JP2007077321A - Energy ray curable resin composition and adhesive using the same - Google Patents

Energy ray curable resin composition and adhesive using the same Download PDF

Info

Publication number
JP2007077321A
JP2007077321A JP2005268503A JP2005268503A JP2007077321A JP 2007077321 A JP2007077321 A JP 2007077321A JP 2005268503 A JP2005268503 A JP 2005268503A JP 2005268503 A JP2005268503 A JP 2005268503A JP 2007077321 A JP2007077321 A JP 2007077321A
Authority
JP
Japan
Prior art keywords
component
meth
acrylate
resin composition
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005268503A
Other languages
Japanese (ja)
Other versions
JP4459880B2 (en
Inventor
Atsushi Watanabe
淳 渡辺
Kimihiko Yoda
公彦 依田
Kazuhiro Oshima
和宏 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005268503A priority Critical patent/JP4459880B2/en
Publication of JP2007077321A publication Critical patent/JP2007077321A/en
Application granted granted Critical
Publication of JP4459880B2 publication Critical patent/JP4459880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy ray curable resin composition having similarly high adhesive strengths to a variety of adherends, e.g., various plastic materials and likes typified by crystalline engineering plastics and transparent engineering plastics, good in heat resistance and moisture resistance, excellent in stiffness, and particularly low in cure shrinkage and little in adhesion strain. <P>SOLUTION: The energy ray curable resin composition contains (A) a (meth)acrylate that has one or more (meth)acryloyl groups in the terminals or side chains of the molecule, that is one or more selected from the group consisting of polybutadienes, polyisoprenes and hydrogen addition products of the above two, and that has a mol. wt. of 500-5,000, (B) a mono-functional (meth)acrylate having a 2-7C saturated hydrocarbon through an ester group, (C) a hydroxyl group-containing (meth)acrylate, (D) a polyfunctional (meth)acrylate, (E) a photopolymerization initiator, and (F) an antioxidant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エネルギー線硬化性樹脂組成物に関する。さらに詳しくは、硬化収縮性が低く接着歪みの少ないエネルギー線硬化性樹脂組成物とそれを用いた接着剤、硬化体に関する。 The present invention relates to an energy beam curable resin composition. More specifically, the present invention relates to an energy ray curable resin composition having a low curing shrinkage and a small adhesive distortion, and an adhesive and a cured product using the same.

オプトエレクトロニクス分野では、機器の高性能化に伴い、ガラス同士、ガラスと金属、ガラスとセラミック、ガラスとプラスチック、プラスチック同士、プラスチックと金属、及びプラスチックとセラミック等、被着体として様々な異種材料間を接着するケースが増えている。そして、このような各種の異種材料間においても、高い接着強さを有し、且つ耐熱性や耐湿性が良好な接着剤が求められている。 In the field of optoelectronics, as the performance of equipment increases, various materials such as glass, glass and metal, glass and ceramic, glass and plastic, plastic, plastic and metal, and plastic and ceramic are used as adherends. There are an increasing number of cases of bonding. Further, there is a demand for an adhesive having high adhesive strength and good heat resistance and moisture resistance between various kinds of different materials.

特に、各種の異種材料間の接着においては、接着剤の硬化収縮等に起因する内部応力が各種被着体に及ぼす影響は無視できないので、低硬化収縮で接着歪みの少ない接着剤の開発が望まれている。 In particular, in bonding between various dissimilar materials, the influence of internal stress caused by curing shrinkage of the adhesive on various adherends cannot be ignored, so the development of an adhesive with low curing shrinkage and less adhesive distortion is desired. It is rare.

このような技術の潮流の中で、当該分野における接着剤は、量産化を考慮して、熱硬化型のエポキシ系接着剤から速硬化性を有した紫外線硬化型のアクリル系接着剤やエポキシ系接着剤へと移行してきた。 In the trend of such technology, adhesives in this field are considered to be mass-produced, from thermosetting epoxy adhesives to UV curable acrylic adhesives and epoxy resins that have fast curing properties. It has moved to adhesives.

例えば、特許文献1及び特許文献2には液晶パネルをシールするために用いるウレタンアクリレート系の紫外線硬化性の液晶シール剤が、特許文献3にはエポキシアクリレート系の紫外線硬化性の液晶シール剤が、特許文献4にはエポキシ系の紫外線硬化型接着剤が記載されている。さらに、特許文献5には耐水性の良好な接着剤組成物として、2ヒドロキシエチルメタクリレートを一成分として有する防水用接着剤組成物が提案され、特許文献6には熱可塑性ノルボルネン系樹脂からなる成形品の接着に適した紫外線硬化性組成物が記載されている。
特開平7−13173号公報 特開平7−13174号公報 特開平7−13175号公報 特開平7−118369号公報 特開平1−207371号公報 特開平7−138332号公報
For example, Patent Document 1 and Patent Document 2 include a urethane acrylate-based ultraviolet curable liquid crystal sealant used for sealing a liquid crystal panel, and Patent Document 3 includes an epoxy acrylate-based ultraviolet curable liquid crystal sealant. Patent Document 4 describes an epoxy-based ultraviolet curable adhesive. Further, Patent Document 5 proposes a waterproof adhesive composition having 2-hydroxyethyl methacrylate as a component as an adhesive composition with good water resistance, and Patent Document 6 discloses a molding made of a thermoplastic norbornene resin. UV curable compositions suitable for the bonding of articles are described.
JP 7-13173 A Japanese Patent Laid-Open No. 7-13174 Japanese Patent Laid-Open No. 7-13175 JP-A-7-118369 JP-A-1-207371 JP 7-138332 A

しかし、特許文献1〜4に開示されている紫外線硬化性接着剤は、例えば低複屈折率で透明性に優れかつ吸湿性の低いシクロオレフィン系プラスチック材料を被着体としたときには、不充分な剪断接着強さしか確保できないという欠点を有す。また、特許文献5に記載の防水用接着剤組成物は、耐湿試験後の引っ張り接着強さが低下し、接着剤硬化時に発生する内部応力が大きいという問題を有している。さらに特許文献6に記載の紫外線硬化性組成物は、熱可塑性ノルボルネン系樹脂とアルミニウム間の異種材料の接着強さの記載はあるが、これ以外の被着体に関する接着強さの記載はない。 However, the ultraviolet curable adhesive disclosed in Patent Documents 1 to 4 is insufficient when, for example, a cycloolefin plastic material having a low birefringence, excellent transparency and low hygroscopicity is used as an adherend. It has the disadvantage that only shear bond strength can be secured. Further, the waterproofing adhesive composition described in Patent Document 5 has a problem that the tensile adhesive strength after the moisture resistance test is lowered and the internal stress generated when the adhesive is cured is large. Furthermore, although the ultraviolet curable composition of patent document 6 has description of the adhesive strength of the dissimilar material between thermoplastic norbornene-type resin and aluminum, there is no description of the adhesive strength regarding an adherend other than this.

このように、従来の接着剤組成物は、被着体の種類によっては接着強さが十分には発現しない場合があり、様々な被着体に対して一様に高い接着強さを示すものはなかった。さらに、高い接着強さと共に、良好な耐熱性、耐湿性を兼ね備え、且つ低硬化収縮性を同時に満たすものもなかった。 As described above, the conventional adhesive composition may not exhibit sufficient adhesive strength depending on the type of adherend, and exhibits a uniform high adhesive strength for various adherends. There was no. Furthermore, there was nothing that had high heat resistance and moisture resistance as well as high adhesive strength, and simultaneously satisfied low curing shrinkage.

本発明は、この様な公知技術に事情に鑑みてなされたもので、ガラス、金属、ポリフェニレンスルフィドのような結晶性エンジニアリングプラスチック、ポリカーボネートのような透明性エンジニアリングプラスチック等の各種プラスチック材料等、様々な被着体に対して一様に高い接着強さを有し、耐熱性および耐湿性が良好で、剛性にも優れるエネルギー線硬化性樹脂組成物、特に、硬化収縮性が低く、接着歪みの少ないエネルギー線硬化性樹脂組成物を提供することを目的とするものである。 The present invention has been made in view of the circumstances of such a known technology, such as various plastic materials such as glass, metal, crystalline engineering plastic such as polyphenylene sulfide, and transparent engineering plastic such as polycarbonate. Energy ray curable resin composition having uniformly high adhesion strength to adherends, good heat resistance and moisture resistance, and excellent rigidity, especially low cure shrinkage and low adhesive distortion The object is to provide an energy ray curable resin composition.

本発明者は、前記の課題を解決するべく鋭意研究を重ねた結果、分子量が500〜5000のジエン系或いは水素添加されたジエン系の(メタ)アクリレート、特定構造の飽和炭化水素をエステル結合を介して有する単官能(メタ)アクリレート、水酸基含有(メタ)アクリレート、多官能性(メタ)アクリレート、光重合開始剤、および酸化防止剤を含有する樹脂組成物が、前記の目的を達成し得ることを見いだし、本発明に至ったものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has obtained an ester bond of a diene (meth) acrylate having a molecular weight of 500 to 5,000 or a hydrogenated diene (meth) acrylate and a saturated hydrocarbon having a specific structure. A resin composition containing a monofunctional (meth) acrylate, a hydroxyl group-containing (meth) acrylate, a polyfunctional (meth) acrylate, a photopolymerization initiator, and an antioxidant can achieve the above-described object. As a result, the present invention has been achieved.

即ち、本発明は、(A)〜(F)成分を含有することを特徴とするエネルギー線硬化性樹脂組成物であり、更に(G)〜(J)成分を含有することを特徴とする前記のエネルギー線硬化性樹脂組成物である。 That is, the present invention is an energy ray-curable resin composition characterized by containing the components (A) to (F), and further comprising the components (G) to (J). It is an energy beam curable resin composition.

尚、本発明に於いて、(A)成分は、分子の末端又は側鎖に1個以上の(メタ)アクリロイル基を有し、ポリブタジエン、ポリイソプレン、前2者の水素添加物からなる群から選ばれる1種以上で、分子量が500〜5000である(メタ)アクリレート、(B)成分は、炭素数2〜7の飽和炭化水素をエステル結合を介して有する単官能(メタ)アクリレート、(C)成分は、水酸基含有(メタ)アクリレート、(D)成分は、多官能性(メタ)アクリレート、(E)成分は、光重合開始剤、(F)成分は、酸化防止剤、(G)成分は、炭素数9〜12の飽和脂環式炭化水素をエステル結合を介して有する単官能(メタ)アクリレート、(H)成分は、カルボキシル基またはリン酸基を有する(メタ)アクリレート、(I)成分は、シランカップリング剤、(J)成分は、無機充填材、である。 In the present invention, the component (A) has at least one (meth) acryloyl group at the end or side chain of the molecule, and is composed of polybutadiene, polyisoprene, and the former two hydrogenated products. (Meth) acrylate having a molecular weight of 500 to 5000, and (B) component is a monofunctional (meth) acrylate having a saturated hydrocarbon having 2 to 7 carbon atoms via an ester bond, (C ) Component is a hydroxyl group-containing (meth) acrylate, (D) component is polyfunctional (meth) acrylate, (E) component is a photopolymerization initiator, (F) component is an antioxidant, (G) component Is a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon having 9 to 12 carbon atoms via an ester bond, (H) component is a (meth) acrylate having a carboxyl group or a phosphate group, (I) Ingredients are Silane Coupling agent, (J) component, an inorganic filler, a.

本発明は、その好ましい実施態様に於いて、(A)成分を30〜70質量%、(B)成分を10〜60質量%、(C)成分を2〜30質量%、(D)成分を2〜50質量%、(E)成分を0.01〜15質量%、(F)成分を0.01〜5質量%、(G)成分を0〜30質量%、(H)成分を0〜15質量%、(I)成分を0〜7質量%含有する組成物100質量部に対して(J)成分を50〜300質量部含有することを特徴とする。 In a preferred embodiment of the present invention, the component (A) is 30 to 70% by mass, the component (B) is 10 to 60% by mass, the component (C) is 2 to 30% by mass, and the component (D) is 2-50 mass%, (E) component 0.01-15 mass%, (F) component 0.01-5 mass%, (G) component 0-30 mass%, (H) component 0 It is characterized by containing 50 to 300 parts by mass of component (J) with respect to 100 parts by mass of a composition containing 15% by mass and 0 to 7% by mass of component (I).

本発明は、好ましい実施態様に於いて、(B)成分がエチルメタクリレート、n−ブチルメタクリレート又はイソブチルメタクリレートから選択される少なくとも1種以上であることを特徴とする前記のエネルギー線硬化性樹脂組成物であり、(D)成分がジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレートから選択される少なくとも1種であることを特徴とする前記のエネルギー線硬化性樹脂組成物であり、(G)成分がイソボルニルメタクリレート、イソボルニルアクリレート、ジシクロペンタニルメタクリレート、ジシクロペンタニルアクリレート、2−メチル−2−アダマンチルメタクリレート、2−メチル−2−アダマンチルアクリレートから選択される少なくとも1種以上であることを特徴とする前記のエネルギー線硬化性樹脂組成物であり、(H)成分が2−アクリロイルオキシエチルコハク酸、2−メタクリロイルオキシエチルコハク酸、アクリル酸ダイマー、2−メタクリロイルオキシエチルアシッドホスフェート、2−アクリロイルオキシエチルアシッドホスフェート、ω−カルボキシ-ポリカプロラクトンモノアクリレートから選択される少なくとも1種以上であることを特徴とする前記のエネルギー線硬化性樹脂組成物である。 In a preferred embodiment of the present invention, the energy beam curable resin composition is characterized in that the component (B) is at least one selected from ethyl methacrylate, n-butyl methacrylate or isobutyl methacrylate. The component (D) is at least one selected from dimethylol-tricyclodecane diacrylate, dimethylol-tricyclodecane dimethacrylate, trimethylolpropane trimethacrylate, and trimethylolpropane triacrylate. Energy component curable resin composition, wherein component (G) is isobornyl methacrylate, isobornyl acrylate, dicyclopentanyl methacrylate, dicyclopentanyl acrylate, 2-methyl-2-adamantyl methacrylate And at least one selected from the group consisting of 2-methyl-2-adamantyl acrylate, wherein (H) component is 2-acryloyloxyethyl succinic acid, 2 -At least one selected from methacryloyloxyethyl succinic acid, acrylic acid dimer, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, and omega-carboxy-polycaprolactone monoacrylate It is said energy beam curable resin composition.

本発明は、前記のエネルギー線硬化性樹脂組成物からなることを特徴とする接着剤であり、硬化体であり、前記の接着剤を用いてなることを特徴とする接合体である。 The present invention is an adhesive comprising the energy beam curable resin composition described above, a cured body, and a bonded body comprising the adhesive.

本発明のエネルギー線硬化性樹脂組成物は、分子量が500〜5000のジエン系或いは水素添加されたジエン系の(メタ)アクリレート、特定構造の飽和炭化水素をエステル結合を介して有する単官能(メタ)アクリレート、水酸基含有(メタ)アクリレート、多官能性(メタ)アクリレート、光重合開始剤、および酸化防止剤を含有する特定組成の樹脂組成物からなるので、エネルギー線を照射することにより硬化することが可能であり、しかも当該硬化時の硬化収縮性が低く、また硬化体の接着歪みが少ないという特徴を有している。 The energy beam curable resin composition of the present invention has a monofunctional (meta) acrylate having a molecular weight of 500 to 5,000 or a hydrogenated diene (meth) acrylate and a saturated hydrocarbon having a specific structure via an ester bond. ) Since it consists of a resin composition of a specific composition containing an acrylate, a hydroxyl group-containing (meth) acrylate, a polyfunctional (meth) acrylate, a photopolymerization initiator, and an antioxidant, it is cured by irradiation with energy rays. In addition, it has the characteristics that the curing shrinkage at the time of the curing is low, and the adhesive distortion of the cured body is small.

また、本発明のエネルギー線硬化性樹脂組成物は、前記特定な組成を有するので、ガラス、金属、ポリフェニレンスルフィドのような結晶性エンジニアリングプラスチック、ポリカーボネートのような透明性エンジニアリングプラスチック等をはじめとする各種プラスチック材料等、様々な被着体に対して一様に高い接着強さを有し、耐熱性および耐湿性が良好で、剛性にも優れる特性をも有している。 In addition, since the energy ray curable resin composition of the present invention has the specific composition, various kinds including glass, metal, crystalline engineering plastic such as polyphenylene sulfide, transparent engineering plastic such as polycarbonate, and the like. It has uniformly high adhesion strength to various adherends such as plastic materials, has good heat resistance and moisture resistance, and also has excellent rigidity.

本発明における(A)成分は、分子の末端又は側鎖に1個以上の(メタ)アクリロイル基を有し、ポリブタジエン、ポリイソプレン、前2者の水素添加物からなる群から選ばれる1種以上で、分子量が500〜5000である(メタ)アクリレートである。なお、ここで言う分子量としては、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の数平均分子量が好ましく用いられる。 The component (A) in the present invention has at least one (meth) acryloyl group at the end or side chain of the molecule, and is one or more selected from the group consisting of polybutadiene, polyisoprene, and the former two hydrogenated products. And a (meth) acrylate having a molecular weight of 500 to 5,000. In addition, as a molecular weight said here, the number average molecular weight of polystyrene conversion measured by gel permeation chromatography (GPC) is used preferably.

(メタ)アクリレートの主鎖骨格は、ポリブタジエン、ポリイソプレン、ポリブタジエンの水素添加物、ポリイソプレンの水素添加物から選ばれる1種以上である。好ましくは、ポリブタジエン、またはポリブタジエンの水素添加物が選択され、特に好ましくはポリブタジエンが選択される。 The main chain skeleton of (meth) acrylate is at least one selected from polybutadiene, polyisoprene, hydrogenated polybutadiene, and hydrogenated polyisoprene. Preferably, polybutadiene or a hydrogenated product of polybutadiene is selected, and polybutadiene is particularly preferably selected.

ポリブタジエンのミクロ構造についても特に制限はなく、1,4−cis体ユニット割合の少ないlow−cisポリブタジエン骨格、1,4−cis体ユニット割合の多いhigh−cisポリブタジエン骨格、1,2−ポリブタジエン骨格等いずれでも構わないが、発明者の検討に拠れば、1,2−ポリブタジエン骨格が好ましく選択される。 There is no particular restriction on the microstructure of polybutadiene, and a low-cis polybutadiene skeleton with a low proportion of 1,4-cis isomer units, a high-cis polybutadiene skeleton with a high proportion of 1,4-cis isomer units, a 1,2-polybutadiene skeleton, etc. Any of these may be used, but a 1,2-polybutadiene skeleton is preferably selected according to the inventors' investigation.

ポリブタジエンの水素添加物またはポリイソプレンの水素添加物を用いる場合、耐熱性や耐候性の点から、これらの水素添加率は好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。なお、ここで水素添加率は、ポリブタジエンの水素添加物またはポリイソプレンの水素添加物中の全ジエンモノマーユニット数に対する水素が付加したモノマーユニット数の割合をいう。 When using a hydrogenated product of polybutadiene or a hydrogenated product of polyisoprene, these hydrogenation rates are preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more from the viewpoint of heat resistance and weather resistance. It is. Here, the hydrogenation rate refers to the ratio of the number of monomer units added with hydrogen to the total number of diene monomer units in the polybutadiene hydrogenated product or the polyisoprene hydrogenated product.

(メタ)アクリレートは、上記主鎖骨格の末端又は側鎖に1個以上の(メタ)アクリロイル基を有す。中でも主鎖骨格の両末端に(メタ)アクリロイル基を有すものが好ましい。 The (meth) acrylate has one or more (meth) acryloyl groups at the terminal or side chain of the main chain skeleton. Among them, those having (meth) acryloyl groups at both ends of the main chain skeleton are preferable.

(メタ)アクリレートは分子量が500〜5000であり、好ましくは800〜2500である。分子量が500未満では、本発明の硬化性樹脂組成物にエネルギー線を照射して得られる硬化体の硬度が低すぎて、接着剤層が形成し難くなることがある。一方分子量が5000を越える場合には、得られる樹脂組成物の粘度が高くなりすぎて、製造過程での混合等における作業性、或いは実用用途において当該樹脂組成物を用いる際の作業性に問題が生じるようになり、やはり好ましくない。 The (meth) acrylate has a molecular weight of 500 to 5000, preferably 800 to 2500. When the molecular weight is less than 500, the hardness of the cured product obtained by irradiating the curable resin composition of the present invention with energy rays is too low, and it may be difficult to form an adhesive layer. On the other hand, when the molecular weight exceeds 5000, the viscosity of the resulting resin composition becomes too high, and there is a problem in workability in mixing during the production process, or workability when using the resin composition in practical use. It is not preferable after all.

(A)成分の(メタ)アクリレートとしては、日本曹達社製NISSO−PB TEAI−1000(両末端アクリレート変性水素添加ブタジエン系オリゴマー)、日本曹達社製NISSO−PB TE−2000(両末端メタクリレート変性ブタジエン系オリゴマー)等を例示することができる。 (A) Component (meth) acrylates include Nippon Soda Co., Ltd. NISSO-PB TEAI-1000 (Both-terminal acrylate-modified hydrogenated butadiene oligomer), Nippon Soda Co., Ltd. NISSO-PB TE-2000 (Both-terminal methacrylate-modified butadiene) System oligomer) and the like.

(B)成分は、炭素数2〜7の飽和炭化水素基をエステル結合を介して有する単官能(メタ)アクリレートである。炭素数2〜7の飽和炭化水素基としては、不飽和の炭素-炭素結合がない炭化水素基であれば特に制限はなく、脂環式骨格でも脂肪族骨格でもいずれでも構わない。例えば、炭素数2のエチル基、炭素数3のn−プロピル基、イソプロピル基、炭素数4のn−ブチル基、イソブチル基、tert−ブチル基、炭素数6のシクロヘキシル基等が挙げられるが、特に好ましくは、炭素数2のエチル基、炭素数4のn−ブチル基、イソブチル基等が挙げられる。またアクリレートでもメタクリレートでもどちらでも構わないが、好ましくはメタクリレートが選択される。 The component (B) is a monofunctional (meth) acrylate having a saturated hydrocarbon group having 2 to 7 carbon atoms via an ester bond. The saturated hydrocarbon group having 2 to 7 carbon atoms is not particularly limited as long as it is a hydrocarbon group having no unsaturated carbon-carbon bond, and may be either an alicyclic skeleton or an aliphatic skeleton. Examples thereof include an ethyl group having 2 carbon atoms, an n-propyl group having 3 carbon atoms, an isopropyl group, an n-butyl group having 4 carbon atoms, an isobutyl group, a tert-butyl group, and a cyclohexyl group having 6 carbon atoms. Particularly preferable examples include an ethyl group having 2 carbon atoms, an n-butyl group having 4 carbon atoms, and an isobutyl group. Either acrylate or methacrylate may be used, but methacrylate is preferably selected.

(B)成分の単官能(メタ)アクリレートを例示すると、エチルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート、シクロヘキシルメタクリレート、n−ペンチルメタクリレート、n−ヘプチルメタクリレート等を挙げることができ、好ましくはエチルメタクリレート、n−ブチルメタクリレート、イソブチルメタクリレート等が挙げられる。 Examples of the monofunctional (meth) acrylate of the component (B) include ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, n-pentyl methacrylate, n-heptyl methacrylate, and preferably ethyl methacrylate, Examples thereof include n-butyl methacrylate and isobutyl methacrylate.

(C)成分は、水酸基含有(メタ)アクリレートである。水酸基含有(メタ)アクリレートは、分子内に水酸基を少なくとも一つ以上有する単官能性(メタ)アクリレートモノマーを言い、好ましくは単官能性メタクリレートモノマーが用いられる。 The component (C) is a hydroxyl group-containing (meth) acrylate. The hydroxyl group-containing (meth) acrylate refers to a monofunctional (meth) acrylate monomer having at least one hydroxyl group in the molecule, and a monofunctional methacrylate monomer is preferably used.

水酸基含有(メタ)アクリレートモノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシプロピルフタレート、グリセロールモノ(メタ)アクリレート、1,6−へキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、1,4−ブタンジオールモノ(メタ)アクリレート等が挙げられ、好ましくは2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート等が、特に好ましくは2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシブチルメタクリレート等が挙げられる。 Examples of the hydroxyl group-containing (meth) acrylate monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth). Acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, glycerol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, 4-hydroxycyclohexyl (Meth) acrylate, 1,4-butanediol mono (meth) acrylate and the like can be mentioned, preferably 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydride Kishibuchiru (meth) acrylate, particularly preferably 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate and the like.

本発明の(D)成分は、多官能性(メタ)アクリレートである。本発明の多官能性(メタ)アクリレートは、分子内に(メタ)アクリロイル基を2以上有する化合物をいい、好ましくは多官能性メタクリレートモノマーが用いられる。多官能性(メタ)アクリレートとしては、例えば、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ジメチロール-シクロヘキサンジ(メタ)アクリレート等の脂環式構造を有する多官能性(メタ)アクリレートやエチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールFジ(メタ)アクリレート等の芳香族環構造を有する多官能性(メタ)アクリレート、またトリメチロールプロパントリ(メタ)アクリレート等の脂肪族分岐構造を有する多官能性(メタ)アクリレート等がある。このうちジメチロール-トリシクロデカンジ(メタ)アクリレート等のような脂環式構造を有する多官能性(メタ)アクリレート或いはトリメチロールプロパントリ(メタ)アクリレート等のような脂肪族分岐構造を有する多官能性(メタ)アクリレートを用いることが好ましく、ジメチロール-トリシクロデカンジ(メタ)アクリレート等の炭素数6〜12の脂環式構造を有する多官能性(メタ)アクリレートを用いることが特に好ましい。 The component (D) of the present invention is a polyfunctional (meth) acrylate. The polyfunctional (meth) acrylate of the present invention refers to a compound having two or more (meth) acryloyl groups in the molecule, and preferably a polyfunctional methacrylate monomer is used. Examples of the polyfunctional (meth) acrylate include polyfunctional (meth) acrylates having an alicyclic structure such as dimethylol-tricyclodecane di (meth) acrylate, dimethylol-cyclohexanedi (meth) acrylate, and ethylene oxide-added bisphenol. Polyfunctionality having an aromatic ring structure such as A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol F di (meth) acrylate ( Examples thereof include polyfunctional (meth) acrylates having an aliphatic branched structure such as (meth) acrylate and trimethylolpropane tri (meth) acrylate. Of these, polyfunctional (meth) acrylate having an alicyclic structure such as dimethylol-tricyclodecane di (meth) acrylate, etc. or polyfunctional having an aliphatic branched structure such as trimethylolpropane tri (meth) acrylate It is preferable to use a functional (meth) acrylate, and it is particularly preferable to use a polyfunctional (meth) acrylate having an alicyclic structure having 6 to 12 carbon atoms such as dimethylol-tricyclodecane di (meth) acrylate.

(E)成分は、光重合開始剤である。光重合開始剤には紫外線重合開始剤や可視光重合開始剤等があるが、どちらも制限無く用いられる。紫外線重合開始剤にはベンゾイン系、ベンゾフェノン系、アセトフェノン系等があり、可視光重合開始剤にはアシルホスフィンオキサイド系、チオキサントン系、メタロセン系、キノン系等がある。 (E) A component is a photoinitiator. Examples of the photopolymerization initiator include an ultraviolet polymerization initiator and a visible light polymerization initiator, both of which are used without limitation. Examples of ultraviolet polymerization initiators include benzoin, benzophenone, and acetophenone, and visible light polymerization initiators include acylphosphine oxide, thioxanthone, metallocene, and quinone.

光重合開始剤として具体的に例示すると、ベンゾフェノン、4−フェニルベンゾフェノン、ベンゾイル安息香酸、2,2−ジエトキシアセトフェノン、ビスジエチルアミノベンゾフェノン、ベンジル,ベンゾイン、ベンゾイルイソプロピルエーテル、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、チオキサントン、1−(4−イソプロピルフェニル)2−ヒドロキシ−2−メチルプロパン−1−オン、1−(4−(2−ヒドロキシエトキシ)−フェニル)−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、カンファーキノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2-ジメチルアミノ−1−(4−モルフォリノフェニル)−1−ブタノン−1、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルホスフィンオキサイド等が挙げられる。 Specific examples of the photopolymerization initiator include benzophenone, 4-phenylbenzophenone, benzoylbenzoic acid, 2,2-diethoxyacetophenone, bisdiethylaminobenzophenone, benzyl, benzoin, benzoylisopropyl ether, benzyldimethyl ketal, 1-hydroxycyclohexyl. Phenyl ketone, thioxanthone, 1- (4-isopropylphenyl) 2-hydroxy-2-methylpropan-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1 -Propan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, camphorquinone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzo) L) -Phenylphosphine oxide, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) Examples include -1-butanone-1, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide.

(F)成分は酸化防止剤である。酸化防止剤としてはフェノール系、ハイドロキノン系を使用でき、好ましくはフェノール系が用いられる。酸化防止剤としては、β―ナフトキノン、2−メトキシー1,4−ノフトキノン、メチルハイドロキノン、ハイドロキノン、2,2−メチレン−ビス(4−メチル−6−ターシャリーブチルフェノール)、カテコール、ハイドロキノンモノメチルエーテル、モノターシャリーブチルハイドロキノン、2,5−ジターシャリーブチルハイドロキノン、p−ベンゾキノン、2,5−ジフェニル−p−ベンゾキノン、2,5−ジターシャリーブチル−p−ベンゾキノン、ピクリン酸、クエン酸、フェノチアジン、ターシャリーブチルカテコール、2−ブチル−4−ヒドロキシアニソール及び2,6−ジターシャリーブチル−p−クレゾール等が例示できる。 Component (F) is an antioxidant. As the antioxidant, a phenol type or a hydroquinone type can be used, and a phenol type is preferably used. Antioxidants include β-naphthoquinone, 2-methoxy-1,4-naphthoquinone, methylhydroquinone, hydroquinone, 2,2-methylene-bis (4-methyl-6-tertiarybutylphenol), catechol, hydroquinone monomethyl ether, mono Tertiary butyl hydroquinone, 2,5-ditertiary butyl hydroquinone, p-benzoquinone, 2,5-diphenyl-p-benzoquinone, 2,5-ditertiary butyl-p-benzoquinone, picric acid, citric acid, phenothiazine, tertiary Examples include butyl catechol, 2-butyl-4-hydroxyanisole, and 2,6-ditertiary butyl-p-cresol.

本発明のエネルギー線硬化性樹脂組成物は、前記(A)〜(F)成分を必須成分として含有する。前記(A)〜(F)成分を含有する組成物は、これにエネルギー線を照射されることにより硬化し、その硬化物は、剛性が高く、耐熱性および耐湿性が良好で、様々な被着体に対して一様に高い接着強さを示すとともに、前記硬化に際して硬化収縮性が低い特徴を示す。 The energy beam curable resin composition of the present invention contains the components (A) to (F) as essential components. The composition containing the components (A) to (F) is cured by being irradiated with energy rays, and the cured product has high rigidity, good heat resistance and moisture resistance, and various coatings. In addition to exhibiting uniformly high adhesion strength to the adherend, it also has characteristics of low cure shrinkage upon the curing.

更に、本発明のエネルギー線硬化性樹脂組成物は、(G)成分として、炭素数9〜12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレートを含有することができる。炭素数9〜12の飽和脂環式炭化水素基としては、例えば、ジシクロペンタニル基、イソボルニル基、アダマンチル基などが挙げられ、特に好ましくは、ジシクロペンタニル基やイソボルニル基等が挙げられる。またアクリレートとメタクリレートとに関してはメタクリレートが好ましく選択される。 Furthermore, the energy ray-curable resin composition of the present invention contains a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond as the component (G). Can do. Examples of the saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms include a dicyclopentanyl group, an isobornyl group, an adamantyl group, and the like, and particularly preferably a dicyclopentanyl group and an isobornyl group. . As for acrylate and methacrylate, methacrylate is preferably selected.

炭素数9〜12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレートとしては、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられ、好ましくはイソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、2−メチル−2−アダマンチル(メタ)アクリレート等が、さらに好ましくはイソボルニル(メタ)アクリレート等が挙げられる。 Examples of the monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond include 2-methyl-2-adamantyl (meth) acrylate and 2-ethyl-2-adamantyl. (Meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, etc. are mentioned, preferably isobornyl (meth) acrylate, dicyclopentanyl (meth) An acrylate, 2-methyl-2-adamantyl (meth) acrylate, etc., More preferably, an isobornyl (meth) acrylate etc. are mentioned.

本発明のエネルギー線硬化性樹脂組成物は、金属面への密着性を一層向上させることを目的に、(H)成分として、カルボキシル基またはリン酸基を有する(メタ)アクリレートをさらに含有することが好ましい。 The energy beam curable resin composition of the present invention further contains a (meth) acrylate having a carboxyl group or a phosphate group as the component (H) for the purpose of further improving the adhesion to the metal surface. Is preferred.

リン酸基を有する(メタ)アクリレートとしては、(メタ)アクリロイルオキシエチルアシッドフォスフェート、(メタ)アクリロイルオキシエチルポリエチレングリコールアシッドフォスフェート等が挙げられる。 Examples of the (meth) acrylate having a phosphate group include (meth) acryloyloxyethyl acid phosphate, (meth) acryloyloxyethyl polyethylene glycol acid phosphate, and the like.

カルボキシル基を有する(メタ)アクリレートとしては、マレイン酸、フマル酸、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸ダイマー、β−(メタ)アクロイルオキシエチルハイドロジェンサクシネート、2−アクリロイルオキシエチルコハク酸、2−メタクリロイルオキシエチルコハク酸等が例示される。 Examples of the (meth) acrylate having a carboxyl group include maleic acid, fumaric acid, ω-carboxy-polycaprolactone mono (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate, (meth) acrylic acid dimer, β- (meta ) Acroyloxyethyl hydrogen succinate, 2-acryloyloxyethyl succinic acid, 2-methacryloyloxyethyl succinic acid and the like are exemplified.

カルボキシル基またはリン酸基を有する(メタ)アクリレートの中でも、特に好ましくは、2−アクリロイルオキシエチルコハク酸、2−メタクリロイルオキシエチルコハク酸、アクリル酸ダイマー、2−メタクリロイルオキシエチルアシッドホスフェート、2−アクリロイルオキシエチルアシッドホスフェート、ω−カルボキシ-ポリカプロラクトンモノアクリレート等が挙げられ、更に好ましくは、2−メタクリロイルオキシエチルコハク酸、2−メタクリロイルオキシエチルアシッドホスフェート等が挙げられる。 Among (meth) acrylates having a carboxyl group or a phosphate group, 2-acryloyloxyethyl succinic acid, 2-methacryloyloxyethyl succinic acid, acrylic acid dimer, 2-methacryloyloxyethyl acid phosphate, 2-acryloyl are particularly preferable. Examples include oxyethyl acid phosphate, ω-carboxy-polycaprolactone monoacrylate, and more preferable examples include 2-methacryloyloxyethyl succinic acid, 2-methacryloyloxyethyl acid phosphate, and the like.

本発明のエネルギー線硬化性樹脂組成物は、ガラス面への密着性を一層向上させることを目的に、(I)成分として、シランカップリング剤をさらに含有することができる。 The energy ray-curable resin composition of the present invention can further contain a silane coupling agent as the component (I) for the purpose of further improving the adhesion to the glass surface.

シランカップリング剤としては、γ−クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニル−トリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン及びγ−ユレイドプロピルトリエトキシシラン等が挙げられ、好ましくはγ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン等を例示できる。 Examples of silane coupling agents include γ-chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ -Acryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N -Β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-ureidopropyltriethoxysilane, and the like, preferably γ- Metacri Examples thereof include roxypropyltrimethoxysilane and γ-acryloxypropyltrimethoxysilane.

本発明のエネルギー線硬化性樹脂組成物は、剛性および低硬化収縮性をさらに付与することを目的に、(J)成分として、無機充填剤をさらに含有することができる。 The energy beam curable resin composition of the present invention may further contain an inorganic filler as the component (J) for the purpose of further imparting rigidity and low curing shrinkage.

無機充填剤としては、石英、石英ガラス、溶融シリカ、球状シリカ等のシリカ粉等や、球状アルミナ、破砕アルミナ、酸化マグネシウム、酸化ベリリウム、酸化チタン等の酸化物類、窒化ホウ素、窒化ケイ素、窒化アルミニウム等の窒化物類、炭化ケイ素等の炭化物類、水酸化アルミニウム、水酸化マグネシウム等の水酸化物類、銅、銀、鉄、アルミニウム、ニッケル、チタン等の金属類や合金類、ダイヤモンド、カーボン等の炭素系充填材などが挙げられる。これら無機充填剤は、1種または2種以上を使用することができる。無機充填剤については、容易に入手可能であり、アクリル樹脂への充填性を考慮すると、石英、石英ガラス、溶融シリカ、球状シリカ等のシリカ粉が好ましく、より好ましくは球状シリカ等が挙げられる。 As inorganic fillers, silica powder such as quartz, quartz glass, fused silica, spherical silica, etc., oxides such as spherical alumina, crushed alumina, magnesium oxide, beryllium oxide, titanium oxide, boron nitride, silicon nitride, nitriding Nitrides such as aluminum, carbides such as silicon carbide, hydroxides such as aluminum hydroxide and magnesium hydroxide, metals and alloys such as copper, silver, iron, aluminum, nickel and titanium, diamond and carbon And carbon-based fillers. These inorganic fillers can be used alone or in combination of two or more. The inorganic filler is easily available, and considering the filling properties into the acrylic resin, silica powder such as quartz, quartz glass, fused silica, and spherical silica is preferable, and spherical silica and the like are more preferable.

本発明のエネルギー線硬化性樹脂組成物に於いて、好ましくは、(A)成分〜(I)成分について、(A)成分を30〜70質量%、(B)成分を10〜60質量%、(C)成分を2〜30質量%、(D)成分を2〜50質量%、(E)成分を0.01〜15質量%、(F)成分を0.01〜5質量%、(G)成分を0〜30質量%、(H)成分を0〜15質量%、(I)成分を0〜7質量%含有する組成物とし、この組成物100質量部に対して(J)成分を50〜300質量部含有するとき、エネルギー線を照射して得られる硬化物の剛性が特に高く、耐熱性および耐湿性が一層良好で、しかも硬化収縮性が特段に低くなり、かつ様々な被着体に対して一様に格段に高い接着強さを有するようになるので、特に好ましい。 In the energy ray-curable resin composition of the present invention, preferably, for the components (A) to (I), the component (A) is 30 to 70% by mass, the component (B) is 10 to 60% by mass, Component (C) is 2 to 30% by mass, Component (D) is 2 to 50% by mass, Component (E) is 0.01 to 15% by mass, Component (F) is 0.01 to 5% by mass, (G ) Component is 0 to 30% by mass, (H) component is 0 to 15% by mass, (I) component is 0 to 7% by mass, and (J) component is added to 100 parts by mass of this composition. When contained in an amount of 50 to 300 parts by mass, the cured product obtained by irradiating energy rays has particularly high rigidity, better heat resistance and moisture resistance, and particularly low shrinkage in curing, and various depositions. This is particularly preferable because it has a much higher adhesion strength uniformly to the body.

なお、本発明のエネルギー線硬化性樹脂組成物は、本発明の目的を損なわない範囲で、一般に使用されているアクリルゴム、ウレタンゴムなどの各種エラストマー、メタクリル酸メチル−ブタジエン−スチレン系グラフト共重合体やアクリロニトリル−ブタジエン−スチレン系グラフト共重合体などのグラフト共重合体、溶剤、増量材、補強材、可塑剤、増粘剤、染料、顔料、難燃剤及び界面活性剤等の添加剤を使用することができる。 The energy ray curable resin composition of the present invention is not limited to the purpose of the present invention, and is generally used for various elastomers such as acrylic rubber and urethane rubber, methyl methacrylate-butadiene-styrene graft copolymer. Uses graft copolymers such as coalescence and acrylonitrile-butadiene-styrene graft copolymers, additives such as solvents, extenders, reinforcements, plasticizers, thickeners, dyes, pigments, flame retardants and surfactants can do.

以下に、実施例、比較例をあげて、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。尚、実施例および比較例に記載の配合組成物中の各成分には以下の化合物を選択した。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the following compounds were selected as each component in the compounding composition as described in an Example and a comparative example.

(A)成分の、分子の末端又は側鎖に1個以上の(メタ)アクリロイル基を有し、ポリブタジエン、ポリイソプレン、前2者の水素添加物からなる群から選ばれる1種以上で、分子量が500〜5000である(メタ)アクリレートとして、
(A−1)末端アクリル変性ポリブタジエン(日本曹達(株)社製商品名TE−2000)(GPCによるポリスチレン換算の数平均分子量2100)
(A−2)末端アクリル変性ポリブタジエン水素添加物(日本曹達(株)社製商品名TEAI−1000)(GPCによるポリスチレン換算の数平均分子量1200)
(B)成分の炭素数2〜7の飽和炭化水素をエステル結合を介して有する単官能(メタ)アクリレートとして、
(B−1)エチルメタクリレート(共栄社化学(株)社製ライトエステルE)
(B−2)n−ブチルメタクリレート(共栄社化学(株)社製ライトエステルNB)
(B−3)イソブチルメタクリレート(共栄社化学(株)社製ライトエステルIB)
(C)成分の水酸基含有(メタ)アクリレートとして、
(C−1)2−ヒドロキシエチルメタクリレート(共栄社化学(株)社製ライトエステルHO)
(D)成分の多官能性(メタ)アクリレートとして、
(D−1)ジメチロールトリシクロデカンジアクリレート(共栄社化学(株)社製ライトアクリレートDCP−A)
(D−2)ジメチロールトリシクロデカンジメタクリレート(共栄社化学(株)社製ライトエステルDCP−M)
(D−3)トリメチロールプロパントリメタクリレート(共栄社化学(株)社製ライトエステルTMP)
(D−4)トリメチロールプロパントリアクリレート(共栄社化学(株)社製ライトアクリレートTMP−A)
(E)成分の光重合開始剤として、
(E−1)ベンジルジメチルケタール(チバ・スペシャルティー・ケミカルズ(株)社製IRGACURE651)
(E−2)1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャルティー・ケミカルズ(株)社製IRGACURE184)
(F)成分の酸化防止剤として、
(F−1)2,2−メチレン−ビス(4−メチル−6−ターシャリーブチルフェノール)(住友化学(株)社製スミライザーMDP−S)
(G)成分の炭素数9〜12の飽和脂環式炭化水素をエステル結合を介して有する単官能(メタ)アクリレートとして、
(G−1)イソボルニルメタクリレート(共栄社化学(株)社製ライトエステルIB−X)
(G−2)ジシクロペンタニルメタクリレート(日立化成工業(株)社製FA−513M)
(G−3)2−メチル−2−アダマンチルメタクリレート(出光興産(株)社製アダマンテートMM)
(H)成分のカルボキシル基またはリン酸基を有する(メタ)アクリレートとして、
(H−1)2−メタクリロイルオキシエチルコハク酸(共栄社化学(株)社製ライトエステルHO−MS)
(H−2)2−メタクリロイルオキシエチルアシッドホスフェート(共栄社化学(株)社製ライトエステルP−1M)
(H−3)2−アクリロイルオキシエチルコハク酸(共栄社化学(株)社製ライトエステルHOA−MS)
(H−4)2−アクリロイルオキシエチルアシッドホスフェート(共栄社化学(株)社製ライトアクリレートP−1A)
(H−5)アクリル酸ダイマー(東亜合成(株)社製アロニックスM−5600)
(H−6) ω−カルボキシ-ポリカプロラクトン-モノアクリレート(東亜合成(株)社製アロニックスM−5300)
(I)成分のシランカップリング剤として、
(I−1)γ−メタクリロキシプロピルトリメトキシシラン(信越化学工業(株)社製KBM−503)
(J)成分の無機充填材として、
(J−1)球状シリカ(電気化学工業(株)社FB−5D)
The component (A) has at least one (meth) acryloyl group at the molecular end or side chain, and is one or more selected from the group consisting of polybutadiene, polyisoprene, and the former two hydrogenated products, and has a molecular weight. As a (meth) acrylate having a 500 to 5000,
(A-1) Terminal acrylic modified polybutadiene (trade name TE-2000 manufactured by Nippon Soda Co., Ltd.) (number average molecular weight 2100 in terms of polystyrene by GPC)
(A-2) Terminal acrylic modified polybutadiene hydrogenated product (trade name TEAI-1000 manufactured by Nippon Soda Co., Ltd.) (Number average molecular weight 1200 in terms of polystyrene by GPC)
As a monofunctional (meth) acrylate having a saturated hydrocarbon having 2 to 7 carbon atoms as the component (B) via an ester bond,
(B-1) Ethyl methacrylate (Kyoeisha Chemical Co., Ltd. light ester E)
(B-2) n-butyl methacrylate (Kyoeisha Chemical Co., Ltd. light ester NB)
(B-3) Isobutyl methacrylate (Light Ester IB manufactured by Kyoeisha Chemical Co., Ltd.)
As the hydroxyl group-containing (meth) acrylate of component (C),
(C-1) 2-hydroxyethyl methacrylate (Kyoeisha Chemical Co., Ltd. light ester HO)
As the multifunctional (meth) acrylate of component (D),
(D-1) dimethylol tricyclodecane diacrylate (Kyoeisha Chemical Co., Ltd. light acrylate DCP-A)
(D-2) Dimethylol tricyclodecane dimethacrylate (Kyoeisha Chemical Co., Ltd. light ester DCP-M)
(D-3) Trimethylolpropane trimethacrylate (light ester TMP manufactured by Kyoeisha Chemical Co., Ltd.)
(D-4) Trimethylolpropane triacrylate (light acrylate TMP-A manufactured by Kyoeisha Chemical Co., Ltd.)
(E) As a photopolymerization initiator of the component,
(E-1) Benzyldimethyl ketal (IRGACURE651 manufactured by Ciba Specialty Chemicals Co., Ltd.)
(E-2) 1-hydroxycyclohexyl phenyl ketone (IRGACURE184 manufactured by Ciba Specialty Chemicals Co., Ltd.)
As an antioxidant for component (F),
(F-1) 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (Sumilyzer MDP-S manufactured by Sumitomo Chemical Co., Ltd.)
As a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon having 9 to 12 carbon atoms as the component (G) via an ester bond,
(G-1) Isobornyl methacrylate (Light Ester IB-X manufactured by Kyoeisha Chemical Co., Ltd.)
(G-2) Dicyclopentanyl methacrylate (FA-513M manufactured by Hitachi Chemical Co., Ltd.)
(G-3) 2-Methyl-2-adamantyl methacrylate (Adamantate MM manufactured by Idemitsu Kosan Co., Ltd.)
As the (H) component (meth) acrylate having a carboxyl group or a phosphate group,
(H-1) 2-Methacryloyloxyethyl succinic acid (Light Ester HO-MS manufactured by Kyoeisha Chemical Co., Ltd.)
(H-2) 2-Methacryloyloxyethyl acid phosphate (Light Ester P-1M manufactured by Kyoeisha Chemical Co., Ltd.)
(H-3) 2-acryloyloxyethyl succinic acid (light ester HOA-MS manufactured by Kyoeisha Chemical Co., Ltd.)
(H-4) 2-acryloyloxyethyl acid phosphate (light acrylate P-1A manufactured by Kyoeisha Chemical Co., Ltd.)
(H-5) Acrylic acid dimer (Aronix M-5600 manufactured by Toa Gosei Co., Ltd.)
(H-6) ω-carboxy-polycaprolactone-monoacrylate (Aronix M-5300 manufactured by Toa Gosei Co., Ltd.)
As the component (I) silane coupling agent,
(I-1) γ-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.)
(J) As an inorganic filler of the component,
(J-1) Spherical silica (Electrochemical Industry Co., Ltd. FB-5D)

また、比較の例に用いるものとして、
分子の末端又は側鎖に1個以上の(メタ)アクリロイル基を有する(メタ)アクリレートとして、(A‘−3)末端アクリル変性ポリカーボネート系ウレタンオリゴマー(日本合成化学製UV9000PEP)を、
炭素数1の飽和炭化水素をエステル結合を介して有する単官能(メタ)アクリレートとして、(B‘−1)メチルメタクリレート(共栄社化学(株)社製ライトエステルM)を、
炭素数8の飽和炭化水素をエステル結合を介して有する単官能(メタ)アクリレートとして、(B‘−2)2−エチルヘキシルメタクリレート(共栄社化学(株)社製ライトエステルEH)を用いた。
Also, as an example for comparison,
As a (meth) acrylate having one or more (meth) acryloyl groups at the end or side chain of the molecule, (A′-3) a terminal acrylic-modified polycarbonate urethane oligomer (UV9000PEP manufactured by Nippon Synthetic Chemical),
As a monofunctional (meth) acrylate having a C 1 saturated hydrocarbon via an ester bond, (B′-1) methyl methacrylate (Kyoeisha Chemical Co., Ltd. Light Ester M)
(B′-2) 2-ethylhexyl methacrylate (Kyoeisha Chemical Co., Ltd. Light Ester EH) was used as a monofunctional (meth) acrylate having a saturated hydrocarbon having 8 carbon atoms via an ester bond.

各種物性は、次のように測定した。 Various physical properties were measured as follows.

〔光硬化条件〕光硬化に際しては、無電極放電ランプを使用したフュージョン社製硬化装置により、365nmの波長の積算光量2000mJ/cmの条件にて硬化させた。 [Photo-curing conditions] In photo-curing, curing was performed under a condition of an integrated light quantity of 2000 mJ / cm 2 at a wavelength of 365 nm by a curing apparatus manufactured by Fusion Corporation using an electrodeless discharge lamp.

〔引張接着強さ(1)〕ガラス繊維強化ポリフェニレンスルフィド(PPS)試験片(100×25×2.0mm、東ソー製GS40、ガラス繊維40%含有)を2枚、片端同士を、厚み0.6mm×幅2mm×長さ7mmのテフロン(登録商標)スペーサーを2枚挟みながら押し当て、PPS試験片2枚とテフロン(登録商標)スペーサー2枚で囲まれる長さ11mm×幅0.6mm×厚み2mmの空間に接着剤を流し込み、上記条件にて接着剤を硬化させた(接着面積22mm2)。硬化後、接着剤で接合した該試験片を用いて引張接着強さ(1)を測定した。 [Tensile bond strength (1)] Two glass fiber reinforced polyphenylene sulfide (PPS) test pieces (100 × 25 × 2.0 mm, GS40 manufactured by Tosoh, containing 40% glass fiber), one end having a thickness of 0.6 mm X 2 mm wide x 7 mm long Teflon (registered trademark) spacers, sandwiched between two PPS test pieces and 2 Teflon (registered trademark) spacers, 11 mm long x 0.6 mm wide x 2 mm thick The adhesive was poured into the space, and the adhesive was cured under the above conditions (bonding area 22 mm 2 ). After curing, the tensile bond strength (1) was measured using the test piece bonded with an adhesive.

引っ張り剪断接着強さ(単位:MPa)は、温度23℃、湿度50%の環境下で引張速度10mm/分で測定した。 The tensile shear bond strength (unit: MPa) was measured at a tensile rate of 10 mm / min in an environment of a temperature of 23 ° C. and a humidity of 50%.

〔引張接着強さ(2)〕ポリカーボネート(PC)試験片(100×25×2.0mm、帝人化成製パンライトL1225Y)を用いるほかは、前記記載の方法により、接着剤で接合した試験片を調製し、引張接着強さを測定した。 [Tensile bond strength (2)] Except for using a polycarbonate (PC) test piece (100 × 25 × 2.0 mm, Teijin Kasei Panlite L1225Y), a test piece joined with an adhesive by the method described above was used. Prepared and measured the tensile bond strength.

〔引張接着強さ(3)〕亜鉛ダイカスト試験片(100×25×2.0mm、ZDC2)を用いるほかは、前記記載の方法により、接着剤で接合した試験片を調製し、引張接着強さを測定した。 [Tensile bond strength (3)] Except for using a zinc die cast test piece (100 × 25 × 2.0 mm, ZDC2), a test piece joined with an adhesive was prepared by the method described above, and the tensile bond strength was Was measured.

〔耐湿性評価〕亜鉛ダイカスト試験片(100×25×2.0mm、ZDC2)を用いて上記引張剪断接着強さ評価と同様な試験片を作製後、温度80℃、湿度90%の雰囲気中にて504時間放置し、取り出し後、23℃×50%RH雰囲気の室内にて30分以上放置後、引張接着強さを測定した。 [Humidity resistance evaluation] Using a zinc die-cast test piece (100 × 25 × 2.0 mm, ZDC2), a test piece similar to the above-described tensile shear bond strength evaluation was prepared, and then in an atmosphere of 80 ° C. and 90% humidity. The sample was allowed to stand for 504 hours, taken out, and left in a room at 23 ° C. × 50% RH for 30 minutes or more, and then the tensile adhesive strength was measured.

〔硬化収縮率評価〕樹脂組成物を上記光硬化条件にて硬化させて、硬化物試料を調製した。この硬化物の23℃における密度(値をKとする)をJIS K7112のA法に従い測定した。一方、硬化前の樹脂組成物の液体の23℃における密度(値をLとする)をJIS K 6833に従い比重瓶を用いて測定した。 [Evaluation of Curing Shrinkage] The resin composition was cured under the above-mentioned photocuring conditions to prepare a cured product sample. The density (value is K) of this cured product at 23 ° C. was measured according to A method of JIS K7112. On the other hand, the density (value is L) of the liquid of the resin composition before curing at 23 ° C. was measured using a specific gravity bottle in accordance with JIS K 6833.

得られた硬化物および樹脂組成物液の密度値から、次の式により硬化収縮率(%)を算出した。
硬化収縮率(%)=(K―L)/K×100
From the density values of the obtained cured product and resin composition liquid, the curing shrinkage rate (%) was calculated by the following formula.
Curing shrinkage (%) = (KL) / K × 100

〔貯蔵弾性率評価〕樹脂組成物を上記光硬化条件にて硬化させて、20mm×5mm×1mmの硬化物試料を調製した。この硬化物試料を用いて、セイコー電子工業(株)社製テンションモジュールDMS210を使用し、周波数1Hz、歪み0.05%の条件で温度をスウィープして、引っ張りモードで動的粘弾性スペクトルを測定し、23℃における貯蔵弾性率E‘の値を求めた。 [Evaluation of storage modulus] The resin composition was cured under the above-mentioned photocuring conditions to prepare a cured product sample of 20 mm x 5 mm x 1 mm. Using this cured material sample, using a tension module DMS210 manufactured by Seiko Electronics Industry Co., Ltd., sweeping the temperature under the conditions of a frequency of 1 Hz and a strain of 0.05%, and measuring a dynamic viscoelastic spectrum in a tensile mode. The value of the storage elastic modulus E ′ at 23 ° C. was obtained.

〔GPC評価〕A成分の分子量は次の条件で測定し、GPCによりポリスチレン換算の数平均分子量として得た。
[測定条件]
溶媒(移動相):THF
流速:1.0ml/min
設定温度:40℃
カラム構成:東ソー(株)社製TSK guardcolumn MP(×L)6.0mmID×4.0cm1本、および東ソー(株)社製TSK−GELMULTIPOREHXL−M 7.8mmID×30.0cm(理論段数16000段)2本、計3本(全体として理論段数32000段)、
サンプル注入量:100μl(試料液濃度1mg/ml)
送液圧力:39kg/cm
検出器:RI検出器
[GPC Evaluation] The molecular weight of the component A was measured under the following conditions, and obtained by GPC as the number average molecular weight in terms of polystyrene.
[Measurement condition]
Solvent (mobile phase): THF
Flow rate: 1.0 ml / min
Set temperature: 40 ° C
Column configuration: Tosoh Co., Ltd. TSK guardcolumn MP (× L) 6.0 mm ID × 4.0 cm 1 and Tosoh Co., Ltd. TSK-GELMULTIPOREHXL-M 7.8 mm ID × 30.0 cm (theoretical plate number 16000 plates) 2, 3 in total (32,000 theoretical plates as a whole)
Sample injection volume: 100 μl (sample solution concentration 1 mg / ml)
Liquid feeding pressure: 39 kg / cm 2
Detector: RI detector

(実施例1〜15および比較例1〜7)表1、表2、表3に示す種類の原材料を表1、表2、表3に示す組成で混合して樹脂組成物を調製した。得られた組成物について、引張接着強さの測定及び耐湿性評価試験を行った。また硬化収縮率および貯蔵弾性率の測定を実施した。それらの結果を表1、表2、表3に示す。 Examples 1 to 15 and Comparative Examples 1 to 7 Resin compositions were prepared by mixing the raw materials of the types shown in Tables 1, 2 and 3 in the compositions shown in Tables 1, 2 and 3. About the obtained composition, the measurement of the tensile adhesive strength and the moisture-proof evaluation test were done. Moreover, the cure shrinkage rate and the storage elastic modulus were measured. The results are shown in Table 1, Table 2, and Table 3.

Figure 2007077321
Figure 2007077321

Figure 2007077321
Figure 2007077321

Figure 2007077321
Figure 2007077321

本発明のエネルギー線硬化性樹脂組成物は、ガラス、金属、ポリフェニレンスルフィドのような結晶性エンジニアリングプラスチック、ポリカーボネートのような透明性エンジニアリングプラスチック等の各種プラスチック材料等、様々な被着体に対して一様に高い接着強さを有し、耐熱性および耐湿性が良好で、剛性にも優れる特性をも有しているので、ガラス同士、ガラスと金属、ガラスとセラミック、ガラスとプラスチック、プラスチック同士、プラスチックと金属、及びプラスチックとセラミック等の接着或いは固定用途に適用できるし、特に硬化収縮性が低く、接着歪みの少ない特徴を有していることから機器の高性能化の進んでいるオプトエレクトロニクス分野での部品同士の接着や固定の用途に好適に使用できるので、産業上非常に有用である。 The energy ray curable resin composition of the present invention is suitable for various adherends such as glass, metal, crystalline engineering plastic such as polyphenylene sulfide, and various plastic materials such as transparent engineering plastic such as polycarbonate. With high adhesive strength, good heat resistance and moisture resistance, and excellent rigidity, so glass-to-glass, glass-to-metal, glass-to-ceramic, glass-to-plastic, plastic-to-plastic, Optoelectronics field, which can be applied to the bonding or fixing of plastics and metals, and plastics and ceramics, etc., and has particularly low cure shrinkage and low adhesive distortion. Can be used for bonding and fixing parts in the industry. It is always useful.

Claims (13)

(A)〜(F)成分を含有することを特徴とするエネルギー線硬化性樹脂組成物。
(ここで、
(A)成分は、分子の末端又は側鎖に1個以上の(メタ)アクリロイル基を有し、ポリブタジエン、ポリイソプレン、前2者の水素添加物からなる群から選ばれる1種以上で、分子量が500〜5000である(メタ)アクリレート、
(B)成分は、炭素数2〜7の飽和炭化水素をエステル結合を介して有する単官能(メタ)アクリレート、
(C)成分は、水酸基含有(メタ)アクリレート、
(D)成分は、多官能性(メタ)アクリレート、
(E)成分は、光重合開始剤、
(F)成分は、酸化防止剤、
である。)
An energy ray-curable resin composition comprising (A) to (F) components.
(here,
Component (A) is one or more selected from the group consisting of polybutadiene, polyisoprene, and the former two hydrogenated products, having one or more (meth) acryloyl groups at the end or side chain of the molecule. (Meth) acrylates having a 500 to 5000;
The component (B) is a monofunctional (meth) acrylate having a saturated hydrocarbon having 2 to 7 carbon atoms via an ester bond,
Component (C) is a hydroxyl group-containing (meth) acrylate,
(D) component is polyfunctional (meth) acrylate,
(E) component is a photopolymerization initiator,
(F) component is an antioxidant,
It is. )
更に、(G)成分として炭素数9〜12の飽和脂環式炭化水素をエステル結合を介して有する単官能(メタ)アクリレートを含有することを特徴とする請求項1記載のエネルギー線硬化性樹脂組成物。 The energy ray-curable resin according to claim 1, further comprising a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon having 9 to 12 carbon atoms via an ester bond as component (G). Composition. 更に、(H)成分としてカルボキシル基またはリン酸基を有する(メタ)アクリレートを含有することを特徴とする請求項1乃至2のいずれか1項に記載のエネルギー線硬化性樹脂組成物。 Furthermore, the (H) component contains the (meth) acrylate which has a carboxyl group or a phosphoric acid group, The energy beam curable resin composition of any one of Claim 1 thru | or 2 characterized by the above-mentioned. 更に、(I)成分としてシランカップリング剤を含有することを特徴とする請求項1乃至3のいずれか1項に記載のエネルギー線硬化性樹脂組成物。 Furthermore, a silane coupling agent is contained as (I) component, The energy-beam curable resin composition of any one of the Claims 1 thru | or 3 characterized by the above-mentioned. 更に、(J)成分として無機充填材を含有することを特徴とする請求項1乃至4のいずれか1項に記載のエネルギー線硬化性樹脂組成物。 Furthermore, an inorganic filler is contained as (J) component, The energy-beam curable resin composition of any one of the Claims 1 thru | or 4 characterized by the above-mentioned. (A)成分を30〜70質量%、(B)成分を10〜60質量%、(C)成分を2〜30質量%、(D)成分を2〜50質量%、(E)成分を0.01〜15質量%、(F)成分を0.01〜5質量%、(G)成分を0〜30質量%、(H)成分を0〜15質量%、(I)成分を0〜7質量%含有する組成物100質量部に対して(J)成分を50〜300質量部含有することを特徴とする請求項5記載のエネルギー線硬化性樹脂組成物。 (A) 30-70 mass% of component, (B) component 10-60 mass%, (C) component 2-30 mass%, (D) component 2-50 mass%, (E) component 0 0.01-15 mass%, (F) component 0.01-5 mass%, (G) component 0-30 mass%, (H) component 0-15 mass%, (I) component 0-7. The energy beam curable resin composition according to claim 5, wherein the component (J) is contained in an amount of 50 to 300 parts by mass with respect to 100 parts by mass of the composition containing 5% by mass. (B)成分がエチルメタクリレート、n−ブチルメタクリレート又はイソブチルメタクリレートから選択される少なくとも1種以上であることを特徴とする請求項1乃至6のいずれか1項に記載のエネルギー線硬化性樹脂組成物。 The energy beam curable resin composition according to any one of claims 1 to 6, wherein the component (B) is at least one selected from ethyl methacrylate, n-butyl methacrylate, and isobutyl methacrylate. . (D)成分がジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレートから選択される少なくとも1種以上であることを特徴とする請求項1乃至7のいずれか1項に記載のエネルギー線硬化性樹脂組成物。 The component (D) is at least one selected from dimethylol-tricyclodecane diacrylate, dimethylol-tricyclodecane dimethacrylate, trimethylolpropane trimethacrylate, and trimethylolpropane triacrylate. The energy ray curable resin composition according to any one of 1 to 7. (G)成分がイソボルニルメタクリレート、イソボルニルアクリレート、ジシクロペンタニルメタクリレート、ジシクロペンタニルアクリレート、2−メチル−2−アダマンチルメタクリレート、2−メチル−2−アダマンチルアクリレートから選択される少なくとも1種以上であることを特徴とする請求項1乃至8のいずれか1項に記載のエネルギー線硬化性樹脂組成物。 The component (G) is at least one selected from isobornyl methacrylate, isobornyl acrylate, dicyclopentanyl methacrylate, dicyclopentanyl acrylate, 2-methyl-2-adamantyl methacrylate, 2-methyl-2-adamantyl acrylate It is a seed | species or more, The energy-beam curable resin composition of any one of the Claims 1 thru | or 8 characterized by the above-mentioned. (H)成分が2−アクリロイルオキシエチルコハク酸、2−メタクリロイルオキシエチルコハク酸、アクリル酸ダイマー、2−メタクリロイルオキシエチルアシッドホスフェート、2−アクリロイルオキシエチルアシッドホスフェート、ω−カルボキシ-ポリカプロラクトンモノアクリレートから選択される少なくとも1種以上であることを特徴とする請求項1乃至9のいずれか1項に記載のエネルギー線硬化性樹脂組成物。 (H) Component is 2-acryloyloxyethyl succinic acid, 2-methacryloyloxyethyl succinic acid, acrylic acid dimer, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, ω-carboxy-polycaprolactone monoacrylate The energy ray curable resin composition according to claim 1, wherein the energy ray curable resin composition is at least one selected from the above. 請求項1乃至10のいずれか1項に記載のエネルギー線硬化性樹脂組成物からなることを特徴とする接着剤。 An adhesive comprising the energy ray-curable resin composition according to any one of claims 1 to 10. 請求項1乃至10のいずれか1項に記載のエネルギー線硬化性樹脂組成物からなる接着剤を用いてなることを特徴とする接合体。 The joined body formed using the adhesive agent which consists of an energy-beam curable resin composition of any one of Claims 1 thru | or 10. 請求項1乃至10のいずれか1項に記載のエネルギー線硬化性樹脂組成物からなることを特徴とする硬化体。 A cured body comprising the energy ray-curable resin composition according to any one of claims 1 to 10.
JP2005268503A 2005-09-15 2005-09-15 Energy ray curable resin composition and adhesive using the same Active JP4459880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268503A JP4459880B2 (en) 2005-09-15 2005-09-15 Energy ray curable resin composition and adhesive using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268503A JP4459880B2 (en) 2005-09-15 2005-09-15 Energy ray curable resin composition and adhesive using the same

Publications (2)

Publication Number Publication Date
JP2007077321A true JP2007077321A (en) 2007-03-29
JP4459880B2 JP4459880B2 (en) 2010-04-28

Family

ID=37937941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268503A Active JP4459880B2 (en) 2005-09-15 2005-09-15 Energy ray curable resin composition and adhesive using the same

Country Status (1)

Country Link
JP (1) JP4459880B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101151A (en) * 2006-10-20 2008-05-01 Denki Kagaku Kogyo Kk Curable composition
WO2012024070A2 (en) 2010-08-18 2012-02-23 Henkel Corporation Radiation curable temporary laminating adhesive for use in high temperature applications
WO2012029960A1 (en) * 2010-09-03 2012-03-08 電気化学工業株式会社 Resin composition and adhesive
KR20120086314A (en) 2009-10-14 2012-08-02 덴끼 가가꾸 고교 가부시키가이샤 Resin composition and adhesive agent
WO2012111154A1 (en) * 2011-02-18 2012-08-23 電気化学工業株式会社 Probe inspection method and cured resin composition
WO2012141298A1 (en) * 2011-04-13 2012-10-18 電気化学工業株式会社 Resin composition and adhesive
JP2012247787A (en) * 2007-04-04 2012-12-13 Dexerials Corp Method of manufacturing image display apparatus
JP2013107814A (en) * 2011-10-26 2013-06-06 Cemedine Co Ltd Laminated glass and display device using the same
KR20130086134A (en) 2010-05-21 2013-07-31 덴끼 가가꾸 고교 가부시키가이샤 Composition and adhesive
CN103305160A (en) * 2012-03-16 2013-09-18 琳得科股份有限公司 Adhesive composition, adhesive sheet and method for manufacturing semiconductor device
JP2014056250A (en) * 2007-04-09 2014-03-27 Dexerials Corp Photo-curable resin composition
JP2014185295A (en) * 2013-03-25 2014-10-02 Tamura Seisakusho Co Ltd Photosensitive resin composition
JP2015196833A (en) * 2014-03-31 2015-11-09 東洋合成工業株式会社 composition
US9423638B2 (en) 2006-07-14 2016-08-23 Dexerials Corporation Resin composition and display unit
JP2016535810A (en) * 2013-09-30 2016-11-17 エルジー・ケム・リミテッド Radical curable adhesive composition, polarizing plate and optical member containing the same
KR20170043483A (en) 2014-08-14 2017-04-21 덴카 주식회사 Energy beam-curable adhesive
KR101757526B1 (en) 2015-03-27 2017-07-12 주식회사 엘지화학 Radically polymerizable adhesive composition and polarizing plate and optical element comprising adhesive layer formed by using the same
US9885895B2 (en) 2007-07-17 2018-02-06 Dexerials Corporation Image display device and production method thereof
US10072183B2 (en) 2013-09-30 2018-09-11 Lg Chem, Ltd. Radical curable adhesive composition, and polarizing plate and optical member comprising same
US10216026B2 (en) 2007-04-09 2019-02-26 Dexerials Corporation Image display device that can display high brightness and high contrast images and includes a cured resin layer
US10876013B2 (en) 2007-04-10 2020-12-29 Dexerials Corporation Method for producing image display apparatus
WO2022092140A1 (en) * 2020-10-29 2022-05-05 デンカ株式会社 Curable composition, article, confirmation method, and adhesive composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101697404B1 (en) 2013-09-30 2017-01-17 주식회사 엘지화학 Polarizing plate and image display apparatus comprising the same
WO2015047004A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Radical curable adhesive composition, and polarizing plate and optical member comprising same
WO2015047000A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Radical curable adhesive composition, and polarizing plate and optical member comprising same
KR101697402B1 (en) 2013-09-30 2017-01-17 주식회사 엘지화학 Polarizing plate and image display apparatus comprising the same
WO2015046998A1 (en) * 2013-09-30 2015-04-02 주식회사 엘지화학 Radical curable adhesive composition, and polarizing plate and optical member comprising same
US20220169884A1 (en) * 2019-04-11 2022-06-02 3M Innovative Properties Company Curable composition, cured composition, and abrasion-resistant article
KR20220097640A (en) 2020-12-30 2022-07-08 삼성디스플레이 주식회사 Resin composition and display device including adhesive layer formed from the same

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423638B2 (en) 2006-07-14 2016-08-23 Dexerials Corporation Resin composition and display unit
US10684498B2 (en) 2006-07-14 2020-06-16 Dexerials Corporation Resin composition and display unit
US9885900B2 (en) 2006-07-14 2018-02-06 Dexerials Corporation Resin composition and display unit
US11467438B2 (en) 2006-07-14 2022-10-11 Dexerials Corporation Resin composition and display unit
US10989944B2 (en) 2006-07-14 2021-04-27 Dexerials Corporation Resin composition and display unit
US9599847B2 (en) 2006-07-14 2017-03-21 Dexerials Corporation Resin composition and display unit
US10989943B2 (en) 2006-07-14 2021-04-27 Dexerials Corporation Resin composition and display unit
JP2008101151A (en) * 2006-10-20 2008-05-01 Denki Kagaku Kogyo Kk Curable composition
JP2012247787A (en) * 2007-04-04 2012-12-13 Dexerials Corp Method of manufacturing image display apparatus
JP2017186569A (en) * 2007-04-09 2017-10-12 デクセリアルズ株式会社 Photocurable resin composition
US11237423B2 (en) 2007-04-09 2022-02-01 Dexerials Corporation Image display device that can display high brightness and high contrast images and includes a cured resin layer
US10725329B2 (en) 2007-04-09 2020-07-28 Dexerials Corporation Image display device that can display high brightness and high contrast images and includes a cured resin layer
US11740501B2 (en) 2007-04-09 2023-08-29 Dexerials Corporation Image display device that can display high brightness and high contrast images and includes a cured resin layer
JP2014056250A (en) * 2007-04-09 2014-03-27 Dexerials Corp Photo-curable resin composition
US9354462B2 (en) 2007-04-09 2016-05-31 Dexerials Corporation Image display device
US9348062B2 (en) 2007-04-09 2016-05-24 Dexerials Corporation Image display device
US10216026B2 (en) 2007-04-09 2019-02-26 Dexerials Corporation Image display device that can display high brightness and high contrast images and includes a cured resin layer
JP2016014885A (en) * 2007-04-09 2016-01-28 デクセリアルズ株式会社 Photo-curable resin composition
US11614647B2 (en) 2007-04-10 2023-03-28 Dexerials Corporation Method for producing image display apparatus
US10876013B2 (en) 2007-04-10 2020-12-29 Dexerials Corporation Method for producing image display apparatus
US9885895B2 (en) 2007-07-17 2018-02-06 Dexerials Corporation Image display device and production method thereof
KR20120086314A (en) 2009-10-14 2012-08-02 덴끼 가가꾸 고교 가부시키가이샤 Resin composition and adhesive agent
KR20130086134A (en) 2010-05-21 2013-07-31 덴끼 가가꾸 고교 가부시키가이샤 Composition and adhesive
WO2012024070A3 (en) * 2010-08-18 2012-05-31 Henkel Corporation Radiation curable temporary laminating adhesive for use in high temperature applications
EP2606098A2 (en) * 2010-08-18 2013-06-26 Henkel Corporation Radiation curable temporary laminating adhesive for use in high temperature applications
KR101747179B1 (en) 2010-08-18 2017-06-14 헨켈 아이피 앤드 홀딩 게엠베하 Radiation curable temporary laminating adhesive for use in high temperature applications
EP2606098A4 (en) * 2010-08-18 2014-04-02 Henkel Corp Radiation curable temporary laminating adhesive for use in high temperature applications
US8921443B2 (en) 2010-08-18 2014-12-30 Henkel IP & Holding GmbH Radiation curable temporary laminating adhesive for use in high temperature applications
WO2012024070A2 (en) 2010-08-18 2012-02-23 Henkel Corporation Radiation curable temporary laminating adhesive for use in high temperature applications
WO2012029960A1 (en) * 2010-09-03 2012-03-08 電気化学工業株式会社 Resin composition and adhesive
WO2012111154A1 (en) * 2011-02-18 2012-08-23 電気化学工業株式会社 Probe inspection method and cured resin composition
WO2012141298A1 (en) * 2011-04-13 2012-10-18 電気化学工業株式会社 Resin composition and adhesive
JPWO2012141298A1 (en) * 2011-04-13 2014-07-28 電気化学工業株式会社 Resin composition and adhesive
JP5863773B2 (en) * 2011-04-13 2016-02-17 デンカ株式会社 Resin composition and adhesive
JP2013107814A (en) * 2011-10-26 2013-06-06 Cemedine Co Ltd Laminated glass and display device using the same
CN103305160A (en) * 2012-03-16 2013-09-18 琳得科股份有限公司 Adhesive composition, adhesive sheet and method for manufacturing semiconductor device
US9434865B2 (en) 2012-03-16 2016-09-06 Lintec Corporation Adhesive composition, an adhesive sheet and a production method of a semiconductor device
JP2013194102A (en) * 2012-03-16 2013-09-30 Lintec Corp Adhesive composition, adhesive sheet and method for manufacturing semiconductor device
JP2014185295A (en) * 2013-03-25 2014-10-02 Tamura Seisakusho Co Ltd Photosensitive resin composition
US10228491B2 (en) 2013-09-30 2019-03-12 Lg Chem, Ltd. Radical curable adhesive composition, and polarizing plate and optical member comprising same
US10072183B2 (en) 2013-09-30 2018-09-11 Lg Chem, Ltd. Radical curable adhesive composition, and polarizing plate and optical member comprising same
JP2016535810A (en) * 2013-09-30 2016-11-17 エルジー・ケム・リミテッド Radical curable adhesive composition, polarizing plate and optical member containing the same
JP2015196833A (en) * 2014-03-31 2015-11-09 東洋合成工業株式会社 composition
KR20170043483A (en) 2014-08-14 2017-04-21 덴카 주식회사 Energy beam-curable adhesive
KR101757526B1 (en) 2015-03-27 2017-07-12 주식회사 엘지화학 Radically polymerizable adhesive composition and polarizing plate and optical element comprising adhesive layer formed by using the same
WO2022092140A1 (en) * 2020-10-29 2022-05-05 デンカ株式会社 Curable composition, article, confirmation method, and adhesive composition

Also Published As

Publication number Publication date
JP4459880B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4459880B2 (en) Energy ray curable resin composition and adhesive using the same
JP5210631B2 (en) Energy ray curable resin composition and adhesive using the same
JP5409994B2 (en) Curable composition
JP5382989B2 (en) adhesive
JP5845341B2 (en) Sealant composition
JP2008101105A (en) Curable composition
JP5570752B2 (en) Adhesive
JP2008101104A (en) Curable composition
JP2010144000A (en) Photocurable resin composition, photocurable moistureproof sealing material for use in electronic paper, electronic paper, and method for manufacturing the same
KR20120023123A (en) Photocurable composition
KR20080098109A (en) Synthetic method of (meth)acryl terminated polyurethane and uv curable waterproofing adhesive using the synthetic polyurethane for electronic device protection
WO2012029960A1 (en) Resin composition and adhesive
JP6712459B2 (en) Photocurable resin composition
JP2015074776A (en) Curable resin composition
JP7415497B2 (en) Heat-resistant acrylic adhesive composition
WO2011145524A1 (en) Composition and adhesive
JP5890634B2 (en) Gasket material, gasket and hard disk drive, and method for manufacturing gasket
JP2010265402A (en) Light and heat curing combined use-type resin composition, light and heat curing combined use-type moisture-proof sealing material for electronic paper, electronic paper, and method for producing the electronic paper
JP2008115341A (en) Curable composition
CN116648488A (en) Compositions comprising a monomer having a carboxylic acid group, a monomer having a hydroxyl group, a cycloalkyl monomer, and a crosslinker, and related articles and methods
JP2009221297A (en) Adhesive composition
JP2019112621A (en) Sealing agent for display
WO2022249965A1 (en) Heat-resistant acrylic adhesive composition
JP5863773B2 (en) Resin composition and adhesive
CN117715948A (en) Compositions comprising monomers having carboxylic acid groups, monomers having hydroxyl groups, alkyl monomers, and crosslinkers, and related articles and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250