光源51の熱の影響で散乱板52の寿命が短くなる。
また、散乱板52を用いることにより、点光源照明を検査基板57に照射したときの回折輝線がハッキリせず、ぼんやりとして見ずらくなるという問題もあった。
散乱板52を用いないときは照明光の配光特性のピークが急峻になり、液晶散乱板56を透明にして点光源照明を発散させて検査基板57全体に照射したときに、検査基板57上では光軸から離れるにしたがって光強度が著しく低下するため検査基板57の周縁部が暗くなり、検査精度が低下するという問題を生ずる。
Further, conventionally, a scattering plate 52 is arranged at the focal position of the light source 51 in order to flatten the light distribution characteristic (light distribution) when the entire point of the light source illumination is irradiated to the inspection substrate 57. While the orientation characteristics are flattened, there is a problem that the light intensity is lowered as a whole.
And in order to suppress the fall of light intensity, if the convergence angle of the Fresnel lenses 55 and 61 is enlarged, each lens 55 and 61 will be enlarged correspondingly, and if a thing with a large light quantity is used as the light source 51, equipment cost, The running cost increases, and the life of the scattering plate 52 is shortened due to the heat of the light source 51.
In addition, by using the scattering plate 52, there is a problem in that the diffraction lines when the point light source illumination is irradiated onto the inspection substrate 57 are not clear and are difficult to see.
When the scattering plate 52 is not used, the peak of the light distribution characteristic of the illumination light becomes steep. When the liquid crystal scattering plate 56 is made transparent and the point light source illumination is emitted to irradiate the entire inspection substrate 57, the inspection substrate 57 is exposed. However, since the light intensity is remarkably reduced as the distance from the optical axis is increased, the peripheral edge of the inspection substrate 57 becomes dark, resulting in a problem that the inspection accuracy is lowered.

そこで本発明は、液晶散乱板を小型化すると同時に、万一破損してもその破片が検査基板上に落下しないようにし、さらに、明るい回折輝線が得られるようにすることを第一の技術的課題とし、光強度を低下させることなく配光特性を向上させることを第二の技術的課題としている。   Therefore, the first technical aspect of the present invention is to reduce the size of the liquid crystal scattering plate, and at the same time, to prevent a broken piece from falling on the inspection substrate even if it is broken, and to obtain a bright diffraction line. The second technical problem is to improve the light distribution characteristics without reducing the light intensity.

この課題を解決するために、本発明は、照明光として非散乱光を発散させて照射する光源装置から検査基板に至る照明光軸上に、その照明光を検査基板全体に照射するように光を収束化又は平行化するフレネルレンズと、電圧制御により透明と不透明を切り換え、透明時に点光源照明を検査基板に照射させ、不透明時に面光源照明を検査基板に照射させる液晶散乱板を備えて成る基板検査用照明装置において、前記液晶散乱板は、フレネルレンズより光源装置側で、照明光束の断面形状が検査基板と等しいか又は検査基板より大きくなる位置に配され、該液晶散乱板に前記光源装置から照射された非散乱光を入射させることにより、点光源照明となる非散乱光と面光源照明となる散乱光を選択的に照射させる照明光切換手段を備えたことを特徴としている。   In order to solve this problem, the present invention provides light so that the entire inspection substrate is irradiated with the illumination light on the illumination optical axis from the light source device that irradiates and irradiates non-scattered light as illumination light to the inspection substrate. Consists of a Fresnel lens that converges or collimates and a liquid crystal scattering plate that switches between transparent and opaque by voltage control, irradiates the inspection substrate with point light source illumination when transparent, and irradiates the inspection substrate with surface light source illumination when opaque In the substrate inspection illumination device, the liquid crystal scattering plate is disposed on the light source device side from the Fresnel lens at a position where the cross-sectional shape of the illumination light beam is equal to or larger than the inspection substrate, and the light source is disposed on the liquid crystal scattering plate. Illumination light switching means is provided for selectively irradiating non-scattered light as point light source illumination and scattered light as surface light source illumination by making non-scattered light emitted from the apparatus incident. It is set to.

本発明の基板検査用照明装置によれば、照明光は光源装置からフレネルレンズに向って発散して照射されるので、液晶散乱板をフレネルレンズより光源装置側に設けられた液晶散乱板は、フレネルレンズから離れれば離れるほど小型化される。
このとき、液晶散乱板は、照明光束の断面形状が検査基板と等しいか又は検査基板より大きい位置に配されているので、液晶散乱板を検査基板と等しい大きさまで小型化することができる。
液晶散乱板の大きさとして検査基板の大きさが確保されていれば、液晶散乱板を不透明にして面光源照明としたときでもその像が検査基板全体に写り込むので、検査基板の一部にのみ液晶散乱板の像が写り込むことによる照明光のムラが生じることもない。
また、液晶散乱板をフレネルレンズより光源装置側に配しているので、フレネルレンズの上方に液晶散乱板をレイアウトすることができ、したがって、万一液晶散乱板が割れたときでも、液晶散乱板より大きいフレネルレンズの上に破片が落ちるので、検査基板に直接落下することを防止できる。
According to the substrate inspection illumination device of the present invention, since the illumination light is emitted from the light source device toward the Fresnel lens, the liquid crystal scattering plate provided on the light source device side from the Fresnel lens is The further away from the Fresnel lens, the smaller the size.
At this time, since the cross-sectional shape of the illumination light beam is equal to or larger than the inspection substrate, the liquid crystal scattering plate can be downsized to the same size as the inspection substrate.
If the size of the inspection board is secured as the size of the liquid crystal scattering plate, even if the liquid crystal scattering plate is made opaque and the surface light source illumination is used, the image will be reflected on the entire inspection board, so it will be part of the inspection board. Only when the image of the liquid crystal scattering plate is reflected, unevenness of illumination light does not occur.
In addition, since the liquid crystal scattering plate is arranged on the light source device side from the Fresnel lens, the liquid crystal scattering plate can be laid out above the Fresnel lens, so even if the liquid crystal scattering plate breaks, the liquid crystal scattering plate Since debris falls on the larger Fresnel lens, it can be prevented from falling directly on the inspection substrate.

さらに、液晶散乱板には光源装置から照射された非散乱光が入射され、液晶散乱板を透明にして点光源照明としたときは、その非散乱光が検査基板に直接照射されるので、検査基板にはシャープな虹色の回折輝線が生じ、表面に付着した異物などが見え易くなる。
また、液晶散乱板を不透明にして面光源照明としたときでも、元の光強度が高いので、光量がダウンすることなく、したがって、フレネルレンズの収束角を大きくする必要がないので、同じサイズの検査基板に照明光を照射するのであれば、フレネルレンズも小型化できる。
この場合に、光源装置の光出射部に、照明光束を検査基板の形状に整形すると共に、光分布を均一化させる均一化整形レンズ装置を装着すれば、非散乱光を照射させたときの検査基板上における光強度分布がフラットになるので、光軸から離れた周縁部の照度が低下せず、見難くならないという効果もある。
Furthermore, non-scattered light emitted from the light source device is incident on the liquid crystal scattering plate. When the liquid crystal scattering plate is made transparent and used as point light source illumination, the non-scattered light is directly irradiated onto the inspection substrate, so that inspection is performed. A sharp rainbow-colored diffractive emission line is generated on the substrate, so that foreign matters attached to the surface can be easily seen.
In addition, even when the liquid crystal scattering plate is made opaque and used as a surface light source illumination, the original light intensity is high, so the amount of light does not decrease, and therefore it is not necessary to increase the convergence angle of the Fresnel lens. If the inspection substrate is irradiated with illumination light, the Fresnel lens can be reduced in size.
In this case, if the illumination light beam is shaped into the shape of the inspection substrate at the light emitting part of the light source device and a uniform shaping lens device that makes the light distribution uniform is mounted, the inspection when irradiated with non-scattered light Since the light intensity distribution on the substrate is flat, there is an effect that the illuminance at the peripheral edge away from the optical axis does not decrease and is difficult to see.

さらに、均一化整形レンズ装置に照射角可変のズーム機構を備えておけば、照明装置の組み立ての際に、フレネルレンズの大きさに応じて自由に照射角を調整できるので、一種類の均一化整形レンズ装置があれば、フレネルレンズなどの仕様に応じて設計変更したり、フレネルレンズに至るまでの照射距離を変更する必要もない。   Furthermore, if the uniform shaping lens device is equipped with a zoom mechanism with variable illumination angle, the illumination angle can be freely adjusted according to the size of the Fresnel lens when assembling the illumination device, so one type of homogenization is possible. If there is a shaping lens device, it is not necessary to change the design according to the specifications of the Fresnel lens or to change the irradiation distance to the Fresnel lens.

本例では、液晶散乱板を小型化すると同時に、万一破損してもその破片が検査基板上に落下しないようにし、さらに、明るい回折輝線が得られるようにするという目的を達成するために、液晶散乱板を、フレネルレンズより光源装置側で、照明光束の断面形状が検査基板と等しいか又は検査基板より大きい位置に配し、液晶散乱板に光源装置から照射された非散乱光を入射させることにより、点光源照明となる非散乱光と面光源照明となる散乱光を選択的に照射させるようにした。   In this example, in order to reduce the size of the liquid crystal scattering plate, at the same time, in order to achieve the purpose of preventing a broken piece from falling on the inspection substrate even if it is broken, and obtaining a bright diffraction line. The liquid crystal scattering plate is placed on the light source device side from the Fresnel lens at a position where the cross-sectional shape of the illumination light beam is equal to or larger than the inspection substrate, and the non-scattered light irradiated from the light source device is incident on the liquid crystal scattering plate. As a result, non-scattered light serving as point light source illumination and scattered light serving as surface light source illumination were selectively irradiated.

図1は本発明に係る基板検査用照明装置の一例を示す説明図、図2は均一化整形レンズを示す説明図、図3は照射角を拡大したときの光線図である。   FIG. 1 is an explanatory view showing an example of an illumination apparatus for substrate inspection according to the present invention, FIG. 2 is an explanatory view showing a uniform shaping lens, and FIG. 3 is a light ray diagram when an irradiation angle is enlarged.

図1に示す基板検査用照明装置1は、一辺が1m前後あるいはそれ以上のハイブリッド液晶ディスプレイパネルや大型プリント配線基板などの大型基板の検査に用いるもので、非散乱光を発散させて照射する光源装置2から検査基板に至る照明光軸X上に、照明光を収束化又は平行化するフレネルレンズ3と、検査基板Kに照射される照明光を点光源照明と面光源照明に切り換える液晶散乱板4を備えている。   A substrate inspection illumination device 1 shown in FIG. 1 is used for inspecting a large substrate such as a hybrid liquid crystal display panel or a large printed wiring substrate having a side of about 1 m or more, and is a light source that radiates and emits non-scattered light. A Fresnel lens 3 that converges or collimates the illumination light on the illumination optical axis X from the apparatus 2 to the inspection substrate, and a liquid crystal scattering plate that switches the illumination light irradiated on the inspection substrate K to point light source illumination and surface light source illumination 4 is provided.

光源装置2は、図2に示すように、非散乱光を発するハロゲンランプ、メタルハライドランプなどの高圧放電灯を用いた光源5と、その光を集光させる楕円反射鏡6と、集光された光を案内するライトガイド7と、その光出射端に配されてライトガイド7に接続される均一化整形レンズ装置8を備えている。
均一化整形レンズ装置8は、検査基板Kと縦横比の等しい方形断面を有する角柱状のロッドインテグレータ9と、そのロッドインテグレータ9から出射された照明光の照射角度を可変調整するバリフォーカルレンズ10とを備えている。
ロッドインテグレータ9に光が入射されると、内部で全反射を繰り返し、出射端では光分布が均一される。本例のロッドインテグレータ9は、非散乱光の検査基板K上におけるユニフォーミティが70〜100%になるように設計されている。
ユニフォーミティUは、照明光を照射したときの最大光量Pmaxと最小光量Pminから、次式で定義される。
U={1−(Pmax−Pmin)/(Pmax+Pmin)}×100(%)
最大光量Pmaxと最小光量Pminが等しければユニフォーミティは100%であり理想的な光源といえるが、現実には光分布の強弱を避けることはできない。
しかし、ユニフォーミティが70%未満に低下すると、非散乱光を検査基板Kに照射させたときに、光軸上の明るさと周縁部の明るさの差が大きくなり過ぎ、目視による場合も画像処理による場合も検査精度が低下するのに対し、70%以上であればそのような問題が生じなかったため、ユニフォーミティU≧70%としている。
As shown in FIG. 2, the light source device 2 includes a light source 5 that uses a high-pressure discharge lamp such as a halogen lamp or a metal halide lamp that emits non-scattered light, an elliptical reflecting mirror 6 that collects the light, and a condensed light. A light guide 7 that guides light and a uniformizing lens device 8 that is disposed at the light emitting end of the light guide 7 and is connected to the light guide 7 are provided.
The uniformizing lens device 8 includes a prismatic rod integrator 9 having a rectangular cross section with the same aspect ratio as the inspection substrate K, and a varifocal lens 10 that variably adjusts the irradiation angle of illumination light emitted from the rod integrator 9. It has.
When light is incident on the rod integrator 9, total reflection is repeated internally, and the light distribution is made uniform at the exit end. The rod integrator 9 of this example is designed so that the uniformity of non-scattered light on the inspection substrate K is 70 to 100%.
The uniformity U is defined by the following equation from the maximum light amount Pmax and the minimum light amount Pmin when the illumination light is irradiated.
U = {1− (Pmax−Pmin) / (Pmax + Pmin)} × 100 (%)
If the maximum light quantity Pmax and the minimum light quantity Pmin are equal, the uniformity is 100%, which can be said to be an ideal light source, but in reality, the intensity of the light distribution cannot be avoided.
However, if the uniformity is reduced to less than 70%, the difference between the brightness on the optical axis and the brightness of the peripheral portion becomes too large when non-scattered light is irradiated onto the inspection substrate K, and image processing is also performed when visually observed. In the case of the above, the inspection accuracy is lowered, but such a problem does not occur if it is 70% or more. Therefore, uniformity U ≧ 70%.

また、バリフォーカルレンズ10は、二つのレンズ10A及び10Bを同軸的に配した複合式レンズとなっており、夫々のレンズ10A及び10Bを移動させることにより照射角度を可変調整できるので、検査基板Kの大きさ、フレネルレンズ3や液晶散乱板4の仕様が異なる場合でも、光源装置2をその仕様に従って設計し直すことなく同じものを使用することができる。
例えば、図1の基板検査用照明装置1において照射角度が約25°であった場合において、図3に示すように1辺の長さが約1.8倍の検査基板Kを検査するための基板検査用照明装置11においては、検査基板Kの大きさに応じてフレネルレンズ12や液晶散乱板13も大きなものが用いられているため、同じ照射角度では検査基板K全体に光を照射させることができない。
この場合、従来の光源装置ではフレネルレンズ3までの距離を長くせざるを得ないため、光強度の減衰が著しいが、本例では、バリフォーカルレンズ10により照射角度を約25°から例えば約45°に広げることにより最適な照射角度に設定することができる。
このように、フレネルレンズ3までの距離を一定に維持したまま照射角度を調整できるので、光強度の減衰が少なく、仕様が異なる照明装置1,11を設計するたびごとに光源装置2を設計し直す面倒もない。
The varifocal lens 10 is a compound lens in which two lenses 10A and 10B are arranged coaxially, and the irradiation angle can be variably adjusted by moving the respective lenses 10A and 10B. Even when the specifications of the Fresnel lens 3 and the liquid crystal scattering plate 4 are different, the same light source device 2 can be used without redesigning according to the specifications.
For example, when the irradiation angle is about 25 ° in the board inspection illumination device 1 of FIG. 1, the length of one side is about 1.8 times as shown in FIG. In the board inspection illumination device 11, a large Fresnel lens 12 and liquid crystal scattering plate 13 are used according to the size of the inspection board K, and therefore, the entire inspection board K is irradiated with light at the same irradiation angle. I can't.
In this case, since the distance to the Fresnel lens 3 must be increased in the conventional light source device, the light intensity is significantly attenuated. In this example, the irradiation angle is about 25 ° to about 45 ° by the varifocal lens 10, for example. It is possible to set the optimal irradiation angle by widening the angle.
Thus, since the irradiation angle can be adjusted while maintaining the distance to the Fresnel lens 3 constant, the light source device 2 is designed each time the illumination devices 1 and 11 having different specifications with little attenuation of light intensity are designed. There is no trouble to fix.

そして、光源装置2から出射された照明光は、図1に示すように、反射鏡14で反射されて照明光軸Xに沿って進行し、その光軸X上に配されたフレネルレンズ3により収束化又は平行化されて検査基板Kの全面に照射されるようになっている。
そして、フレネルレンズ3の光源装置2側には、検査基板Kに照射する照明光を液晶散乱板4で点光源照明と面光源照明に切り換える照明光切換手段15が配されている。
液晶散乱板4は、検査基板Kと等しいか又は大きく、且つ、フレネルレンズ3より小さな形状に形成され、フレネルレンズ3より光源装置2側で、且つ、照明光束の断面形状が検査基板Kと等しいか又は検査基板Kより大きくなる位置hに配されている。
As shown in FIG. 1, the illumination light emitted from the light source device 2 is reflected by the reflecting mirror 14 and travels along the illumination optical axis X. By the Fresnel lens 3 arranged on the optical axis X, The entire surface of the inspection substrate K is irradiated after being converged or parallelized.
Further, illumination light switching means 15 that switches the illumination light applied to the inspection substrate K to the point light source illumination and the surface light source illumination by the liquid crystal scattering plate 4 is disposed on the light source device 2 side of the Fresnel lens 3.
The liquid crystal scattering plate 4 is formed in a shape equal to or larger than the inspection substrate K and smaller than the Fresnel lens 3, is closer to the light source device 2 than the Fresnel lens 3, and the sectional shape of the illumination light beam is equal to the inspection substrate K. Or at a position h that is larger than the inspection substrate K.

照明光切換手段15は電圧制御により、液晶散乱板4を透明と不透明(乳白色)に切り換え、透明時には光源装置2から照射される照明光をそのまま透過させることにより非散乱光による点光源照明を検査基板Kに照射させることができ、不透明時には照明光を該液晶散乱板4で散乱させることにより散乱光による面光源照明を検査基板Kに照射させることができるようになっている。   The illumination light switching means 15 switches the liquid crystal scattering plate 4 between transparent and opaque (milky white) by voltage control, and inspects point light source illumination by non-scattered light by transmitting the illumination light emitted from the light source device 2 as it is when transparent. The substrate K can be irradiated, and when it is opaque, the illumination light is scattered by the liquid crystal scattering plate 4 so that the surface light source illumination by the scattered light can be irradiated to the inspection substrate K.

なお、照明光束は光源装置2からフレネルレンズ3に至るまで拡がるので、液晶散乱板4をフレネルレンズ3より光源装置2側に設けることにより、その大きさをフレネルレンズ3より小さく設計することができる。
また、液晶散乱板4は検査基板Kと等しい大きさが確保されているので、液晶散乱板4を不透明にして面光源照明としたときでもその像が検査基板K全体をカバーするので、検査基板K上に照明光のムラが生じない。
Since the illumination light beam spreads from the light source device 2 to the Fresnel lens 3, the size of the liquid crystal scattering plate 4 can be designed smaller than that of the Fresnel lens 3 by providing the liquid crystal scattering plate 4 on the light source device 2 side. .
Further, since the liquid crystal scattering plate 4 has a size equal to that of the inspection substrate K, the image covers the entire inspection substrate K even when the liquid crystal scattering plate 4 is made opaque and the surface light source illumination is used. Irregularity of illumination light does not occur on K.

また、液晶散乱板4はフレネルレンズ3より光源装置2側に配しているので、フレネルレンズ3の上方に液晶散乱板4をレイアウトすることができ、したがって、万一液晶散乱板4が割れたときでも、その液晶散乱板4より大きいフレネルレンズ3で破片が受け止められ、検査基板Kに破片が落ち難く、したがってキズもつき難い。   Further, since the liquid crystal scattering plate 4 is arranged on the light source device 2 side from the Fresnel lens 3, the liquid crystal scattering plate 4 can be laid out above the Fresnel lens 3, so that the liquid crystal scattering plate 4 should be broken. Even at times, the fragments are received by the Fresnel lens 3 larger than the liquid crystal scattering plate 4, and the fragments are difficult to fall on the inspection substrate K, and therefore are not easily scratched.

以上が本発明の一例構成であって、次にその作用を説明する。
検査基板Kが基板検査用照明装置1の下まで搬送されてくると、その検査目的に応じて、照明光切換手段15により点光源照明及び面光源照明を選択する。
点光源照明による検査を行う場合は、光源装置2を点灯させた状態で液晶散乱板4を透明にすれば、光源装置2からの非散乱光が反射鏡14で反射されて液晶散乱板4をそのまま透過してフレネルレンズ3まで発散して進行し、フレネルレンズ3で収束化されて検査基板Kに照射される。
このとき、点光源照明として非散乱光がライトガイド7から出射されて、均一化整形レンズ装置8のロッドインテグレータ9及びバリフォーカルレンズ10により所定の照射角度で発散されて、検査基板Kの全体に照射され、これにより、検査基板K上の塵埃その他のパーティクルなどの異物の付着の有無、ピンホールの有無、オーバーコートの下層の不均一性、さらには下層に形成されたITO(透明電極)の不良の有無などを検査することができる。
The above is an example configuration of the present invention, and its operation will be described next.
When the inspection substrate K is transported to the bottom of the substrate inspection illumination device 1, the illumination light switching means 15 selects point light source illumination and surface light source illumination according to the inspection purpose.
When performing inspection by point light source illumination, if the liquid crystal scattering plate 4 is made transparent with the light source device 2 turned on, the non-scattered light from the light source device 2 is reflected by the reflecting mirror 14 and the liquid crystal scattering plate 4 is The light is transmitted as it is and diverges and travels to the Fresnel lens 3, converged by the Fresnel lens 3, and irradiated onto the inspection substrate K.
At this time, non-scattered light is emitted from the light guide 7 as point light source illumination, and is diverged at a predetermined irradiation angle by the rod integrator 9 and the varifocal lens 10 of the uniformizing and shaping lens device 8, and the entire inspection substrate K is emitted. As a result, the presence or absence of foreign matter such as dust or other particles on the inspection substrate K, the presence or absence of pinholes, the non-uniformity of the lower layer of the overcoat, and the ITO (transparent electrode) formed on the lower layer The presence or absence of defects can be inspected.

なお、非散乱光の点光源照明を発散照射させたときに、照明光束の周縁部を遮光することなく、ロッドインテグレータ9により検査基板Kの形状に整形しているので、光の無駄がない。
また、ロッドインテグレータ9により光分布が均一化されて検査基板K上における光強度分布がフラットになるので、光軸Xから離れた周縁部の照度が低下せず、見難くならないという効果もある。
Note that when the point light source illumination of non-scattered light is diverged and irradiated, the peripheral portion of the illumination light beam is shaped into the shape of the inspection substrate K by the rod integrator 9 without being shielded, so that no light is wasted.
Further, since the light distribution is made uniform by the rod integrator 9 and the light intensity distribution on the inspection substrate K becomes flat, the illuminance at the peripheral portion away from the optical axis X does not decrease, and there is an effect that it is not difficult to see.

また、光源装置2から照射された非散乱光が検査基板Kに直接照射されるので、検査基板Kにはシャープな虹色の回折輝線が生じ、その輝線上で認識し易くなり、検査基板Kの照明光軸Xに対する傾きを変えながら回折輝線を移動させることにより、検査基板Kの全体について、例えば、回路パターンの断線・ショートの有無、レジスト膜の剥がれや除去不良の有無などの異常を精度良く検査することができる。   Further, since the non-scattered light emitted from the light source device 2 is directly applied to the inspection substrate K, a sharp rainbow-colored diffracted emission line is generated on the inspection substrate K and is easily recognized on the emission line. By moving the diffractive emission line while changing the inclination with respect to the illumination optical axis X, it is possible to accurately detect abnormalities such as circuit pattern disconnection / short circuit, resist film peeling, and removal defect. It can be inspected well.

面光源照明による検査を行う場合は、光源装置2を点灯させた状態で液晶散乱板4を不透明(乳白色)にすれば、光源装置2からの非散乱光が反射鏡14で反射されて液晶散乱板4で散乱され、これが散乱光となってフレネルレンズ3に入射され検査基板Kに均一に照射され、これによって、検査基板Kの表面に形成されたレジスト膜の膜厚のムラや、表層に形成されたITOの不良の有無などが検査される。   When performing inspection by surface light source illumination, if the liquid crystal scattering plate 4 is made opaque (milky white) while the light source device 2 is turned on, the non-scattered light from the light source device 2 is reflected by the reflecting mirror 14 and the liquid crystal is scattered. The light is scattered by the plate 4, becomes scattered light, is incident on the Fresnel lens 3, and is uniformly irradiated on the inspection substrate K, thereby causing unevenness in the film thickness of the resist film formed on the surface of the inspection substrate K and the surface layer. The formed ITO is inspected for defects.

このとき、液晶散乱板4は、フレネルレンズ3の光源装置2側に配されているので、フレネルレンズ3から離せば離すほど小型化することができる。
また、液晶散乱板4は、照明光束の断面形状が検査基板Kと等しいかまたは検査基板Kより大きくなる位置に配されているので、検査基板Kと等しい大きさまで小型化することができる。
すなわち、液晶散乱板4は検査基板Kの大きさが確保され、液晶散乱板4を不透明にして面光源照明としたときでも、液晶散乱板4の像が検査基板Kの全体に均一に写り込むこととなり、検査基板Kの一部にのみ液晶散乱板4が写り込むことがなく、したがって検査基板K上で照明光のムラを生じることもない。
At this time, since the liquid crystal scattering plate 4 is disposed on the light source device 2 side of the Fresnel lens 3, the liquid crystal scattering plate 4 can be reduced in size as it is separated from the Fresnel lens 3.
Further, since the liquid crystal scattering plate 4 is arranged at a position where the cross-sectional shape of the illumination light beam is equal to or larger than the inspection substrate K, the liquid crystal scattering plate 4 can be downsized to the same size as the inspection substrate K.
That is, the size of the inspection substrate K is secured in the liquid crystal scattering plate 4, and the image of the liquid crystal scattering plate 4 is uniformly reflected on the entire inspection substrate K even when the liquid crystal scattering plate 4 is made opaque and used as surface light source illumination. In other words, the liquid crystal scattering plate 4 does not appear only on a part of the inspection substrate K, and therefore unevenness of illumination light does not occur on the inspection substrate K.

また、液晶散乱板を不透明にして面光源照明としたときでも、元の光強度が高いので、光量がダウンすることなく、したがって、フレネルレンズの収束角を大きくする必要がないので、同じサイズの検査基板に照明光を照射するのであれば、フレネルレンズも小型化できる。   In addition, even when the liquid crystal scattering plate is made opaque and used as a surface light source illumination, the original light intensity is high, so the amount of light does not decrease, and therefore it is not necessary to increase the convergence angle of the Fresnel lens. If the inspection substrate is irradiated with illumination light, the Fresnel lens can be reduced in size.

さらに、点光源照明・面光源照明のいずれの照明で検査する場合も、液晶散乱板4はフレネルレンズ3より光源装置2側に配されているので、フレネルレンズ3の上方に液晶散乱板4をレイアウトすることができ、したがって、万一、液晶散乱板4が割れたときでも、液晶散乱板4より大きいフレネルレンズ3の上に破片が落ちるので、検査基板Kに直接落下する被害を防止することができる。   Further, when inspecting with either point light source illumination or surface light source illumination, since the liquid crystal scattering plate 4 is arranged on the light source device 2 side from the Fresnel lens 3, the liquid crystal scattering plate 4 is disposed above the Fresnel lens 3. Therefore, even if the liquid crystal scattering plate 4 is broken, the fragments fall on the Fresnel lens 3 that is larger than the liquid crystal scattering plate 4, so that the damage directly falling on the inspection substrate K can be prevented. Can do.

さらに、均一化整形レンズ装置8に照射角可変のバリフォーカルレンズを備えておけば、照明装置1の設計の際に、フレネルレンズ3の大きさに応じて自由に照射角を調整できるので、そのフレネルレンズ3などの仕様に応じて光源装置2を新たに設計したり、フレネルレンズ3に至るまでの照射距離を変更する必要もない。   Furthermore, if the uniform shaping lens device 8 is provided with a varifocal lens having a variable irradiation angle, the irradiation angle can be freely adjusted according to the size of the Fresnel lens 3 when the lighting device 1 is designed. There is no need to newly design the light source device 2 according to the specifications of the Fresnel lens 3 or the like or to change the irradiation distance to the Fresnel lens 3.

なお、上述の説明では、均一化整形レンズ装置8としてロッドインテグレータを用いた場合について説明したが、フライアイレンズを用いても同様である。   In the above description, the case where the rod integrator is used as the uniformizing and shaping lens device 8 has been described, but the same applies to the case where a fly-eye lens is used.

以上述べたように、本発明は、液晶ディスプレイパネルや大型プリント配線基板などの基板を検査する際に、その基板に対し照明光として点光源照明と面光源照明を切り換えて照射する用途に適用することができる。   As described above, when inspecting a substrate such as a liquid crystal display panel or a large printed wiring board, the present invention is applied to an application in which point light source illumination and surface light source illumination are switched and irradiated as illumination light to the substrate. be able to.

本発明に係る基板検査用照明装置の一例を示す説明図。Explanatory drawing which shows an example of the illuminating device for board | substrate inspection which concerns on this invention. 光源装置を示す説明図。Explanatory drawing which shows a light source device. 仕様の異なる基板検査用照明装置に適用した例を示す説明図。Explanatory drawing which shows the example applied to the illuminating device for board | substrate inspection from which a specification differs. 従来装置を示す説明図。Explanatory drawing which shows a conventional apparatus. 従来装置を示す説明図。Explanatory drawing which shows a conventional apparatus.

符号の説明Explanation of symbols

1 基板検査用照明装置
2 光源装置
X 照明光軸
3 フレネルレンズ
K 検査基板
4 液晶散乱板
8 均一化整形レンズ装置
15 照明光切換手段

DESCRIPTION OF SYMBOLS 1 Substrate inspection illumination device 2 Light source device X Illumination optical axis 3 Fresnel lens K Inspection substrate 4 Liquid crystal scattering plate 8 Uniform shaping lens device 15 Illumination light switching means

Claims (5)

照明光として非散乱光を発散させて照射する光源装置から検査基板に至る照明光軸上に、その照明光を検査基板全体に照射するように光を収束化又は平行化するフレネルレンズと、電圧制御により透明と不透明を切り換え、透明時に点光源照明を検査基板に照射させ、不透明時に面光源照明を検査基板に照射させる液晶散乱板を備えて成る基板検査用照明装置において、
前記液晶散乱板は、フレネルレンズより光源装置側で、照明光束の断面形状が検査基板と等しいか又は検査基板より大きくなる位置に配され、
該液晶散乱板に前記光源装置から照射された非散乱光を入射させることにより、点光源照明となる非散乱光と面光源照明となる散乱光を検査基板に選択的に照射させる照明光切換手段を備えたことを特徴とする基板検査用照明装置。
A Fresnel lens that converges or collimates the light so that the illumination light is irradiated on the entire inspection substrate on the illumination optical axis from the light source device that irradiates and irradiates non-scattered light as illumination light, and a voltage In the illumination device for substrate inspection comprising a liquid crystal scattering plate that switches between transparent and opaque by control, irradiates the inspection substrate with point light source illumination when transparent, and irradiates the inspection substrate with surface light source illumination when opaque.
The liquid crystal scattering plate is disposed on the light source device side from the Fresnel lens at a position where the cross-sectional shape of the illumination light beam is equal to or larger than the inspection substrate,
Illumination light switching means for selectively irradiating the inspection substrate with non-scattered light that becomes point light source illumination and scattered light that becomes surface light source illumination by making the non-scattered light emitted from the light source device incident on the liquid crystal scattering plate A board inspection illumination device comprising:
前記液晶散乱板が、検査基板と等しいか又は大きく、且つ、フレネルレンズより小さな形状に形成されて成る請求項1記載の基板検査用照明装置。   2. The illumination device for substrate inspection according to claim 1, wherein the liquid crystal scattering plate is formed in a shape equal to or larger than the inspection substrate and smaller than the Fresnel lens. 前記光源装置の光出射部に、照明光束を検査基板の形状に整形すると共に、光分布を均一化させる均一化整形レンズ装置が装着されて成る請求項1記載の基板検査用照明装置。   The illumination device for substrate inspection according to claim 1, wherein a uniform shaping lens device for shaping an illumination light beam into a shape of an inspection substrate and making a light distribution uniform is mounted on a light emitting portion of the light source device. 前記均一化整形レンズ装置を透過した非散乱光の検査基板上におけるユニフォーミティが70〜100%である請求項3記載の基板検査用照明装置。   The illumination apparatus for board | substrate inspection of Claim 3 whose uniformity on the test | inspection board | substrate of the non-scattered light which permeate | transmitted the said uniform shaping lens apparatus is 70 to 100%. 前記均一化整形レンズ装置が、照射角可変のバリフォーカルレンズを備えた請求項3記載の基板検査用照明装置。


4. The illumination device for substrate inspection according to claim 3, wherein the uniformizing lens device includes a varifocal lens having a variable irradiation angle.


JP2005272425A 2005-09-20 2005-09-20 Board inspection lighting system Expired - Fee Related JP3831744B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005272425A JP3831744B1 (en) 2005-09-20 2005-09-20 Board inspection lighting system
KR1020050100125A KR100795080B1 (en) 2005-09-20 2005-10-24 Illumination device for inspecting a substrate
TW095132318A TWI314642B (en) 2005-09-20 2006-09-01 Illuminating apparatus for substrate inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272425A JP3831744B1 (en) 2005-09-20 2005-09-20 Board inspection lighting system

Publications (2)

Publication Number Publication Date
JP3831744B1 JP3831744B1 (en) 2006-10-11
JP2007085781A true JP2007085781A (en) 2007-04-05

Family

ID=37214350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272425A Expired - Fee Related JP3831744B1 (en) 2005-09-20 2005-09-20 Board inspection lighting system

Country Status (3)

Country Link
JP (1) JP3831744B1 (en)
KR (1) KR100795080B1 (en)
TW (1) TWI314642B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052991A (en) * 2010-09-03 2012-03-15 Topcon Corp Inspection device
JP2013092661A (en) * 2011-10-26 2013-05-16 Panasonic Corp Illumination unit for imaging to be used for component mounting device and component mounting device
JP2017536662A (en) * 2014-11-07 2017-12-07 スリーエム イノベイティブ プロパティズ カンパニー Optical device including a switchable diffuser
US10955700B2 (en) 2017-05-25 2021-03-23 Stanley Electric Co., Ltd. Transparent panel provided with light emitting function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071571A (en) 2000-08-29 2002-03-08 Olympus Optical Co Ltd Projector for visual inspection
JP4074779B2 (en) 2002-05-20 2008-04-09 株式会社日立国際電気 Macro inspection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052991A (en) * 2010-09-03 2012-03-15 Topcon Corp Inspection device
JP2013092661A (en) * 2011-10-26 2013-05-16 Panasonic Corp Illumination unit for imaging to be used for component mounting device and component mounting device
JP2017536662A (en) * 2014-11-07 2017-12-07 スリーエム イノベイティブ プロパティズ カンパニー Optical device including a switchable diffuser
KR101891045B1 (en) * 2014-11-07 2018-08-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Optical device including switchable diffuser
US10429037B2 (en) 2014-11-07 2019-10-01 3M Innovative Properties Company Optical device including switchable diffuser
US10801699B2 (en) 2014-11-07 2020-10-13 3M Innovative Properties Company Optical device switchable diffuser
US10955700B2 (en) 2017-05-25 2021-03-23 Stanley Electric Co., Ltd. Transparent panel provided with light emitting function

Also Published As

Publication number Publication date
JP3831744B1 (en) 2006-10-11
TWI314642B (en) 2009-09-11
KR20070032893A (en) 2007-03-23
KR100795080B1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
KR101318483B1 (en) Inspection system and method for identifying surface and body defects in a glass sheet
JP2006194872A (en) Automatic optical inspection device
JP3831744B1 (en) Board inspection lighting system
TWI817991B (en) Optical system, illumination module and automated optical inspection system
JP2003294578A (en) Color filter inspection device
CN101076720A (en) Apparatus for inspecting backlight unit
KR100873057B1 (en) Illumination device for visual inspection based on reflected light and transmitted light
JP2012215566A (en) Flaw detecting apparatus, flaw detecting method and sheet-shaped object
JP4576006B2 (en) Projection device for visual inspection
KR100400455B1 (en) lighting apparatus for inspected board
KR101157081B1 (en) Illumination device and substrate inspection apparatus including the same
JP2009092481A (en) Lighting device for visual inspection and visual inspection device
WO2002016916A1 (en) Floodlight for appearance inspection
JP2011203132A (en) Visual inspection apparatus
JPH05232040A (en) External appearance inspecting floodlight device
CN215953328U (en) Combined light source device
KR20070082773A (en) Apparatus for defecting of panel
KR20070105523A (en) Apparatus for inspecting glass substrate
JP2004109127A (en) Defect detection device for fpd substrate
JP2002071571A (en) Projector for visual inspection
JP2008170207A (en) Macro lighting system for visual inspection apparatus, visual inspection apparatus, and visual inspection method of glass substrate
JPH05232032A (en) External appearance inspecting floodlight device
JP2005249475A (en) Lighting device
KR101032079B1 (en) Apparatus for inspecting substrate
CN118192045A (en) Compact highlight collimation lighting device and method for dark field imaging

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees