JP2007075930A - Surface coated cermet throw-away tip for rotating cutting tool having hard coated layer exerting excellent chipping resistance in high speed cutting - Google Patents

Surface coated cermet throw-away tip for rotating cutting tool having hard coated layer exerting excellent chipping resistance in high speed cutting Download PDF

Info

Publication number
JP2007075930A
JP2007075930A JP2005265130A JP2005265130A JP2007075930A JP 2007075930 A JP2007075930 A JP 2007075930A JP 2005265130 A JP2005265130 A JP 2005265130A JP 2005265130 A JP2005265130 A JP 2005265130A JP 2007075930 A JP2007075930 A JP 2007075930A
Authority
JP
Japan
Prior art keywords
layer
range
degrees
cutting
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005265130A
Other languages
Japanese (ja)
Other versions
JP4655308B2 (en
Inventor
Hisashi Honma
尚志 本間
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005265130A priority Critical patent/JP4655308B2/en
Publication of JP2007075930A publication Critical patent/JP2007075930A/en
Application granted granted Critical
Publication of JP4655308B2 publication Critical patent/JP4655308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a throw-away tip for a rotating cutting tool exerting excellent chipping resistance in high speed cutting. <P>SOLUTION: In this throw-away tip, a hard coated layer having lower part layers of Ti compound layers and upper part layers of Al<SB>2</SB>O<SB>3</SB>layers is formed on a surface of a tip substrate. One layer of the Ti compound layers is made of a reformed TiCN layer showing an inclined angle frequency distribution graph in which each peak exists in inclined angle divisions within the range of 0 to 10° and 25 to 35° and the total of frequencies existing in each of the range of 0 to 10° and 25 to 35° occupies 35 to 45%, in the inclined angle frequency distribution graph made by measuring an inclined angle formed by a normal line of a ä112} plane to be a crystalline plane of crystal grain by using a field emission type scanning electron microscope, by dividing the measured inclined angles within the range of 0 to 45° for every pitch of 0.25° of the measured inclined angles, and by totalizing frequencies existing in each division. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に鋼や鋳鉄などの高速切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する回転切削工具用表面被覆サーメット製スローアウエイチップ(以下、被覆チップという)に関するものである。   The present invention relates to a throwaway tip (hereinafter referred to as a coated tip) made of a surface-coated cermet for a rotary cutting tool that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed cutting of steel or cast iron.

従来、一般に、回転切削工具として、図4(a)に半部縦断側面図、また、同(b)に要部拡大側面図で示される正面フライス工具や、図5(a)に側面図、同(b)に頭部正面図で示されるスローアウエイエンドミルが知られており、これらの回転切削工具は、図示される通り、工具本体の正面部に所定間隔をもって複数個の被覆チップを着脱自在に取り付けた構造をもち、平面削り加工、溝削り加工、肩削り加工、座ぐり加工、そして穴あけ加工などの切削加工に用いられることも良く知られるところである。
さらに、上記の被覆チップが、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成されたチップ基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、TiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有する化学蒸着形成された酸化アルミニウム(以下、Al23で示す)層、
以上(a)および(b)で構成された硬質被覆層を形成したものからなることも知られている。
特開平6−31503号公報
Conventionally, in general, as a rotary cutting tool, as shown in FIG. 4A, a half vertical side view, a front milling tool shown in FIG. There is known a throwaway end mill shown in the front view of the head in (b), and these rotary cutting tools are detachable with a plurality of coated tips at a predetermined interval on the front part of the tool body as shown in the figure. It is also well known that it is used for cutting such as plane cutting, grooving, shouldering, counterbore, and drilling.
Furthermore, the above-mentioned coated chip is formed on the surface of a chip base composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet.
(A) Titanium carbide (hereinafter referred to as TiC) layer, titanium nitride (hereinafter referred to as TiN) layer, titanium carbonitride (hereinafter referred to as TiCN) layer, carbonic acid carbonate, all of which are formed by chemical vapor deposition. A Ti compound layer composed of two or more of a titanium carbide (hereinafter referred to as TiCO) layer and a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer formed by chemical vapor deposition in which the upper layer has an average layer thickness of 1 to 15 μm;
It is also known that the hard coating layer composed of (a) and (b) is formed.
Japanese Unexamined Patent Publication No. 6-31503

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆チップにおいては、これを通常の切削加工条件で用いた場合には問題はないが、特にこれを切削速度が300m/min.を越える高速切削条件で用いた場合、これを構成する硬質被覆層は下部層のTi化合物層による高温強度、同上部層のAl23層による高温硬さおよび耐熱性を具備するものの、前記Ti化合物層による高温強度が不十分であるために、硬質被覆層にはチッピング(微小欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, there has been a remarkable improvement in the performance of cutting devices. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and with this, cutting has been on the trend of higher speed. In the conventional coated chip, there is no problem when it is used under normal cutting conditions, but in particular, the cutting speed is 300 m / min. When used under high-speed cutting conditions exceeding the above, the hard coating layer constituting this has high temperature strength due to the Ti compound layer of the lower layer, high temperature hardness and heat resistance due to the Al 2 O 3 layer of the same upper layer, Since the high temperature strength due to the Ti compound layer is insufficient, chipping (minute chipping) is likely to occur in the hard coating layer, so that the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆チップを構成する硬質被覆層の耐チッピング性向上をはかるべく、これの下部層であるTi化合物層のうちのTiCN層に着目し、研究を行った結果、
(a−1)通常、上記の従来被覆チップの硬質被覆層の下部層であるTi化合物層を構成するTiCN層(以下、従来TiCN層という)は、通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H:残り、
反応雰囲気温度:850〜950℃、
反応雰囲気圧力:3〜13kPa、
の条件で形成されるが、上記従来TiCN層を形成するに先立って、
(a−2)同じく通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl:0.2〜1%、C(メチルエチレン):1〜5%、N:20〜40%、H:残り、
反応雰囲気温度:700〜800℃、
反応雰囲気圧力:3〜13kPa、
処理時間:0.5〜1時間、
の条件で、TiCN結晶核を層形成表面に分散分布させた状態で形成し、この場合、前記TiCN結晶核の分散割合を、走査型電子顕微鏡を用い、1万倍の倍率で観察して、平均値で80〜150個/μmの割合とし、
(a−3)このようにTiCN結晶核が存在する表面に、上記の従来TiCN層の形成条件と同じ条件でTiCN層を形成すると、この結果のTiCN層(以下、改質TiCN層という)は、層形成時に前記TiCN結晶核の結晶配列に著しく影響を受け、これを十分に履歴しながら層形成が行なわれるようになること。
In view of the above, the present inventors pay attention to the TiCN layer of the Ti compound layer, which is the lower layer, in order to improve the chipping resistance of the hard coating layer constituting the coated chip from the above viewpoint. As a result of research,
(A-1) Usually, a TiCN layer (hereinafter referred to as a conventional TiCN layer) constituting a Ti compound layer that is a lower layer of the hard coating layer of the conventional coated chip is a normal chemical vapor deposition apparatus,
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 850-950 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
However, prior to forming the conventional TiCN layer,
(A-2) In the same normal chemical vapor deposition apparatus,
Reaction gas composition - by volume%, TiCl 4: 0.2~1%, C 3 H 6 ( methylethylene): 1~5%, N 2: 20~40%, H 2: remainder,
Reaction atmosphere temperature: 700 to 800 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Processing time: 0.5-1 hour,
Under the conditions, TiCN crystal nuclei are formed in a state of being distributed and distributed on the layer forming surface. In this case, the dispersion ratio of the TiCN crystal nuclei is observed at a magnification of 10,000 using a scanning electron microscope, The average value is 80 to 150 / μm 2 ,
(A-3) When a TiCN layer is formed on the surface where the TiCN crystal nuclei are present under the same conditions as the conventional TiCN layer, the resulting TiCN layer (hereinafter referred to as a modified TiCN layer) When the layer is formed, the TiCN crystal nuclei are significantly affected by the crystal arrangement, and the layer formation is performed while sufficiently recording the history.

(b)上記の従来TiCN層と改質TiCN層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図3に例示される通り、{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質TiCN層は、図2に例示される通り、TiCN層形成に先立って形成される上記TiCN結晶核の分布割合を平均値で80〜150個/μmの割合とすることによって、0〜10度の範囲内および25〜35度の範囲内の傾斜角区分にそれぞれピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35〜45%、前記25〜35度の範囲内に存在する度数の合計が、同じく傾斜角度数分布グラフにおける度数全体の35〜45%の割合を占める傾斜角度数分布グラフを示すようになること。 (B) Using the field emission scanning electron microscope, the conventional TiCN layer and the modified TiCN layer are within the measurement range of the surface polished surface as shown in the schematic explanatory diagrams of FIGS. 1 (a) and 1 (b). An electron beam is irradiated to each of the crystal grains having a cubic crystal lattice, and an inclination angle formed by a normal of the {112} plane that is a crystal plane of the crystal grain is set with respect to a normal of the surface polished surface. Measured and divided the measured inclination angle within the range of 0 to 45 degrees among the measured inclination angles for each pitch of 0.25 degrees, and the number of inclination angles obtained by totalizing the frequencies existing in each section When a distribution graph is created, the conventional TiCN layer shows an unbiased inclination angle number distribution graph within the range of the measured inclination angle of the {112} plane within the range of 0 to 45 degrees as illustrated in FIG. In contrast, the modified TiCN layer is formed of Ti, as illustrated in FIG. By a ratio of 80 to 150 pieces / [mu] m 2 in average the distribution ratio of the TiCN crystal nuclei formed prior to the N layer formation, in the range within and 25-35 degrees range of 0 degrees A peak exists in each tilt angle section, and the total frequency within the range of 0 to 10 degrees is 35 to 45% of the total frequency in the tilt angle frequency distribution graph, and within the range of 25 to 35 degrees. The inclination frequency distribution graph in which the total of the existing frequencies similarly accounts for 35 to 45% of the entire frequency in the inclination angle distribution graph.

(c)硬質被覆層の上部層が前記Al23層、下部層が上記Ti化合物層で構成され、かつ前記Ti化合物層のうちの1層が前記改質TiCN層からなる被覆チップは、前記改質TiCN層がすぐれた高温強度を具備するようになることから、高速切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The coated chip in which the upper layer of the hard coating layer is composed of the Al 2 O 3 layer, the lower layer is composed of the Ti compound layer, and one of the Ti compound layers is composed of the modified TiCN layer, Since the modified TiCN layer has excellent high-temperature strength, the hard coating layer exhibits excellent chipping resistance even in high-speed cutting, and exhibits excellent wear resistance over a long period of time. To become.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成されたチップ基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有する化学蒸着形成されたAl層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆チップにおいて、上記(a)の2層以上のTi化合物層のうちの1層を、2.5〜15μmの平均層厚を有し、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内および25〜35度の範囲内の傾斜角区分にそれぞれピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35〜45%、前記25〜35度の範囲内に存在する度数の合計が、同じく傾斜角度数分布グラフにおける度数全体の35〜45%の割合を占める傾斜角度数分布グラフを示す改質TiCN層、で構成してなる、高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆チップに特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a chip base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is composed of two or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, all formed by chemical vapor deposition, and has a total average layer thickness of 3 to 20 μm. Ti compound layer,
(B) Al 2 O 3 layer formed by chemical vapor deposition with an upper layer having an average layer thickness of 1 to 15 μm,
In the coated chip formed by forming the hard coating layer composed of (a) and (b) above, one of the two or more Ti compound layers of (a) above is averaged at 2.5 to 15 μm. Having a layer thickness, and
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal grain is normal to the surface polished surface. The tilt angle formed by the normal of the {112} plane, which is the crystal plane, is measured, and, among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by counting the frequencies existing in each section, peaks exist in the inclination angle sections in the range of 0 to 10 degrees and in the range of 25 to 35 degrees, respectively, and the 0 The sum of the frequencies existing within the range of 10 to 10 degrees is 35 to 45% of the entire frequencies in the tilt angle frequency distribution graph, and the total of the frequencies existing within the range of 25 to 35 degrees is the same as the tilt angle frequency distribution graph. 35-45% of the total frequency in Reformed TiCN layer indicating the inclination angle frequency distribution graph which accounts for engagement, in formed by arrangement, and it has the characteristics to the coating chip exhibits chipping resistance of the hard coating layer has excellent high-speed cutting.

つぎに、この発明の被覆チップの硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、チップ基体と上部層であるAl23層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、高熱発生を伴なう高速切削加工では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated chip of the present invention are numerically limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer itself has high-temperature strength, and the presence of this makes the hard coating layer have high-temperature strength, and firmly adheres to both the chip base and the upper Al 2 O 3 layer. Therefore, it has an effect of improving the adhesion of the hard coating layer to the chip substrate. However, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited, while the total average layer thickness is If it exceeds 20 μm, high-speed cutting with high heat generation tends to cause thermoplastic deformation, which causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm.

(b)改質TiCN層
上記の通り、改質TiCN層形成に先立って形成される上記TiCN結晶核の分布割合を平均値で80〜150個/μmの割合とすることによって、改質TiCN層は、0〜10度の範囲内および25〜35度の範囲内の傾斜角区分にそれぞれピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35〜45%、前記25〜35度の範囲内に存在する度数の合計が、同じく傾斜角度数分布グラフにおける度数全体の35〜45%の割合を占める傾斜角度数分布グラフを示すようになり、この結果としてすぐれた高温強度を具備するようになるものであり、したがって、TiCN結晶核の分布割合が平均値で80個/μm未満であったり、また同分布割合が150個/μmを越えたりすると、2つのピークの現れる傾斜角が前記範囲外になったり、傾斜角度数分布グラフに2つのピークが現れなくなったり、さらに前記範囲内にある度数全体の割合が前記範囲から外れたりするようになり、このような場合はいずれも所望の高強度が得られず、チッピングが発生し易くなるものである。
また、その平均層厚が2.5μm未満では所望のすぐれた高温強度を硬質被覆層に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified TiCN layer As described above, by modifying the distribution ratio of the TiCN crystal nuclei formed prior to the formation of the modified TiCN layer to an average value of 80 to 150 / μm 2 , the modified TiCN layer is formed. The layer has peaks in the inclination angle sections in the range of 0 to 10 degrees and in the range of 25 to 35 degrees, respectively, and the total of the frequencies existing in the range of 0 to 10 degrees is an inclination angle number distribution. An inclination angle frequency distribution graph in which 35 to 45% of the entire frequency in the graph and a total of frequencies existing in the range of 25 to 35 degrees occupy a ratio of 35 to 45% of the entire frequency in the inclination angle distribution graph. is as shown, this results in excellent high-temperature strength are those so equipped, thus, or less than 80 / [mu] m 2 at a distribution ratio of the TiCN crystal nuclei average value and the distribution split When There or exceed 150 / [mu] m 2, or the inclination angle of appearance of two peaks fall outside the range, or no longer appear two peaks inclination angle frequency distribution graph, the ratio of the total power in addition within the range In such cases, the desired high strength cannot be obtained and chipping is likely to occur.
Also, if the average layer thickness is less than 2.5 μm, the hard coating layer cannot be provided with the desired excellent high-temperature strength. On the other hand, if the average layer thickness exceeds 15 μm, the thermoplastic deformation causing uneven wear will not occur. Since it tends to occur and wear accelerates, the average layer thickness was set to 2.5 to 15 μm.

(c)Al23層(上部層)
Al23層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) Al 2 O 3 layer (upper layer)
The Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 1 μm, the hard coating layer has sufficient wear resistance. On the other hand, if the average layer thickness exceeds 15 μm and becomes too thick, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明被覆チップは、高速切削加工でも、硬質被覆層の下部層のうちの1層である改質TiCN層がすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。   This coated chip has a high temperature strength with a modified TiCN layer which is one of the lower layers of the hard coating layer, and exhibits excellent chipping resistance even in high-speed cutting. The layer exhibits excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で72時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、研削加工と、すくい面と逃げ面の交わる切刃刃稜線部に幅:0.12mmのホーニング加工を施すことにより、WC基超硬合金製のISO規格・SEEN1203AFTNに規定する正面フライス工具用、およびISO規格・OEMX1705ETRに規定するスローアウエイエンドミル用のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 0.5 to 3 μm as raw material powder These raw material powders are blended in the blending composition shown in Table 1, further added with wax, ball milled in acetone for 72 hours, dried under reduced pressure, and then pressed into a green compact with a predetermined shape at a pressure of 98 MPa. This green compact is press-molded and vacuum-sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, grinding, grinding, rake face and flank face By applying honing of 0.12mm in width to the edge of the cutting edge that intersects, the face milling tool specified in ISO standard SEEN1203AFTN made of WC-base cemented carbide, and ISO Chip bases A to F for slow-away end mills specified in the standard · OEMX1705ETR were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、同じく研削加工と、すくい面と逃げ面の交わる切刃刃稜線部に幅:0.12mmのホーニング加工を施すことにより、TiCN基サーメット製のISO規格・SEEN1203AFTNに規定する正面フライス工具用、およびISO規格・OEMX1705ETRに規定するスローアウエイエンドミル用のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the grinding edge and the cutting edge edge line where the rake face and the flank face intersect. By applying honing to the width: 0.12 mm, it is for the face milling tool specified in ISO standard / SEEN1203AFTN made by TiCN base cermet, and ISO standard / OEMX 1705E. To form a chip substrate a~f for slow-away end mill as defined in R.

つぎに、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、TiCN結晶核分布割合測定用試験片と共に、通常の化学蒸着装置に装入し、まず、表3に示される条件にて、硬質被覆層の下部層として改質TiCN層を含むTi化合物層を、表4に示される組み合わせで、かつ目標層厚で蒸着形成し、この場合前記改質TiCN層の形成に必要なTiCN結晶核の分布割合は処理時間を調製することにより行ない、また、前記TiCN結晶核分布割合測定用試験片は、改質TiCN層の形成に先立って行なわれるTiCN結晶核の形成後に取り出し、ついで同じく表3に示される条件にて、上部層としてAl23層を同じく表4に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆チップ1〜13をそれぞれ製造した。
なお、上記のTiCN結晶核分布割合測定用試験片については、走査型電子顕微鏡を用い、1万倍の倍率で観察して、3μm×3μmの範囲内に存在するTiCN結晶核の数を任意5ヶ所について測定し、この測定結果を表4に単位面積(μm2)当りの平均値で示した。
Next, each of these chip bases A to F and chip bases a to f is loaded into a normal chemical vapor deposition apparatus together with a test piece for measuring the TiCN crystal nucleus distribution ratio. First, the conditions shown in Table 3 are satisfied. Then, a Ti compound layer including a modified TiCN layer as a lower layer of the hard coating layer is vapor-deposited with a combination shown in Table 4 and with a target layer thickness. In this case, TiCN necessary for forming the modified TiCN layer is formed. The distribution ratio of crystal nuclei is determined by adjusting the processing time, and the TiCN crystal nucleus distribution ratio measurement specimen is taken out after the formation of TiCN crystal nuclei performed prior to the formation of the modified TiCN layer. under the conditions shown in Table 3, the combination also shown in Table 4 the Al 2 O 3 layer as an upper layer, and the present invention cover the chip 1 to 13 by depositing formed at the target layer thickness its Each was produced.
The above-mentioned test piece for measuring the TiCN crystal nucleus distribution ratio was observed at a magnification of 10,000 using a scanning electron microscope, and the number of TiCN crystal nuclei existing within a range of 3 μm × 3 μm was arbitrarily set to 5 Measurements were made at various points, and the measurement results are shown in Table 4 as an average value per unit area (μm 2).

また、比較の目的で、表6に示される通り、改質TiCN層に代って、同じく表3に示される条件で、表6に示される目標層厚の従来TiCN層を形成する以外は同一の条件で従来被覆チップ1〜13をそれぞれ製造した。   For comparison purposes, as shown in Table 6, it is the same except that a conventional TiCN layer having the target layer thickness shown in Table 6 is formed under the conditions shown in Table 3 instead of the modified TiCN layer. Conventionally coated chips 1 to 13 were produced under the conditions described above.

ついで、上記の本発明被覆チップと従来被覆チップの硬質被覆層を構成する改質TiCN層および従来TiCN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質TiCN層および従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Subsequently, an inclination angle number distribution graph was created for each of the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the present invention-coated chip and the conventional coated chip using a field emission scanning electron microscope.
That is, the tilt angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope with the surfaces of the modified TiCN layer and the conventional TiCN layer being polished surfaces, and 70 ° on the polished surface. An electron backscatter diffraction imaging apparatus is irradiated by irradiating an electron beam with an acceleration voltage of 15 kV at an incident angle of 1 nA with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Using a 30 × 50 μm region at an interval of 0.1 μm / step, the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the polished surface. Based on this measurement result, among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and the frequencies existing in each section are tabulated. Created by.

この結果得られた各種の改質TiCN層および従来TiCN層の傾斜角度数分布グラフにおいて、{112}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表5,7にそれぞれ示した。   In the gradient angle distribution graphs of the various modified TiCN layers and the conventional TiCN layers obtained as a result, the {112} plane has the highest peak, and the tilt angle within the range of 0 to 10 degrees. Tables 5 and 7 show the ratios of the existing inclination angle numbers to the inclination angle number of the entire inclination angle distribution graph, respectively.

上記の各種の傾斜角度数分布グラフにおいて、表5,7にそれぞれ示される通り、本発明被覆チップの改質TiCN層は、いずれも{112}面の測定傾斜角の分布が0〜10度および25〜35度の範囲内の傾斜角区分にピークが現れ、かつ0〜10度および25〜35度の範囲内の傾斜角区分内に存在する傾斜角度数の割合がいずれも35〜45%である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の従来TiCN層は、いずれも{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、ピークが存在せず、0〜10度および25〜35度の範囲内の傾斜角区分内に存在する傾斜角度数の割合もそれぞれ25%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆チップ3の改質TiCN層の傾斜角度数分布グラフ、図3は、従来被覆チップ3の従来TiCN層の傾斜角度数分布グラフをそれぞれ示すものである。
In the various inclination angle distribution graphs described above, as shown in Tables 5 and 7, the modified TiCN layer of the coated chip of the present invention has a distribution of measured inclination angles on the {112} plane of 0 to 10 degrees. A peak appears in the inclination angle section in the range of 25 to 35 degrees, and the ratio of the number of inclination angles existing in the inclination angle sections in the range of 0 to 10 degrees and 25 to 35 degrees is 35 to 45%. In contrast to the graph showing the distribution of the number of inclination angles, the conventional TiCN layers of the conventional coated cermet tools are all unbiased in the range of the measured inclination angle of the {112} plane within the range of 0 to 45 degrees, and peaks are observed. The inclination angle number distribution graph which is not present and the ratio of the inclination angle numbers existing in the inclination angle sections in the range of 0 to 10 degrees and 25 to 35 degrees is 25% or less, respectively.
2 shows an inclination angle number distribution graph of the modified TiCN layer of the coated chip 3 of the present invention, and FIG. 3 shows an inclination angle number distribution graph of the conventional TiCN layer of the conventional coated chip 3.

さらに、上記の本発明被覆チップ1〜13および従来被覆チップ1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層とAl23層からなることが確認された。また、これらの被覆チップの硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, regarding the above-described coated chips 1 to 13 of the present invention and the conventional coated chips 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectrometer (longitudinal section of the layer) As a result, it was confirmed that both the former and the latter consisted of a Ti compound layer and an Al 2 O 3 layer having substantially the same composition as the target composition. Further, the thicknesses of the constituent layers of the hard coating layer of these coated chips were measured using a scanning electron microscope (same longitudinal section measurement), and all of them had an average layer thickness (5 The average value of point measurement) was shown.

(1)つぎに、正面フライス加工に関しては、直径が125mmの工具本体正面部に上記被覆チップを種類毎に6個取り付け、
(a)被削材:幅:100mm×長さ:1000mmの寸法をもったJIS・SCM440の板材、
回転数:866r.p.m.、
切削速度:340m/min、
切り込み(軸方向):2.5mm、
1刃当りの送り:0.2mm/刃、
切削時間:30分、
の条件(切削条件Aという)での合金鋼の湿式高速平面削り削試験(通常の切削速度は160m/min)、
(b)被削材:幅:100mm×長さ:1000mmの寸法をもったJIS・S10Cの板材、
回転数:955r.p.m.、
切削速度:375m/min、
切り込み(軸方向):2.5mm、
1刃当りの送り:0.2mm/刃、
切削時間:30分、
の条件(切削条件Bという)での炭素鋼の湿式高速平面削り切削試験(通常の切削速度は200m/min)、
(c)被削材:幅:100mm×長さ:1000mmの寸法をもったJIS・FCD350の板材、
回転数:892r.p.m.、
切削速度:350m/min、
切り込み(軸方向):2.5mm、
1刃当りの送り:0.2mm/刃、
切削時間:30分、
の条件(切削条件Cという)でのダクタイル鋳鉄の湿式高速平面削り切削試験(通常の切削速度は200m/min)を行い、
(2)また、エンドミル加工に関しては、直径が50mmの頭部正面に上記被覆チップを種類毎に3個取り付け、
(a)被削材:幅:100mm×長さ:1000mmの寸法をもったJIS・SCM440の板材、
回転数:2038r.p.m.、
切削速度:320m/min、
切り込み(軸方向):5mm、
1刃当りの送り:0.2mm/刃、
切削時間:15分、
の条件(切削条件Dという)での合金鋼の湿式高速溝削り切削試験(通常の切削速度は200m/min)、
(b)被削材:幅:100mm×長さ:1000mmの寸法をもったJIS・S10Cの板材、
回転数:2166r.p.m.、
切削速度:340m/min、
切り込み(軸方向):5mm、
1刃当りの送り:0.2mm/刃、
切削時間:15分、
の条件(切削条件Eという)での炭素鋼の湿式高速溝削り切削試験(通常の切削速度は240m/min)、
(c)被削材:幅:100mm×長さ:1000mmの寸法をもったJIS・FCD350の板材、
回転数:1911r.p.m.、
切削速度:300m/min、
切り込み(軸方向):5mm、
1刃当りの送り:0.2mm/刃、
切削時間:15分、
の条件(切削条件Fという)でのダクタイル鋳鉄の湿式高速溝削り切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切削試験毎に用いた被覆チップのうちの最大逃げ面摩耗幅を測定した。これらの測定結果を表8,9にそれぞれ示した。
(1) Next, regarding the face milling, six of the above-mentioned coated tips are attached to the front surface of the tool body having a diameter of 125 mm for each type,
(A) Work material: JIS / SCM440 plate material having dimensions of width: 100 mm × length: 1000 mm,
Rotational speed: 866 r. p. m. ,
Cutting speed: 340 m / min,
Incision (axial direction): 2.5 mm,
Feed per tooth: 0.2 mm / tooth,
Cutting time: 30 minutes,
Wet high-speed surface cutting test of alloy steel under the above conditions (called cutting condition A) (normal cutting speed is 160 m / min),
(B) Work material: JIS / S10C plate material having dimensions of width: 100 mm × length: 1000 mm,
Number of revolutions: 955 r. p. m. ,
Cutting speed: 375 m / min,
Incision (axial direction): 2.5 mm,
Feed per tooth: 0.2 mm / tooth,
Cutting time: 30 minutes,
Wet high-speed surface cutting test of carbon steel under the conditions (cutting condition B) (normal cutting speed is 200 m / min),
(C) Work material: JIS / FCD350 plate material having dimensions of width: 100 mm × length: 1000 mm,
Number of revolutions: 892 r. p. m. ,
Cutting speed: 350 m / min,
Incision (axial direction): 2.5 mm,
Feed per tooth: 0.2 mm / tooth,
Cutting time: 30 minutes,
A wet high-speed surface cutting test (normal cutting speed is 200 m / min) of ductile cast iron under the above conditions (referred to as cutting condition C),
(2) For end milling, three coated chips are attached to the front of the head having a diameter of 50 mm for each type.
(A) Work material: JIS / SCM440 plate material having dimensions of width: 100 mm × length: 1000 mm,
Rotational speed: 2038 r. p. m. ,
Cutting speed: 320 m / min,
Incision (axial direction): 5 mm,
Feed per tooth: 0.2 mm / tooth,
Cutting time: 15 minutes,
Wet high-speed grooving cutting test of alloy steel under the conditions (cutting condition D) (normal cutting speed is 200 m / min),
(B) Work material: JIS / S10C plate material having dimensions of width: 100 mm × length: 1000 mm,
Number of revolutions: 2166 r. p. m. ,
Cutting speed: 340 m / min,
Incision (axial direction): 5 mm,
Feed per tooth: 0.2 mm / tooth,
Cutting time: 15 minutes,
Wet high-speed grooving cutting test of carbon steel under the condition (cutting condition E) (normal cutting speed is 240 m / min),
(C) Work material: JIS / FCD350 plate material having dimensions of width: 100 mm × length: 1000 mm,
Rotational speed: 1911r. p. m. ,
Cutting speed: 300 m / min,
Cutting depth (axial direction): 5mm,
Feed per tooth: 0.2 mm / tooth,
Cutting time: 15 minutes,
Wet high-speed grooving cutting test (normal cutting speed is 200 m / min) of ductile cast iron under the above conditions (referred to as cutting condition F), and the maximum clearance of the coated chips used for each cutting test in any cutting test The surface wear width was measured. These measurement results are shown in Tables 8 and 9, respectively.

Figure 2007075930
Figure 2007075930

Figure 2007075930
Figure 2007075930

Figure 2007075930
Figure 2007075930

Figure 2007075930
Figure 2007075930

Figure 2007075930
Figure 2007075930

Figure 2007075930
Figure 2007075930

Figure 2007075930
Figure 2007075930

Figure 2007075930
Figure 2007075930

Figure 2007075930
Figure 2007075930

表4〜9に示される結果から、本発明被覆チップ1〜13は、いずれも硬質被覆層の下部層のうちの1層が、{112}面の傾斜角が0〜10度および25〜35度の範囲内の傾斜角区分でそれぞれピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合、並びに25〜35度の傾斜角区分範囲内に存在する度数の合計割合がそれぞれ35〜45%を占める傾斜角度数分布グラフを示す改質TiCN層で構成され、これがすぐれた高温強度を有することから、回転切削工具に取り付けて鋼や鋳鉄の高速切削加工を行なった場合にも、切刃部におけるチッピングの発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの1層が、{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、ピークが存在しない傾斜角度数分布グラフを示す従来TiCN層で構成された従来被覆チップ1〜13においては、いずれも高速切削加工では硬質被覆層の高温強度不足が原因で切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4 to 9, all of the coated chips 1 to 13 of the present invention are such that one of the lower layers of the hard coating layer has a {112} plane inclination angle of 0 to 10 degrees and 25 to 35. A peak is shown in each inclination angle section within the range of degrees, and the total ratio of the frequencies existing in the inclination angle section range of 0 to 10 degrees and the frequencies existing in the inclination angle section range of 25 to 35 degrees It is composed of a modified TiCN layer showing an inclination angle number distribution graph that occupies 35 to 45% of each, and since it has excellent high temperature strength, it is attached to a rotary cutting tool to perform high speed cutting of steel and cast iron. In this case, the occurrence of chipping at the cutting edge portion is remarkably suppressed and excellent wear resistance is exhibited, whereas one of the lower layers of the hard coating layer has a measured inclination angle of the {112} plane. Range of 0 to 45 degrees In the conventional coated tips 1 to 13 composed of a conventional TiCN layer showing an inclination angle distribution graph in which no peak exists, all of them are cut off due to insufficient high-temperature strength of the hard coating layer in high-speed cutting. It is clear that chipping occurs at the blade and the service life is reached in a relatively short time.

上述のように、この発明の被覆チップは、回転切削工具に取り付けて、通常の条件で切削加工を行なった場合は勿論のこと、特に高温強度が要求される高速切削加工でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tip of the present invention has excellent chipping resistance not only when it is attached to a rotary cutting tool and cutting is performed under normal conditions, but particularly at high speed cutting where high temperature strength is required. Since it exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

硬質被覆層を構成する各種TiCN層における結晶粒の{112}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {112} plane of the crystal grain in the various TiCN layers which comprise a hard coating layer. 本発明被覆チップ3の硬質被覆層の下部層を構成する改質TiCN層の{112}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {112} plane of the modified TiCN layer constituting the lower layer of the hard coating layer of the coated chip 3 of the present invention. 従来被覆チップ3の硬質被覆層の下部層を構成する従来TiCNの{112}面の傾斜角度数分布グラフである。6 is a graph showing the distribution of the number of inclination angles of the {112} plane of conventional TiCN constituting the lower layer of the hard coating layer of the conventional coated chip 3. 回転切削工具としての正面フライス工具を示し、(a)が半部縦断側面図、(b)が要部拡大側面図である。The front milling tool as a rotary cutting tool is shown, (a) is a half longitudinal section side view, (b) is a principal part enlarged side view. 回転切削工具としてのスローアウエイエンドミルを示し、(a)が側面図、(b)が頭部正面図である。The slow-away end mill as a rotary cutting tool is shown, (a) is a side view, (b) is a head front view.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたチップ基体の表面に、
(a)下部層が、いずれも化学蒸着形成された炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有する化学蒸着形成された酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる回転切削工具用表面被覆サーメット製スローアウエイチップにおいて、
上記(a)の2層以上のTi化合物層のうちの1層を、2.5〜15μmの平均層厚を有し、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内および25〜35度の範囲内の傾斜角区分にそれぞれピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の35〜45%、前記25〜35度の範囲内に存在する度数の合計が、同じく傾斜角度数分布グラフにおける度数全体の35〜45%の割合を占める傾斜角度数分布グラフを示す炭窒化チタン層、
で構成したことを特徴とする高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する回転切削工具用表面被覆サーメット製スローアウエイチップ。
On the surface of the chip substrate made of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of two or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride oxide layer formed by chemical vapor deposition, A Ti compound layer having a total average layer thickness of 20 μm,
(B) an aluminum oxide layer formed by chemical vapor deposition in which the upper layer has an average layer thickness of 1 to 15 μm;
In the throwaway tip made of surface-coated cermet for a rotary cutting tool formed by forming the hard coating layer constituted by (a) and (b) above,
One of the two or more Ti compound layers of (a) above has an average layer thickness of 2.5 to 15 μm, and
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal grain is normal to the surface polished surface. The tilt angle formed by the normal of the {112} plane, which is the crystal plane, is measured, and, among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by counting the frequencies existing in each section, peaks exist in the inclination angle sections in the range of 0 to 10 degrees and in the range of 25 to 35 degrees, respectively, and the 0 The sum of the frequencies existing within the range of 10 to 10 degrees is 35 to 45% of the entire frequencies in the tilt angle frequency distribution graph, and the total of the frequencies existing within the range of 25 to 35 degrees is the same as the tilt angle frequency distribution graph. 35-45% of the total frequency in Titanium carbonitride layer indicates an inclination angle frequency distribution graph occupying the case,
A surface coated cermet throwaway tip for rotary cutting tools that exhibits excellent chipping resistance in high-speed cutting with excellent hard coating layer.
JP2005265130A 2005-09-13 2005-09-13 Surface coated cermet throwaway tip for rotary cutting tools that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting Expired - Fee Related JP4655308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265130A JP4655308B2 (en) 2005-09-13 2005-09-13 Surface coated cermet throwaway tip for rotary cutting tools that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265130A JP4655308B2 (en) 2005-09-13 2005-09-13 Surface coated cermet throwaway tip for rotary cutting tools that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting

Publications (2)

Publication Number Publication Date
JP2007075930A true JP2007075930A (en) 2007-03-29
JP4655308B2 JP4655308B2 (en) 2011-03-23

Family

ID=37936727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265130A Expired - Fee Related JP4655308B2 (en) 2005-09-13 2005-09-13 Surface coated cermet throwaway tip for rotary cutting tools that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting

Country Status (1)

Country Link
JP (1) JP4655308B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100870A (en) * 2013-11-22 2015-06-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256336A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Titanium carbonitride-coated tool
JP2005238437A (en) * 2004-01-27 2005-09-08 Mitsubishi Materials Corp Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP4466841B2 (en) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256336A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Titanium carbonitride-coated tool
JP2005238437A (en) * 2004-01-27 2005-09-08 Mitsubishi Materials Corp Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP4466841B2 (en) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100870A (en) * 2013-11-22 2015-06-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting

Also Published As

Publication number Publication date
JP4655308B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4747324B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP4534790B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2007160467A (en) Surface coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed cutting of material hard to cut
JP5326845B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent heavy cutting.
JP2007167987A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP5029099B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP4655308B2 (en) Surface coated cermet throwaway tip for rotary cutting tools that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4474647B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2005238437A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4529578B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP2008000881A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance and abrasion resistance in high-speed cutting of material hard to cut
JP2008168419A (en) Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees