WO2012111154A1 - Probe inspection method and cured resin composition - Google Patents

Probe inspection method and cured resin composition Download PDF

Info

Publication number
WO2012111154A1
WO2012111154A1 PCT/JP2011/053552 JP2011053552W WO2012111154A1 WO 2012111154 A1 WO2012111154 A1 WO 2012111154A1 JP 2011053552 W JP2011053552 W JP 2011053552W WO 2012111154 A1 WO2012111154 A1 WO 2012111154A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
resin composition
meth
curable resin
acrylate
Prior art date
Application number
PCT/JP2011/053552
Other languages
French (fr)
Japanese (ja)
Inventor
剛介 中島
渡辺 淳
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to PCT/JP2011/053552 priority Critical patent/WO2012111154A1/en
Publication of WO2012111154A1 publication Critical patent/WO2012111154A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to an inspection method for inspecting the state of a probe, a curable resin composition used for transferring a probe trace in a probe inspection step, a cured body obtained by curing the curable resin composition, and the cured body
  • the present invention relates to a probe inspection apparatus including a sheet made of
  • the electrical characteristics are generally inspected using a probe device.
  • a probe device When inspecting the electrical characteristics of the IC chip using the probe device, it is necessary to align the probe in order to bring the electrode pad on the IC chip into contact with the probe provided on the probe card.
  • the tip of the probe is photographed with a CCD camera or the like, and the position of the probe tip is determined based on the X and Y coordinate positions at this time.
  • this method has a problem that it takes a long time to align the probe because it takes time to focus the camera on the tip of the probe.
  • the conventional probe positioning method determines the position of the tip of the probe in a non-contact state, and does not take into account the shift at the time of contact.
  • a probe inspection method and a probe inspection apparatus that provide a member for transferring a needle trace, transfer the probe trace of the probe to the member, and align the probe based on the transferred needle trace. Proposed.
  • Patent Literature 1 the traces of the tips of a plurality of probes on a probe card are transferred to a deformed body before inspection, and the push-in depth of the probe into the electrode is calculated based on the size of the needle trace opening. The time required for alignment is shortened.
  • Patent Document 2 a support base is provided in the probe device, and a sheet for providing a probe trace on the support base is provided, and the probe is aligned based on the transferred needle trace. Proposed.
  • Patent Document 3 the needle trace transferred to the needle trace evaluation wafer is image-recognized, and the needle trace of the probe needle is evaluated by superimposing the virtual electrode pad and the image-recognized needle trace. An evaluation method has been proposed.
  • Patent Document 4 a probe is brought into contact with a probe position adjusting film made of an elastomer composition to make a scar, and the positional relationship between the scar and the electrode portion of the integrated circuit is confirmed. A method for adjusting the position of the probe is described.
  • Patent Document 5 a transparent film is pasted on a detection substrate on which an electrode is formed, and the position of the needle trace transferred on the transparent film is compared with the position of the electrode on the substrate. A method is described in which the probe is positioned with high accuracy without being affected by the repetition accuracy of movement.
  • Patent Document 6 when performing an inspection at a high temperature, the probe is pressed against the transfer sheet at a high temperature to transfer the needle trace, thereby preventing the displacement of the probe due to the thermal expansion of the probe card, A method for positioning the probe with high accuracy even at high temperatures is described. Further, a method of repeatedly using the transfer sheet by melting the transfer sheet by heating to eliminate the needle trace has been proposed.
  • Patent Document 7 discloses that a needle shape transfer member uses a shape memory polymer that reversibly and rapidly changes between a glass state having a high elastic modulus and a rubber state having a low elastic modulus at a glass transition temperature. It is described that the trace can be erased in a very short time to increase the throughput, and that the influence of temperature can be reduced during high temperature inspection.
  • Patent Document 8 discloses a curable resin composition containing a monofunctional (meth) acrylate and / or (meth) acrylamide and a photopolymerization initiator as a needle trace transfer member and having a glass transition temperature of 130 ° C. or lower.
  • the article describes that needle traces can be easily erased by heating above the glass transition temperature and can be used repeatedly.
  • Patent Document 1 Although it is described that the deformable body is heated to refill the needle traces and reused, examples of the material of the deformable body include low melting point metals, alloys, or organic insulators. However, specific materials and heating conditions for implementing reuse are not shown.
  • Patent Document 2 when transferring a needle trace a plurality of times, the transfer position of the needle trace must be shifted each time, so the number of repetitions is limited, and the probe is further displaced from a predetermined position. In some cases, there is a possibility of overlapping with the last transferred needle trace. Further, no method for reusing the sheet other than shifting the needle mark transfer position is shown.
  • Patent Documents 3 and 4 do not mention the reuse of the needle trace transfer member, and in Patent Document 4, in particular, the heat resistance remaining of the needle trace is imparted so that the needle trace does not disappear. Therefore, it is difficult to eliminate the needle trace and reuse it.
  • Patent Document 5 the adhesiveness of the transparent film is lowered by ultraviolet irradiation, and the detection substrate can be reused by peeling the film.
  • the method for reusing the transparent film is not shown.
  • Patent Document 7 it is possible to erase the needle trace for a short time by using the shape memory polymer.
  • the shape memory polymer is set to a temperature lower than that of the wafer chuck holding the wafer during the transfer of the needle trace. Therefore, there is a possibility that the temperature difference may adversely affect the high temperature inspection.
  • a shape memory polymer is deformed in a state of being heated to a temperature higher than the glass transition temperature, and the shape is memorized by cooling while maintaining the state.
  • Patent Document 7 performs needle trace transfer at a temperature lower than the glass transition temperature, the shape of the needle tip may not be memorized.
  • Patent Document 8 describes that a polyfunctional (meth) acrylate having two or more functions may be contained. Even if polyfunctional (meth) acrylate is not used, there is no description that cracks do not occur around the needle traces when forming the needle traces.
  • Patent Documents 9 and 10 there is no description that changes the shape of the cured body of the curable resin composition by heating.
  • the storage stability of the curable resin composition is improved by blending a polymerization inhibitor. This improvement in stability is in the liquid state before curing, and is shown below. There is no description about the durability improvement of the cured body of such a curable resin composition.
  • the present invention has been made in view of the above circumstances, and an object thereof is an inspection method capable of repeatedly inspecting a probe without exchanging a member for transferring a needle trace for each inspection or for each type of wafer. Is to provide. It is another object of the present invention to provide a curable resin composition that can be easily transferred by contact with a probe and that can easily be erased by a simple method. Moreover, it is providing the hardening body formed by hardening
  • a cured body of the curable resin composition is brought into contact with a probe for inspecting the electrical characteristics of an object to be inspected, and the needle trace of the probe is transferred to the cured body, and the transferred needle trace is used as a basis. And confirming the state of the probe and transferring the probe traces of the probe, and then heating the cured body to a temperature equal to or higher than the glass transition temperature of the cured body to erase the probe traces of the probe.
  • the curable resin composition is (A) a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond, (B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond: (C) a photopolymerization initiator, (D) A probe inspection method containing an antioxidant and having a glass transition temperature of 40 ° C. or more and 100 ° C. or less of a cured product of the curable resin composition.
  • the thickness of the cured body of the curable resin composition is 20 to 100 ⁇ m.
  • the curable resin composition according to the present invention is: Component (A) is 10 to 99 parts by weight, component (B) is 1 to 90 parts by weight, and (C) photopolymerization initiator is 0.1 parts by weight with respect to 100 parts by weight as a total of component (A) and component (B). 1 to 20 parts by mass and (D) 0.001 to 3 parts by mass of an antioxidant.
  • the present invention provides a cured body for transferring a probe mark of a probe formed by curing the curable resin composition.
  • a sheet made of the cured product A support table on which the sheet is placed; A heating device for heating the sheet above the glass transition temperature of the cured body; A probe card having a probe; An inspection apparatus for a probe, comprising: an imaging device for confirming a state of the probe based on a probe mark transferred to the sheet.
  • the inspection method of the present invention it is possible to repeatedly inspect the probe without exchanging the member for transferring the needle trace for each inspection or for each type of wafer.
  • the cured product of the curable resin composition according to the present invention is a copolymer of (A) and (B).
  • the cured product of the curable resin composition according to the present invention generally has a two-phase structure of a stationary phase for preventing resin fluidity and a softened / cured reversible phase in which softening and curing occur reversibly with temperature change. It is different from the shape memory polymer.
  • the member that transfers the needle trace can be brought into contact with the probe to easily transfer the needle trace, and the member that transfers the needle trace is heated to the glass transition temperature or higher.
  • the needle trace can be easily erased, and the effect that the sheet made of the cured body does not melt when heated is obtained.
  • the storage stability and durability are improved, and in particular, even when repeatedly heated above the glass transition temperature, the cured product does not deteriorate and the effect of high durability can be obtained.
  • the needle trace can be easily transferred by being brought into contact with the probe, and the needle trace can be easily erased by heating to the glass transition temperature or higher.
  • the inspection of the probe can be repeatedly performed without changing every inspection or every kind of wafer.
  • the “curable resin composition” means a mixture containing a resin that is cured by light irradiation to form a cured product.
  • the curable resin composition has a temperature range that is a glass transition temperature described below.
  • the “glass transition temperature” is a temperature at which the liquid state (rubber state) reversibly changes to an amorphous solid (glass state) or an amorphous solid (glass state) to a liquid state (rubber state). ) Means a reversibly changing temperature.
  • the glass transition temperature is defined by, for example, JIS K 7121.
  • the inventor can transfer the needle trace by bringing a probe into contact with a cured body of a specific curable resin composition, and then heating the cured body to a temperature higher than the glass transition temperature.
  • the needle trace can be erased, and furthermore, by obtaining a cured body of the curable resin composition as a thin film, the needle trace transferred onto the cured body and the reference position formed on the wafer can be observed simultaneously with the same focus.
  • the present invention has been obtained and the present invention has been achieved.
  • the curable resin composition according to this embodiment is (A) a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond, (B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond: (C) a photopolymerization initiator, (D) A curable resin composition for transferring a probe trace of a probe containing an antioxidant and having a glass transition temperature of 40 ° C. or higher and 100 ° C. or lower of a cured product of the curable resin composition.
  • the needle trace can be easily transferred by bringing the needle trace transfer member into contact with the probe, and the needle trace transfer member is heated to the glass transition temperature or higher. With this, it is possible to easily erase the needle trace.
  • saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms include a dicyclopentanyl group, an isobornyl group, an adamantyl group, and the like. From the viewpoint of cost, a dicyclopentanyl group and an isobornyl group are particularly preferable. Groups and the like.
  • acrylate and methacrylate acrylate is preferably selected because it has a high curing rate.
  • Examples of the monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond include 2-methyl-2-adamantyl (meth) acrylate and 2-ethyl-2-adamantyl.
  • These monofunctional (meth) acrylates are preferable in terms of imparting needle trace transferability.
  • the curable resin composition of this invention has the glass transition temperature of the hardened
  • the glass transition temperature of the cured body is 40 ° C. or more and 100 ° C. or less
  • the cured curable resin composition is cured in the step of erasing the probe traces by heating the cured body after transferring the probe traces of the probe. It can suppress that the sheet
  • glass transition temperature of the cured body is less than 40 ° C., it becomes difficult to transfer the probe traces of the probe, and when the glass transition temperature of the cured body exceeds 100 ° C., it becomes difficult to erase the probe traces of the probe. In order to set the glass transition temperature of the cured product to 40 ° C. or more and 100 ° C.
  • the curable resin composition of the present invention has a glass transition temperature of 40 ° C. or more and 100 ° C. or less of the cured product, but further suppresses the melting behavior during heating of the sheet made of the cured product of the curable resin composition.
  • it is preferably 50 ° C. or higher, more preferably 55 ° C. or higher.
  • the glass transition temperature of the cured product is further preferably 70 ° C. or higher.
  • the glass transition temperature is preferably less than 100 ° C, more preferably 95 ° C or less, and most preferably 90 ° C or less.
  • heating and cooling can be easily performed with an electric heater, a dryer or the like.
  • (B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; (At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond))
  • Examples of the saturated hydrocarbon group having 5 to 18 carbon atoms include, for example, 2-ethylhexyl group, octyl group, isooctyl group, isoamyl group, nonyl group, isononyl group, decyl group, Examples include a lauryl group, a tridecyl group, a tetradecyl group, an isotetradecyl group, a stearyl group, and an isostearyl group, and particularly preferably an isoamyl group and a lauryl group.
  • methacrylate is preferably selected.
  • Examples of the monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding the saturated alicyclic hydrocarbon group) via an ester bond include, for example, isoamyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) Acrylate, isotetradecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, and the like, preferably isoamyl (meth) acrylate, lauryl (meth) acrylate
  • alkoxyalkyl group having 2 to 8 carbon atoms examples include methoxymethyl group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group, butoxyethyl group, propoxyethyl group, methoxypropyl group, methoxybutyl group and the like. Particularly preferred are a butoxyethyl group and an ethoxyethyl group.
  • methacrylate and methacrylate methacrylate is preferably selected.
  • Examples of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond include methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl.
  • (Meth) acrylate, butoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, methoxybutyl (meth) acrylate, and the like are preferable, butoxyethyl (meth) acrylate, ethoxyethyl (meth) ) Acrylate and the like, more preferably butoxyethyl (meth) acrylate and the like. These may be used alone or in combination of two or more.
  • (A) :( B) 10 to 99: 1 to 90 parts by mass is preferable, 40 to 95 parts by mass: 5 to 60 parts by mass is more preferable. 50 to 90 parts by mass: 10 to 50 parts by mass is still more preferred, and 60 to 85 parts by mass: 15 to 40 parts by mass is most preferred.
  • the glass transition temperature can be set to 40 ° C. or more and 100 ° C. or less, and the effect of imparting needle trace transferability in a temperature range from room temperature to high temperature (for example, 80 to 90 ° C.) can be obtained. it can. Moreover, the prevention effect of the melting behavior at the time of heating and the deterioration prevention effect when repeatedly heated above the glass transition temperature can be enhanced.
  • the curable resin composition is preferably a bifunctional or higher polyfunctional (meth) acrylate, preferably 3 parts by mass or less in a total of 100 parts by mass of the monofunctional (meth) acrylate and the polyfunctional (meth) acrylate. Less than or equal to parts by mass is more preferred, and most preferably no polyfunctional (meth) acrylate is contained.
  • polyfunctional (meth) acrylate is contained in the curable resin composition, cracks may be generated around the needle marks when the needle marks are formed.
  • (meth) acrylate containing phosphorus may be used in combination with the composition of the above components (A) and (B).
  • the curable resin composition further includes a photopolymerization initiator in addition to the above (A) and (B).
  • the photopolymerization initiator is blended for sensitization with visible light or ultraviolet actinic light to promote photocuring of the resin composition, and various known photopolymerization initiators are preferably used.
  • the photopolymerization initiator is not particularly limited, but benzophenone and its derivatives, benzyl and its derivatives, anthraquinone and its derivatives, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, benzyldimethyl Benzoin derivatives such as ketal, acetophenone derivatives such as diethoxyacetophenone, 4-t-butyltrichloroacetophenone, 2-dimethylaminoethylbenzoate, p-dimethylaminoethylbenzoate, diphenyldisulfide, thioxanthone and its derivatives, camphorquinone, 7,7 -Dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxylic acid, 7,7-dimethyl-2,3-dioxobicyclo 2.2.1]
  • benzoin derivatives and / or ⁇ -aminoalkylphenone derivatives are preferred because of their great effects.
  • benzoin derivatives benzyldimethyl ketal is preferable because of its large effect.
  • ⁇ -aminoalkylphenone derivatives 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one is preferable because of its large effect.
  • photopolymerization initiator one or a combination of two or more of the above substances can be used.
  • the amount of the photopolymerization initiator used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the above (A) and (B).
  • the usage-amount of a photoinitiator exists in this range, the obtained curable resin composition can further prevent melting and flowing at the time of heating.
  • the usage-amount of a photoinitiator is 0.1 mass part or more, the effect of a hardening acceleration will be acquired reliably, and if it is 20 mass parts or less, sufficient hardening rate can be achieved.
  • the amount of the photopolymerization initiator used is further preferably 0.5 to 15 parts by mass, and more preferably 1 to 10 parts by mass.
  • the said curable resin composition contains antioxidant for the durability improvement and storage stability improvement.
  • the antioxidant is not particularly limited as long as it is a generally known antioxidant such as a hindered phenol, a phosphorus-based antioxidant, or a sulfur-based antioxidant.
  • hindered phenols include 2,2-methylene-bis (4-methyl-6-tertiarybutylphenol), pentaerythritol tetrakis (3- (3,5-di-tertiarybutyl-4-hydroxyphenyl) propionate, octadecyl -3- (3,5-di-tertiarybutyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-tertiarybutyl-4-hydroxyphenyl) propionate
  • the inhibitor include tris (2,4-di-t-butylphenyl) phosphite, tris [2-[[2,4,8,10-tetra-t-butyldibenzo [d, f] [1,3 , 2] diox
  • Dipropionate dioctadecyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, pentaerythrityltetrakis (3-laurylthiopropionate), 2-mercaptobenzimidazole, etc.
  • Other compounds that can be used as antioxidants include hydroquinone, catechol, and hydroquinone monomethyl ether.
  • Examples include acid, phenothiazine, tertiary butyl catechol, 2-butyl-4-hydroxyanisole, 2,6-di-tert-butyl-p-cresol, and 4-methoxy-1-naphthol.
  • hindered phenol is preferable because of its great effect.
  • 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) is preferable because of its great effect.
  • antioxidant one or more of the above substances can be used in combination.
  • the amount of these antioxidants used is preferably 0.001 to 3 parts by mass with respect to 100 parts by mass of the total amount of the above (A) and (B). If the amount of the antioxidant used is 0.001 part by mass or more, durability and storage stability are sufficient, and if it is 3 parts by mass or less, reliable adhesiveness is obtained and there is no possibility of becoming uncured. .
  • the amount of antioxidant used is more preferably 0.01 to 2 parts by mass.
  • durability means that the cured product of the curable resin composition is deteriorated even if a thermal history is obtained by repeating needle trace transfer and heat erasure to the cured product of the curable resin composition. Without having a thermal history, it shows that it has the same needle trace transferability and needle trace erasability as before. If the amount of antioxidant used is small, the cured product will deteriorate due to repeated needle trace transfer and heat erasure, and the way the needle traces are attached will change, for example, the depth of the needle traces will become less uniform. There is a risk that.
  • the curable resin composition is composed of various elastomers such as acrylic rubber, urethane rubber, acrylonitrile-butadiene-styrene rubber, solvents, reinforcing materials, plasticizers, thickeners, dyes, pigments, flame retardants.
  • additives such as a silane coupling agent and a surfactant may be included.
  • an inorganic filler or an inorganic filler is contained in the curable resin composition of the present invention.
  • the probe and the inorganic filler or the probe and the inorganic extender may come into contact with each other when the needle trace is transferred to the cured body of the curable resin composition. This is because there is a risk of bending.
  • the cured product of the curable resin composition can be obtained as a thin film.
  • the needle trace transferred to the cured product of the curable resin composition and the reference position on the wafer can be observed simultaneously with the same focus. Leads to shortening.
  • the thickness of the cured body is preferably 20 to 100 ⁇ m, and more preferably 40 to 60 ⁇ m. If the thickness of the cured body is 20 ⁇ m or more, it is sufficient to reliably obtain a continuous cured body. Further, if the thickness of the cured body is 100 ⁇ m or less, it can correspond to the thickness of a general semiconductor wafer, and the needle trace transferred to the cured body and the reference position on the wafer can be observed simultaneously with the same focus.
  • Embodiment 2 Probe inspection method
  • a cured body of a curable resin composition is brought into contact with a probe for inspecting electrical characteristics of an object to be inspected such as an IC chip on a wafer, and a probe trace of the probe is placed on the cured body.
  • the cured body is heated above the glass transition temperature of the cured body to erase the probe needle trace.
  • the inspection of the probe can be repeatedly performed without replacing the member for transferring the needle trace for each inspection or for each type of wafer.
  • “without replacement” does not mean that the member for transferring the needle trace is not permanently replaced. That is, when replacement is necessary due to deterioration, wear, or the like, replacement is performed as appropriate, but it is sufficient that it can be used repeatedly at least twice.
  • a cured body of the curable resin composition is brought into contact with a probe used for inspection, and the needle trace of the probe is transferred to the cured body. Then, after checking the state of the probe based on the needle trace of the transferred probe, the wafer is inspected using the probe. At this time, if the confirmation operation reveals that the position of the probe is not appropriate or the depth of pushing is not sufficient, the probe can be appropriately adjusted.
  • the contact means that the probe is pressed against the surface of the cured body so that a probe mark of the probe is formed on the surface of the cured body.
  • probe traces of the probe are formed on the surface of the cured body.
  • Transfer is the formation of probe marks on the surface of the cured body by the contact operation described above.
  • the confirmation of the probe state based on the needle trace is preferable because it is surely performed by visual observation using an imaging device such as a CCD camera. For example, an image captured by the imaging device is analyzed by software. Then, the probe arrangement may be automatically corrected.
  • the temperature at the time of contact and transfer is the same as the temperature at which the electrical characteristics of the IC chip are inspected, and examples thereof include room temperature and high temperature.
  • the room temperature is preferably 20 to 30 ° C.
  • the high temperature is preferably from 70 to 100 ° C, more preferably from 80 to 90 ° C.
  • the temperature at the time of confirmation is the same as or lower than the above temperature.
  • the cured body is heated to a temperature higher than the glass transition temperature of the cured body to erase the probe traces of the probe. Further, the erasing of the needle trace may be performed for each inspection of different types of wafers.
  • erasing the needle trace is to raise the temperature of the cured body to a temperature higher than the glass transition temperature by heating the cured body and to erase the needle trace of the probe formed on the surface of the cured body. Needle traces need not be erased completely.
  • the height gap between the lowermost part of the needle trace and the surface of the hardened body becomes 100 nm or less, it is assumed that it has been erased. More preferably, it is erased when it becomes 50 nm or less.
  • Whether or not the needle trace has been erased can be confirmed by visual observation using an imaging device. By erasing the needle marks formed on the surface of the cured body, a plurality of inspections can be repeated with one cured body.
  • the cured body is a cured body obtained by curing the curable resin composition by light irradiation in the present invention, and the curable resin composition described in Embodiment 1 is used.
  • the wavelength upon irradiation is preferably 355 to 375 nm, and more preferably 360 to 370 nm. If it is 350 nm or more, the light absorption of another component can be suppressed, and if it is 375 nm or less, the decomposition reaction of the photoinitiator proceeds.
  • Integrated quantity of light during irradiation is preferably 1500 ⁇ 6000mJ / cm 2, more preferably 3000 ⁇ 5000mJ / cm 2, and most preferably 3500 ⁇ 4500mJ / cm 2. If it is 1500 mJ / cm 2 or more, the curing reaction proceeds sufficiently, and if it is 6000 mJ / cm 2 or less, there is no photodegradation.
  • the inspection object is inspected at a high temperature (eg, 80 ° C. to 90 ° C.)
  • a high temperature eg, 80 ° C. to 90 ° C.
  • the temperature of the cured body can be the same as the temperature at the time of inspection of the object to be inspected. That is, the position of the probe tip of the probe at a high temperature can be detected.
  • the probe tip can be accurately brought into contact with the electrode pad without the probe tip position being deviated from the detection position.
  • a sheet 10 made of a cured body, a support base 12 on which the sheet 10 is placed, and the sheet 10 are heated to a temperature higher than the glass transition temperature of the cured body.
  • a probe inspection apparatus comprising a heating device 17, a probe card 14 having a probe 15, and an imaging device 16 for confirming the probe state based on the needle trace 11 of the probe 15 transferred to the sheet 10.
  • the probe inspection apparatus may be incorporated in a probe apparatus including a mounting table 13 on which an object to be inspected such as a wafer W is mounted.
  • the constituent members of the inspection apparatus are not limited to those described above, and may include a vacuum pump, a gas supply source, a control mechanism for controlling the movement of the mounting table, and the like.
  • the inspection apparatus may be incorporated in an apparatus such as a vacuum chamber.
  • the curable resin composition according to Embodiments 1 and 2 can erase the needle trace by heating the glass trace temperature or higher after contacting the probe after curing to transfer the needle trace.
  • the glass transition temperature of the curable resin composition can be obtained by a simple heating method. Although it does not specifically limit as a heating method, Since it can be used easily, it is preferable to use an electric heater, a dryer, etc.
  • the heating temperature is preferably 180 ° C. or lower, more preferably 50 to 150 ° C.
  • a heating temperature of 180 ° C. or lower is preferable because the curable resin composition can withstand multiple uses.
  • the heating device means, for example, an electric heater, a dryer or the like.
  • the heating device needs to be able to heat the temperature of the sheet 10 to be equal to or higher than the glass transition temperature, but is preferably attached so as not to affect other members and the object to be inspected.
  • the needle trace erasing method can be not only heating but also combining heating and pressurization. By pressurizing, the surface of the cured body can be further kept flat.
  • a method for pressurizing the curable resin composition it is preferable to use a conventionally known apparatus such as a press.
  • the curable resin compositions of Embodiments 1 and 2 can be used repeatedly, but the number of repetitions is preferably 2 or more, and from the viewpoint of cost, it is preferable that the curable resin composition can be used 30 or more times.
  • the method for producing the mark include ink application by ink jet, screen printing, metal vapor deposition, laser ablation, and the like, but ink application by ink jet is preferable from the viewpoint of workability and durability against repeated use.
  • Example 1 Each material was mix
  • MDP Antioxidant 2,2-methylene-bis (4-methyl-6-tertiary butylphenol)
  • the tensile shear bond strength was measured according to JIS K 6850. Specifically, using the heat-resistant Pyrex (registered trademark) glass (25 mm ⁇ 25 mm ⁇ 2.0 mm) as the adherend, the produced curable resin composition was applied in a circular shape with a diameter of 8 mm, and the shape of the adhesive surface Two heat-resistant Pyrex (registered trademark) glasses were bonded together in a circular state with a diameter of 8 mm.
  • the test piece for tensile shear bond strength measurement was produced. Then, using a tensile tester, the tensile shear bond strength of the prepared test piece was measured in an environment of a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min and an adhesive thickness of 100 ⁇ m.
  • the presence or absence of transfer of the needle trace to the surface of the cured product of the curable resin composition was observed with a confocal laser microscope.
  • the depth of the needle trace was measured.
  • the depth of the needle mark was measured with a confocal laser microscope (OLYMPUS, “OLS1100”, magnification: 500 times). Further, when the needle trace was transferred, the number of cracks was confirmed in order to know whether there was a crack around the needle trace.
  • needle mark depth after heating at 140 ° C. Number of cracks in needle mark erasure
  • Example 2 to 13 A curable resin composition was prepared in the same manner as in Example 1 except that the raw materials of the type shown in Table 1 were used in the composition shown in Table 1. The obtained curable resin composition was evaluated in the same manner as in Example 1. Table 1 shows the experimental results. The needle trace transferability of Example 4 was evaluated at 85 ° C.
  • FA-513AS Dicyclopentanyl acrylate (manufactured by Hitachi Chemical Co., Ltd., “FANCRYL FA-513AS”)
  • IM-A Isotetradecyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., “Light acrylate IM-A”)
  • L Lauryl methacrylate (manufactured by Kyoeisha Chemical Co., “Light Ester L”)
  • EH 2-ethylhexyl methacrylate (manufactured by Kyoeisha Chemical Co., “Light Ester EH”)
  • BO Butoxyethyl methacrylate (manufactured by Kyoeisha Chemical Co., “Light Ester BO”)
  • 2-MTA Methoxyethyl acrylate (Osaka Organic Chemical Industry Co., Ltd.,
  • the needle trace could be transferred and the needle trace could be erased by heating. That is, by using the curable resin composition according to the present invention, the inspection of the probe can be repeatedly performed without replacing the member for transferring the needle trace for each inspection or for each type of wafer.
  • Comparative Example 1 since Comparative Example 1 had a glass transition temperature of less than 40 ° C., needle trace transfer was not possible, and the cured product was melted after heating. In Comparative Example 2, the needle traces could not be erased by heating because heating was not performed above the glass transition temperature. In Comparative Example 3, since the bifunctional monomer was contained, a crack occurred around the needle trace, and the crack remained even after heating. If cracks remain, there is a risk of adversely affecting the detection of subsequently transferred needle traces, leading to a reduction in the number of times that they can be used repeatedly. Moreover, although the comparative example 4 was also slight, the crack remained. In Comparative Example 5, since no antioxidant was used, the cured product deteriorated due to repeated needle trace transfer and heat erasure, and the needle trace depth became shallower than the initial one.
  • the cured product of the curable resin composition according to the present invention can be formed to a thickness of about 20 to 100 ⁇ m.
  • the cured body By forming the cured body to such a thickness, it is possible to cope with the thickness of a general semiconductor wafer. That is, the probe trace transferred to the cured body and the reference position formed on the wafer can be observed simultaneously with the same focus, and the working time can be shortened.
  • Example 4 if the glass transition temperature is high, it can be used at a high temperature, and deep needle traces can be transferred by raising the temperature during needle trace transfer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

Provided are: a probe inspection method that confirms the state of a probe for inspecting the electrical characteristics of a subject of inspection; and a cured resin composition used in the probe inspection method. The probe inspection method contains a step wherein a cured body of a specific cured resin composition is brought into contact with the probe for inspecting the electrical characteristics of a subject of inspection, the needle mark of the probe is transferred to the cured body, the state of the probe is confirmed on the basis of the transferred needle mark, and after transferring the needle mark of the probe, the cured body is heated to at least the glass transition temperature of the cured body, eliminating the needle mark of the probe. By means of the step, the cured body is repeatedly made available for inspecting. The cured resin composition contains a specific monofunctional (meth)acrylate, a photoinitiator, and an antioxidant. The glass transition temperature of the cured body of the cured resin composition is 40-100°C inclusive.

Description

プローブの検査方法及び硬化性樹脂組成物Probe inspection method and curable resin composition
 本発明は、プローブの状態を検査する検査方法、プローブ検査工程においてプローブの針跡を転写するのに用いる硬化性樹脂組成物、該硬化性樹脂組成物を硬化してなる硬化体、該硬化体からなるシートを備えるプローブの検査装置に関する。 The present invention relates to an inspection method for inspecting the state of a probe, a curable resin composition used for transferring a probe trace in a probe inspection step, a cured body obtained by curing the curable resin composition, and the cured body The present invention relates to a probe inspection apparatus including a sheet made of
 半導体の製造工程でウエハ上に形成されたICチップの良否を判定する際、一般にプローブ装置を用いて電気的特性を検査している。プローブ装置を用いてICチップの電気的特性を検査する時には、ICチップ上の電極パッドとプローブカードに設けられたプローブとを接触させるために、プローブの位置合わせを行う必要がある。 In determining the quality of an IC chip formed on a wafer in a semiconductor manufacturing process, the electrical characteristics are generally inspected using a probe device. When inspecting the electrical characteristics of the IC chip using the probe device, it is necessary to align the probe in order to bring the electrode pad on the IC chip into contact with the probe provided on the probe card.
 従来、プローブの位置合わせは、CCDカメラ等でプローブの針先を撮影し、この時のX、Yの座標位置に基づいてプローブ先端の位置を決定していた。しかし、この方法では、プローブの先端にカメラのフォーカスを合わせるのに時間がかかるため、プローブの位置合わせに長時間を有するという問題点があった。 Conventionally, for probe alignment, the tip of the probe is photographed with a CCD camera or the like, and the position of the probe tip is determined based on the X and Y coordinate positions at this time. However, this method has a problem that it takes a long time to align the probe because it takes time to focus the camera on the tip of the probe.
 又、ICチップ上の電極パッドとプローブとが電気的に接触するには、ある所定の深さまでプローブの先端を押し込む必要がある。プローブによっては、押し込む際にプローブの先端の位置が一定方向にずれる場合がある。しかし、従来のプローブの位置合わせ方法は、非接触の状態でプローブの先端の位置を決定しており、接触時のずれを考慮していなかった。 Also, in order for the electrode pad on the IC chip and the probe to make electrical contact, it is necessary to push the tip of the probe to a certain predetermined depth. Depending on the probe, the position of the tip of the probe may shift in a certain direction when pushed. However, the conventional probe positioning method determines the position of the tip of the probe in a non-contact state, and does not take into account the shift at the time of contact.
 上記の問題を解決するため、針跡を転写する部材を設け、その部材にプローブの針跡を転写し、転写された針跡を基にプローブの位置合わせを行うプローブ検査方法及びプローブ検査装置が提案されている。 In order to solve the above problems, there is provided a probe inspection method and a probe inspection apparatus that provide a member for transferring a needle trace, transfer the probe trace of the probe to the member, and align the probe based on the transferred needle trace. Proposed.
 例えば、特許文献1では、検査前にプローブカードの複数のプローブの先端跡を変形体に転写し、この針跡開口の大きさに基づいてプローブの電極への押し込み深さを算出し、プローブの位置合わせに要する時間を短縮している。 For example, in Patent Literature 1, the traces of the tips of a plurality of probes on a probe card are transferred to a deformed body before inspection, and the push-in depth of the probe into the electrode is calculated based on the size of the needle trace opening. The time required for alignment is shortened.
 又、特許文献2では、プローブ装置内に支持台を設けるとともに、その支持台上にプローブの針跡をつけるためのシートを設け、転写された針跡を基にプローブの位置合わせを行うことが提案されている。 In Patent Document 2, a support base is provided in the probe device, and a sheet for providing a probe trace on the support base is provided, and the probe is aligned based on the transferred needle trace. Proposed.
 又、特許文献3では、針跡評価用ウエハに転写した針跡を画像認識し、仮想の電極パッドと画像認識された前記針跡とを重ね合わせて前記針跡を評価するプローブ針の針跡評価方法が提案されている。 In Patent Document 3, the needle trace transferred to the needle trace evaluation wafer is image-recognized, and the needle trace of the probe needle is evaluated by superimposing the virtual electrode pad and the image-recognized needle trace. An evaluation method has been proposed.
 又、特許文献4には、エラストマー組成物からなるプローブ位置調整用フィルムにプローブを接触させて傷跡を付け、この傷跡と集積回路の電極部との位置関係を確認し、その位置関係を基にプローブの位置を調整する方法が記載されている。 In Patent Document 4, a probe is brought into contact with a probe position adjusting film made of an elastomer composition to make a scar, and the positional relationship between the scar and the electrode portion of the integrated circuit is confirmed. A method for adjusting the position of the probe is described.
 又、特許文献5には、電極を形成した検出用基板の上に透明フィルムを貼付し、透明フィルム上に転写させた針跡の位置と基板上の電極の位置とを比較することで、ステージ移動の繰り返し精度に影響されることなく、高精度でプローブの位置合わせを行う方法が記載されている。 In Patent Document 5, a transparent film is pasted on a detection substrate on which an electrode is formed, and the position of the needle trace transferred on the transparent film is compared with the position of the electrode on the substrate. A method is described in which the probe is positioned with high accuracy without being affected by the repetition accuracy of movement.
 又、特許文献6には、高温下で検査を行う際において、高温下でプローブを転写シートに押し当てて針跡を転写することで、プローブカードの熱膨張によるプローブの位置ずれを防止し、高温下においても高精度でプローブの位置合わせを行う方法が記載されている。更に、転写シートを加熱溶融させて針跡を消去することで、繰り返し使用する方法が提案されている。 Further, in Patent Document 6, when performing an inspection at a high temperature, the probe is pressed against the transfer sheet at a high temperature to transfer the needle trace, thereby preventing the displacement of the probe due to the thermal expansion of the probe card, A method for positioning the probe with high accuracy even at high temperatures is described. Further, a method of repeatedly using the transfer sheet by melting the transfer sheet by heating to eliminate the needle trace has been proposed.
 又、特許文献7には、ガラス転移温度において弾性率の高いガラス状態と弾性率の低いゴム状態との間で可逆的且つ急激に変化する形状記憶ポリマーを針跡転写部材として用いることで、針跡を極めて短時間で消去してスループットを高めることができ、しかも高温検査時には温度の影響を低減できることが記載されている。 Further, Patent Document 7 discloses that a needle shape transfer member uses a shape memory polymer that reversibly and rapidly changes between a glass state having a high elastic modulus and a rubber state having a low elastic modulus at a glass transition temperature. It is described that the trace can be erased in a very short time to increase the throughput, and that the influence of temperature can be reduced during high temperature inspection.
 又、特許文献8には、針跡転写部材として、単官能(メタ)アクリレート及び/又は(メタ)アクリルアミドと光重合開始剤とを含有し、ガラス転移温度が130℃以下である硬化性樹脂組成物が記載されており、ガラス転移温度以上に加熱することで針跡を容易に消去でき、繰り返しの使用が可能であることが記載されている。 Patent Document 8 discloses a curable resin composition containing a monofunctional (meth) acrylate and / or (meth) acrylamide and a photopolymerization initiator as a needle trace transfer member and having a glass transition temperature of 130 ° C. or lower. The article describes that needle traces can be easily erased by heating above the glass transition temperature and can be used repeatedly.
特開2001-189353号公報JP 2001-189353 A 特開2004-327805号公報JP 2004-327805 A 特開2007-200934号公報JP 2007-200904 A 特開2005-308549号公報JP 2005-308549 A 特開2007-273631号公報Japanese Patent Laid-Open No. 2007-273631 特開2005-079253号公報Japanese Patent Laying-Open No. 2005-079253 特開2009-198407号公報JP 2009-198407 A 国際公開第2009/107558号International Publication No. 2009/107558 特開2004-176032号公報JP 2004-176032 A 特開2007-273026号公報JP 2007-273026 A
 しかし、特許文献1においては、変形体を加熱して針跡を埋め戻して再利用することが記載されているものの、変形体の材料としては低融点の金属、合金又は有機絶縁物が挙げられているのみで、再利用を実施するための具体的な材料や加熱条件は示されていない。 However, in Patent Document 1, although it is described that the deformable body is heated to refill the needle traces and reused, examples of the material of the deformable body include low melting point metals, alloys, or organic insulators. However, specific materials and heating conditions for implementing reuse are not shown.
 又、特許文献2においては、複数回針跡を転写する際には、その都度針跡の転写位置をずらさなければならないため、繰り返し数に制限があり、更にプローブが所定の位置からずれている場合には前回転写した針跡と重なってしまう可能性がある。又、針跡転写位置をずらすこと以外にシートを再利用する方法は示されていない。 Further, in Patent Document 2, when transferring a needle trace a plurality of times, the transfer position of the needle trace must be shifted each time, so the number of repetitions is limited, and the probe is further displaced from a predetermined position. In some cases, there is a possibility of overlapping with the last transferred needle trace. Further, no method for reusing the sheet other than shifting the needle mark transfer position is shown.
 又、特許文献3、4では針跡転写用部材の再利用については触れられておらず、特に特許文献4においては、針跡が消えないように針跡の耐熱残存性を付与していることから、針跡を消失させて再利用することは困難である。 Further, Patent Documents 3 and 4 do not mention the reuse of the needle trace transfer member, and in Patent Document 4, in particular, the heat resistance remaining of the needle trace is imparted so that the needle trace does not disappear. Therefore, it is difficult to eliminate the needle trace and reuse it.
 又、特許文献5では、紫外線照射によって透明フィルムの接着性を低下させ、フィルムを剥離することで検出用基板の再利用を可能としているが、透明フィルムの再利用方法については示されていない。 Further, in Patent Document 5, the adhesiveness of the transparent film is lowered by ultraviolet irradiation, and the detection substrate can be reused by peeling the film. However, the method for reusing the transparent film is not shown.
 又、特許文献6では、シートを加熱溶融させて針跡を消去し、繰り返し使用を可能としているが、粘着剤を介してシートを貼付するため、加熱溶融の繰り返しによって粘着剤と樹脂シートとの間で各々の成分が移行したり、劣化反応が進行したりして、所望の性質が得られなくなる虞がある。 Moreover, in patent document 6, although a sheet | seat trace is erase | eliminated by heating-melting a sheet | seat and it can be used repeatedly, in order to stick a sheet | seat through an adhesive, it is the adhesive and a resin sheet by repeated heating and melting. There is a possibility that the desired properties may not be obtained due to the migration of each component or the progress of the degradation reaction.
 又、特許文献7では、形状記憶ポリマーを用いることで針跡の短時間消去を可能としているが、針跡転写の際に形状記憶ポリマーは、ウエハを保持するウエハチャックよりも低い温度に設定されるため、その温度差によって高温検査時に悪影響を及ぼすおそれがある。また、一般に形状記憶ポリマーは、ガラス転移温度以上に加熱した状態で変形させ、その状態を保ったまま冷却することで形状を記憶する。しかしながら、特許文献7ではガラス転移温度よりも低い温度で針跡転写を行っているため、針先の形状を記憶できないおそれがある。 In Patent Document 7, it is possible to erase the needle trace for a short time by using the shape memory polymer. However, the shape memory polymer is set to a temperature lower than that of the wafer chuck holding the wafer during the transfer of the needle trace. Therefore, there is a possibility that the temperature difference may adversely affect the high temperature inspection. In general, a shape memory polymer is deformed in a state of being heated to a temperature higher than the glass transition temperature, and the shape is memorized by cooling while maintaining the state. However, since Patent Document 7 performs needle trace transfer at a temperature lower than the glass transition temperature, the shape of the needle tip may not be memorized.
 又、特許文献8では、2官能以上の多官能(メタ)アクリレートを含有しても良いとの記載がある。多官能(メタ)アクリレートを使用しなくても、針跡を形成する際に、針跡周辺に亀裂が発生しないことについては、記載がない。 Further, Patent Document 8 describes that a polyfunctional (meth) acrylate having two or more functions may be contained. Even if polyfunctional (meth) acrylate is not used, there is no description that cracks do not occur around the needle traces when forming the needle traces.
 特許文献9、10では、硬化性樹脂組成物の硬化体の形状を加熱によって変化させるような記載はない。又、特許文献10では、重合禁止剤を配合することで硬化性樹脂組成物の保存安定性を向上させているが、この安定性の向上は硬化前の液体の状態についてであり、下記に示すような硬化性樹脂組成物の硬化体の耐久性向上についての記載はない。 In Patent Documents 9 and 10, there is no description that changes the shape of the cured body of the curable resin composition by heating. In Patent Document 10, the storage stability of the curable resin composition is improved by blending a polymerization inhibitor. This improvement in stability is in the liquid state before curing, and is shown below. There is no description about the durability improvement of the cured body of such a curable resin composition.
 本発明は上記事情に鑑みてなされたものであり、その目的は、針跡を転写する部材を、検査毎若しくはウエハの種類毎に交換せずに、プローブの検査を繰り返し行うことができる検査方法を提供することである。又、プローブと接触させて針跡を容易に転写でき、簡単な方法で容易に針跡が消去できる硬化性樹脂組成物を提供することである。又、そのような硬化性樹脂組成物を硬化してなる硬化体を提供することである。又、該硬化体からなるシートを備えるプローブの検査装置を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is an inspection method capable of repeatedly inspecting a probe without exchanging a member for transferring a needle trace for each inspection or for each type of wafer. Is to provide. It is another object of the present invention to provide a curable resin composition that can be easily transferred by contact with a probe and that can easily be erased by a simple method. Moreover, it is providing the hardening body formed by hardening | curing such a curable resin composition. Moreover, it is providing the inspection apparatus of a probe provided with the sheet | seat which consists of this hardening body.
 本発明は一側面において、被検査体の電気的特性を検査するプローブに硬化性樹脂組成物の硬化体を接触させ、硬化体にプローブの針跡を転写して、転写された針跡を基にプローブの状態を確認し、かつ、プローブの針跡を転写した後に、硬化体を硬化体のガラス転移温度以上に加熱してプローブの針跡を消去する工程を含み、これにより当該硬化体を繰り返し検査に供するプローブの検査方法であり、
硬化性樹脂組成物が、
(A)炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレート、
(B)下記(1)~(3)に示す炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)をエステル結合を介して有する単官能(メタ)アクリレート、及び炭素数2~8のアルコキシアルキル基をエステル結合を介して有する単官能(メタ)アクリレートよりなる群から選択される少なくとも1種の単官能(メタ)アクリレート:
Figure JPOXMLDOC01-appb-C000003
(C)光重合開始剤、
(D)酸化防止剤
を含有し、硬化性樹脂組成物の硬化体のガラス転移温度が40℃以上100℃以下であるプローブの検査方法である。
In one aspect of the present invention, a cured body of the curable resin composition is brought into contact with a probe for inspecting the electrical characteristics of an object to be inspected, and the needle trace of the probe is transferred to the cured body, and the transferred needle trace is used as a basis. And confirming the state of the probe and transferring the probe traces of the probe, and then heating the cured body to a temperature equal to or higher than the glass transition temperature of the cured body to erase the probe traces of the probe. It is a probe inspection method for repeated inspections,
The curable resin composition is
(A) a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond,
(B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond:
Figure JPOXMLDOC01-appb-C000003
(C) a photopolymerization initiator,
(D) A probe inspection method containing an antioxidant and having a glass transition temperature of 40 ° C. or more and 100 ° C. or less of a cured product of the curable resin composition.
 本発明に係るプローブの検査方法は一実施形態において、硬化性樹脂組成物の硬化体の厚さが20~100μmである。 In the probe inspection method according to the present invention, in one embodiment, the thickness of the cured body of the curable resin composition is 20 to 100 μm.
 本発明は別の一側面において、
(A)炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレート、
(B)下記(1)~(3)に示す炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)をエステル結合を介して有する単官能(メタ)アクリレート、及び炭素数2~8のアルコキシアルキル基をエステル結合を介して有する単官能(メタ)アクリレートよりなる群から選択される少なくとも1種の単官能(メタ)アクリレート:
Figure JPOXMLDOC01-appb-C000004
(C)光重合開始剤、
(D)酸化防止剤
を含有し、硬化性樹脂組成物の硬化体のガラス転移温度が40℃以上100℃以下であるプローブの針跡を転写するための硬化性樹脂組成物である。
In another aspect of the present invention,
(A) a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond,
(B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond:
Figure JPOXMLDOC01-appb-C000004
(C) a photopolymerization initiator,
(D) A curable resin composition for transferring a probe trace of a probe containing an antioxidant and having a glass transition temperature of 40 ° C. or higher and 100 ° C. or lower of a cured product of the curable resin composition.
 本発明に係る硬化性樹脂組成物は一実施形態において、
 (A)成分及び(B)成分の合計100質量部に対して、(A)成分を10~99重量部、(B)成分を1~90質量部、(C)光重合開始剤を0.1~20質量部、(D)酸化防止剤を0.001~3質量部を含有する。
In one embodiment, the curable resin composition according to the present invention is:
Component (A) is 10 to 99 parts by weight, component (B) is 1 to 90 parts by weight, and (C) photopolymerization initiator is 0.1 parts by weight with respect to 100 parts by weight as a total of component (A) and component (B). 1 to 20 parts by mass and (D) 0.001 to 3 parts by mass of an antioxidant.
 本発明は更に別の一側面において、上記硬化性樹脂組成物を硬化してなるプローブの針跡を転写するための硬化体である。 In yet another aspect, the present invention provides a cured body for transferring a probe mark of a probe formed by curing the curable resin composition.
 本発明は更に別の一側面において、
上記硬化体からなるシートと、
 シートを載置する支持台と、
 シートを硬化体のガラス転移温度以上に加熱するための加熱装置と、
 プローブを有するプローブカードと、
 シートに転写されたプローブの針跡を基にプローブの状態を確認するための撮像装置とを備える、プローブの検査装置である。
In another aspect of the present invention,
A sheet made of the cured product,
A support table on which the sheet is placed;
A heating device for heating the sheet above the glass transition temperature of the cured body;
A probe card having a probe;
An inspection apparatus for a probe, comprising: an imaging device for confirming a state of the probe based on a probe mark transferred to the sheet.
 本発明に係る上記検査方法によれば、針跡を転写する部材を、検査毎若しくはウエハの種類毎に交換せずに、プローブの検査を繰り返し行うことができるという効果が得られる。 According to the inspection method of the present invention, it is possible to repeatedly inspect the probe without exchanging the member for transferring the needle trace for each inspection or for each type of wafer.
 本発明に係る硬化性樹脂組成物の硬化体は、(A)と(B)の共重合体である。本発明に係る硬化性樹脂組成物の硬化体は、一般に樹脂の流動性を防ぐための固定相と、温度変化に伴い軟化と硬化とが可逆的に起こる軟化/硬化可逆相の二相構造よりなる形状記憶ポリマーとは異なるものである。 The cured product of the curable resin composition according to the present invention is a copolymer of (A) and (B). The cured product of the curable resin composition according to the present invention generally has a two-phase structure of a stationary phase for preventing resin fluidity and a softened / cured reversible phase in which softening and curing occur reversibly with temperature change. It is different from the shape memory polymer.
 本発明に係る上記硬化性樹脂組成物によれば、針跡を転写する部材とプローブとを接触させて針跡を容易に転写でき、しかも針跡を転写する部材をガラス転移温度以上に加熱することで容易に針跡が消去でき、又加熱の際には硬化体からなるシートが溶融挙動することがないという効果が得られる。特に酸化防止剤を含有することで、貯蔵安定性及び耐久性が向上し、とくにガラス転移温度以上に繰り返し加熱しても硬化体が劣化せず、耐久性が高いという効果を得ることができる。 According to the curable resin composition of the present invention, the member that transfers the needle trace can be brought into contact with the probe to easily transfer the needle trace, and the member that transfers the needle trace is heated to the glass transition temperature or higher. Thus, the needle trace can be easily erased, and the effect that the sheet made of the cured body does not melt when heated is obtained. In particular, by containing an antioxidant, the storage stability and durability are improved, and in particular, even when repeatedly heated above the glass transition temperature, the cured product does not deteriorate and the effect of high durability can be obtained.
 本発明に係る上記検査装置によれば、プローブと接触させて針跡を容易に転写でき、しかもガラス転移温度以上に加熱することで容易に針跡が消去できるため、針跡を転写する部材を、検査毎若しくはウエハの種類毎に交換せずに、プローブの検査を繰り返し行うことができる。 According to the inspection apparatus according to the present invention, the needle trace can be easily transferred by being brought into contact with the probe, and the needle trace can be easily erased by heating to the glass transition temperature or higher. The inspection of the probe can be repeatedly performed without changing every inspection or every kind of wafer.
本実施形態2の検査装置を説明する図面である。It is drawing explaining the inspection apparatus of this Embodiment 2. FIG.
[用語の説明]
 本明細書において、「硬化性樹脂組成物」とは、光の照射によって硬化して硬化体となるような樹脂を含有する混合物のことを意味する。そして、一般的に、硬化性樹脂組成物は、次に説明するガラス転移温度なる温度領域を有する。
[Explanation of terms]
In the present specification, the “curable resin composition” means a mixture containing a resin that is cured by light irradiation to form a cured product. In general, the curable resin composition has a temperature range that is a glass transition temperature described below.
 本明細書において、「ガラス転移温度」とは、液体状態(ゴム状態)から非晶質固体(ガラス状態)に可逆的に変化する温度又は非晶質固体(ガラス状態)から液体状態(ゴム状態)に可逆的に変化する温度を意味する。一般に、ガラス転移温度は、例えばJIS K 7121等によって定義されている。 In this specification, the “glass transition temperature” is a temperature at which the liquid state (rubber state) reversibly changes to an amorphous solid (glass state) or an amorphous solid (glass state) to a liquid state (rubber state). ) Means a reversibly changing temperature. In general, the glass transition temperature is defined by, for example, JIS K 7121.
 又、本明細書において、「~」という記号は「以上」及び「以下」を意味し、例えば、「A~B」というのは、A以上でありB以下であるという意味である。 In this specification, the symbol “to” means “above” and “below”, for example, “A to B” means more than A and less than B.
[発明の経緯]
 本発明者は、特定の硬化性樹脂組成物の硬化体にプローブを接触させることで針跡を転写させることが可能であり、続いて、該硬化体をガラス転移温度以上に加熱することによって上記針跡を消去できること、更に、上記硬化性樹脂組成物の硬化体を薄膜として得ることで、硬化体上に転写された針跡とウエハ上に形成された基準位置とを同じフォーカスで同時に観察できるとの知見を得て、本発明に至ったものである。
[Background of the invention]
The inventor can transfer the needle trace by bringing a probe into contact with a cured body of a specific curable resin composition, and then heating the cured body to a temperature higher than the glass transition temperature. The needle trace can be erased, and furthermore, by obtaining a cured body of the curable resin composition as a thin film, the needle trace transferred onto the cured body and the reference position formed on the wafer can be observed simultaneously with the same focus. The present invention has been obtained and the present invention has been achieved.
[実施形態1:硬化性樹脂組成物]
 本実施形態に係る硬化性樹脂組成物は、
(A)炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレート、
(B)下記(1)~(3)に示す炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)をエステル結合を介して有する単官能(メタ)アクリレート、及び炭素数2~8のアルコキシアルキル基をエステル結合を介して有する単官能(メタ)アクリレートよりなる群から選択される少なくとも1種の単官能(メタ)アクリレート:
Figure JPOXMLDOC01-appb-C000005
(C)光重合開始剤、
(D)酸化防止剤
を含有し、硬化性樹脂組成物の硬化体のガラス転移温度が40℃以上100℃以下であるプローブの針跡を転写するための硬化性樹脂組成物である。
[Embodiment 1: Curable resin composition]
The curable resin composition according to this embodiment is
(A) a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond,
(B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond:
Figure JPOXMLDOC01-appb-C000005
(C) a photopolymerization initiator,
(D) A curable resin composition for transferring a probe trace of a probe containing an antioxidant and having a glass transition temperature of 40 ° C. or higher and 100 ° C. or lower of a cured product of the curable resin composition.
 上記アクリル系の硬化性樹脂組成物によれば、針跡を転写する部材とプローブとを接触させて針跡を容易に転写でき、しかも針跡を転写する部材をガラス転移温度以上に加熱することで容易に針跡が消去できるという効果が得られる。 According to the acrylic curable resin composition, the needle trace can be easily transferred by bringing the needle trace transfer member into contact with the probe, and the needle trace transfer member is heated to the glass transition temperature or higher. With this, it is possible to easily erase the needle trace.
 以下、本実施形態に係る硬化性樹脂組成物の各成分について説明する。 Hereinafter, each component of the curable resin composition according to the present embodiment will be described.
((A)炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレート)
 炭素数9~12の飽和脂環式炭化水素基としては、例えば、ジシクロペンタニル基、イソボルニル基、アダマンチル基等が挙げられ、コストの観点から、特に好ましくは、ジシクロペンタニル基やイソボルニル基等が挙げられる。又、アクリレートとメタクリレートとに関しては硬化速度が速いという点で、アクリレートが好ましく選択される。
((A) monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond)
Examples of the saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms include a dicyclopentanyl group, an isobornyl group, an adamantyl group, and the like. From the viewpoint of cost, a dicyclopentanyl group and an isobornyl group are particularly preferable. Groups and the like. As for acrylate and methacrylate, acrylate is preferably selected because it has a high curing rate.
 炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレートとしては、例えば、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられ、好ましくはイソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート等が、更に好ましくはイソボルニル(メタ)アクリレート等が挙げられ、単独で使用しても2種以上を組み合わせて使用してもよい。これらの単官能(メタ)アクリレートは、針跡転写性を付与するという点において好ましい。 Examples of the monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond include 2-methyl-2-adamantyl (meth) acrylate and 2-ethyl-2-adamantyl. (Meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like, preferably isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 2-methyl-2-adamantyl (meth) ) Acrylate, etc., more preferably isobornyl (meth) acrylate, etc., which may be used alone or in combination of two or more. These monofunctional (meth) acrylates are preferable in terms of imparting needle trace transferability.
 又、本発明の硬化性樹脂組成物は、その硬化体のガラス転移温度が40℃以上100℃以下である。硬化体のガラス転移温度が40℃以上100℃以下であると、プローブの針跡を転写した後に硬化体を加熱してプローブの針跡を消去する工程において、得られる硬化性樹脂組成物の硬化体からなるシートが、加熱時に溶融して流動することを抑制できる。ガラス転移温度がこの範囲であれば、ICチップの電気的特性を検査する温度、例えば、室温や高温において良好な針跡転写性、針跡消去性を得ることができる。室温としては、20℃以上30℃以下が好ましい。高温としては、70℃以上100℃以下が好ましく、70℃以上100℃未満がより好ましく、80℃以上90℃以下がより好ましい。硬化体のガラス転移温度が40℃未満だと、プローブの針跡を転写しにくくなり、硬化体のガラス転移温度が100℃超だと、プローブの針跡を消去しにくくなる。
 硬化体のガラス転移温度を40℃以上100℃以下とするためには、硬化性樹脂組成物において、炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレートを用いればよい。尚、本発明の硬化性樹脂組成物は、その硬化体のガラス転移温度が40℃以上100℃以下であるが、硬化性樹脂組成物の硬化体からなるシートの加熱時の溶融挙動を更に抑制するためには、好ましくは50℃以上、より好ましくは55℃以上、一層溶融挙動を抑制するためには硬化体のガラス転移温度が70℃以上であると更に好ましい。ガラス転移温度は100℃未満が好ましく、95℃以下がより好ましく、90℃以下が最も好ましい。また、この温度範囲であれば、電気ヒーター、乾燥機等で容易に加熱・冷却が行える。
Moreover, the curable resin composition of this invention has the glass transition temperature of the hardened | cured material of 40 to 100 degreeC. When the glass transition temperature of the cured body is 40 ° C. or more and 100 ° C. or less, the cured curable resin composition is cured in the step of erasing the probe traces by heating the cured body after transferring the probe traces of the probe. It can suppress that the sheet | seat which consists of a body fuse | melts and flows at the time of a heating. If the glass transition temperature is within this range, good needle trace transferability and needle trace erasability can be obtained at a temperature at which the electrical characteristics of the IC chip are inspected, for example, at room temperature or at a high temperature. As room temperature, 20 degreeC or more and 30 degrees C or less are preferable. As high temperature, 70 degreeC or more and 100 degrees C or less are preferable, 70 degreeC or more and less than 100 degreeC are more preferable, and 80 degreeC or more and 90 degrees C or less are more preferable. When the glass transition temperature of the cured body is less than 40 ° C., it becomes difficult to transfer the probe traces of the probe, and when the glass transition temperature of the cured body exceeds 100 ° C., it becomes difficult to erase the probe traces of the probe.
In order to set the glass transition temperature of the cured product to 40 ° C. or more and 100 ° C. or less, in the curable resin composition, a monofunctional (meta) having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond. ) Acrylate may be used. The curable resin composition of the present invention has a glass transition temperature of 40 ° C. or more and 100 ° C. or less of the cured product, but further suppresses the melting behavior during heating of the sheet made of the cured product of the curable resin composition. For this purpose, it is preferably 50 ° C. or higher, more preferably 55 ° C. or higher. In order to further suppress the melting behavior, the glass transition temperature of the cured product is further preferably 70 ° C. or higher. The glass transition temperature is preferably less than 100 ° C, more preferably 95 ° C or less, and most preferably 90 ° C or less. Moreover, within this temperature range, heating and cooling can be easily performed with an electric heater, a dryer or the like.
((B)下記(1)~(3)に示す炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)をエステル結合を介して有する単官能(メタ)アクリレート及び炭素数2~8のアルコキシアルキル基をエステル結合を介して有する単官能(メタ)アクリレートよりなる群から選択される少なくとも1種の単官能(メタ)アクリレート)
Figure JPOXMLDOC01-appb-C000006
((B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; (At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond))
Figure JPOXMLDOC01-appb-C000006
 炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)としては、例えば、2-エチルヘキシル基、オクチル基、イソオクチル基、イソアミル基、ノニル基、イソノニル基、デシル基、ラウリル基、トリデシル基、テトラデシル基、イソテトラデシル基、ステアリル基、イソステアリル基等が挙げられ、特に好ましくは、イソアミル基やラウリル基等が挙げられる。又、アクリレートとメタクリレートとに関してはメタクリレートが好ましく選択される。 Examples of the saturated hydrocarbon group having 5 to 18 carbon atoms (excluding the saturated alicyclic hydrocarbon group) include, for example, 2-ethylhexyl group, octyl group, isooctyl group, isoamyl group, nonyl group, isononyl group, decyl group, Examples include a lauryl group, a tridecyl group, a tetradecyl group, an isotetradecyl group, a stearyl group, and an isostearyl group, and particularly preferably an isoamyl group and a lauryl group. As for acrylate and methacrylate, methacrylate is preferably selected.
 炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)をエステル結合を介して有する単官能(メタ)アクリレートとしては、例えば、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、イソテトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等が挙げられ、好ましくはイソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート等が、更に好ましくはイソアミル(メタ)アクリレート等が挙げられる。これらは単独で使用しても2種以上を組み合わせて使用してもよい。 Examples of the monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding the saturated alicyclic hydrocarbon group) via an ester bond include, for example, isoamyl (meth) acrylate, 2-ethylhexyl ( (Meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) Acrylate, isotetradecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, and the like, preferably isoamyl (meth) acrylate, lauryl (meth) acrylate, and more preferably Soamiru (meth) acrylate. These may be used alone or in combination of two or more.
 又、炭素数2~8のアルコキシアルキル基としては、例えば、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、ブトキシエチル基、プロポキシエチル基、メトキシプロピル基、メトキシブチル基等が挙げられ、特に好ましくは、ブトキシエチル基やエトキシエチル基等が挙げられる。又、アクリレートとメタクリレートとに関してはメタクリレートが好ましく選択される。 Examples of the alkoxyalkyl group having 2 to 8 carbon atoms include methoxymethyl group, methoxyethyl group, ethoxymethyl group, ethoxyethyl group, butoxyethyl group, propoxyethyl group, methoxypropyl group, methoxybutyl group and the like. Particularly preferred are a butoxyethyl group and an ethoxyethyl group. As for acrylate and methacrylate, methacrylate is preferably selected.
 炭素数2~8のアルコキシアルキル基をエステル結合を介して有する単官能(メタ)アクリレートとしては、例えば、メトキシメチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシメチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、プロポキシエチル(メタ)アクリレート、メトキシプロピル(メタ)アクリレート、メトキシブチル(メタ)アクリレート等が挙げられ、好ましくはブトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート等が、更に好ましくはブトキシエチル(メタ)アクリレート等が挙げられる。これらは単独で使用しても2種以上を組み合わせて使用してもよい Examples of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond include methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl. (Meth) acrylate, butoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, methoxybutyl (meth) acrylate, and the like are preferable, butoxyethyl (meth) acrylate, ethoxyethyl (meth) ) Acrylate and the like, more preferably butoxyethyl (meth) acrylate and the like. These may be used alone or in combination of two or more.
 (A)と(B)との合計量100質量部中、(A):(B)=10~99:1~90質量部が好ましく、40~95質量部:5~60質量部がより好ましく、50~90質量部:10~50質量部が更により好ましく、60~85質量部:15~40質量部が最も好ましい。 In 100 parts by mass of the total amount of (A) and (B), (A) :( B) = 10 to 99: 1 to 90 parts by mass is preferable, 40 to 95 parts by mass: 5 to 60 parts by mass is more preferable. 50 to 90 parts by mass: 10 to 50 parts by mass is still more preferred, and 60 to 85 parts by mass: 15 to 40 parts by mass is most preferred.
 これにより、ガラス転移温度を40℃以上100℃以下とすることができ、室温から高温(例えば80~90℃)の温度領域において、針跡転写性を付与することができるという効果を得ることができる。また、加熱時の溶融挙動の防止効果、ガラス転移温度以上に繰り返し加熱したときの劣化防止効果を高めることができる。 As a result, the glass transition temperature can be set to 40 ° C. or more and 100 ° C. or less, and the effect of imparting needle trace transferability in a temperature range from room temperature to high temperature (for example, 80 to 90 ° C.) can be obtained. it can. Moreover, the prevention effect of the melting behavior at the time of heating and the deterioration prevention effect when repeatedly heated above the glass transition temperature can be enhanced.
 尚、上記硬化性樹脂組成物は、2官能以上の多官能(メタ)アクリレートを、単官能(メタ)アクリレートと多官能(メタ)アクリレートの合計100質量部中、3質量部以下が好ましく、1質量部以下がより好ましく、多官能(メタ)アクリレートを含有しないことが最も好ましい。硬化性樹脂組成物に多官能(メタ)アクリレートを含有すると、針跡を形成する際に、針跡の周辺に亀裂が発生する虞がある。 The curable resin composition is preferably a bifunctional or higher polyfunctional (meth) acrylate, preferably 3 parts by mass or less in a total of 100 parts by mass of the monofunctional (meth) acrylate and the polyfunctional (meth) acrylate. Less than or equal to parts by mass is more preferred, and most preferably no polyfunctional (meth) acrylate is contained. When polyfunctional (meth) acrylate is contained in the curable resin composition, cracks may be generated around the needle marks when the needle marks are formed.
 又、上記(A)及び(B)成分の配合組成に、リンを含有する(メタ)アクリレートを併用してもよい。 In addition, (meth) acrylate containing phosphorus may be used in combination with the composition of the above components (A) and (B).
((C)光重合開始剤)
 上記硬化性樹脂組成物は、上記(A)及び(B)に加えて、更に光重合開始剤を含む。光重合開始剤は、可視光線や紫外線の活性光線により増感させて樹脂組成物の光硬化を促進するために配合するものであり、公知の各種光重合開始剤が好ましく用いられる。
((C) Photopolymerization initiator)
The curable resin composition further includes a photopolymerization initiator in addition to the above (A) and (B). The photopolymerization initiator is blended for sensitization with visible light or ultraviolet actinic light to promote photocuring of the resin composition, and various known photopolymerization initiators are preferably used.
 ここで、光重合開始剤としては、特に限定されないが、ベンゾフェノン及びその誘導体、ベンジル及びその誘導体、アントラキノン及びその誘導体、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール等のベンゾイン誘導体、ジエトキシアセトフェノン、4-t-ブチルトリクロロアセトフェノン等のアセトフェノン誘導体、2-ジメチルアミノエチルベンゾエート、p-ジメチルアミノエチルベンゾエート、ジフェニルジスルフィド、チオキサントン及びその誘導体、カンファーキノン、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-ブロモエチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-メチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸クロライド等のカンファーキノン誘導体、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のα-アミノアルキルフェノン誘導体、ベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾイルジエトキシホスフィンオキサイド、2,4,6-トリメチルベンゾイルジメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジエトキシフェニルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体等が挙げられる。 Here, the photopolymerization initiator is not particularly limited, but benzophenone and its derivatives, benzyl and its derivatives, anthraquinone and its derivatives, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, benzyldimethyl Benzoin derivatives such as ketal, acetophenone derivatives such as diethoxyacetophenone, 4-t-butyltrichloroacetophenone, 2-dimethylaminoethylbenzoate, p-dimethylaminoethylbenzoate, diphenyldisulfide, thioxanthone and its derivatives, camphorquinone, 7,7 -Dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxylic acid, 7,7-dimethyl-2,3-dioxobicyclo 2.2.1] Heptane-1-carboxy-2-bromoethyl ester, 7,7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxy-2-methyl ester, 7 , 7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxylic acid chloride and other camphorquinone derivatives, 2-methyl-1- [4- (methylthio) phenyl] -2-morphol Α-aminoalkylphenone derivatives such as linopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, benzoyldiphenylphosphine oxide, 2,4,6-trimethyl Benzoyldiphenylphosphine oxide, benzoyldiethoxyphosphine oxide, 2,4,6-trimethylbenzoyl And acylphosphine oxide derivatives such as dimethoxyphenylphosphine oxide and 2,4,6-trimethylbenzoyldiethoxyphenylphosphine oxide.
 これらの中では、効果が大きい点で、ベンゾイン誘導体及び/又はα-アミノアルキルフェノン誘導体が好ましい。ベンゾイン誘導体の中では、効果が大きい点で、ベンジルジメチルケタールが好ましい。α-アミノアルキルフェノン誘導体の中では、効果が大きい点で、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンが好ましい。 Of these, benzoin derivatives and / or α-aminoalkylphenone derivatives are preferred because of their great effects. Among the benzoin derivatives, benzyldimethyl ketal is preferable because of its large effect. Among the α-aminoalkylphenone derivatives, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one is preferable because of its large effect.
 光重合開始剤としては、上記の物質を1種又は2種以上組み合わせて用いることができる。 As the photopolymerization initiator, one or a combination of two or more of the above substances can be used.
 光重合開始剤の使用量は、上記(A)及び(B)の合計量100質量部に対して、0.1~20質量部が好ましい。光重合開始剤の使用量がこの範囲にあると、得られる硬化性樹脂組成物は、加熱時に溶融して流動することを一層防ぐことができる。又、光重合開始剤の使用量が0.1質量部以上であれば、硬化促進の効果が確実に得られるし、20質量部以下であれば充分な硬化速度が達成できる。 The amount of the photopolymerization initiator used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the above (A) and (B). When the usage-amount of a photoinitiator exists in this range, the obtained curable resin composition can further prevent melting and flowing at the time of heating. Moreover, if the usage-amount of a photoinitiator is 0.1 mass part or more, the effect of a hardening acceleration will be acquired reliably, and if it is 20 mass parts or less, sufficient hardening rate can be achieved.
 光重合開始剤の使用量は、更には、0.5~15質量部が好ましく、1~10質量部がより好ましい。このような使用量にすることによって、得られる硬化性樹脂組成物の加熱時の溶融挙動を特に防止することができるし、又、充分な接着強さを有する硬化体を得ることができる。 The amount of the photopolymerization initiator used is further preferably 0.5 to 15 parts by mass, and more preferably 1 to 10 parts by mass. By using such a use amount, the melting behavior at the time of heating of the curable resin composition obtained can be particularly prevented, and a cured product having sufficient adhesive strength can be obtained.
((D)酸化防止剤)
 上記硬化性樹脂組成物は、その耐久性向上及び貯蔵安定性向上のため、酸化防止剤を含む。
((D) Antioxidant)
The said curable resin composition contains antioxidant for the durability improvement and storage stability improvement.
 酸化防止剤としては、ヒンダードフェノール、リン系酸化防止剤、硫黄系酸化防止剤等、一般的に知られる酸化防止剤であればよく、特に限定されない。ヒンダードフェノールとしては、2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)、ペンタエリスリトールテトラキス(3-(3,5-ジ-ターシャリーブチル-4-ヒドロキシフェニル)プロピオネート、オクタデシル-3-(3,5-ジ-ターシャリーブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-ターシャリーブチル-4-ヒドロキシフェニル)プロピオネート等が挙げられ、リン系酸化防止剤としては、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、トリス[2-[[2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェフィン-6-イル]オキシ]エチル]アミン、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェフィン等が挙げられ、硫黄系酸化防止剤としては、ジドデシル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート、ジオクタデシル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、2-メルカプトベンゾイミダゾール等が挙げられる。又、他に酸化防止剤として用いることができる化合物として、ハイドロキノン、カテコール、ハイドロキノンモノメチルエーテル、モノターシャリーブチルハイドロキノン、2,5-ジ-ターシャリーブチルハイドロキノン、p-ベンゾキノン、2,5-ジフェニル-p-ベンゾキノン、2,5-ジ-ターシャリーブチル-p-ベンゾキノン、ピクリン酸、クエン酸、フェノチアジン、ターシャリーブチルカテコール、2-ブチル-4-ヒドロキシアニソール、2,6-ジ-ターシャリーブチル-p-クレゾール及び4-メトキシ-1-ナフトール等が挙げられる。 The antioxidant is not particularly limited as long as it is a generally known antioxidant such as a hindered phenol, a phosphorus-based antioxidant, or a sulfur-based antioxidant. Examples of hindered phenols include 2,2-methylene-bis (4-methyl-6-tertiarybutylphenol), pentaerythritol tetrakis (3- (3,5-di-tertiarybutyl-4-hydroxyphenyl) propionate, octadecyl -3- (3,5-di-tertiarybutyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-tertiarybutyl-4-hydroxyphenyl) propionate Examples of the inhibitor include tris (2,4-di-t-butylphenyl) phosphite, tris [2-[[2,4,8,10-tetra-t-butyldibenzo [d, f] [1,3 , 2] dioxaphosphine-6-yl] oxy] ethyl] amine, bis [2,4-bis (1,1-dimethyl) Ethyl) -6-methylphenyl] ethyl ester phosphorous acid, 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t- And butyldibenzo [d, f] [1,3,2] dioxaphosphine, and the like, and sulfur-based antioxidants include didodecyl 3,3′-thiodipropionate, dimyristyl 3,3′-thio. Dipropionate, dioctadecyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, pentaerythrityltetrakis (3-laurylthiopropionate), 2-mercaptobenzimidazole, etc. Other compounds that can be used as antioxidants include hydroquinone, catechol, and hydroquinone monomethyl ether. Monotertiary butyl hydroquinone, 2,5-di-tertiary butyl hydroquinone, p-benzoquinone, 2,5-diphenyl-p-benzoquinone, 2,5-di-tertiary butyl-p-benzoquinone, picric acid, citric acid Examples include acid, phenothiazine, tertiary butyl catechol, 2-butyl-4-hydroxyanisole, 2,6-di-tert-butyl-p-cresol, and 4-methoxy-1-naphthol.
 これらの中では、効果が大きい点で、ヒンダードフェノールが好ましい。ヒンダードフェノールの中では、効果が大きい点で、2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)が好ましい。 Among these, hindered phenol is preferable because of its great effect. Among the hindered phenols, 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) is preferable because of its great effect.
 酸化防止剤としては、上記の物質を1種又は2種以上組み合わせて用いることができる。 As the antioxidant, one or more of the above substances can be used in combination.
 これらの酸化防止剤の使用量は、上記(A)及び(B)の合計量100質量部に対して、0.001~3質量部が好ましい。酸化防止剤の使用量が0.001質量部以上であれば耐久性及び貯蔵安定性が充分であるし、3質量部以下であれば確実な接着性が得られ、未硬化になるおそれもない。 The amount of these antioxidants used is preferably 0.001 to 3 parts by mass with respect to 100 parts by mass of the total amount of the above (A) and (B). If the amount of the antioxidant used is 0.001 part by mass or more, durability and storage stability are sufficient, and if it is 3 parts by mass or less, reliable adhesiveness is obtained and there is no possibility of becoming uncured. .
 更には、酸化防止剤の使用量は0.01~2質量部がより好ましい。これにより、貯蔵安定性及び耐久性が更に向上するという効果を得ることができる。尚、ここでいう耐久性とは、上記硬化性樹脂組成物の硬化体に対して、針跡転写と加熱消去との繰り返しによる熱履歴を与えても、硬化性樹脂組成物の硬化体が劣化せずに、熱履歴を与える前と同等の針跡転写性及び針跡消去性を有することを示す。酸化防止剤の使用量が少ないと、針跡転写と加熱消去との繰り返しによって前記硬化体が劣化し、針跡の深さが一定せずに浅くなってくる等、針跡の付き方が変わってしまう虞がある。 Furthermore, the amount of antioxidant used is more preferably 0.01 to 2 parts by mass. Thereby, the effect that storage stability and durability improve further can be acquired. In addition, durability here means that the cured product of the curable resin composition is deteriorated even if a thermal history is obtained by repeating needle trace transfer and heat erasure to the cured product of the curable resin composition. Without having a thermal history, it shows that it has the same needle trace transferability and needle trace erasability as before. If the amount of antioxidant used is small, the cured product will deteriorate due to repeated needle trace transfer and heat erasure, and the way the needle traces are attached will change, for example, the depth of the needle traces will become less uniform. There is a risk that.
 又、上記硬化性樹脂組成物は、一般に使用されているアクリルゴム、ウレタンゴム、アクリロニトリル-ブタジエン-スチレンゴム等の各種エラストマー、溶剤、補強材、可塑剤、増粘剤、染料、顔料、難燃剤、シランカップリング剤及び界面活性剤等の添加剤を含んでいてもよい。尚、無機フィラーや無機系増量材が、本発明の硬化性樹脂組成物に含有されることは好ましくない。無機フィラーや無機系増量材が含有されていると、硬化性樹脂組成物の硬化体に針跡を転写する際にプローブと無機フィラー或いはプローブと無機系増量材とが接触し、プローブが傷ついたり曲がったりする虞があるからである。 The curable resin composition is composed of various elastomers such as acrylic rubber, urethane rubber, acrylonitrile-butadiene-styrene rubber, solvents, reinforcing materials, plasticizers, thickeners, dyes, pigments, flame retardants. In addition, additives such as a silane coupling agent and a surfactant may be included. In addition, it is not preferable that an inorganic filler or an inorganic filler is contained in the curable resin composition of the present invention. When an inorganic filler or an inorganic extender is contained, the probe and the inorganic filler or the probe and the inorganic extender may come into contact with each other when the needle trace is transferred to the cured body of the curable resin composition. This is because there is a risk of bending.
(硬化体の厚み)
 上記硬化性樹脂組成物の硬化体は薄膜として得ることが可能である。硬化性樹脂組成物の硬化体を薄膜として得ることにより、上記硬化性樹脂組成物の硬化体に転写した針跡とウエハ上の基準位置とを同じフォーカスで同時に観察することができるため、作業時間の短縮につながる。
(Thickness of cured body)
The cured product of the curable resin composition can be obtained as a thin film. By obtaining a cured product of the curable resin composition as a thin film, the needle trace transferred to the cured product of the curable resin composition and the reference position on the wafer can be observed simultaneously with the same focus. Leads to shortening.
 ここで、上記硬化体の厚みは、20~100μmであることが好ましく、40~60μmであることがより好ましい。硬化体の厚みが20μm以上であれば、連続した硬化体を確実に得るのに十分である。又、硬化体の厚みが100μm以下であれば一般的な半導体ウエハの厚さに対応でき、硬化体に転写した針跡とウエハ上の基準位置とを同じフォーカスで同時に観察することができる。 Here, the thickness of the cured body is preferably 20 to 100 μm, and more preferably 40 to 60 μm. If the thickness of the cured body is 20 μm or more, it is sufficient to reliably obtain a continuous cured body. Further, if the thickness of the cured body is 100 μm or less, it can correspond to the thickness of a general semiconductor wafer, and the needle trace transferred to the cured body and the reference position on the wafer can be observed simultaneously with the same focus.
[実施形態2:プローブの検査方法]
 本実施形態に係るプローブの検査方法は、ウエハ上のICチップなどの被検査体の電気的特性を検査するプローブに硬化性樹脂組成物の硬化体を接触させ、硬化体にプローブの針跡を転写して、転写された針跡を基にプローブの状態を確認し、かつ、プローブの針跡を転写した後に、硬化体を硬化体のガラス転移温度以上に加熱してプローブの針跡を消去する工程を含み、繰り返し検査に供するプローブの検査方法である。
[Embodiment 2: Probe inspection method]
In the probe inspection method according to the present embodiment, a cured body of a curable resin composition is brought into contact with a probe for inspecting electrical characteristics of an object to be inspected such as an IC chip on a wafer, and a probe trace of the probe is placed on the cured body. After transferring, check the probe state based on the transferred needle trace, and after transferring the probe needle trace, the cured body is heated above the glass transition temperature of the cured body to erase the probe needle trace. A method for inspecting a probe for repeated inspection.
 上記検査方法によれば、針跡を転写する部材を、検査毎若しくはウエハの種類毎に交換せずに、プローブの検査を繰り返し行うことができるという効果が得られる。但し、「交換せずに」といえども、針跡を転写する部材を永久に交換しないわけではない。つまり、劣化や摩耗等により、交換が必要な場合には適宜交換するが、少なくとも2回以上は繰り返し使用することができればよい。 According to the above inspection method, there is an effect that the inspection of the probe can be repeatedly performed without replacing the member for transferring the needle trace for each inspection or for each type of wafer. However, “without replacement” does not mean that the member for transferring the needle trace is not permanently replaced. That is, when replacement is necessary due to deterioration, wear, or the like, replacement is performed as appropriate, but it is sufficient that it can be used repeatedly at least twice.
 次に、上記プローブの検査方法を説明する。 Next, the probe inspection method will be described.
 先ず、検査に用いるプローブに硬化性樹脂組成物の硬化体を接触させ、該硬化体に該プローブの針跡を転写する。そして、転写されたプローブの針跡を基にプローブの状態の確認を行った後、該プローブを用いたウエハの検査が行われる。このとき、上記確認操作によって、プローブの位置が適切でないことや、押し込み深さが充分でないことが判明した場合には、適宜プローブの調整を行うことができる。 First, a cured body of the curable resin composition is brought into contact with a probe used for inspection, and the needle trace of the probe is transferred to the cured body. Then, after checking the state of the probe based on the needle trace of the transferred probe, the wafer is inspected using the probe. At this time, if the confirmation operation reveals that the position of the probe is not appropriate or the depth of pushing is not sufficient, the probe can be appropriately adjusted.
 ここで、接触とは、硬化体表面にプローブの針跡が形成されるように、プローブを硬化体表面に押しつけることを意味する。この操作によって、硬化体表面にプローブの針跡が形成される。又、転写とは、上記の接触操作によって硬化体表面にプローブの針跡が形成されることである。このように、硬化体表面にプローブの針跡が転写されることによって、プローブの位置や押し込み深さ、プローブ先端の状態等を知ることができる。 Here, the contact means that the probe is pressed against the surface of the cured body so that a probe mark of the probe is formed on the surface of the cured body. By this operation, probe traces of the probe are formed on the surface of the cured body. Transfer is the formation of probe marks on the surface of the cured body by the contact operation described above. Thus, by transferring the probe trace of the probe onto the surface of the cured body, it is possible to know the position of the probe, the pressing depth, the state of the probe tip, and the like.
 針跡を基にしたプローブの状態の確認は、CCDカメラ等の撮像装置を使用して目視によって行うことが確実であるので好ましいが、例えば、上記撮像装置によって取り込んだ画像を、ソフトウエアによって解析し、自動的にプローブの配列を修正するようにしてもよい。 The confirmation of the probe state based on the needle trace is preferable because it is surely performed by visual observation using an imaging device such as a CCD camera. For example, an image captured by the imaging device is analyzed by software. Then, the probe arrangement may be automatically corrected.
 尚、接触及び転写時の温度は、ICチップの電気的特性を検査する温度と同じ温度であり、例えば、室温や高温が挙げられる。室温としては、20~30℃が好ましい。高温としては、70~100℃が好ましく、80~90℃がより好ましい。又、確認時の温度は、上記温度と同じかそれ以下の温度である。 Note that the temperature at the time of contact and transfer is the same as the temperature at which the electrical characteristics of the IC chip are inspected, and examples thereof include room temperature and high temperature. The room temperature is preferably 20 to 30 ° C. The high temperature is preferably from 70 to 100 ° C, more preferably from 80 to 90 ° C. The temperature at the time of confirmation is the same as or lower than the above temperature.
 そして、所定枚数のウエハの検査が終了した後、上記硬化体を硬化体のガラス転移温度以上に加熱して上記プローブの針跡を消去する。又、針跡の消去は、異なる種類のウエハの検査毎に行ってもよい。 Then, after the inspection of a predetermined number of wafers is completed, the cured body is heated to a temperature higher than the glass transition temperature of the cured body to erase the probe traces of the probe. Further, the erasing of the needle trace may be performed for each inspection of different types of wafers.
 ここで、針跡の消去とは、硬化体を加熱することによって硬化体の温度をガラス転移温度以上に上昇させ、硬化体表面に形成されたプローブの針跡を消すことである。針跡の消去は、針跡が完全に消えた状態にならなくてもよい。 Here, erasing the needle trace is to raise the temperature of the cured body to a temperature higher than the glass transition temperature by heating the cured body and to erase the needle trace of the probe formed on the surface of the cured body. Needle traces need not be erased completely.
 例えば、針跡の最下部と硬化体表面との高さのギャップが100nm以下になれば、消去されたものとする。更に好ましくは、50nm以下になれば、消去されたものとする。 For example, if the height gap between the lowermost part of the needle trace and the surface of the hardened body becomes 100 nm or less, it is assumed that it has been erased. More preferably, it is erased when it becomes 50 nm or less.
 針跡が消去されたか否かは、撮像装置を用いた目視等により確認することができる。硬化体表面に形成された針跡を消すことによって、一つの硬化体で複数回の検査を繰り返し行える。 Whether or not the needle trace has been erased can be confirmed by visual observation using an imaging device. By erasing the needle marks formed on the surface of the cured body, a plurality of inspections can be repeated with one cured body.
 上記検査において、硬化体とは、本発明においては光の照射によって硬化性樹脂組成物を硬化してなる硬化体であり、上記実施形態1に記載の硬化性樹脂組成物を用いる。 In the above inspection, the cured body is a cured body obtained by curing the curable resin composition by light irradiation in the present invention, and the curable resin composition described in Embodiment 1 is used.
 照射時の波長は、355~375nmが好ましく、360~370nmがより好ましい。350nm以上であれば他の成分の光吸収を抑えることができ、375nm以下であれば光開始剤の分解反応が進行する。照射時の積算光量は、1500~6000mJ/cm2が好ましく、3000~5000mJ/cm2がより好ましく、3500~4500mJ/cm2が最も好ましい。1500mJ/cm2以上であれば充分に硬化反応が進行し、6000mJ/cm2以下であれば光劣化することもない。 The wavelength upon irradiation is preferably 355 to 375 nm, and more preferably 360 to 370 nm. If it is 350 nm or more, the light absorption of another component can be suppressed, and if it is 375 nm or less, the decomposition reaction of the photoinitiator proceeds. Integrated quantity of light during irradiation is preferably 1500 ~ 6000mJ / cm 2, more preferably 3000 ~ 5000mJ / cm 2, and most preferably 3500 ~ 4500mJ / cm 2. If it is 1500 mJ / cm 2 or more, the curing reaction proceeds sufficiently, and if it is 6000 mJ / cm 2 or less, there is no photodegradation.
 これにより、プローブと接触させて針跡を容易に転写でき、しかもガラス転移温度以上に加熱することで容易に針跡を消去できるので、上記プローブの検査に好ましく用いられる。そして、針跡を消去した後、接触、転写及び確認時の温度まで冷却することで、再利用することができる。 This makes it possible to easily transfer the needle traces in contact with the probe, and to easily erase the needle traces by heating to a temperature above the glass transition temperature, and is therefore preferably used for the probe inspection. And after erasing the needle trace, it can be reused by cooling to the temperature at the time of contact, transfer and confirmation.
 上記検査方法によれば、針跡を転写する部材を、検査毎若しくはウエハの種類毎に交換せずに、プローブの検査を繰り返し行うことができるという効果が得られる。 According to the above inspection method, there is an effect that the inspection of the probe can be repeatedly performed without replacing the member for transferring the needle trace for each inspection or for each type of wafer.
 又、被検査体の検査を高温(例:80℃~90℃)で行う場合には、ガラス転移温度以下或いはガラス転移温度以上であっても硬化体に針跡を転写することが可能であれば、硬化体の温度も被検査体の検査時の温度と同じにすることができる。即ち、高温時におけるプローブの針先の位置を検出することができる。これにより、被検査体の検査を高温で行う場合にも、プローブの針先位置が検出時の位置からずれることなく、プローブを電極パッドに的確に接触させることができる。 Also, when the inspection object is inspected at a high temperature (eg, 80 ° C. to 90 ° C.), it is possible to transfer the needle mark to the cured body even if it is below the glass transition temperature or above the glass transition temperature. For example, the temperature of the cured body can be the same as the temperature at the time of inspection of the object to be inspected. That is, the position of the probe tip of the probe at a high temperature can be detected. As a result, even when the inspection object is inspected at a high temperature, the probe tip can be accurately brought into contact with the electrode pad without the probe tip position being deviated from the detection position.
(検査装置)
 上記プローブの検査には、図1に示すような、硬化体からなるシート10と、該シート10を載置する支持台12と、該シート10を該硬化体のガラス転移温度以上に加熱するための加熱装置17と、プローブ15を有するプローブカード14と、該シート10に転写された上記プローブ15の針跡11を基にプローブの状態を確認するための撮像装置16とを備えるプローブ検査装置が好ましく用いられる。プローブ検査装置はウエハWなどの被検査体を載置する載置台13を備えたプローブ装置に組み込んでも良い。
(Inspection equipment)
For the inspection of the probe, as shown in FIG. 1, a sheet 10 made of a cured body, a support base 12 on which the sheet 10 is placed, and the sheet 10 are heated to a temperature higher than the glass transition temperature of the cured body. A probe inspection apparatus comprising a heating device 17, a probe card 14 having a probe 15, and an imaging device 16 for confirming the probe state based on the needle trace 11 of the probe 15 transferred to the sheet 10. Preferably used. The probe inspection apparatus may be incorporated in a probe apparatus including a mounting table 13 on which an object to be inspected such as a wafer W is mounted.
 ここで、検査装置の構成部材は上記のものに限られるわけではなく、他に真空ポンプやガス供給源、載置台の動きを制御する制御機構等を備えていてもよい。又、上記検査装置は、真空チャンバー等の装置内に組み込まれていても良い。 Here, the constituent members of the inspection apparatus are not limited to those described above, and may include a vacuum pump, a gas supply source, a control mechanism for controlling the movement of the mounting table, and the like. The inspection apparatus may be incorporated in an apparatus such as a vacuum chamber.
(硬化性樹脂組成物の加熱方法)
 実施形態1及び2に係る硬化性樹脂組成物は、硬化後にプローブを接触させて針跡を転写した後、ガラス転移温度以上に加熱することで針跡を消去することが可能である。
(Method for heating curable resin composition)
The curable resin composition according to Embodiments 1 and 2 can erase the needle trace by heating the glass trace temperature or higher after contacting the probe after curing to transfer the needle trace.
 実施形態1及び2において、硬化性樹脂組成物のガラス転移温度は、簡便な加熱方法で得られる。加熱方法としては、特に限定されないが、容易に使用できるため、電気ヒーター、乾燥機等を用いるのが好ましい。 In Embodiments 1 and 2, the glass transition temperature of the curable resin composition can be obtained by a simple heating method. Although it does not specifically limit as a heating method, Since it can be used easily, it is preferable to use an electric heater, a dryer, etc.
 加熱温度としては、180℃以下が好ましく、50~150℃がより好ましい。加熱温度が180℃以下であれば、硬化性樹脂組成物が複数回の使用に耐えうるため好ましい。 The heating temperature is preferably 180 ° C. or lower, more preferably 50 to 150 ° C. A heating temperature of 180 ° C. or lower is preferable because the curable resin composition can withstand multiple uses.
 又、実施形態2において、加熱装置とは、例えば、電気ヒーター、乾燥機等を意味する。加熱装置は、シート10の温度をガラス転移温度以上に加熱できることが必要であるが、他の部材や被検査体に影響を及ぼさないように取り付けることが好ましい。 In the second embodiment, the heating device means, for example, an electric heater, a dryer or the like. The heating device needs to be able to heat the temperature of the sheet 10 to be equal to or higher than the glass transition temperature, but is preferably attached so as not to affect other members and the object to be inspected.
 針跡の消去方法は、加熱だけではなく、加熱と加圧とを組み合わせることも可能である。加圧することによって、硬化体の表面を更に平坦に保つことができる。ここで、硬化性樹脂組成物の加圧方法としては、プレス機等の従来公知の装置を用いることが好ましい。 The needle trace erasing method can be not only heating but also combining heating and pressurization. By pressurizing, the surface of the cured body can be further kept flat. Here, as a method for pressurizing the curable resin composition, it is preferable to use a conventionally known apparatus such as a press.
 又、実施形態1及び2の硬化性樹脂組成物は繰り返し使用することができるが、繰り返しの回数は、2回以上が好ましく、コストの面からいって、30回以上繰り返し使用できることが好ましい。 The curable resin compositions of Embodiments 1 and 2 can be used repeatedly, but the number of repetitions is preferably 2 or more, and from the viewpoint of cost, it is preferable that the curable resin composition can be used 30 or more times.
 又、基準位置として、上記硬化性樹脂組成物の硬化体上にマークを作製してもよい。マークの作製方法はインクジェットによるインク塗布やスクリーン印刷、金属蒸着、レーザーアブレーション等が挙げられるが、作業性及び繰り返しの使用に耐えるという観点から、インクジェットによるインク塗布が好ましい。 Moreover, you may produce a mark on the hardening body of the said curable resin composition as a reference position. Examples of the method for producing the mark include ink application by ink jet, screen printing, metal vapor deposition, laser ablation, and the like, but ink application by ink jet is preferable from the viewpoint of workability and durability against repeated use.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are employable.
 以下に、実施例及び比較例をあげて本発明を更に詳細に説明する。特記しない限り、25℃で評価した。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. Unless otherwise stated, the evaluation was performed at 25 ° C.
[実施例1]
 以下の組成で各材料を配合し、硬化性樹脂組成物を作製した。
・(A)炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレート
イソボルニルアクリレート(共栄社化学社製、「ライトアクリレート IB-XA」、以下「IB-XA」と略す。)90質量部。
・(B)炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)をエステル結合を介して有する単官能(メタ)アクリレート及び/又は炭素数2~8のアルコキシアルキル基をエステル結合を介して有する単官能(メタ)アクリレート
イソアミルアクリレート(共栄社化学社製、「ライトアクリレート IAA」、以下「IAA」と略す。)10質量部。
・(C)光重合開始剤
上記(A)及び(B)の合計100質量部に対して、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、「IRGACURE907」、以下「I-907」と略す。)1質量部。
・(D)酸化防止剤
上記(A)及び(B)の合計100質量部に対して、2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)(以下、「MDP」と略す。)0.1質量部。
[Example 1]
Each material was mix | blended with the following compositions and the curable resin composition was produced.
(A) Monofunctional (meth) acrylate isobornyl acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond (“Kyoeisha Chemical Co., Ltd.,“ Light Acrylate IB-XA ”) IB-XA ") 90 parts by weight.
(B) Monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) via an ester bond and / or alkoxyalkyl having 2 to 8 carbon atoms 10 parts by mass of a monofunctional (meth) acrylate isoamyl acrylate having a group via an ester bond (manufactured by Kyoeisha Chemical Co., Ltd., “light acrylate IAA”, hereinafter abbreviated as “IAA”).
(C) Photopolymerization initiator 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (100 parts by mass of (A) and (B) above) Ciba Specialty Chemicals, “IRGACURE907”, hereinafter abbreviated as “I-907”) 1 part by weight.
(D) Antioxidant 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (hereinafter abbreviated as “MDP”) with respect to a total of 100 parts by mass of the above (A) and (B) .) 0.1 parts by weight.
 得られた硬化性樹脂組成物を使用して、以下に示す評価方法にてガラス転移温度の測定、引張せん断接着強さの測定、針跡転写性、針跡消去性、溶融挙動及び針跡転写10回目の針跡深さの評価を行った。 Using the obtained curable resin composition, measurement of glass transition temperature, measurement of tensile shear adhesive strength, needle trace transferability, needle trace erasability, melting behavior and needle trace transfer by the following evaluation methods The 10th needle mark depth was evaluated.
(ガラス転移温度の測定)
 シリコンウェハ上に硬化性樹脂組成物を200μm厚で塗布して離型フィルムで覆ったのち、無電極放電ランプを使用したフュージョン社製硬化装置により、365nmの波長の積算光量4000mJ/cm2の条件にて硬化させた。その後離型フィルムを剥がして得られた硬化体を削り取り、示差走査熱量計「SII EXSTAR DSC6220」(セイコーインスツルメント社製)によりガラス転移温度を測定した(昇温速度10℃/min)。
(Measurement of glass transition temperature)
After applying a curable resin composition to a thickness of 200 μm on a silicon wafer and covering it with a release film, a condition of an integrated light quantity of 4000 mJ / cm 2 with a wavelength of 365 nm is obtained by a fusion device using an electrodeless discharge lamp. And cured. Thereafter, the cured product obtained by peeling off the release film was scraped off, and the glass transition temperature was measured with a differential scanning calorimeter “SII EXSTAR DSC6220” (manufactured by Seiko Instruments Inc.) (temperature increase rate: 10 ° C./min).
(引張せん断接着強さの測定(接着強さ))
 引張せん断接着強さは、JIS K 6850に従い測定した。具体的には、被着材として耐熱パイレックス(登録商標)ガラス(25mm×25mm×2.0mm)を用いて、作製した硬化性樹脂組成物を直径8mmの円状に塗布し、接着面の形状が直径8mmの円形の状態になるようにして2枚の耐熱パイレックス(登録商標)ガラスを貼り合わせた。その後、無電極放電ランプを使用したフュージョン社製硬化装置により、365nmの波長の積算光量2000mJ/cm2の条件にて硬化させ、引張せん断接着強さ測定用の試験片を作製した。そして、引っ張り試験機を使用して、温度23℃、湿度50%の環境下、引張速度10mm/min、接着剤の厚み100μmで、作製した試験片の引張せん断接着強さを測定した。
(Measurement of tensile shear bond strength (bond strength))
The tensile shear bond strength was measured according to JIS K 6850. Specifically, using the heat-resistant Pyrex (registered trademark) glass (25 mm × 25 mm × 2.0 mm) as the adherend, the produced curable resin composition was applied in a circular shape with a diameter of 8 mm, and the shape of the adhesive surface Two heat-resistant Pyrex (registered trademark) glasses were bonded together in a circular state with a diameter of 8 mm. Then, it was hardened on the conditions of the integrated light quantity 2000mJ / cm < 2 > of the wavelength of 365 nm with the fusion | curing apparatus by the fusion company using an electrodeless discharge lamp, and the test piece for tensile shear bond strength measurement was produced. Then, using a tensile tester, the tensile shear bond strength of the prepared test piece was measured in an environment of a temperature of 23 ° C. and a humidity of 50% at a tensile speed of 10 mm / min and an adhesive thickness of 100 μm.
(針跡転写性の評価(針跡転写性 針跡深さ 亀裂の本数))
 シリコンウェハ上に硬化性樹脂組成物を50μmの厚さに塗布して離型フィルムで覆ったのち、無電極放電ランプを使用したフュージョン社製硬化装置により、365nmの波長の積算光量4000mJ/cm2の条件にて硬化させた。その後離型フィルムを剥がして試験片を得た。マニュアルプローバを用いて、プローブを速度約15μm/sの条件で硬化性樹脂組成物の硬化体の表面から40μm下降させ、シリコンウェハ上の硬化性樹脂組成物の硬化体に接触させた。その後、共焦点レーザー顕微鏡にて硬化性樹脂組成物の硬化体表面への針跡転写の有無を観察し、針跡が転写されていた場合、針跡の深さを測定した。針跡の深さは共焦点レーザー顕微鏡(オリンパス社製、「OLS1100」、倍率:500倍)により測定した。また、針跡が転写されていた場合、針跡の周辺に亀裂が入っているか知るために、亀裂の本数を確認した。
(Evaluation of needle trace transferability (needle trace transferability, needle trace depth, number of cracks))
After a curable resin composition is applied to a silicon wafer to a thickness of 50 μm and covered with a release film, the integrated light amount of 4000 mJ / cm 2 at a wavelength of 365 nm is obtained using a fusion device using an electrodeless discharge lamp. Curing was performed under the following conditions. Thereafter, the release film was peeled off to obtain a test piece. Using a manual prober, the probe was lowered by 40 μm from the surface of the cured body of the curable resin composition at a speed of about 15 μm / s and brought into contact with the cured body of the curable resin composition on the silicon wafer. Thereafter, the presence or absence of transfer of the needle trace to the surface of the cured product of the curable resin composition was observed with a confocal laser microscope. When the needle trace was transferred, the depth of the needle trace was measured. The depth of the needle mark was measured with a confocal laser microscope (OLYMPUS, “OLS1100”, magnification: 500 times). Further, when the needle trace was transferred, the number of cracks was confirmed in order to know whether there was a crack around the needle trace.
(140℃加熱後の針跡深さ(針跡消去性 亀裂の本数))
 上記試験において針跡が転写されていた試験片を用いて、オーブンにて140℃で10分間加熱した後、針跡が消去されているか確認した。針跡が消去されていなかった場合、針跡深さを測定した。針跡の有無及び針跡深さは共焦点レーザー顕微鏡にて確認した。また、針跡転写で亀裂が入っていた場合、亀裂が消去されているか知るために、亀裂の本数を確認した。
(Needle mark depth after heating at 140 ° C. (Number of cracks in needle mark erasure)
Using the test piece to which the needle trace was transferred in the above test, after heating in an oven at 140 ° C. for 10 minutes, it was confirmed whether the needle trace was erased. If the needle trace was not erased, the needle trace depth was measured. The presence or absence of needle marks and the depth of the needle marks were confirmed with a confocal laser microscope. In addition, when there was a crack in the transfer of needle marks, the number of cracks was checked to know whether the crack was erased.
(加熱後の硬化体の溶融挙動(溶融挙動))
 針跡転写性及び針跡消去性の評価用に作製した試験片(硬化性樹脂組成物の硬化体の大きさ:幅30mm×幅30mm×厚さ50μm)を140℃に加熱したホットプレートの上に5分間置いて、硬化体に溶融の挙動が見られるか観察した(加熱後の試験片の幅を測定した)。
(Melting behavior of cured product after heating (melting behavior))
On a hot plate in which a test piece (size of a curable resin composition cured body: width 30 mm × width 30 mm × thickness 50 μm) prepared for evaluation of needle trace transferability and needle trace erasability is heated to 140 ° C. For 5 minutes to observe whether the cured body has melting behavior (the width of the test piece after heating was measured).
(針跡転写10回目の針跡深さ)
 上述した条件で針跡転写および針跡消去を9回繰り返した試験片を用いて、針跡転写性を評価した。針跡の深さは共焦点レーザー顕微鏡(オリンパス社製、「OLS1100」、倍率:500倍)により測定した。繰り返し試験における針跡転写の位置はすべて同一箇所とした。
(10th needle mark depth of needle mark transfer)
Using a test piece in which needle trace transfer and needle trace erasure were repeated nine times under the conditions described above, needle trace transferability was evaluated. The depth of the needle mark was measured with a confocal laser microscope (OLYMPUS, “OLS1100”, magnification: 500 times). The positions of needle trace transfer in the repeated test were all the same.
 上記の実験結果を表1に示す。 The above experimental results are shown in Table 1.
[実施例2~13]
 表1に示す種類の原材料を表1に示す組成で使用したこと以外は実施例1と同様にして硬化性樹脂組成物を作製した。得られた硬化性樹脂組成物について、実施例1と同様に上記評価を行った。それらの実験結果を表1に示す。
尚、実施例4の針跡転写性は85℃にて評価した。
[Examples 2 to 13]
A curable resin composition was prepared in the same manner as in Example 1 except that the raw materials of the type shown in Table 1 were used in the composition shown in Table 1. The obtained curable resin composition was evaluated in the same manner as in Example 1. Table 1 shows the experimental results.
The needle trace transferability of Example 4 was evaluated at 85 ° C.
(使用材料)
 以下に、実施例2~13で使用した各材料とその略称を明記する。尚、この略称は表1と対応している。
FA-513AS:ジシクロペンタニルアクリレート(日立化成工業社製、「FANCRYL FA-513AS」)
IM-A:イソテトラデシルアクリレート(共栄社化学社製、「ライトアクリレート IM-A」)
L:ラウリルメタクリレート(共栄社化学社製、「ライトエステル L」)
EH:2-エチルヘキシルメタクリレート(共栄社化学社製、「ライトエステル EH」)
BO:ブトキシエチルメタクリレート(共栄社化学社製、「ライトエステル BO」)
2-MTA:メトキシエチルアクリレート(大阪有機化学工業社製、「2-MTA」)
BO-A:ブトキシエチルアクリレート(共栄社化学社製、「ライトアクリレート BO-A」)
BDK:ベンジルジメチルケタール
(Materials used)
The materials used in Examples 2 to 13 and their abbreviations are specified below. This abbreviation corresponds to Table 1.
FA-513AS: Dicyclopentanyl acrylate (manufactured by Hitachi Chemical Co., Ltd., “FANCRYL FA-513AS”)
IM-A: Isotetradecyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., “Light acrylate IM-A”)
L: Lauryl methacrylate (manufactured by Kyoeisha Chemical Co., “Light Ester L”)
EH: 2-ethylhexyl methacrylate (manufactured by Kyoeisha Chemical Co., “Light Ester EH”)
BO: Butoxyethyl methacrylate (manufactured by Kyoeisha Chemical Co., “Light Ester BO”)
2-MTA: Methoxyethyl acrylate (Osaka Organic Chemical Industry Co., Ltd., “2-MTA”)
BO-A: Butoxyethyl acrylate (Kyoeisha Chemical Co., Ltd., “Light acrylate BO-A”)
BDK: benzyl dimethyl ketal
[比較例1~5]
 表1に示す種類の原材料を表1に示す組成で使用したこと以外は実施例1と同様にして樹脂組成物を作製した。得られた樹脂組成物に関して、実施例1と同様に評価を行った。それらの結果を表1に示す。
[Comparative Examples 1 to 5]
A resin composition was prepared in the same manner as in Example 1 except that the raw materials of the type shown in Table 1 were used in the composition shown in Table 1. The obtained resin composition was evaluated in the same manner as in Example 1. The results are shown in Table 1.
(使用材料)
 以下に、比較例2乃至比較例4で使用した各材料とその略称を明記する。尚、この略称は表1と対応している。
ACMO:アクリロイルモルフォリン(興人社製、「ACMO」)
1,9ND-A:1,9-ノナンジオールジアクリレート(共栄社化学社製、「ライトアクリレート 1,9ND-A」)
ID:イソデシルメタクリレート(共栄社化学社製、「ライトアクリレート ID」)
(Materials used)
The materials used in Comparative Examples 2 to 4 and their abbreviations are specified below. This abbreviation corresponds to Table 1.
ACMO: Acryloyl morpholine (manufactured by Kojinsha, "ACMO")
1,9ND-A: 1,9-nonanediol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., “Light acrylate 1,9ND-A”)
ID: Isodecyl methacrylate (manufactured by Kyoeisha Chemical Co., “Light acrylate ID”)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[考察]
 表1からわかるように、実施例1~13では、針跡を転写することができ、かつ加熱によって針跡を消去することができた。即ち、本発明に係る硬化性樹脂組成物を使用することによって、針跡を転写する部材を検査毎若しくはウエハの種類毎に交換せずに、プローブの検査を繰り返し行うことができる。
[Discussion]
As can be seen from Table 1, in Examples 1 to 13, the needle trace could be transferred and the needle trace could be erased by heating. That is, by using the curable resin composition according to the present invention, the inspection of the probe can be repeatedly performed without replacing the member for transferring the needle trace for each inspection or for each type of wafer.
 しかし、実施例1~13に対して、比較例1はガラス転移温度が40℃未満であったため、針跡転写できず、更に加熱後は硬化体が溶融してしまった。又、比較例2では、ガラス転移温度以上に加熱しなかったため、加熱によって針跡を消去することはできなかった。又、比較例3では二官能モノマーを含んでいたことで針跡の周辺に亀裂が発生し、加熱後も亀裂が残ってしまった。亀裂が残っていると、その後に転写した針跡の検出に悪影響を及ぼすおそれがあり、繰り返し使用できる回数の減少にもつながる。又、比較例4もわずかではなるが亀裂が残ってしまった。又、比較例5では、酸化防止剤を使用しなかったため、針跡転写と加熱消去の繰り返しによって硬化体が劣化し、針跡深さが初期よりも浅くなってしまった。 However, in contrast to Examples 1 to 13, since Comparative Example 1 had a glass transition temperature of less than 40 ° C., needle trace transfer was not possible, and the cured product was melted after heating. In Comparative Example 2, the needle traces could not be erased by heating because heating was not performed above the glass transition temperature. In Comparative Example 3, since the bifunctional monomer was contained, a crack occurred around the needle trace, and the crack remained even after heating. If cracks remain, there is a risk of adversely affecting the detection of subsequently transferred needle traces, leading to a reduction in the number of times that they can be used repeatedly. Moreover, although the comparative example 4 was also slight, the crack remained. In Comparative Example 5, since no antioxidant was used, the cured product deteriorated due to repeated needle trace transfer and heat erasure, and the needle trace depth became shallower than the initial one.
 又、表1からわかるように、本発明に係る硬化性樹脂組成物の硬化体は、概ね20~100μmの厚さに形成することができる。硬化体をこのような厚さに形成することによって、一般的な半導体ウエハの厚さに対応できる。つまり、硬化体に転写されたプローブの針跡とウエハ上に形成されている基準位置とを同じフォーカスで同時に観察することができ、作業時間の短縮ができるという効果が得られる。 As can be seen from Table 1, the cured product of the curable resin composition according to the present invention can be formed to a thickness of about 20 to 100 μm. By forming the cured body to such a thickness, it is possible to cope with the thickness of a general semiconductor wafer. That is, the probe trace transferred to the cured body and the reference position formed on the wafer can be observed simultaneously with the same focus, and the working time can be shortened.
 又、実施例4に示すように、ガラス転移温度が高ければ高温での利用も可能であり、更に、針跡転写時の温度を上げることで深い針跡を転写させることが可能である。 Also, as shown in Example 4, if the glass transition temperature is high, it can be used at a high temperature, and deep needle traces can be transferred by raising the temperature during needle trace transfer.
10 シート
11 針跡
12 支持台
13 載置台
14 プローブカード
15 プローブ
16 CCDカメラ(撮像装置)
17 加熱装置
W  ウエハ
DESCRIPTION OF SYMBOLS 10 Sheet | seat 11 Needle trace 12 Support stand 13 Mounting stand 14 Probe card 15 Probe 16 CCD camera (imaging device)
17 Heating device W Wafer

Claims (6)

  1.  被検査体の電気的特性を検査するプローブに硬化性樹脂組成物の硬化体を接触させ、硬化体にプローブの針跡を転写して、転写された針跡を基にプローブの状態を確認し、かつ、プローブの針跡を転写した後に、硬化体を硬化体のガラス転移温度以上に加熱してプローブの針跡を消去する工程を含み、これにより当該硬化体を繰り返し検査に供するプローブの検査方法であり、
    硬化性樹脂組成物が、
    (A)炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレート、
    (B)下記(1)~(3)に示す炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)をエステル結合を介して有する単官能(メタ)アクリレート、及び炭素数2~8のアルコキシアルキル基をエステル結合を介して有する単官能(メタ)アクリレートよりなる群から選択される少なくとも1種の単官能(メタ)アクリレート:
    Figure JPOXMLDOC01-appb-C000001
    (C)光重合開始剤、
    (D)酸化防止剤
    を含有し、硬化性樹脂組成物の硬化体のガラス転移温度が40℃以上100℃以下であるプローブの検査方法。
    Contact the cured body of the curable resin composition with the probe that inspects the electrical characteristics of the object to be inspected, transfer the probe needle trace to the cured body, and check the probe status based on the transferred needle trace. And, after transferring the probe traces of the probe, includes a step of heating the cured body to a temperature higher than the glass transition temperature of the cured body and erasing the probe traces of the probe, thereby inspecting the probe for repeated inspection of the cured body Is the way
    The curable resin composition is
    (A) a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond,
    (B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond:
    Figure JPOXMLDOC01-appb-C000001
    (C) a photopolymerization initiator,
    (D) A probe inspection method containing an antioxidant and having a cured product of the curable resin composition having a glass transition temperature of 40 ° C. or higher and 100 ° C. or lower.
  2.  硬化性樹脂組成物の硬化体の厚さが20~100μmである請求項1に記載のプローブの検査方法。 The probe inspection method according to claim 1, wherein the thickness of the cured body of the curable resin composition is 20 to 100 µm.
  3. (A)炭素数9~12の飽和脂環式炭化水素基をエステル結合を介して有する単官能(メタ)アクリレート、
    (B)下記(1)~(3)に示す炭素数5~18の飽和炭化水素基(但し飽和脂環式炭化水素基を省く)をエステル結合を介して有する単官能(メタ)アクリレート、及び炭素数2~8のアルコキシアルキル基をエステル結合を介して有する単官能(メタ)アクリレートよりなる群から選択される少なくとも1種の単官能(メタ)アクリレート:
    Figure JPOXMLDOC01-appb-C000002
    (C)光重合開始剤、
    (D)酸化防止剤
    を含有し、硬化性樹脂組成物の硬化体のガラス転移温度が40℃以上100℃以下であるプローブの針跡を転写するための硬化性樹脂組成物。
    (A) a monofunctional (meth) acrylate having a saturated alicyclic hydrocarbon group having 9 to 12 carbon atoms via an ester bond,
    (B) a monofunctional (meth) acrylate having a saturated hydrocarbon group having 5 to 18 carbon atoms (excluding a saturated alicyclic hydrocarbon group) shown in the following (1) to (3) via an ester bond; At least one monofunctional (meth) acrylate selected from the group consisting of monofunctional (meth) acrylates having an alkoxyalkyl group having 2 to 8 carbon atoms via an ester bond:
    Figure JPOXMLDOC01-appb-C000002
    (C) a photopolymerization initiator,
    (D) A curable resin composition for transferring a probe trace of a probe which contains an antioxidant and has a glass transition temperature of 40 ° C. or more and 100 ° C. or less of a cured product of the curable resin composition.
  4.  (A)成分及び(B)成分の合計100質量部に対して、(A)成分を10~99重量部、(B)成分を1~90質量部、(C)光重合開始剤を0.1~20質量部、(D)酸化防止剤を0.001~3質量部を含有する請求項3に記載の硬化性樹脂組成物。 Component (A) is 10 to 99 parts by weight, component (B) is 1 to 90 parts by weight, and (C) photopolymerization initiator is 0.1 parts by weight with respect to 100 parts by weight as a total of component (A) and component (B). The curable resin composition according to claim 3, comprising 1 to 20 parts by mass and 0.001 to 3 parts by mass of (D) an antioxidant.
  5.  請求項3又は4に記載の硬化性樹脂組成物を硬化してなるプローブの針跡を転写するための硬化体。 A cured body for transferring the needle trace of a probe formed by curing the curable resin composition according to claim 3 or 4.
  6.  請求項5に記載の硬化体からなるシートと、
     シートを載置する支持台と、
     シートを硬化体のガラス転移温度以上に加熱するための加熱装置と、
     プローブを有するプローブカードと、
     シートに転写されたプローブの針跡を基にプローブの状態を確認するための撮像装置とを備える、プローブの検査装置。
    A sheet comprising the cured body according to claim 5;
    A support table on which the sheet is placed;
    A heating device for heating the sheet above the glass transition temperature of the cured body;
    A probe card having a probe;
    An inspection apparatus for a probe, comprising: an imaging device for confirming a state of the probe based on a probe mark of the probe transferred to the sheet.
PCT/JP2011/053552 2011-02-18 2011-02-18 Probe inspection method and cured resin composition WO2012111154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053552 WO2012111154A1 (en) 2011-02-18 2011-02-18 Probe inspection method and cured resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053552 WO2012111154A1 (en) 2011-02-18 2011-02-18 Probe inspection method and cured resin composition

Publications (1)

Publication Number Publication Date
WO2012111154A1 true WO2012111154A1 (en) 2012-08-23

Family

ID=46672114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053552 WO2012111154A1 (en) 2011-02-18 2011-02-18 Probe inspection method and cured resin composition

Country Status (1)

Country Link
WO (1) WO2012111154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109254141A (en) * 2017-07-13 2019-01-22 松下知识产权经营株式会社 The state monitoring method and condition monitoring system of heat-curing resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161038A (en) * 2004-11-12 2006-06-22 Mitsui Chemicals Inc Film adhesive and semiconductor package using the same
WO2006129678A1 (en) * 2005-05-31 2006-12-07 Denki Kagaku Kogyo Kabushiki Kaisha Energy ray-curable resin composition and adhesive using same
JP2007077321A (en) * 2005-09-15 2007-03-29 Denki Kagaku Kogyo Kk Energy ray curable resin composition and adhesive using the same
JP2008101151A (en) * 2006-10-20 2008-05-01 Denki Kagaku Kogyo Kk Curable composition
WO2009107558A1 (en) * 2008-02-26 2009-09-03 電気化学工業株式会社 Probe inspecting method and curable resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161038A (en) * 2004-11-12 2006-06-22 Mitsui Chemicals Inc Film adhesive and semiconductor package using the same
WO2006129678A1 (en) * 2005-05-31 2006-12-07 Denki Kagaku Kogyo Kabushiki Kaisha Energy ray-curable resin composition and adhesive using same
JP2007077321A (en) * 2005-09-15 2007-03-29 Denki Kagaku Kogyo Kk Energy ray curable resin composition and adhesive using the same
JP2008101151A (en) * 2006-10-20 2008-05-01 Denki Kagaku Kogyo Kk Curable composition
WO2009107558A1 (en) * 2008-02-26 2009-09-03 電気化学工業株式会社 Probe inspecting method and curable resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109254141A (en) * 2017-07-13 2019-01-22 松下知识产权经营株式会社 The state monitoring method and condition monitoring system of heat-curing resin

Similar Documents

Publication Publication Date Title
JP5812863B2 (en) How to use the adhesive
TWI598413B (en) Curable composition for inkjet and method for producing electronic component
KR20140039064A (en) Photocurable adhesive composition and use of the same
TWI518105B (en) A hardening composition for inkjet and a method for manufacturing an electronic component
TWI738661B (en) Photocurable resin composition and manufacturing method of image display device
TWI669368B (en) Composition and disintegration method
TWI468695B (en) Probe inspection method and curable resin composition
KR20130056340A (en) Light-curing composition for use in transparent pressure-sensitive adhesive sheet
TWI671375B (en) Photohardenable composition
JP5732436B2 (en) Method for producing pressure-sensitive adhesive sheet and method for producing laminate for touch panel
TW201700692A (en) Composition
KR20160141876A (en) Display device, process for manufacturing same, and transparent resin filler
WO2003087187A1 (en) Actinic radiation hardenable resin composition and hardening product thereof
WO2016190361A1 (en) Composition
JP5603037B2 (en) Probe inspection method and curable resin composition
TW201835132A (en) Composition
WO2012111154A1 (en) Probe inspection method and cured resin composition
KR20210091172A (en) composition
KR102032601B1 (en) Pellicle, photomask with pellicle, and method for manufacturing semiconductor element
TWI679498B (en) combination
KR20220042050A (en) Photocurable resin composition
WO2018110666A1 (en) Composition
TW201821448A (en) Method for producing laminate and photocurable resin composition
TW201446915A (en) Curable resin composition
TW201235367A (en) Probe inspecting method and curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP