JP2007081428A - 基板処理装置 - Google Patents
基板処理装置 Download PDFInfo
- Publication number
- JP2007081428A JP2007081428A JP2006331465A JP2006331465A JP2007081428A JP 2007081428 A JP2007081428 A JP 2007081428A JP 2006331465 A JP2006331465 A JP 2006331465A JP 2006331465 A JP2006331465 A JP 2006331465A JP 2007081428 A JP2007081428 A JP 2007081428A
- Authority
- JP
- Japan
- Prior art keywords
- cooling air
- tube
- processing chamber
- temperature
- ceiling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012545 processing Methods 0.000 title claims abstract description 63
- 239000000758 substrate Substances 0.000 title claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 80
- 238000002347 injection Methods 0.000 claims description 21
- 239000007924 injection Substances 0.000 claims description 21
- 239000000112 cooling gas Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 abstract description 83
- 238000000034 method Methods 0.000 abstract description 45
- 238000009413 insulation Methods 0.000 abstract description 15
- 230000000630 rising effect Effects 0.000 abstract 1
- 238000004904 shortening Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 33
- 239000007789 gas Substances 0.000 description 26
- 239000000498 cooling water Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
【解決手段】バッチ式ホットウオール形CVD装置10は、アウタチューブ12とイン
ナチューブ13とを有しウエハ1を処理する処理室14を構成したプロセスチューブ11
と、プロセスチューブ11を取り囲む断熱槽41と、熱線を照射する加熱ランプ42群と
、加熱ランプ42群の熱線を処理室14の方向に反射させるリフレクタ47と、プロセス
チューブ11と断熱槽41との間に形成された冷却エア通路51と、冷却エア通路51に
周方向に等間隔に敷設された複数本のノズル56と、各ノズル56に冷却エア62をアウ
タチューブ12の方向に噴射するように開設された複数個の噴射口57と、断熱槽41の
天井部に開設された排気口53、55とを備えている。冷却エア62を冷却エア通路51
に流通させることにより、プロセスチューブ11を急速に降温できる。
【選択図】図7
Description
の製造方法に使用されるCVD装置や拡散装置、酸化装置およびアニール装置等の熱処理
装置(furnace )に利用して有効なものに関する。
下、ウエハという。)に窒化シリコン(Si3 N4 )や酸化シリコンおよびポリシリコン
等のCVD膜を形成するのに、バッチ式縦形ホットウオール形減圧CVD装置が広く使用
されている。バッチ式縦形ホットウオール形減圧CVD装置(以下、CVD装置という。
)は、ウエハが搬入されるインナチューブおよびインナチューブを取り囲むアウタチュー
ブから構成されて縦形に設置されたプロセスチューブと、プロセスチューブによって形成
された処理室に処理ガスとしての成膜ガスを供給するガス供給管と、処理室を真空排気す
る排気管と、プロセスチューブ外に敷設されて処理室を加熱するヒータユニットと、ボー
トエレベータによって昇降されて処理室の炉口を開閉するシールキャップと、シールキャ
ップの上に垂直に設置されて複数枚のウエハを保持するボートとを備えており、複数枚の
ウエハがボートによって垂直方向に整列されて保持された状態で処理室に下端の炉口から
搬入(ボートローディング)され、シールキャップによって炉口が閉塞された状態で、処
理室に成膜ガスがガス供給管から供給されるとともに、ヒータユニットによって処理室が
加熱されることにより、ウエハの上にCVD膜が堆積するように構成されている。
材が円筒形状に形成されて成る断熱槽の内周面に抵抗発熱体(珪化モリブデン、Fe−C
r−Al合金等)が敷設されて構成されているのが、一般的である(例えば、特許文献1
参照)。
く使用されている。しかしながら、抵抗発熱体は高温強度が低く、表面負荷密度が小さい
ことから、所要の出力を得るためには肉厚が厚くなり、熱容量が大きくなるという問題点
があり、その結果、急速の昇降温には不向きである。また、断熱槽の内周面に抵抗発熱体
が敷設されて成るヒータユニットを備えたCVD装置においては、熱容量がきわめて大き
い断熱槽を含めてプロセスチューブ設置室全体を抵抗発熱体によって加熱する必要がある
ために、プロセスチューブの昇降温時間が遅延するという問題点がある。
を取り囲むように敷設された発熱体を有するヒータユニットと、前記発熱体と略同軸状に
設けられ、前記処理室に向けて冷却ガスを噴射する複数の噴射孔が開設された複数のノズ
ルとを備えていることを特徴とする基板処理装置、である。
するヒータユニットとを備えている基板処理装置において、前記ヒータユニットは複数の
排気口の開口面が前記処理室と前記ヒータユニットとの間の筒状空間の略直上の天井部に
配されていることを特徴とする。
より、処理室を急速に降温することができる。
ことができるので、処理室を急速に降温することができる。
板処理装置はICの製造方法における成膜工程を実施するCVD装置(バッチ式縦形ホッ
トウオール形減圧CVD装置)10として構成されている。
されて支持された縦形のプロセスチューブ11を備えており、プロセスチューブ11は互
いに同心円に配置されたアウタチューブ12とインナチューブ13とから構成されている
。アウタチューブ12は後記する加熱ランプの熱線(赤外線や遠赤外線等)を透過する材
料の一例である石英(SiO2 )が使用されて、上端が閉塞し下端が開口した円筒形状に
一体成形されている。インナチューブ13は上下両端が開口した円筒形状に形成されてお
り、インナチューブ13の筒中空部はボートによって長く整列した状態に保持された複数
枚のウエハが搬入される処理室14を実質的に形成している。インナチューブ13の下端
開口はウエハを出し入れするための炉口15を実質的に構成している。したがって、イン
ナチューブ13の内径は取り扱うウエハの最大外径(例えば、直径300mm)よりも大
きくなるように設定されている。
マニホールド16によって気密封止されており、マニホールド16はアウタチューブ12
およびインナチューブ13の交換等のためにアウタチューブ12およびインナチューブ1
3にそれぞれ着脱自在に取り付けられている。マニホールド16がCVD装置の筐体2に
支持されることにより、プロセスチューブ11は垂直に据え付けられた状態になっている
。
れているように、横断面形状が一定幅の円形リング形状に構成されている。図1に示され
ているように、マニホールド16の側壁の上部には排気管18の一端が接続されており、
排気管18は排気路17の最下端部に連通した状態になっている。排気管18の他端には
圧力コントローラ21によって制御される排気装置19が接続されており、排気管18の
途中には圧力センサ20が接続されている。圧力コントローラ21は圧力センサ20から
の測定結果に基づいて排気装置19をフィードバック制御するように構成されている。
るように接続されており、ガス導入管22にはガス流量コントローラ24によって制御さ
れる原料ガス供給装置および不活性ガス供給装置(以下、ガス供給装置という。)23が
接続されている。ガス導入管22によって炉口15に導入されたガスは、インナチューブ
13の処理室14内を流通して排気路17を通って排気管18によって排気される。
されるようになっている。シールキャップ25はマニホールド16の外径と略等しい円盤
形状に構築されており、筐体2の待機室3に設備されたボートエレベータ26によって垂
直方向に昇降されるように構成されている。ボートエレベータ26はモータ駆動の送りね
じ軸装置およびベローズ等によって構成されており、ボートエレベータ26のモータ27
は駆動コントローラ28によって制御されるように構成されている。シールキャップ25
の中心線上には回転軸30が挿通されて回転自在に支承されており、回転軸30は駆動コ
ントローラ28によって制御されるモータ29によって回転駆動されるように構成されて
いる。回転軸30の上端にはボート31が垂直に立脚されて支持されている。
直に配設された三本の保持部材34とを備えており、三本の保持部材34には多数の保持
溝35が長手方向に等間隔に配されて互いに対向して開口するように刻設されている。ボ
ート31は三本の保持部材34の保持溝35間にウエハ1を挿入されることにより、複数
枚のウエハ1を水平にかつ互いに中心を揃えた状態に整列させて保持するようになってい
る。ボート31と回転軸30との間には断熱キャップ部36が配置されている。断熱キャ
ップ部36はボート31をシールキャップ25の上面から持ち上げた状態に支持すること
により、ボート31の下端を炉口15の位置から適当な距離だけ離間させるように構成さ
れている。
ト40が設置されている。ヒータユニット40はプロセスチューブ11を全体的に被覆す
る熱容量の小さい断熱槽41を備えており、断熱槽41はCVD装置の筐体2に垂直に支
持されている。断熱槽41の内側にはプロセスチューブ11内を加熱する加熱手段として
のL管形ハロゲンランプ(以下、加熱ランプという。)42が複数本、図3に示されてい
るように、周方向に等間隔に配置されて同心円に設備されている。図4に示されているよ
うに、加熱ランプ42群は長さが異なる複数規格のものが組み合わされて配置されており
、熱の逃げ易いプロセスチューブ11の上部および下部の発熱量が増加するように構成さ
れている。各加熱ランプ42の端子42aはプロセスチューブ11の上部および下部(処
理中のウエハ1のある高さよりも上部および下部)にそれぞれ配置されており、端子42
aの介在による発熱量の低下が回避されている。加熱ランプ42はカーボンやタングステ
ン等のフィラメントを石英(SiO2 )のL管によって被覆し、不活性ガスまたは真空雰
囲気に封止して構成されている。加熱ランプ42は熱エネルギーのピーク波長が1.0μ
m程度の熱線を照射するように構成されており、アウタチューブ12を殆ど加熱すること
なく、ウエハ1を輻射等によって加熱することができるように設定されている。
部には直管形ハロゲンランプ(以下、天井加熱ランプという。)43が複数本、互いに平
行で両端を揃えられて敷設されており、天井加熱ランプ43群はボート31に保持された
ウエハ1群をプロセスチューブ11の上方から加熱するように構成されている。天井加熱
ランプ43はカーボンやタングステン等のフィラメントを石英(SiO2 )の直管によっ
て被覆し、不活性ガスまたは真空雰囲気に封止して構成されている。天井加熱ランプ43
は熱エネルギーのピーク波長が1.0μm程度の熱線を照射するように構成されており、
アウタチューブ12を殆ど加熱することなく、ウエハ1を輻射等によって加熱することが
できるように設定されている。同様に、ボート31と断熱キャップ部との間には、キャッ
プ加熱ランプが構成されている。
加熱ランプ群はランプ駆動装置44に接続されており、ランプ駆動装置44は温度コント
ローラ45によって制御されるように構成されている。インナチューブ13の内側にはカ
スケード熱電対46が垂直方向に敷設されており、カスケード熱電対46は計測結果を温
度コントローラ45に送信するようになっている。温度コントローラ45はカスケード熱
電対46からの計測温度によって加熱ランプ駆動装置44をフィードバック制御するよう
になっている。すなわち、温度コントローラ45は加熱ランプ駆動装置44の目標温度と
カスケード熱電対46の計測温度との誤差を求めて、誤差がある場合には誤差を解消させ
るフィードバック制御を実行するようになっている。また、温度コントローラ45は加熱
ランプ42群をゾーン制御するように構成されている。
れたリフレクタ(反射板)47がプロセスチューブ11と同心円に設置されており、リフ
レクタ47は加熱ランプ42群からの熱線をプロセスチューブ11の方向に全て反射させ
るように構成されている。リフレクタ47はステンレス鋼板に石英(SiO2 )をコーテ
ィングして形成された材料のように耐酸化性、耐熱性および耐熱衝撃性に優れた材料によ
って構成されている。図6に示されているように、リフレクタ47の外周面には冷却水配
管48が螺旋状に敷設されており、冷却水配管48はリフレクタ47を400℃以下に冷
却するように設定されている。リフレクタ47は400℃を超えると、酸化等によって劣
化し易くなるが、リフレクタ47を400℃以下に冷却することにより、リフレクタ47
の耐久性を向上させることができるとともに、リフレクタ47の劣化に伴うパーティクル
の発生を抑制することができる。また、断熱槽41の内部の温度を低下させる際に、リフ
レクタ47を冷却することにより、冷却効果を向上させることができる。さらに、冷却水
配管48はリフレクタ47の冷却領域を上中下段のゾーン48a、48b、48cに分け
てそれぞれ制御し得るように構成されている。冷却水配管48をゾーン制御することによ
り、プロセスチューブ11の温度を降下させる際に、プロセスチューブ11のゾーンに対
応して冷却することができる。例えば、ウエハ群が置かれたゾーンは熱容量がウエハ群の
分だけ大きくなることにより、ウエハ群が置かれないゾーンに比べて冷却し難くなるため
に、冷却水配管48のウエハ群に対応するゾーンを優先的に冷却するようにゾーン制御す
ることができる。なお、冷却水配管48は螺旋形状に形成したが、波型状ないしは蛇行形
状に形成してもよい。
天井リフレクタ49がプロセスチューブ11と同心円に設置されており、天井リフレクタ
49は天井加熱ランプ43群からの熱線をプロセスチューブ11の方向に全て反射させる
ように構成されている。天井リフレクタ49も耐酸化性、耐熱性および耐熱衝撃性に優れ
た材料によって構成されている。図5に示されているように、天井リフレクタ49の上面
には冷却水配管50が蛇行状に敷設されており、冷却水配管50は天井リフレクタ49を
400℃以下に冷却するように設定されている。天井リフレクタ49は400℃を超える
と、酸化等によって劣化し易くなるが、天井リフレクタ49を400℃以下に冷却するこ
とにより、天井リフレクタ49の耐久性を向上させることができるとともに、天井リフレ
クタ49の劣化に伴うパーティクルの発生を抑制することができる。また、断熱槽41の
内部の温度を低下させる際に、天井リフレクタ49を冷却することにより、冷却効果を向
上させることができる。
冷却ガスとしての冷却エアを流通させる冷却エア通路51が、プロセスチューブ11を全
体的に包囲するように形成されている。断熱槽41の下端部には冷却エアを冷却エア通路
51に供給する給気管52が複数(本実施の形態においては、10箇所)接続されており
、給気管52に供給された冷却エアは冷却エア通路51の全周に拡散するようになってい
る。断熱槽41の天井壁の中央部には冷却エアを冷却エア通路51から排出する排気口5
3が開設されており、排気口53には排気装置に接続された排気路(図示せず)が接続さ
れている。断熱槽41の天井壁の排気口53の下側には排気口53と連通するバッファ部
54が大きく形成されており、バッファ部54の底面における周辺部にはサブ排気口55
が複数、バッファ部54と冷却エア通路51とを連絡するように開設されている。図1、
図2、図3および図5に示されているように、複数のサブ排気口55(本実施の形態にお
いては、4箇所)は冷却エア通路51の略直上にそれぞれ配置されている。これらサブ排
気口55により、冷却エア通路51を効率よく排気することができる。また、断熱槽41
の下端部に給気管52を複数設けることにより、より広範囲に効率のよい排気冷却が可能
となる。また、サブ排気口55を断熱槽41の天井壁の周辺部(周縁部)に配置すること
により、天井加熱ランプ43を断熱槽41の天井面の中央部に敷設することができるとと
もに、天井加熱ランプ43を排気流路から退避させて排気流による応力や化学反応を防止
することにより、天井加熱ランプ43の劣化を抑制することができる。
スとしての冷却エアを冷却エア通路51に供給するノズル56が複数本、周方向に等間隔
に配置されて垂直方向に延在するように敷設されており、各ノズル56には複数個の噴射
口57が冷却エアを断熱槽41の中心に向けて半径方向へ噴射するようにそれぞれ開設さ
れている。ノズル56はステンレス鋼管に石英(SiO2 )をコーティングして形成され
た材料のように耐酸化性、耐熱性および耐熱衝撃性に優れた材料によって構成されており
、ノズル56の耐久性が向上されているとともに、劣化に伴うパーティクルの発生を抑制
するようになっている。ノズル56には送風機や流量調整弁および圧力調整弁等から構成
された冷却エア供給装置58が接続されており、冷却エア供給装置58は流量調整コント
ローラ59によって制御されるように構成されている。ノズル56群からの冷却エアの噴
射量を冷却エア供給装置58によって制御することにより、冷却エア通路51による冷却
能力を調整することができる。また、各ノズル56毎に冷却エア供給装置58を設けるこ
とにより、冷却エア通路51の冷却能力をゾーン制御することができる。例えば、冷却エ
ア通路51の低温になる側に位置したノズル56群の冷却エアの噴射量をその他の領域に
比べて大きくすることにより、冷却エア通路51を全体的に均一に冷却することができる
。
る熱線を遮らないように各加熱ランプ42の間に配列されている。また、噴射口57は加
熱ランプ42に冷却エアを吹き付けないように径方向の中心向きに開設されている。これ
により、冷却エアの吹き付けによる加熱ランプ42の破損や劣化が防止されている。さら
に、断熱槽41の天井面の下側には天井ノズル60が蛇行状に敷設されており、天井ノズ
ル60には複数個の噴射口61が冷却エアを垂直方向下向きに噴射するように開設されて
いる。
と、ウエハ1群を保持したボート31はシールキャップ25がボートエレベータ26によ
って上昇されることにより、インナチューブ13の処理室14に搬入(ボートローディン
グ)されて行き、シールキャップ25に支持されたままの状態で処理室14に存置される
(図7参照)。上限に達したシールキャップ25はマニホールド16に押接することによ
り、プロセスチューブ11の内部をシールした状態になる。
ランプ42群および天井加熱ランプ43群によって温度コントローラ45のシーケンス制
御の目標温度に加熱される。加熱ランプ42群および天井加熱ランプ43群の加熱による
プロセスチューブ11の内部の実際の上昇温度と、加熱ランプ42群および天井加熱ラン
プ43群のシーケンス制御の目標温度との誤差は、カスケード熱電対46の計測結果に基
づくフィードバック制御によって補正される。また、ボート31がモータ29によって回
転される。
状態になると、プロセスチューブ11の処理室14には原料ガスがガス供給装置23によ
ってガス導入管22から導入される。ガス導入管22によって導入された原料ガスは、イ
ンナチューブ13の処理室14内を流通して排気路17を通って排気管18によって排気
される。処理室14を流通する際に、原料ガスが所定の処理温度に加熱されたウエハ1に
接触することによる熱CVD反応により、ウエハ1にはCVD膜が形成される。ちなみに
、窒化珪素(Si3 N4 )が成膜される場合の処理条件の一例は、次の通りである。処理
温度は700〜800℃、原料ガスとしてのSiH2 Cl2 の流量は0.1〜0.5SL
M(スタンダード・リットル毎分)、NH3 の流量は0.3〜5SLM、処理圧力は20
〜100Paである。ここで、CVD反応時においても冷却エア62をノズル56群によ
って、噴射し続けることにより、アウタチューブ12の温度を所定の温度に保つようにし
てもよい。これにより、特に降温時間(熱容量が大きいアウタチューブ12を予め熱を保
たせなくすることにより)を短縮できる。また、冷却エア62がノズル56群により噴射
されアウタチューブ12を所定の温度(例えば、150℃程度)に加熱ランプ42群およ
び天井加熱ランプ43群、キャップ加熱ランプによる加熱中でも保つようにしてもよい。
ガスがプロセスチューブ11の内部にガス導入管22から導入されるとともに、図7に示
されているように、冷却エア62がノズル56群、天井ノズル60および給気管52から
供給されてサブ排気口55、バッファ部54および排気口53から排気されることにより
、冷却エア通路51に流通される。冷却エア通路51における冷却エア62の流通により
、0の全体が冷却されるために、プロセスチューブ11の温度は大きいレート(速度)を
もって急速に下降することになる。この際、断熱槽41は熱容量が通例に比べて小さく設
定されているので、急速に冷却することができる。なお、冷却エア通路51は処理室14
から隔離されているので、冷媒として冷却エア62を使用することができるが、冷却効果
をより一層高めるためや、エア内の不純物による高温下での腐蝕を防止するために、窒素
ガス等の不活性ガスを冷媒ガスとして使用してもよい。
31はボートエレベータ26によって下降されることにより、処理室14から搬出(ボー
トアンローディング)される。
成膜処理が実施されて行く。
する必要がないばかりでなく、処理温度未満に下げることがかえって好ましいために、前
述した成膜ステップにおいては、冷却エア62が冷却エア通路51に流通される。冷却エ
ア通路51における冷却エア62の流通によってアウタチューブ12およびヒータユニッ
ト40を強制的に冷却することにより、例えば、シリコン窒化膜であればNH4 Clの付
着を防止することができる150℃程度にアウタチューブ12の温度を維持することがで
きる。
基板を処理する処理室と、この処理室の外側を取り囲むように敷設された発熱体を有す
るヒータユニットと、前記発熱体と同軸状に冷却ガスを噴射する複数の噴射孔が開設され
たノズルとを備えていることを特徴とする基板処理装置を用いる半導体装置の製造方法で
あって、前記ヒータユニットが前記基板を加熱するステップと、前記基板を前記処理室に
て処理するステップと、前記ノズルから冷却ガスを供給するステップとを備えていること
を特徴とする半導体装置の製造方法。
スチューブ設置室全体を処理温度まで上昇させずに済むために、処理室の昇降温時間を短
縮することができ、その結果、CVD装置のスループットを向上させることができる。
装置の総処理時間を短縮させて性能を向上させることができるとともに、電力消費の費用
を低減させることができるので、CVD装置のランニングコストひいてはICの製造方法
の製造コストを低減させることができる。
とにより、アウタチューブの内面に成膜されたり副生成物が付着したりするのを防止する
ことができるので、パーティクルの発生を防止することができるとともに、クリーニング
時間を短縮することができる。
より、断熱槽およびプロセスチューブを大きいレート(速度)をもって急速に降温させる
ことができるので、CVD装置のスループットをより一層向上させることができ、また、
ウエハの熱履歴を小さくすることにより、ICの歩留りを向上させることができる。
通路を効率よく排気することができるので、断熱槽およびプロセスチューブをより一層大
きいレート(速度)をもって急速に降温させることができる。
槽の天井面の中央部に敷設することができるとともに、天井加熱ランプを排気流路から退
避させて排気流による応力や化学反応を防止することにより、天井加熱ランプの劣化を抑
制することができる。
に敷設し、各ノズルには複数個の噴射口を冷却エアを断熱槽の中心方向に向けて半径方向
へ噴射するようにそれぞれ開設することにより、断熱槽およびプロセスチューブを大きい
レート(速度)をもってより一層急速に降温させることができるので、CVD装置のスル
ープットをより一層向上させることができ、また、ウエハの熱履歴を小さくすることによ
り、ICの歩留りを向上させることができる。
ることにより、ノズルの耐酸化性、耐熱性および耐熱衝撃性を向上させることができるの
で、ノズルの寿命を向上させることができるととに、劣化に伴うパーティクルの発生を防
止することができる。
を接続し、冷却エア供給装置を流量調整コントローラによって制御するように構成するこ
とにより、ノズル群からの冷却エアの噴射量を冷却エア供給装置によって制御することが
できるので、冷却エア通路による冷却能力を調整することができる。
をゾーン制御することができるので、冷却エア通路を全体的に均一に冷却したり、冷却分
布を調整して冷却することができる。
熱ランプに冷却エアを吹き付けないように断熱槽の中心に向けて径方向に開設することに
より、冷却エアの吹き付けによる加熱ランプの破損や劣化を防止することができるので、
加熱ランプ群の寿命を延ばすことができる。
で種々に変更が可能であることはいうまでもない。
成するに限らず、図8に示されているように、ノズル56群は冷却エアの流れの方向が交
互になるように配列してもよい。また、ノズル群は冷却エアが下側から上側に流れるよう
に構成してもよい。
9に示されているように、噴射口57が千鳥状に交互に並ぶように配列してもよい。さら
に、図10に示されているように、噴射口57群は冷却エアの噴出密度分布がゾーン毎に
適宜に相異なるように不等ピッチに配列してもよい。好ましくは、熱処理中にウエハ1の
置かれる位置(高さ)に多く冷却ガスを噴射できるように配列するとよい。このことによ
り、ウエハの持つ熱容量によってウエハの置かれる位置(高さ)の熱が降温しにくくなる
ことを防ぐことができる。
制御具(ノズル)57Aによって構成してもよい。噴射形態制御具によれば、噴射形態を
制御することができるので、アウタチューブ12に対する冷却エアの吹き付け形態や流量
を制御することができる。
るに限らず、熱線(赤外線や遠赤外線等)の波長(例えば、0.5〜3.5μm)を照射
する他の加熱ランプ(例えば、熱エネルギーのピーク波長が2〜2.5μm程度であるカ
ーボンランプ)を使用してもよいし、誘導加熱ヒータ、珪化モリブデンやFe−Cr−A
l合金等の金属発熱体を使用してもよい。
材料であって、ウエハの汚染を防止することができる材料によって形成してもよい。
ル装置等の基板処理装置全般に適用することができる。
トディスクおよび磁気ディスク等であってもよい。
1…プロセスチューブ、12…アウタチューブ、13…インナチューブ、14…処理室、
15…炉口、16…マニホールド、17…排気路、18…排気管、19…排気装置、20
…圧力センサ、21…圧力コントローラ、22…ガス導入管、23…ガス供給装置、24
…ガス流量コントローラ、25…シールキャップ、26…ボートエレベータ、27…モー
タ、28…駆動コントローラ、29…モータ、30…回転軸、31…ボート、32、33
…端板、34…保持部材、35…保持溝、36…断熱キャップ部、40…ヒータユニット
、41…断熱槽、42…加熱ランプ(加熱手段)、43…天井加熱ランプ、43A…キャ
ップ加熱ランプ、44…加熱ランプ駆動装置、45…温度コントローラ、46…カスケー
ド熱電対、47…リフレクタ、48…冷却水配管、49…天井リフレクタ、50…冷却水
配管、51…冷却エア通路、52…給気管、53…排気口、54…バッファ部、55…サ
ブ排気口、56…ノズル、57…噴射口、57A…噴射形態制御具(ノズル)、58…冷
却エア供給装置、59…冷却エア制御コントローラ、60…天井ノズル、61…噴射口、
62…冷却エア(冷却ガス)。
Claims (1)
- 基板を処理する処理室と、この処理室の外側を取り囲むように敷設された発熱体を有するヒータユニットと、前記発熱体と略同軸状に設けられ、前記処理室に向けて冷却ガスを噴射する複数の噴射孔が開設され、該冷却ガスが上側から下側に流下するように垂直方向に延在された複数のノズルとを備えていることを特徴とする基板処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006331465A JP4495717B2 (ja) | 2006-12-08 | 2006-12-08 | 基板処理装置及び半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006331465A JP4495717B2 (ja) | 2006-12-08 | 2006-12-08 | 基板処理装置及び半導体装置の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003425327A Division JP4404620B2 (ja) | 2003-12-22 | 2003-12-22 | 基板処理装置および半導体装置の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007081428A true JP2007081428A (ja) | 2007-03-29 |
JP4495717B2 JP4495717B2 (ja) | 2010-07-07 |
Family
ID=37941324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006331465A Expired - Lifetime JP4495717B2 (ja) | 2006-12-08 | 2006-12-08 | 基板処理装置及び半導体装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4495717B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012167565A1 (zh) * | 2011-06-10 | 2012-12-13 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 热反射装置及半导体处理设备 |
WO2017039246A1 (ko) * | 2015-08-28 | 2017-03-09 | 한화케미칼 주식회사 | 폴리실리콘 제조 장치 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01273311A (ja) * | 1988-02-11 | 1989-11-01 | Soehlbrand Heinrich | 半導体材料の熱処理方法とその装置 |
JPH0322523A (ja) * | 1989-06-20 | 1991-01-30 | Fujitsu Ltd | 気相成長装置 |
JPH04147615A (ja) * | 1990-10-09 | 1992-05-21 | Mitsubishi Electric Corp | Mocvd装置 |
JPH07115066A (ja) * | 1993-10-15 | 1995-05-02 | Toshiba Corp | 半導体熱処理装置 |
JPH08181082A (ja) * | 1994-12-22 | 1996-07-12 | Touyoko Kagaku Kk | 縦型高速熱処理装置 |
JPH09190982A (ja) * | 1996-01-11 | 1997-07-22 | Toshiba Corp | 半導体製造装置 |
JP2000093717A (ja) * | 1998-09-25 | 2000-04-04 | Ibiden Co Ltd | セラミックフィルタの封口装置および封口方法 |
JP2000195808A (ja) * | 1998-12-28 | 2000-07-14 | Kokusai Electric Co Ltd | 熱処理炉 |
JP2001250786A (ja) * | 2000-03-06 | 2001-09-14 | Hitachi Kokusai Electric Inc | 半導体製造装置 |
JP2001257172A (ja) * | 2000-03-09 | 2001-09-21 | Hitachi Kokusai Electric Inc | 半導体製造装置 |
JP2003324045A (ja) * | 2002-02-28 | 2003-11-14 | Tokyo Electron Ltd | 熱処理装置 |
-
2006
- 2006-12-08 JP JP2006331465A patent/JP4495717B2/ja not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01273311A (ja) * | 1988-02-11 | 1989-11-01 | Soehlbrand Heinrich | 半導体材料の熱処理方法とその装置 |
JPH0322523A (ja) * | 1989-06-20 | 1991-01-30 | Fujitsu Ltd | 気相成長装置 |
JPH04147615A (ja) * | 1990-10-09 | 1992-05-21 | Mitsubishi Electric Corp | Mocvd装置 |
JPH07115066A (ja) * | 1993-10-15 | 1995-05-02 | Toshiba Corp | 半導体熱処理装置 |
JPH08181082A (ja) * | 1994-12-22 | 1996-07-12 | Touyoko Kagaku Kk | 縦型高速熱処理装置 |
JPH09190982A (ja) * | 1996-01-11 | 1997-07-22 | Toshiba Corp | 半導体製造装置 |
JP2000093717A (ja) * | 1998-09-25 | 2000-04-04 | Ibiden Co Ltd | セラミックフィルタの封口装置および封口方法 |
JP2000195808A (ja) * | 1998-12-28 | 2000-07-14 | Kokusai Electric Co Ltd | 熱処理炉 |
JP2001250786A (ja) * | 2000-03-06 | 2001-09-14 | Hitachi Kokusai Electric Inc | 半導体製造装置 |
JP2001257172A (ja) * | 2000-03-09 | 2001-09-21 | Hitachi Kokusai Electric Inc | 半導体製造装置 |
JP2003324045A (ja) * | 2002-02-28 | 2003-11-14 | Tokyo Electron Ltd | 熱処理装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012167565A1 (zh) * | 2011-06-10 | 2012-12-13 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 热反射装置及半导体处理设备 |
WO2017039246A1 (ko) * | 2015-08-28 | 2017-03-09 | 한화케미칼 주식회사 | 폴리실리콘 제조 장치 |
Also Published As
Publication number | Publication date |
---|---|
JP4495717B2 (ja) | 2010-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5089401B2 (ja) | 断熱構造体、加熱装置、加熱システム、基板処理装置および半導体装置の製造方法 | |
JP4365017B2 (ja) | 熱処理装置の降温レート制御方法および熱処理装置 | |
JP5043776B2 (ja) | 基板処理装置及び半導体装置の製造方法 | |
JPWO2007018016A1 (ja) | 基板処理装置、冷却ガス供給ノズルおよび半導体装置の製造方法 | |
TWI466216B (zh) | 基板處理裝置,半導體裝置之製造方法及頂板斷熱體 | |
US8033823B2 (en) | Heat processing apparatus | |
JP4404620B2 (ja) | 基板処理装置および半導体装置の製造方法 | |
JP4516318B2 (ja) | 基板処理装置および半導体装置の製造方法 | |
KR102424677B1 (ko) | 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램 | |
JP4495717B2 (ja) | 基板処理装置及び半導体装置の製造方法 | |
JP4495498B2 (ja) | 基板処理装置および半導体装置の製造方法 | |
JP2006319201A (ja) | 基板処理装置 | |
JP4282539B2 (ja) | 基板処理装置および半導体装置の製造方法 | |
JP4180424B2 (ja) | 基板処理装置、基板処理方法およびicの製造方法 | |
JP2007096334A (ja) | 基板処理装置及び半導体装置の製造方法及び加熱装置 | |
JP4516838B2 (ja) | 基板処理装置および半導体装置の製造方法 | |
JP2006093411A (ja) | 基板処理装置 | |
JP2006032409A (ja) | 基板処理装置 | |
JP4954176B2 (ja) | 基板の熱処理装置 | |
JP2005093911A (ja) | 基板処理装置 | |
JP2006222327A (ja) | 基板処理装置 | |
JP2005285941A (ja) | 基板処理装置 | |
JP2006173157A (ja) | 基板処理装置 | |
JP5274696B2 (ja) | 断熱構造体、加熱装置、加熱システム、基板処理装置および半導体装置の製造方法 | |
JP2010093067A (ja) | 基板の熱処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100406 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100409 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4495717 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |