JP2007081301A - 半導体装置の製造方法および半導体装置 - Google Patents

半導体装置の製造方法および半導体装置 Download PDF

Info

Publication number
JP2007081301A
JP2007081301A JP2005270251A JP2005270251A JP2007081301A JP 2007081301 A JP2007081301 A JP 2007081301A JP 2005270251 A JP2005270251 A JP 2005270251A JP 2005270251 A JP2005270251 A JP 2005270251A JP 2007081301 A JP2007081301 A JP 2007081301A
Authority
JP
Japan
Prior art keywords
film
insulating film
region
semiconductor substrate
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005270251A
Other languages
English (en)
Inventor
Shinichiro Abe
真一郎 阿部
Tetsuo Adachi
哲生 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2005270251A priority Critical patent/JP2007081301A/ja
Publication of JP2007081301A publication Critical patent/JP2007081301A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Element Separation (AREA)

Abstract

【課題】 補助ゲート電極を持つ不揮発性メモリを有する半導体装置において、メモリ領域の外部領域のゲート絶縁膜の信頼性を向上させる。
【解決手段】 補助ゲート電極を持つフラッシュメモリの製造方法において、周辺回路領域の半導体基板1Sの主面上にゲート絶縁膜7a,7dを形成した後、半導体基板1Sの主面上に補助ゲート配線形成用の半導体膜10aおよび絶縁膜11のパターンを形成する。続いて、その半導体膜10aおよび絶縁膜11のパターンをエッチングマスクとして、そこから露出するゲート絶縁膜7a,7dおよび半導体基板1Sをエッチングすることにより、分離用の溝13を形成する。その後、溝13内に絶縁膜を埋め込むことにより、溝型の分離部を形成する。
【選択図】 図12

Description

本発明は、半導体装置の製造方法および半導体装置の製造技術に関し、特に、補助ゲート電極を持つ不揮発性メモリおよびその製造技術に適用して有効な技術に関するものである。
AND型フラッシュメモリ等のようなファイルストレージ用フラッシュメモリは、デジタルスチルカメラ、ポータブル音楽プレーヤのみならずデジタルビデオカメラ、携帯電話あるいはPDA(Personal Digital Assistance)等、各種の携帯型の電子機器や情報機器のメモリとして使用されている。また、小容量ハードディスクの置き換えとして産業上や通信上の用途にも需要が伸びている。こうした中、ファイルストレージ用フラッシュメモリには、大容量化、小型化および低価格化とともに、データ書き込み動作のさらなる高速化が要求されている。
上記補助ゲート電極を持つ不揮発性メモリは、上記要求を実現するメモリであり、半導体基板の主面上に互いに平行に配置された補助ゲート電極間に浮遊ゲート電極を設け、その補助ゲート電極に、メモリセル間の干渉を防ぎ、メモリセル間を分離する機能を持たせている。これにより、メモリ領域内には溝型の分離部が不要になり、データ線間のピッチを縮小することができ、メモリの大容量化、小型化および低価格化が可能になっている。
また、補助ゲート電極を持つ不揮発性メモリでのデータ書き込みは、FN(Fowler Nordheim)トンネル方式に代えて、高速書き込みが可能なホットエレクトロン注入方式が採用されている。しかも、補助ゲート電極に印加する電圧を調整することにより上記ホットエレクトロンを効率良く生成することが可能になっている。これにより、データの書き込みのさらなる高速化が可能になっている。
上記のような補助ゲート電極を持つ不揮発性メモリを有する半導体装置については、例えば特開2001−28428号公報(特許文献1)に記載がある。この特許文献1には、半導体基板の主面上に互いに沿うように配置された複数の第3ゲート(補助ゲート電極)と、その上層に第3ゲートに交差するように配置された複数のワード線と、上記複数の第3ゲートの隣接間であって上記ワード線と半導体基板との間に他の部材から絶縁されて配置された浮遊ゲートとを持つメモリセル構成が開示されている。
また、例えば特開2000−200878号公報(特許文献2)には、セット(SET)酸化技術についての記載がある。半導体基板に溝型の分離部を形成した場合に溝型の分離部で規定される活性領域の外周に角部があるとその角部上に形成されるゲート絶縁膜が薄くなり素子特性の変動や劣化が生じる。上記セット酸化は、耐酸化膜をマスクに分離部形成用の溝を形成する前に耐酸化膜から露出する半導体基板部分を軽く熱酸化してフィールド酸化膜を形成し、そのフィールド絶縁膜の端部が耐酸化膜の外周下に若干入り込むようにすることで活性領域の外周の角を鈍らせる方法である。
さらに、例えば特開2000−188346号公報(特許文献3)の段落0040には、ハードマスクパターンを用いて、その下層の窒化シリコン膜、フローティングゲート形成用の多結晶シリコン膜および半導体基板を順にエッチングすることにより、メモリ領域の半導体基板に分離用の溝を形成する技術が開示されている。
特開2001−28428号公報 特開2000−200878号公報 特開2000−188346号公報(段落0040等)
ところが、補助ゲート電極を持つ不揮発性メモリを有する半導体装置においては、以下の課題があることを本発明者は見出した。
補助ゲート電極を持つ不揮発性メモリを有する半導体装置においては、上記のようにメモリ領域には溝型の分離部が不要であるが、メモリ領域の外部の周辺回路領域には溝型の分離部を形成する必要がある。この周辺回路領域の溝型の分離部の形成方法は、例えば次のとおりである。まず、半導体基板の主面上に、耐酸化膜のパターンを形成した後、これをエッチングマスクとして半導体基板に溝を形成する。続いて、溝の内壁面に熱酸化法により薄い絶縁膜を形成した後、半導体基板の主面上にCVD(Chemical Vapor Deposition)法により厚い絶縁膜を堆積する。その後、半導体基板に熱処理を施すことにより、厚い絶縁膜を焼締め緻密にする(デンシファイ)。その後、化学的機械的研磨(Chemical Mechanical Polishing;CMP)法により耐酸化膜上の厚い絶縁膜を除去し、溝の内部のみに厚い絶縁膜を残し、不要となった耐酸化膜を除去することにより溝型の分離部を形成する。
ところで、不揮発性メモリ製品では、内部電圧の高電圧化と微細化との両立を図るべく如何にして周辺回路領域におけるゲート絶縁膜の信頼性を向上させるかが課題となっている。このため、周辺回路領域にゲート絶縁膜を形成する場合には、ゲート絶縁膜の形成に先立って、溝型の分離部で囲まれる活性領域上に犠牲酸化膜を形成した後、その犠牲酸化膜をエッチングすることにより活性領域の上面を清浄にするとともに、化学的に安定にする。しかし、上記犠牲酸化膜を除去する際に、分離部形成用の絶縁膜の外周部が部分的にエッチングされ、活性領域の半導体基板の外周の角部が露出してしまう。この状態でゲート酸化処理を施すと、上記したように活性領域の半導体基板の外周の角部上に、活性領域の平坦部上に形成されるゲート絶縁膜よりも薄いゲート絶縁膜が形成される(Thinning)。さらに、そのゲート絶縁膜上にゲート電極を形成すると、上記薄くなったゲート絶縁膜部分に寄生素子が形成され素子特性が変動(低下)したり、上記薄くなったゲート絶縁膜で破壊が生じたりする問題がある。
そこで、そのような問題を回避する方法として上記犠牲酸化膜を形成しない方法も考えられるが、その場合、ゲート絶縁膜の信頼性を向上させることができない。また、上記問題の他の対策として、上記特許文献2に開示されるセット酸化法がある。しかし、セット酸化法を採用すると活性領域の半導体基板の外周端部がセット酸化によるフィールド絶縁膜に食われ、活性領域の面積が小さくなる結果、活性領域に形成される素子の特性が低下する問題がある。
また、上記周辺回路領域では、溝型の分離部を形成した後にゲート酸化工程を行っている(すなわち、分離部形成時の絶縁膜の焼締め処理とゲート酸化処理との2度の熱処理を行っている)ので、ゲート酸化処理において溝型の分離部の下部外周の半導体基板部分に熱応力による結晶欠陥が生じる場合がある。
そこで、本発明の目的は、補助ゲート電極を持つ不揮発性メモリを有する半導体装置において、メモリ領域の外部領域のゲート絶縁膜の信頼性を向上させることのできる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
すなわち、本発明は、複数の不揮発性メモリセルが形成されるメモリ領域の外部領域にゲート絶縁膜を形成した後、前記複数の不揮発性メモリセルの一部を構成する補助ゲート配線を形成するための配線形成膜の一部をマスクとして、前記外部領域に分離部形成用の溝を形成する工程を有するものである。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
不揮発性メモリを有する半導体装置において、メモリ領域の外部領域のゲート絶縁膜の信頼性を向上させることができる。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。また、本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は可能な限り省略するようにしている。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
(実施の形態1)
まず、本発明者が検討した補助ゲート(Assist Gate)電極を持つフラッシュメモリの課題について説明する。図1の左側は本発明者が検討した補助ゲート電極を持つフラッシュメモリの周辺回路領域の半導体基板(以下、基板という)1Sの要部断面図、同図の右側は同図の左側の領域Aの拡大断面図を示している。
ここでは、基板1Sにウエルを形成した後、上記のように溝型の分離部TIを形成する。続いて、基板1Sに対して熱酸化処理を施すことにより、例えば酸化シリコン(SiO等)からなる犠牲酸化膜を形成した後、その犠牲酸化膜をエッチングする。フラッシュ製品では、内部電圧の高電圧化と微細化とを両立する必要があるため、如何にして周辺回路領域のゲート絶縁膜の信頼性の向上を図るかが重要な課題となっている。犠牲酸化処理は、そのための処理であり、犠牲酸化膜の形成および除去により、基板1Sの主面(デバイス形成面)を清浄にするとともに、化学的に安定にすることができるので、その後に形成されるゲート絶縁膜の信頼性を向上させることができる。また、この際、上記分離部TIの絶縁膜2も酸化シリコンからなるので、その露出表面もエッチングされる。特に、基板1Sの活性領域の外周部分には窪みBが形成される。このため、活性領域の基板1Sの外周角が露出される。その後、基板1Sに対して熱酸化処理を施すことにより、活性領域の基板1Sの主面上に信頼性の高いゲート絶縁膜3を形成する。しかし、活性領域の基板1Sの外周の角部が露出されているため、その角部上に、活性領域の基板1Sの平坦上に形成されるゲート絶縁膜3a(3)よりも薄いゲート絶縁膜3b(3)が形成されてしまう(Thinning)。その後、基板1Sの主面上に、ゲート絶縁膜3を介して、例えば低抵抗な多結晶シリコンからなるゲート電極4を形成する。この時、溝型の分離部TIの外周部に窪みBが形成されているため、その窪みBの部分にゲート電極4の一部が入り込む。その結果、活性領域の基板1Sの角部に寄生MOS・FET(Metal Oxide Semiconductor Field Effect Transistor)が形成される。この基板1Sの角部では、ゲート絶縁膜3bが薄いことに加えて、基板1Sの不純物濃度が低いため、寄生MOS・FETのしきい値電圧は、活性領域に形成される正規のMOS・FETのしきい値よりも低くなる。そのため、正規のMOS・FETの電気的特性が変動(低下)する。また、活性領域の基板1Sの角部に形成されるゲート絶縁膜3bは薄いため絶縁破壊が生じる場合もある。
そこで、上記犠牲酸化膜を形成しない方法も考えられるが、その場合、ゲート絶縁膜の信頼性を向上させることができない。また、上記問題の他の対策として、上記特許文献2に開示されるセット酸化法がある。図2の左側はセット酸化処理をした場合の上記基板1Sの要部断面図、同図の右側は同図の左側の領域Aの拡大断面図を示している。上記のようにセット酸化を施した場合、図2に示すように、活性領域の基板1Sの外周の角がとれている。このため、基板1Sの角部に形成されるゲート絶縁膜3bが図1の場合に比べて厚くなるので、上記の問題が生じるのを抑制または防止できる。しかし、セット酸化法を採用すると活性領域の基板1Sの外周の角部とその周囲がセット酸化によるフィールド絶縁膜に食われ、活性領域の面積が小さくなる。その結果、例えば活性領域に形成される正規のMOS・FETのドレイン電流が低下する等、上記正規のMOS・FETの電気的特性が低下する問題がある。したがって、さらに微細化が進む次世代のフラッシュメモリ製品ではセット酸化の適用が困難である。
また、別の問題として、上記周辺回路領域では、溝型の分離部を形成した後にゲート酸化工程を行っている(すなわち、分離部形成時の絶縁膜の焼締め処理とゲート酸化処理との2度の熱処理を行っている)ので、ゲート酸化処理において溝型の分離部TIの下部外周の基板1S部分に熱応力による結晶欠陥が生じる場合がある。
次に、本実施の形態1の補助ゲート電極を持つフラッシュメモリを有する半導体装置について説明する。本実施の形態の半導体装置は、例えば1Gb(ギガビット)のAND型のフラッシュメモリである。このフラッシュメモリは、例えば携帯型パーソナルコンピュータ、デジタルスチルカメラ、ポータブル音楽プレーヤ、デジタルビデオカメラ、PDA(Personal Digital Assistants)または携帯電話等のような各種の携帯型の電子機器、情報機器または通信機器の記憶媒体として使用される。以下、このような半導体装置の製造方法の一例を説明する。
図3および図4は、本実施の形態1の半導体装置の同一製造工程時の基板1Sの要部断面図である。図3の左側は、メモリ領域のワード線に沿って平行に基板1Sを切断した面の要部断面図、同図の中央は、ワード線に対して垂直に基板1Sを切断した面の要部断面図、同図の右側はメモリ領域に隣接するメモリ周辺領域の要部断面図をそれぞれ示している。また、図4の左側はメモリ領域外部の周辺回路領域の高耐圧部の要部断面図、同図の右側はメモリ領域外部の周辺回路領域の低耐圧部の要部断面図をそれぞれ示している。
基板1S(この段階では半導体ウエハと称する平面略円形状の半導体薄板)は、例えばp型のシリコン(Si)単結晶により形成されている。基板1Sの主面上には、例えば酸化シリコンからなる絶縁膜6が熱酸化法により形成されている。また、基板1Sには、n型の埋込領域NISO、p型のウエルPW,HPW,LPW、n型のウエルHNW,LNWが形成されている。
n型の埋込領域NISOには、例えばリン(P)が含有されている。p型のウエルPW,HPW,LPWには、例えばホウ素(B)が含有されている。p型のウエルPW,HPWは、n型の埋込領域NISOおよびn型のウエルHNWに取り囲まれ、基板1Sと電気的に分離されている。p型のウエルPW,HPWは、同一の不純物導入工程により形成されている。p型のウエルPWの上層部には、p型の半導体領域ME,Eおよびn型の半導体領域MDが形成されている。また、上記n型のウエルHNW,LNWには、例えばリンが含有されている。
次いで、図5および図6は、図3および図4に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、図3および図4に示した絶縁膜6を除去した後、基板1Sの主面上に犠牲酸化膜を形成し、これを除去することにより、基板1Sの主面を清浄かつ化学的に安定にする。溝型の分離部の形成後に犠牲酸化膜の形成および除去を行う場合、犠牲酸化膜を厚くすると犠牲酸化膜の除去の際に溝型の分離部の外周部が大きく窪んでしまうので、犠牲酸化膜をあまり厚くすることができない。これに対して、本実施の形態1では、溝型の分離部を形成する前に犠牲酸化膜の形成および除去を行うので、犠牲酸化膜の除去による溝型の分離部の外周部の窪みを気にする必要がない。このため、本実施の形態1の場合、分離部形成後に犠牲酸化膜を形成する場合に比べて、犠牲酸化膜を厚く形成することができる。すなわち、厚く形成された犠牲酸化膜の除去により、基板1Sの主面の清浄度および化学的安定性をより向上させることができる。したがって、後のゲート酸化工程において、より信頼性の高いゲート絶縁膜を形成することができる。
続いて、基板1Sの主面上に、例えば酸化シリコンからなるゲート絶縁膜(第1ゲート絶縁膜)7a,7b,7c,7dを2種ゲート酸化処理により形成する。すなわち、基板1Sの主面上にゲート絶縁膜を熱酸化法により形成した後、基板1Sの主面上に、フォトレジストの塗布、露光および現像の一連のフォトリソグラフィ工程(以下、リソグラフィ工程という)を経て周辺回路領域(高耐圧部)を覆うフォトレジストパターン(以下、レジストパターンという)を形成する。続いて、そのレジストパターンをエッチングマスクとして、そこから露出する上記ゲート絶縁膜を除去した後、レジストパターンを除去する。その後、再度、基板1Sに対して熱酸化処理を施すことにより、周辺回路領域(高耐圧部)の基板1Sの主面に相対的に厚いゲート絶縁膜7aを形成し、メモリ領域、メモリ周辺領域および周辺回路領域(低耐圧部)に、相対的に薄いゲート絶縁膜7b,7c,7dを形成する。このようにして信頼性の高いゲート絶縁膜7a〜7dを形成する。相対的に厚いゲート絶縁膜7aの厚さは、例えば25nm程度である。また、相対的に薄いゲート絶縁膜7b〜7dの厚さは、互いに等しく、例えば8.8nm程度である。このようにして信頼性の高いゲート絶縁膜7a〜7dを形成する。
次いで、図7および図8は、図5および図6に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、基板1Sの主面上に、半導体膜(第1膜)10aおよび絶縁膜(第1絶縁膜)11を化学気相成長法(Chemical Vapor Deposition:以下、CVDという)法等により下層から順に堆積する。この段階の半導体膜10aは、例えば不純物の含有されていない多結晶シリコン(ノンドープポリシリコン)により形成されている。また、絶縁膜11は、例えば窒化シリコン(Si等)により形成されている。半導体膜10aをノンドープの多結晶シリコンにより形成する理由は、例えばリン(P)のような不純物が半導体膜10aに含有されていると、その不純物が半導体膜10aの結晶粒界に溜まるが、その不純物溜まりは、後の工程で絶縁膜11を熱リン酸等により除去する際に半導体膜10aにピンホールが発生する原因となるからである。その後、絶縁膜11上に、上記リソグラフィ工程を経て、レジストパターンRP1を形成する。レジストパターンRP1の平面パターン形状は、周辺回路領域の分離領域が露出され、それ以外の領域が覆われるようなパターン形状とされている。
次いで、図9および図10は、図7および図8に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、図7および図8に示したレジストパターンRP1をエッチングマスクとして、そこから露出する絶縁膜11をエッチングすることにより絶縁膜11のパターンを形成した後、レジストパターンRP1を除去する。続いて、図9および図10に示すように、残された絶縁膜11のパターンをエッチングマスクとして、そこから露出する半導体膜10aをエッチングする。残された絶縁膜11および半導体膜10aの平面パターン形状は、周辺回路領域の分離領域が露出され、それ以外の領域(メモリ領域、メモリ周辺領域、周辺回路領域の活性領域)が覆われるようなパターン形状とされている。
次いで、図11および図12は、図9および図10に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、残された絶縁膜11および半導体膜10aのマスキングパターンをエッチングマスクとして、そこから露出するゲート絶縁膜7a,7dおよび基板1Sを順次エッチングすることにより、周辺回路領域の分離領域の基板1Sに分離用の溝13を形成する。すなわち、この段階の半導体膜10aのパターンに対して自己整合的に溝13を形成する。
次いで、図13および図14は、図11および図12に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。また、図15の左側は図14の周辺回路領域の基板1Sの要部拡大断面図、同図の右側は同図の左側の領域Aの拡大断面図である。
この工程では、基板1Sに対して、例えば熱酸化処理を施すことにより、溝13の内壁(側面および底面)に薄い酸化シリコン等からなる絶縁膜(第2絶縁膜、熱酸化膜)15aを形成する。この絶縁膜15aは、溝13の内壁に生じたエッチングダメージの除去と、後の工程で溝13の内部に埋め込まれる絶縁膜のストレス緩和とを目的として形成される。
続いて、基板1Sの主面上に、例えば酸化シリコンからなる絶縁膜(第2絶縁膜、熱CVD膜)15bを低圧CVD法等により堆積した後、例えば酸化シリコンからなる絶縁膜(第2絶縁膜、プラズマCVD膜)15cを高密度プラズマ(High Density Plasma:以下、HDPという)CVD法により上記絶縁膜15bよりも厚く堆積する。これにより、上記絶縁膜11上に絶縁膜15b,15cが堆積され、基板1Sの溝13内に絶縁膜15a〜15cが埋め込まれる。
上記絶縁膜15bは、溝13内における絶縁膜15cの被覆性を向上させることを目的として形成されている。絶縁膜15bは、溝13内では、その内壁(側面および底面)の上記絶縁膜15aを覆うように形成され、溝13の外部では、上記絶縁膜11の表面を覆うように形成されている。この絶縁膜15bを形成するのに用いた低圧CVD法は、励起エネルギーを熱とする熱CVD法の一種であり、反応室内を減圧(低圧)にした状態で行うCVD法である。低圧CVD法を用いることにより、基板1Sの主面内において均一な反応を行うことができ、溝13内での段差被覆性を良好にできる。この低圧CVD処理時の反応室内の圧力は、例えば1Torr(133.322Pa)程度、処理温度は、例えば〜800℃程度である。
また、絶縁膜15cは、溝13内では、その内壁(側面および底面)の上記絶縁膜15bを覆うように形成され、溝13の外部では、上記絶縁膜11の表面上の絶縁膜15bを覆うように形成されている。この絶縁膜15cを形成するのに用いたHDP−CVD法は、励起エネルギーをプラズマとするプラズマCVD法の一種であり、一般に、1012〜1013/cm程度のイオン密度のプラズマを用いたCVD法である。イオン密度が高いため、基板1S側にバイアスRF(高周波)電圧を印加することにより、基板1Sの主面に活性種が衝突してスパッタエッチングする効果が加わり、スパッタエッチングを行いながら膜を形成することができる。これにより、狭い溝13内でも良好に膜の埋め込みができる。また、スパッタエッチングレートと成膜レートとの比率を変更することにより、埋込性能等を制御できる。このHDP−CVD処理時の反応室内の圧力は、例えば〜10Torr(〜1330.322Pa)程度、処理温度は、例えば〜400℃程度である。処理ガスとしては、例えばヘリウム(He)、酸素(O)およびシラン(SiH)の混合ガスを用いた。
その後、基板1Sに対して熱処理を施し、溝13内に埋め込んだ絶縁膜15b,15cを焼き締め(デンシファイ)する。この際、本実施の形態1では、既に基板1SにウエルPW,HPW,LPW,HNW,LNW等が形成されており、その不純物プロファイルを保持したいので、焼き締めのための熱処理温度を低くする。また、この観点から上記焼き締めのための熱処理を省略しても良い。これにより、ウエルPW,HPW,LPW,HNW,LNWの不純物濃度プロファイルの変動を抑制または防止できるので、フラッシュメモリの歩留まりや信頼性を向上させることができる。
その後、絶縁膜15c,15bを、下層の絶縁膜11が露出する程度まで、例えば化学的機械的研磨(Chemical Mechanical Polishing:以下、CMPという)法により研磨(除去)し、溝13の内部のみに絶縁膜15a〜15cを残す。続いて、不要となった絶縁膜11を熱リン酸等によりエッチングすることにより、溝型の分離部TIを形成する。本実施の形態1の場合も、図15に示すように、溝型の分離部TIの外周に窪みBが存在するが、半導体膜10aの存在により、上記図1等で説明したのと同じ深さの窪みBであっても、窪みBの底部から活性領域の外周角部までの距離を大きく確保することができる。すなわち、窪みBの底部と活性領域の外周角部との間に充分な膜厚の絶縁膜を確保することができる。
また、本実施の形態1では、絶縁膜15b,15c堆積後の焼き締め温度を低減できる。また、その焼き締め処理を省略しても良い。また、本実施の形態1では、ゲート絶縁膜7a〜7dを形成した後に溝型の分離部TIを形成するので、溝型の分離部TIの形成工程後にゲート絶縁膜7a〜7dの形成のための酸化処理による熱負荷が無い。これらにより、溝型の分離部TIの絶縁膜15b,15cに対する熱によるストレス(例えばゲート絶縁膜の形成時の再酸化による絶縁膜15b,15cの圧縮等)を抑制できるので、溝型の分離部TIの下部外周の基板1Sに結晶欠陥等が生じるのを低減または防止できる。
次いで、図16および図17は、図13および図14に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。また、図18は図17の周辺回路領域の基板1Sの要部拡大断面図である。この工程では、基板1Sの主面上に、導体膜(第2膜、第2導体膜)10bをCVD法等により形成する。この導体膜10bは、例えばリン(P)のような不純物が含有されている多結晶シリコン(ドープトポリシリコン)により形成されおり、半導体膜10aに接するように堆積されている。この後の工程において導体膜10b中の不純物が下層の半導体膜10aに拡散されることにより、半導体膜10aはゲート電極(第1導体膜)として機能することができるようになっている。
続いて、導体膜10b上に、例えば酸化シリコンからなる絶縁膜(第3絶縁膜)18を、例えばオゾン(O)とTEOS(Tetra Ethyl Ortho Silicate)ガスとの混合ガスを用いたCVD法により堆積する。図18に示すように、分離部TIの外周角部の窪みBに導体膜10bの一部が入り込むが、窪みBの底部と活性領域の外周角部との間に充分な膜厚の絶縁膜を確保することができるので、活性領域の外周角部に寄生のMOS・FETが形成されるのを抑制または防止できる。これにより、周辺回路領域の正規のMIS(Metal Insulator Semiconductor)・FETの電気的特性が変動(低下)するのを抑制または防止できる。また、その正規のMIS・FETのゲート絶縁膜7aの絶縁破壊を抑制または防止できる。したがって、フラッシュメモリの歩留まりや信頼性を向上させることができる。
また、上記セット酸化法を用いないので、溝型の分離部TIで囲まれる活性領域の面積を充分に確保することができる。このため、その活性領域に形成される正規のMIS・FET等のような素子の電気的特性(ドレイン電流等)を向上させることができる。したがって、フラッシュメモリの小型高機能化に対応できる。
次いで、図19および図20は、図16および図17に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、上記絶縁膜18上にリソグラフィ工程を経てレジストパターンを形成した後、これをエッチングマスクとして、絶縁膜18、導体膜10bおよび半導体膜10aをパターニングすることにより、メモリ領域に、半導体膜10aと導体膜10bとの積層膜により形成された補助ゲート配線10を形成する。
続いて、上記エッチングマスク用のレジストパターンを除去した後、基板1Sの主面上にリソグラフィ工程を経てイオン注入マスク用のレジストパターンを形成する。その後、そのレジストパターンと絶縁膜18および補助ゲート配線10の一部とをイオン注入マスクとして基板1Sの上層部に、例えばホウ素(B)等のような不純物をイオン注入法等により導入することにより、チャネルストッパ領域20を補助ゲート配線10に自己整合的に形成する。
続いて、上記イオン注入マスク用のレジストパターンを除去した後、基板1Sの主面上にリソグラフィ工程を経てイオン注入マスク用のレジストパターンを形成する。その後、そのレジストパターンと絶縁膜18および補助ゲート配線10の一部とをイオン注入マスクとして基板1Sの上層部に、例えばヒ素(As)等のような不純物をイオン注入法等により導入することにより、n型の半導体領域21を補助ゲート配線10に対して自己整合的に形成する。この際、不純物を基板1Sの主面に対して斜め方向から導入することにより、n型の半導体領域21の端部が各補助ゲート配線10の端部下に入り込むようにする。このn型の半導体領域21は、フラッシュメモリのデータ線(ローカルデータ線およびローカルソース線)を形成する部分であり、補助ゲート配線10の延在方向(紙面に垂直な方向)に沿って延在した状態で形成されている。
次いで、図21および図22は、図19および図20に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、基板1Sの主面上に、例えば酸化シリコンからなる絶縁膜をCVD法等により堆積した後、これを異方性のドライエッチング法によりエッチバックすることにより、補助ゲート配線10の側面にサイドウォール(側壁絶縁膜)22を形成する。続いて、補助ゲート配線10の隣接間のゲート絶縁膜7bを除去した後、その隣接間の基板1S上に、例えば酸化シリコンからなるゲート絶縁膜(第2ゲート絶縁膜)7eを形成する。その後、補助ゲート配線10の隣接間に、浮遊ゲート電極形成用の導体膜(浮遊ゲート電極形成膜)25のパターンを形成する。この導体膜25は、例えば不純物が含有された多結晶シリコン(ドープトポリシリコン)からなり、補助ゲート配線10の延在方向に沿って延在した状態で形成されている。導体膜25のパターンは、例えば次のように形成する。まず、基板1Sの主面上全面に上記導体膜25をCVD法等により堆積した後、その導体膜25のうちの周辺回路領域に形成されている部分を選択的にエッチングする。続いて、基板1S上に反射防止膜(バーク)を塗布した後、その反射防止膜を、絶縁膜18上の導体膜25の上面が露出される程度まで異方性のドライエッチング法によりエッチバックする。その後、残された反射防止膜をエッチングマスクとして、露出される導体膜25をエッチングすることにより、補助ゲート配線10の隣接間に導体膜25のパターンを形成する。その後、反射防止膜を除去する。このようにして導体膜25のパターンを形成した後、基板1Sの主面上に、例えば酸化シリコン膜、窒化シリコン膜および酸化シリコン膜を下層から順に堆積することにより、層間絶縁膜26を形成する。
次いで、図23および図24は、図21および図22に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、基板1Sの主面上に、例えば低抵抗な多結晶シリコンからなる導体膜28aをCVD法等により堆積した後、その上に、例えばタングステンシリサイド(WSix)からなる導体膜28bをCVD法等により堆積する。続いて、導体膜28b上に、例えば酸化シリコンからなる絶縁膜29をCVD法等により堆積する。
次いで、図25および図26は、図23および図24に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、リソグラフィ工程およびドライエッチング工程により絶縁膜29、導体膜28b,28a、層間絶縁膜26、導体膜25をパターニングすることにより、複数のワード線WLおよび浮遊ゲート電極25FGを形成する。
ワード線WLは、導体膜28a,28bからなり、補助ゲート配線10の延在方向に対して直交する方向に沿って延在した状態で形成されている。ワード線WLと浮遊ゲート電極25FGとは、その間に形成された層間絶縁膜26により互いに絶縁されている。また、浮遊ゲート電極25FGは、導体膜25からなり、互いに隣接する補助ゲート配線10の間であって、基板1Sとワード線WLとの対向面間に形成されている。浮遊ゲート電極25FGと基板1Sとは、その間に形成されたゲート絶縁膜7eにより互いに絶縁されている。また、浮遊ゲート電極25FGと補助ゲート配線10とは、その間に形成されたサイドウォール22により互いに絶縁されている。すなわち、浮遊ゲート電極25FGは、他の部材から電気的に分離された状態で形成されている。
このようにしてメモリセルMCを形成する。メモリセルMCは、補助ゲート配線10の一部で形成された補助ゲート電極10AGと、浮遊ゲート電極25FGと、ワード線WLの一部(浮遊ゲート電極25Fの上部)で形成された制御ゲート電極28CGとの3つの電極を有している。
次いで、図27および図28は、図25および図26に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、メモリ周辺領域および周辺回路領域における絶縁膜18、導体膜10bおよび半導体膜10aをリソグラフィ工程およびドライエッチング工程によりパターニングする。これにより、ゲート電極10G1,10G2,10G3を同時に形成する。ゲート電極10G1〜10G3は、導体膜10bおよび半導体膜10aの積層膜により形成されている。
次いで、図29および図30は、図27および図28に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、基板1Sのnチャネル型のMIS・FET形成領域に、例えばリン(P)をイオン注入法により選択的に導入することにより、n型の半導体領域35aを形成する。続いて、基板1Sのpチャネル型のMIS・FET形成領域に、例えば二フッ化ホウ素(BF)をイオン注入法により選択的に導入することにより、p型の半導体領域36aを形成する。その後、基板1Sの主面上に、例えば酸化シリコンからなる絶縁膜37をCVD法等により堆積した後、これをエッチバックすることにより、ゲート電極10G1〜10G3の側面にサイドウォール37aを形成するとともに、浮遊ゲート電極25FGの隣接間およびワード線WLの隣接間に絶縁膜37bを埋め込む。その後、基板1Sのnチャネル型のMIS・FET形成領域に、例えばヒ素(As)をイオン注入法により選択的に導入することにより、n型の半導体領域35bを形成する。続いて、基板1Sのpチャネル型のMIS・FET形成領域に、例えば二フッ化ホウ素(BF)をイオン注入法により選択的に導入することにより、p型の半導体領域36bを形成する。
このようにしてnチャネル型のMIS・FETQN1,QHN,QLNを形成するとともに、pチャネル型のMIS・FETQHP,QLPを形成する。上記n型の半導体領域35aおよびn型の半導体領域35bは、nチャネル型のMIS・FETQN1,QHN,QLNのソース・ドレイン用の半導体領域である。チャネル側のn型の半導体領域35aの不純物濃度は、n型の半導体領域35bの不純物濃度よりも低く設定されている。一方、上記p型の半導体領域36aおよびp型の半導体領域36bは、pチャネル型のMIS・FETQHP,QLPのソース・ドレイン用の半導体領域である。チャネル側のp型の半導体領域36aの不純物濃度は、p型の半導体領域36bの不純物濃度よりも低く設定されている。
次いで、図31および図32は、図29および図30に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、絶縁膜38,39をCVD法等により下層から順に堆積した後、その上部をCMP法により研磨して絶縁膜39の上面を平坦にする。続いて、リソグラフィ工程およびドライエッチング工程により、コンタクトホールCTを形成した後、基板1Sの主面上にバリアメタル膜をスパッタリング法等により堆積する。バリアメタル膜は、例えばチタン(Ti)膜とその上に堆積された窒化チタン(TiN)膜との積層膜により形成されている。その後、基板1Sの主面上に、例えばタングステン(W)からなる導体膜40をCVD法等により堆積した後、絶縁膜39上の導体膜40をCMP法等により研磨(除去)し、コンタクトホール内のみに上記バリアメタル膜と導体膜40とが残るようにする。これにより、プラグPLを形成する。その後、基板1Sの主面上に、例えばタングステンからなる導体膜41をスパッタリング法等により堆積した後、これをリソグラフィ工程およびドライエッチング工程によりパターニングすることにより第1層配線ML1を形成する。なお、この段階では導体膜10b中の不純物が半導体膜10a中に拡散しており、半導体膜10aは導体膜として機能するようになっている。これ以降は通常の配線工程および組立工程を経てフラッシュメモリを製造する。
次に、本実施の形態1のフラッシュメモリのメモリセルMCの動作の一例を図33により説明する。図33はデータ書き込み動作時のメモリ領域の基板1Sの要部拡大断面図を示している。なお、符号TAG1,TAG2は補助ゲート配線に接続された電極、符号TWLはワード線WLに接続された電極、符号TD1,TD2はデータ線用のn型の半導体領域に接続された電極、符号TWはp型のウエルPWに電気的に接続された電極を示している。
メモリセルMCへのデータ書き込みは、選択ワード線WL(電極TWL)に、例えば13V、一方のデータ線(電極TD1)に、例えば0V、他方のデータ線(電極TD2)に、例えば5V、一方の補助ゲート電極(電極TAG1)に、例えば0.6V、他方の補助ゲート電極(電極TAG2)に、例えば0Vを印加することにより、基板1Sに生じたホットエレクトロンを浮遊ゲート電極25FGに注入することにより行う。この際、一方のメモリセルMCにデータを書き込んでいる間、他方の補助ゲート電極(電極TAG2)を0Vに固定し、他方のメモリセルMCでのチャネル形成を抑制する。すなわち、補助ゲート配線10は、書き込みゲートとしてだけではなく、フィールドアイソレーションとしても機能する。これにより、メモリ領域には、溝型の分離部TIが不要となり、データ線間のピッチの縮小が可能となっている。また、選択ワード線WLの印加時間を変化させることで、浮遊ゲート電極25FGに蓄える電荷量を制御させることができる。これによって、メモリセルMCに多値記憶させることができる。
また、上記電圧印加条件により、電極TAG1に接続された補助ゲート電極10AG下のチャネルは弱反転、選択メモリセルMCの浮遊ゲート電極25FG下のチャネルは完全に空乏化するので、電極TAG1に接続された補助ゲート電極10AG下の基板1S部分と、選択メモリセルMCの浮遊ゲート電極25FG下の基板1S部分との境界部において大きなポテンシャルドロップが生じる。これにより、上記境界部のチャネル横方向電界を増大させることができるので、効率良くホットエレクトロンを生成することができる。
データの消去動作時では、選択ワード線WLに負電圧−18V、一方のデータ線(電極TD1)に例えば1.0V、他方のデータ線(電極TD2)に例えば2.0V、一方の補助ゲート電極(電極TAG1)に例えば1.0V、他方の補助ゲート電極(電極TAG2)に例えば2.0Vを印加することにより、浮遊ゲート電極25FGから基板1SへのF−N(Fowler Nordheim)トンネル放出により行う。
データ読み出し動作では、選択メモリセルMCの浮遊ゲート電極25FGを挟む一対のデータ線(n型の半導体領域21,21)の一方のデータ線(電極TD1)に例えば1.2V、他方のデータ線(電極TD2)に例えば0V、一方の補助ゲート電極(電極TAG1)に例えば3.5V、他方の補助ゲート電極(電極TAG2)に例えば0Vを印加し、一対のデータ線間に読み出し電流を流すようにする。この時、浮遊ゲート電極25FGの蓄積電荷の状態で、選択メモリセルMCのしきい値電圧が変わるので、選択ワード線WL(電極TWL)に例えば2.4V、3.5V、4.6V等の電圧を印加することで、上記読み出し電流の状況で、選択メモリセルMCのデータを判断できる。すなわち、メモリセルMCの多値読み出しが可能となる。
また、本実施の形態で示した周辺回路領域のMIS・FETのうち、高耐圧部のMIS・FETは、例えば電源電圧から数倍の電圧を生成する昇圧回路、昇圧用クロック発生回路、電圧クランプ回路、行や列を選択するカラムデコーダやロウデコーダ、カラムラッチ回路およびWELL制御回路などを構成する素子である。
また、本実施の形態で示した周辺回路領域のMIS・FETのうち、低耐圧部のMIS・FETは、メモリアレイの書き換え制御回路として形成されており、設定回路、通常用書き換えクロック生成回路、高速用書き換えクロック生成回路および書き換えタイミング制御回路等を有する回路等を構成する素子である。
(実施の形態2)
本実施の形態2の補助ゲート電極を持つフラッシュメモリは、例えば8Gb(ギガビット)のAND型のフラッシュメモリである。図34は本実施の形態2のフラッシュメモリのメモリ領域およびメモリ周辺領域の基板1Sの断面図、図35は本実施の形態2のフラッシュメモリの周辺回路領域の基板1Sの断面図である。
メモリ領域以外の構成は、前記実施の形態1と同じである。例えば本実施の形態2の場合も、メモリ周辺領域および周辺回路領域の溝型の分離部TIの溝13は、前記実施の形態1と同様に、ゲート絶縁膜7a〜7dの形成後、補助ゲート配線10の一部を構成する半導体膜10aおよび絶縁膜11(図12参照)のパターンをエッチングマスクとして形成されている。
異なるのは、メモリ領域の構成である。すなわち、本実施の形態2では、メモリセルMCの互いに隣接する補助ゲート電極10AGの間に2つの浮遊ゲート電極25FGが配置されている。この2つの浮遊ゲート電極25FGは、各々の間に介在された絶縁膜45により互いに電気的に分離された状態で、互いに隣接する補助ゲート電極10AGの側壁にサイドウォール22を介して設けられている。また、データ線を形成するn型の半導体領域21は、互いに隣接する補助ゲート配線10の間に補助ゲート配線10の延在方向に沿って延在した状態で形成されている。なお、n型の半導体領域21の外周にはp型の半導体領域49が形成されている。
また、メモリ周辺領域および周辺回路領域のゲート電極10G1,10G2,10G3上には、例えば酸化シリコンからなる絶縁膜46が形成されている。ゲート電極10G1,10G2,10G3と絶縁膜46との積層パターンの側壁には、例えば酸化シリコンからなるサイドウォール47が形成されている。これら以外の構成は、前記実施の形態1と同じなので説明を省略する。
次に、本実施の形態2のフラッシュメモリの製造方法例を説明する。
図36は本実施の形態2のフラッシュメモリの製造工程中のメモリ領域およびメモリ周辺領域の基板1Sの要部断面図、図37は図36と同一工程時の周辺回路領域の基板1Sの要部断面図を示している。メモリ領域には、前記実施の形態1の図3〜図20で説明したのと同様の工程を経て補助ゲート配線10が形成されている。ここでは、例えば窒化シリコンからなる絶縁膜50のパターンをエッチングマスクとして、絶縁膜18および補助ゲート配線10をパターニングしている。続いて、基板1S(半導体ウエハ)の主面上に、例えば酸化シリコンからなる絶縁膜をCVD法等によって堆積した後、これを異方性のドライエッチングによりエッチバックすることにより、補助ゲート配線10および絶縁膜18の側面にサイドウォール22を形成する。
次いで、図38および図39は、図36および図37に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、互いに隣接する補助ゲート配線10の間の基板1S主面上のゲート絶縁膜7bを除去した後、互いに隣接する補助ゲート配線10の間の基板1S主面上にゲート絶縁膜7eを熱酸化法により形成する。続いて、基板1Sの主面上に、例えば低抵抗な多結晶シリコンからなる導体膜をCVD法等によって堆積した後、これをエッチングすることにより、補助ゲート配線10および絶縁膜18の側面にサイドウォール22を介して浮遊ゲート電極形成用の導体膜25のパターンを形成する。互いに隣接する補助ゲート配線10間の導体膜25は互いに分離されている。
次いで、図40および図41は、図38および図39に続く半導体装置の同一製造工程時の基板1Sの要部断面図である。この工程では、導体膜25の露出表面に絶縁膜53を形成した後、基板1Sに、例えばホウ素(B)およびヒ素(As)を順にイオン注入することにより、互いに隣接する補助ゲート配線10の隣接間にn型の半導体領域21とそれを内包するp型の半導体領域49とを形成する。続いて、基板1Sの主面上に、例えば酸化シリコンからなる絶縁膜をCVD法等によって堆積した後、これをCMP法により研磨しエッチングすることにより互いに隣接する導体膜25の間に絶縁膜45(図34参照)を形成する。この絶縁膜45の形成工程の間に、絶縁膜50もエッチング除去する。これ以降は、前記実施の形態1とほぼ同じなので説明を省略する。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発
明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可
能であることは言うまでもない。
例えば前記実施の形態1,2においては、半導体膜10aへの不純物導入は、その上層の導体膜10b中の不純物を拡散することにより行っていたが、これに限定されるものではなく、例えば絶縁膜11の除去後、導体膜10bの堆積前に、露出された半導体膜10aに所望の不純物をイオン注入法により導入するようにしても良い。
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野である単体のフラッシュメモリの製造方法に適用した場合について説明したが、それに限定されるものではなく種々適用可能であり、例えばフラッシュメモリとマイクロプロセッサ等のような論理回路とを同一基板に設けている他の半導体装置の製造方法にも適用できる。
本発明は、補助ゲート電極を持つ不揮発性メモリを有する半導体装置の製造業に適用できる。
左側は本発明者が検討した補助ゲート電極を持つフラッシュメモリの周辺回路領域の半導体基板の要部断面図、右側は左側の領域Aの拡大断面図である。 左側はセット酸化処理をした場合の半導体基板の要部断面図、右側は左側の領域Aの拡大断面図である。 本発明の一実施の形態である半導体装置の製造工程時のメモリ領域およびメモリ周辺領域の半導体基板の要部断面図である。 図3と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図3および図4に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図5と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図5および図6に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図7と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図7および図8に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図9と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図9および図10に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図11と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図11および図12に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図13と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 左側は図14の周辺回路領域の半導体基板の要部拡大断面図、右側は同図の左側の領域Aの拡大断面図である。 図13および図14に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図16と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図17の周辺回路領域の半導体基板の要部拡大断面図である。 図16および図17に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図119と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図19および図20に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図21と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図21および図22に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図23と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図23および図24に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図25と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図25および図26に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図27と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図27および図28に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図29と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図29および図30に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図31と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 本発明の一実施の形態である半導体装置のデータ書き込み動作時のメモリ領域の半導体基板の要部拡大断面図である。 本発明の他の実施の形態である半導体装置のメモリ領域およびメモリ周辺領域の半導体基板の要部断面図である。 図34の半導体装置の周辺回路領域の半導体基板の要部断面図である。 図34および図35の半導体装置の製造工程中のメモリ領域およびメモリ周辺領域の半導体基板の要部断面図である。 図36と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図36および図37に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図38と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。 図38および図39に続く半導体装置の製造工程時の半導体基板のメモリ領域およびメモリ周辺領域の要部断面図である。 図40と同一の製造工程時の周辺回路領域の半導体基板の要部断面図である。
符号の説明
1S 半導体基板
2 絶縁膜
3,3a,3b ゲート絶縁膜
4 ゲート電極
6 絶縁膜
7a〜7d ゲート絶縁膜(第1ゲート絶縁膜)
7e ゲート絶縁膜(第2ゲート絶縁膜)
10 補助ゲート配線
10AG 補助ゲート電極
10G1〜10G3 ゲート電極
10a 半導体膜(第1膜)
10b 導体膜(第2膜)
11 絶縁膜(第1絶縁膜)
13 溝
15a 絶縁膜(第2絶縁膜)
15b 絶縁膜(第2絶縁膜)
15c 絶縁膜(第2絶縁膜)
18 絶縁膜(第3絶縁膜)
20 チャネルストッパ領域
21 n型の半導体領域
22 サイドウォール(側壁絶縁膜)
25 導体膜
25FG 浮遊ゲート電極
26 層間絶縁膜
28a,28b 導体膜
28CG 制御ゲート電極
29 絶縁膜
35a n型の半導体領域
35b n型の半導体領域
36a p型の半導体領域
36b p型の半導体領域
37 絶縁膜
38 絶縁膜
39 絶縁膜
40 導体膜
41 導体膜
45 絶縁膜
46 絶縁膜
47 サイドウォール
49 p型の半導体領域
50 絶縁膜
53 絶縁膜
B 窪み
TI 溝型の分離部
NISO n型の埋込領域
PW,HPW,LPW p型のウエル
HNW,LNW n型のウエル
ME,E p型の半導体領域
MD n型の半導体領域
RP1 フォトレジストパターン
WL ワード線
QN1 nチャネル型のMIS・FET
QHN nチャネル型のMIS・FET
QLN nチャネル型のMIS・FET
QHP pチャネル型のMIS・FET
QLP pチャネル型のMIS・FET
TAG1,TAG2 電極
TWL 電極
TD1,TD2 電極
TW 電極
CT コンタクトホール
PL プラグ

Claims (9)

  1. 以下の工程を有する半導体装置の製造方法:
    (a)ウエハを用意する工程、
    (b)前記ウエハを構成する半導体基板の主面上に第1ゲート絶縁膜を形成する工程、
    (c)前記第1ゲート絶縁膜上に、後に補助ゲート配線となる第1膜を堆積する工程、
    (d)前記第1膜上に第1絶縁膜を堆積する工程、
    (e)前記第1膜および前記第1絶縁膜をパターニングすることにより、前記半導体基板の主面上に、メモリ領域と、前記メモリ領域の外部領域の活性領域とを覆い、かつ、前記外部領域の分離領域が露出されるようなマスキングパターンを形成する工程、
    (f)前記マスキングパターンをエッチングマスクとして、前記マスキングパターンから露出する前記半導体基板をエッチングすることにより、前記分離領域の前記半導体基板に溝を形成する工程、
    (g)前記溝を埋め込むように前記半導体基板の主面上に第2絶縁膜を堆積した後、前記第2絶縁膜が前記溝内に残されるように、かつ、前記第1膜が露出されるように、前記第2絶縁膜および前記第1絶縁膜を除去することにより、前記溝内に前記第2絶縁膜により形成される溝型の分離部を形成する工程、
    (h)前記(g)工程後、前記半導体基板の主面上に、前記補助ゲート配線となる第2膜を前記第1膜上に接するように堆積する工程、
    (i)前記第2膜上に第3絶縁膜を堆積する工程、
    (j)前記第3絶縁膜、前記第2膜および前記第1膜をパターニングすることにより、前記メモリ領域の前記半導体基板の主面上に、前記第1膜と前記第2膜との積層膜で形成され、前記半導体基板の主面に沿って第1方向に延在した状態で形成される複数の前記補助ゲート配線を形成する工程、
    (k)前記補助ゲート配線の側壁に側壁絶縁膜を形成する工程、
    (l)前記複数の補助ゲート配線の隣接間の前記第1ゲート絶縁膜を除去し、代わりに前記複数の補助ゲート配線の隣接間の前記半導体基板の主面上に第2ゲート絶縁膜を形成する工程、
    (m)前記複数の補助ゲート配線の隣接間の前記第2ゲート絶縁膜上に、後に浮遊ゲート電極となる浮遊ゲート電極形成膜を形成する工程、
    (n)前記浮遊ゲート電極形成膜上に層間絶縁膜を堆積する工程、
    (o)前記(n)工程後の前記半導体基板の主面上に、後にワード線となるワード線形成膜を堆積する工程、
    (p)前記ワード線形成膜、前記層間絶縁膜および前記浮遊ゲート電極形成膜をパターニングすることにより、前記ワード線形成膜により形成され前記半導体基板の主面に沿って前記第1方向に交差する第2方向に延在した状態で形成される複数のワード線と、前記浮遊ゲート電極形成膜により形成され他の部材から電気的に分離された状態で形成される複数の浮遊ゲート電極とを形成する工程。
  2. 請求項1記載の半導体装置の製造方法において、前記(a)工程後、前記(b)工程前に前記外部領域の前記半導体基板にウエルを形成する工程を有することを特徴とする半導体装置の製造方法。
  3. 請求項1記載の半導体装置の製造方法において、前記(c)工程における前記第1膜は不純物が含有されていない多結晶シリコンにより形成されていることを特徴とする半導体装置の製造方法。
  4. 請求項3記載の半導体装置の製造方法において、前記(g)工程における前記第2膜は不純物が含有された多結晶シリコンにより形成されていることを特徴とする半導体装置の製造方法。
  5. 請求項1記載の半導体装置の製造方法において、前記第2絶縁膜は、熱酸化膜、熱CVD膜およびプラズマCVD膜を下層から順に堆積することにより形成されていることを特徴とする半導体装置の製造方法。
  6. 請求項1記載の半導体装置の製造方法において、前記第3絶縁膜、前記第2膜および前記第1膜をパターニングすることにより、前記外部領域の前記半導体基板の主面上に、前記第1膜と前記第2膜との積層膜で形成されるゲート電極を形成する工程を有することを特徴とする半導体装置の製造方法。
  7. (a)メモリ領域と前記メモリ領域の外部領域とを有する半導体基板と、
    (b)前記メモリ領域において前記半導体基板の主面上に第1ゲート絶縁膜を介して形成され、前記半導体基板の主面に沿って第1方向に延在した状態で形成された複数の補助ゲート配線と、
    (c)前記補助ゲート配線上に形成された絶縁膜と、
    (d)前記補助ゲート配線の側壁に形成された側壁絶縁膜と、
    (e)前記複数の補助ゲート配線の隣接間において、前記側壁絶縁膜により前記第1ゲート電極とは電気的に絶縁された状態で形成され、かつ、前記半導体基板の主面上に第2ゲート絶縁膜を介して形成された浮遊ゲート電極と、
    (f)前記絶縁膜および前記浮遊ゲート電極を覆うように形成された層間絶縁膜と、
    (g)前記層間絶縁膜上に、前記半導体基板の主面に沿って前記第1方向に対して交差する第2方向に延在した状態で形成された複数のワード線と、
    (h)前記外部領域の分離領域において、前記半導体基板に形成された溝内に絶縁膜を埋め込むことにより形成された溝型の分離部とを有し、
    前記複数の補助ゲート配線は、第1導体膜と第2導体膜との積層膜により形成されていることを特徴とする半導体装置。
  8. 請求項7記載の半導体装置において、前記溝型の分離部を構成する絶縁膜は、熱酸化膜、熱CVD膜およびプラズマCVD膜の積層膜により形成されていることを特徴とする半導体装置。
  9. 請求項7記載の半導体装置において、前記外部領域の電界効果トランジスタのゲート電極は、前記メモリ領域の補助ゲート配線と同じ構成とされていることを特徴とする半導体装置。
JP2005270251A 2005-09-16 2005-09-16 半導体装置の製造方法および半導体装置 Pending JP2007081301A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270251A JP2007081301A (ja) 2005-09-16 2005-09-16 半導体装置の製造方法および半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270251A JP2007081301A (ja) 2005-09-16 2005-09-16 半導体装置の製造方法および半導体装置

Publications (1)

Publication Number Publication Date
JP2007081301A true JP2007081301A (ja) 2007-03-29

Family

ID=37941248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270251A Pending JP2007081301A (ja) 2005-09-16 2005-09-16 半導体装置の製造方法および半導体装置

Country Status (1)

Country Link
JP (1) JP2007081301A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044503A (ja) * 2009-08-19 2011-03-03 Sharp Corp 半導体装置の製造方法、及び、半導体装置
KR101060118B1 (ko) 2009-10-01 2011-08-29 앰코 테크놀로지 코리아 주식회사 칩 적층형 반도체 패키지 및 이의 칩 적층 방법
KR101614580B1 (ko) 2012-08-03 2016-04-21 후지쯔 세미컨덕터 가부시키가이샤 반도체 장치와 그 제조 방법
US9583419B2 (en) 2011-06-06 2017-02-28 Micron Technology, Inc. Semiconductor constructions having through-substrate interconnects

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044503A (ja) * 2009-08-19 2011-03-03 Sharp Corp 半導体装置の製造方法、及び、半導体装置
CN101996920A (zh) * 2009-08-19 2011-03-30 夏普株式会社 半导体装置的制造方法及半导体装置
US8105894B2 (en) 2009-08-19 2012-01-31 Sharp Kabushiki Kaisha Semiconductor device manufacturing method and semiconductor device
US8482074B2 (en) 2009-08-19 2013-07-09 Sharp Kabushiki Kaisha Semiconductor device manufacturing method and semiconductor device
KR101060118B1 (ko) 2009-10-01 2011-08-29 앰코 테크놀로지 코리아 주식회사 칩 적층형 반도체 패키지 및 이의 칩 적층 방법
US9583419B2 (en) 2011-06-06 2017-02-28 Micron Technology, Inc. Semiconductor constructions having through-substrate interconnects
KR101614580B1 (ko) 2012-08-03 2016-04-21 후지쯔 세미컨덕터 가부시키가이샤 반도체 장치와 그 제조 방법

Similar Documents

Publication Publication Date Title
US8492224B2 (en) Metal control gate structures and air gap isolation in non-volatile memory
CN106952920B (zh) 半导体器件及其制造方法
US10651188B2 (en) Semiconductor device and a manufacturing method thereof
JP5781733B2 (ja) 不揮発性メモリセル及びその製造方法
JP2010183022A (ja) 半導体装置およびその製造方法
US9583640B1 (en) Method including a formation of a control gate of a nonvolatile memory cell and semiconductor structure
JP2007305711A (ja) 半導体装置およびその製造方法
US8778760B2 (en) Method of manufacturing flash memory cell
KR20040093404A (ko) 반도체장치 및 그 제조방법
JP2011114048A (ja) 半導体装置およびその製造方法
JP2004172488A (ja) 半導体装置及びその製造方法
US9548312B1 (en) Method including a formation of a control gate of a nonvolatile memory cell and semiconductor structure including a nonvolatile memory cell
JP2007335559A (ja) 半導体装置の製造方法
US9673210B1 (en) Semiconductor structure including a nonvolatile memory cell having a charge trapping layer and method for the formation thereof
TWI644396B (zh) 半導體裝置及其製造方法
US9711513B2 (en) Semiconductor structure including a nonvolatile memory cell and method for the formation thereof
JP6026919B2 (ja) 半導体装置の製造方法
JP2018107176A (ja) 半導体装置の製造方法および半導体装置
JP2009170781A (ja) 不揮発性半導体記憶装置およびその製造方法
US8106448B2 (en) NAND flash memory device
JP2006186073A (ja) 半導体装置およびその製造方法
JP6787798B2 (ja) 半導体装置の製造方法
US20050269623A1 (en) Nonvolatile semiconductor memory device and a method of the same
JP2007081301A (ja) 半導体装置の製造方法および半導体装置
JP2007013082A (ja) フラッシュメモリ素子及びその製造方法