JP2007074826A - 微小電気機械素子及び微小電気機械素子アレイ - Google Patents

微小電気機械素子及び微小電気機械素子アレイ Download PDF

Info

Publication number
JP2007074826A
JP2007074826A JP2005259406A JP2005259406A JP2007074826A JP 2007074826 A JP2007074826 A JP 2007074826A JP 2005259406 A JP2005259406 A JP 2005259406A JP 2005259406 A JP2005259406 A JP 2005259406A JP 2007074826 A JP2007074826 A JP 2007074826A
Authority
JP
Japan
Prior art keywords
movable part
movable
movable portion
drive source
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005259406A
Other languages
English (en)
Inventor
Shinya Ogikubo
真也 荻窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005259406A priority Critical patent/JP2007074826A/ja
Publication of JP2007074826A publication Critical patent/JP2007074826A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】 昇圧回路を設けることなく、小さいエネルギーで可動部を遷移させることができる微小電気機械素子及び微小電気機械素子アレイを得る。
【解決手段】 弾性変位可能に支持され第1の方向及びこれとは逆方向の第2の方向との双方向に変位する可動部31と、可動部31へ第1の方向の物理的作用力を加える駆動源Dとを備え、可動部31が駆動源Dにより変位する微小電気機械素子100であって、可動部31が第1の方向に遷移して保持されるとき、可動部31に対し第1の方向に駆動源Dにより物理作用力を所定周期毎に加え、可動部31を第1の方向及び第2の方向へ交互に変位させ、最終的に可動部31を第1の方向の最終変位位置で保持させる。
【選択図】図1

Description

本発明は、微小電気機械素子及び微小電気機械素子アレイに関する。
近年、MEMS技術(MEMS;Micro-Electro Mechanical systems)の急速な進歩により、μmオーダーの微小薄膜を電気的に変位・移動させる微小電気機械素子の開発が盛んに行われている。この微小電気機械素子には、例えばマイクロミラーを傾けて光の偏向を図るデジタル・マイクロミラー・デバイス(DMD)や、光路を切り換える光スイッチ、RF(高周波)信号の接続および切換を行うRFスイッチなどがある。DMDは、光学的な情報処理の分野において、投射ディスプレイ、ビデオ・モニター、グラフィック・モニター、テレビおよび電子写真プリントなど用途が広い。また、光スイッチは、光通信、光インタコネクション(並列コンピュータにおける相互結合網など光による信号接続技術)、光情報処理(光演算による情報処理)などへの応用が期待されている。
微小電気機械素子は、一般的に弾性変位可能に支持され双方向に変位する可動部を備え、この可動部が主にスイッチング動作を担う。したがって、可動部の制動制御は、良好なスイッチング動作を行う上でも特に重要となる。
従来、この種の微小電気機械素子における可動部の制動制御は、可動部が静止状態(振動していない状態)から、所望の固定側電極へ向けて可動部を変位開始させるのが一般的であった。すなわち、例えば可動部がヒンジを中心に回動される微小電気機械素子では、可動部に設けられた可動側電極と、基板に設けられた固定側電極とに駆動電圧が印加されると、可動部と固定側電極とに物理的作用力である静電気力が作用し、可動部が、重力、ヒンジの弾性力に抗して基板へと引き付けられる。このようにして静電気力によって可動部が揺動変位して、揺動先端が基板へと吸着される(張り付く)状態はプルイン(Pull-in)と称される。
ところで、RFスイッチ等の微小電気機械素子は、静電気力を用いることにより、接点で粘着現象の発生する問題点がある。粘着現象は、マイクロ構造物の表面に発生し、意図しない期間中、接点を貼り付けてしまう。この対策として従来の微小電気機械素子では、可動部がより弾力的に運動を行うことができるように、可動部を幅狭い線形態で連結するバネ部を備えたものがある。この微小電気機械素子によれば、バネ部により大きい弾性力で接点が分離するようにし、バネ部のないものに比べてより復元力を高めることができた。
特開2005−5267号公報
上記した微小電気機械素子は、可動部のバネ剛性を高めていることから、可動部を変位させるための駆動力が大きくなる問題点があった。可動部を変位させるのに必要な駆動力Fは、駆動電圧V及び電極の面積Aに比例し、電極と可動部との間の距離dの自乗に反比例する(F=V・A/d2)。したがって、駆動力を高めるには、電極の面積Aを拡張させるか、又は駆動電圧Vを高めなければならないが、この時、電極の面積Aを拡張させるのは、粘着力の増加などの悪影響をもたらすため、一般的に駆動電圧Vを上昇させて駆動力を向上させることになる。一方、一般的に微小電気機械素子を備えるシステムは、5Vや3Vの電圧で駆動しているため、微小電気機械素子の駆動電圧がその値を上回る場合、別に昇圧回路が必要となり、回路が複雑化する。そこで、低電圧で駆動する微小電気機械素子の要請がある。
このような要請に対し、例えば特許文献1に開示されるシーソー型RF用MEMSスイッチ1は、図15に示すように、半導体基板の上部にギャップ3a,3bを有する伝送線路5、基板の上部から所定の高さ、すなわち、予め決められた高さに離間してシーソー運動をする断続部7および断続部7のシーソー運動を駆動する駆動部9を含む。駆動部9と伝送線路5のギャップ3a,3bの両端部に接触する接点部11a,11bが分離されるため、既存の静電駆動方式スイッチで電極の面積と電極間の距離、そして、駆動電圧により決定される駆動力および復元力に対して電極の面積と電極との間の距離が接点の面積と接点との間の距離と一致することにより、駆動電圧を上昇させることによって解決しなければならなかった問題を、電極と接点の構造を分離することで解決し、駆動電圧を低く維持している。なお、図中、13は回動部,15は支持台,17はバネ部,19は連結部,21a,21bは第1、第2上部電極,23a,23bは第1、第2下部電極を表す。
しかしながら、上記構造のシーソー型RF用MEMSスイッチ1は、伝送線路5のギャップ3a,3bの両端部に接触する接点部11a,11bを分離しているため、構造が複雑化し、素子の微細化に適さない不利があった。
本発明は上記状況に鑑みてなされたもので、昇圧回路を設けることなく、小さいエネルギーで可動部を遷移させることができる微小電気機械素子及び微小電気機械素子アレイを提供し、もって、微小電気機械素子の低電圧化、低電流化、及び微細化を同時に達成することを目的とする。
本発明に係る上記目的は、下記構成により達成される。
(1) 弾性変位可能に支持され第1の方向及びこれとは逆方向の第2の方向との双方向に変位する可動部と、前記可動部へ前記第1の方向の物理的作用力を加える駆動源とを備え、前記可動部が前記駆動源により変位する微小電気機械素子であって、前記可動部が前記第1の方向に遷移して保持されるとき、前記可動部に対し前記第1の方向に前記駆動源により前記物理作用力が所定周期毎に加えられ、前記可動部が前記第1の方向及び前記第2の方向へ交互に変位を繰り返し、最終的に前記可動部が前記第1の方向の最終変位位置で保持されることを特徴とする微小電気機械素子。
この微小電気機械素子では、可動部に対し第1の方向に駆動源により可動部を駆動させる為の物理作用力が所定周期毎に加えられ、可動部が第1の方向及び第2の方向へ交互に変位(例えば、「揺動」)を繰り返す。これにより、可動部には徐々に揺動エネルギーが蓄積されて行き、可動部は少しずつ変位量が拡大され、最終的に第1の方向の最終変位位置へ近接して保持されることとなる。つまり、平衡状態の可動部を一度に最終変位位置まで変位させる駆動電圧より、小さい駆動電圧で可動部を最終変位位置まで変位可動できる。なお、この場合、電圧印加周期は、可動部の共振周波数とすることができ、片側方向のみによる物理的作用力の印加が可能となり、さらなる低電流化が可能となる。
(2) 弾性変位可能に支持され第1の方向及びこれとは逆方向の第2の方向との双方向に変位する可動部と、前記可動部へ前記第1の方向の物理的作用力を加える第1の駆動源と、前記可動部へ前記第2の方向の物理的作用力を加える第2の駆動源と、を備え、前記可動部が前記駆動源により変位する微小電気機械素子であって、前記可動部が前記第1の方向又は前記第2の方向のいずれかの方向に遷移して保持されるとき、前記可動部に対し前記第1の駆動源及び前記第2の駆動源により前記第1の方向及び前記第2の方向へ前記物理作用力が交互に所定周期毎に加えられ、前記可動部が前記第1の方向及び前記第2の方向へ交互に変位を繰り返し、最終的に前記可動部が前記第1の方向又は前記第2の方向の最終変位位置で保持されることを特徴とする微小電気機械素子。
この微小電気機械素子では、可動部に対し第1の駆動源及び第2の駆動源により第1の方向及び第2の方向へ物理作用力が所定周期で交互に加えられ、可動部が第1の方向及び第2の方向へ交互に変位(例えば、「揺動」)を繰り返す。これにより、可動部には徐々に揺動エネルギーが蓄積されて行き、可動部は少しずつ変位量が拡大され、最終的に第1の方向又は第2の方向の最終変位位置へ近接して保持されることとなる。つまり、平衡状態の可動部を一度に最終変位位置まで変位させる駆動電圧より、小さい駆動電圧で可動部を最終変位位置まで変位可動できる。なお、この場合、電圧印加周期は、可動部の共振周波数、及びそれ以外の振動周波数とすることもでき、可動部の高速な変位可動が可能となる。
(3) 前記可動部の前記駆動源による物理作用力が加わる前の状態が、前記可動部が水平に平衡された状態であることを特徴とする(1)又は(2)記載の微小電気機械素子。
この微小電気機械素子では、水平に平衡された状態の可動部に対し、例えば第1の方向に物理作用力が所定周期毎に加えられ、可動部が第1の方向及び第2の方向へ交互に変位(例えば、「揺動」)を繰り返す。したがって、可動部が第1の方向又は第2の方向の最終変位位置へ交互に接近可能となる。この場合、可動部は初期状態において、水平平衡状態であるので、第1の方向又は第2の方向のいずれか任意方向に最初の物理的作用力を印加することが可能となる。
(4) 前記可動部の前記駆動源による物理作用力が加わる前の状態が、前記可動部が前記駆動源による最終変位位置で平衡された状態であることを特徴とする(1)又は(2)記載の微小電気機械素子。
この微小電気機械素子では、可動部が駆動源による最終変位位置で平衡された状態、すなわち、第1の方向又は第2の方向の最終変位位置で保持された状態から物理的作用力が加えられる。この場合、最初の物理的作用力は、可動部を保持する方向とは逆方向で加えられる。可動部は、例えば第1の方向の最終変位位置に保持されている場合、保持のための物理的作用力が解除されると、弾性復元力と慣性とによって第2の方向へと揺動される。その際に、第2の方向への最初の物理的作用力が印加され、その後、所定周期で交互に物理的作用力が印加されることになる。したがって、水平に平衡された状態の可動部に対し物理作用力が加えられる場合に比べ、最初に可動部に作用する弾性復元力と慣性力が、可動部の変位可動のためのエネルギーとして寄与することとなり、その分、より小さな駆動電圧で可動部が最終変位位置まで可動変位可能となる。
(5) 前記物理的作用力が、前記可動部の複数の作用点に加えられることを特徴とする(1)〜(4)のいずれか1項記載の微小電気機械素子。
この微小電気機械素子では、作用点が複数となることで、例えば中央が回転中心となる揺動型の可動部において、回転中心を挟む両側に物理的作用力が加えられるようになる。これにより、それぞれの作用点に、異なる大きさの物理的作用力を、異なるタイミングで加えられるようになり、多様な変位可動作用が得られるようになる。
(6) 前記所定周期が、前記可動部の共振周波数に対応した周期であることを特徴とする(1)〜(5)のいずれか1項記載の微小電気機械素子。
この微小電気機械素子では、電圧印加周期が、可動部の共振周波数となることで、可動部に対する片側方向のみによる物理的作用力の印加が可能となり、駆動エネルギーを低減することができる。
(7) 前記物理的作用力が、静電気力であることを特徴とする(1)〜(6)のいずれか1項記載の微小電気機械素子。
この微小電気機械素子では、可動部を変位させる物理的作用力が静電気力となることで、高速な変位可動作用が得られる。
(8) 前記可動部のそれぞれの遷移方向に対して2つ以上の前記物理的作用力が設定可能に構成されたことを特徴とする(1)〜(7)のいずれか1項記載の微小電気機械素子。
この微小電気機械素子では、例えば片持ち梁型の可動部において、揺動先端部を揺動方向で挟む両側のそれぞれに2つ以上の物理的作用力が加えられるようになる。これにより、可動部に対し、保持用の物理的作用力と、揺動用の物理的作用力とが別々に印加可能となり、可動部の揺動・保持制御回路が簡素に構成可能となる。
(9)(1)〜(8)のいずれか1項記載の微小電気機械素子を1次元又は2次元に配列したことを特徴とする微小電気機械素子アレイ。
この微小電気機械素子アレイでは、個々の微小電気機械素子を低電圧で作動させ、アレイ全体の低電圧動作が可能となる。また、個々の微小電気機械素子に昇圧回路を設ける必要が無くなるので、アレイ全体の小型化が可能となる。
(10) 前記微小電気機械素子のそれぞれがメモリ回路を含む駆動回路を有し、前記可動部と、該可動部に対峙する少なくとも2つ以上の固定部とに設けられた電極のうち一方が前記駆動回路からの素子変位信号の入力される信号電極であり、他方が共通電極であることを特徴とする(9)記載の微小電気機械素子アレイ。
この微小電気機械素子アレイでは、メモリ回路が備えられることで、このメモリ回路に対して予め素子変位信号の書き込みが可能となる。そして、共通電極に、従来同様の一定の共通電圧が印加されると同時に、信号電極に、予めメモリ回路に書き込んでおいた素子変位信号が印加されることで、複数の微小電気機械素子が高速にアクティブ駆動可能となる。
(11) それぞれの前記可動部を変調駆動させる制御部が設けられたことを特徴とする(9)又は(10)記載の微小電気機械素子アレイ。
この微小電気機械素子アレイでは、可動部が制御部によって駆動制御されることで、可動部が最終変位位置に到達する前に、可動電極と固定電極との間の電極間電圧の絶対値が減少又は増加、或いは増減され、可動部が最終変位位置へ少ないエネルギーで衝突するので、衝突による振動やオーバーシュートを低減できる。
本発明に係る微小電気機械素子によれば、可動部が第1の方向に遷移して保持されるとき、可動部に対し第1の方向に駆動源により物理作用力が所定周期毎に加えられ、可動部が第1の方向及び第2の方向へ交互に変位を繰り返し、最終的に可動部が第1の方向の最終変位位置で保持されるので、低電圧を駆動源へ繰り返し印加し、小さい物理的作用力を所定周期毎に加えながら可動部の変位を徐々に増大させ、その結果、可動部を最終変位位置まで近接させることが可能となる。つまり、平衡状態の可動部を一度に最終変位位置まで変位させる駆動電圧より、小さい駆動電圧で可動部を最終変位位置まで変位させることができる。この結果、昇圧回路を設けることなく、小さいエネルギーで可動部を遷移させることができ、微小電気機械素子の低電圧化、低電流化、及び微細化を同時に達成することができる。
本発明に係る微小電気機械素子アレイによれば、前述の微小電気機械素子を1次元又は2次元に配列したので、個々の微小電気機械素子を低電圧で作動させ、アレイ全体の低電圧動作が可能となる。また、個々の微小電気機械素子に昇圧回路を設ける必要が無くなるので、アレイ全体の小型化が可能となる。これにより、例えば低電圧での感光材露光や、プロジェクタ表示等が可能となる。また、光通信用の光スイッチアレイでは高精度が求められるため、個々の素子のばらつきに起因する作動誤差の補正が必要となるが、本発明に係る微小電気機械素子アレイによれば、補正に対応させて個々の微小電気機械素子の変位制御信号を変えることが可能なので、作動誤差の補正を容易に行うことができる。
以下、本発明に係る微小電気機械素子及び微小電気機械素子アレイの好適な実施の形態について、図面を参照して詳細に説明する。
図1は発明に係る微小電気機械素子の概略構成を表す斜視図である。
この実施の形態による微小電気機械素子100は、弾性変位可能に支持され第1の方向(図1の下方向)及びこれとは逆方向の第2の方向(図1の上方向)との双方向に変位する可動部31と、可動部31へ少なくとも第1の方向の物理的作用力を加える駆動源Dとを備え、可動部31が駆動源Dにより変位するよう構成される。より具体的には、可動部31の一端がヒンジ33、スペーサ35を介して基板37に支持固定されている。つまり、可動部31は、他端が自由端となった片持ち梁状に構成される。そして、基板37上には可動部31の自由端に対向して駆動源Dである第1アドレス電極39aが設けられ、可動部31を挟んだ第1アドレス電極39aの反対側には図示しない対向基板に形成される駆動源Dである第2アドレス電極39bが設けられている。また、可動部31にもその一部に駆動源Dである可動側電極39cが設けられている。つまり、第1アドレス電極39a、第2アドレス電極39b、可動側電極39cによって駆動源Dが構成される。
微小電気機械素子100は、可動部の上面或いは下面が例えば光反射部(マイクロミラー部)として形成される。この他、本発明に係る微小電気機械素子は、可動部の材質を適宜選択し、或いは短絡接点等を付設することにより、音波、流体、熱線のスイッチング素子、或いはRF信号のスイッチング素子としても構成可能となる。
微小電気機械素子100には基板37中に後述の駆動回路が設けられ、駆動回路は可動側電極39cと第1アドレス電極39aとの間、可動側電極39cと第2アドレス電極39bとの間に電圧V1、V2を印加する。微小電気機械素子100は、基本動作として、電圧V1、V2を印加することによって、ヒンジ33を回動中心として可動部31を揺動変位させる。したがって、可動部31がマイクロミラー部であれば、光の反射方向がスイッチングされることになる。
なお、上述の構成では、可動部31を挟んで2つの電極である第1アドレス電極39aと第2アドレス電極39bとを設けたが、本実施の形態に係る微小電気機械素子100は、このうち一方の電極(第1アドレス電極39a又は第2アドレス電極39b)のみを設ける構成としてもよい。例えば、第1アドレス電極39aのみが設けられた場合には、第1アドレス電極39aと可動側電極39cとの間に電圧V1が印加され、それにより発生した物理的作用力である静電気力によって可動部31が第1アドレス電極39a側へ変位され、次いで、電圧V1の印加が解除されることで、可動部31が弾性復元力によって揺動変位可能となる。
微小電気機械素子100では、可動側電極39cに対し、第1アドレス電極39a、第2アドレス電極39bに電位差を与えると、それぞれの電極と、可動部31との間に静電気力が発生し、ヒンジ33を中心に回転トルクが働く。この際に発生する静電気力は、周囲雰囲気の誘電率、可動部31の面積、印加電圧、可動部31とアドレス電極の間隔に依存する。
したがって、周囲雰囲気の誘電率、可動部31の面積、可動部31とアドレス電極の間隔、ヒンジ33の弾性係数が一定である場合、可動部31は、それぞれの電極の電位を制御することにより、上下に回転変位可能となる。例えば、V1>V2のときには、第1アドレス電極39aと可動側電極39cに発生する静電気力が、第2アドレス電極39bと可動側電極39cに発生する静電気力より大きくなり、可動部31が下方向に傾く。逆に、V1<V2のときは、第2アドレス電極39bと可動側電極39cに発生する静電気力が、第1アドレス電極39aと可動側電極39cに発生する静電気力より大きくなり、可動部31がは上方向に傾く。
このように、可動部31の可動側電極39c、第1アドレス電極39a、第2アドレス電極39bは、可動部31を回転変位させる駆動源Dとなっている。このような駆動源Dから可動部31へ加えられる物理的作用力が、静電気力となることで、高速な回転変位が可能となる。
なお、可動部31を駆動させる為に可動部31に作用させる物理的作用力は、静電気力以外の物理的作用力であってもよい。その他の物理的作用力としては、例えば、圧電体による効果や電磁力を挙げることができる。この場合、駆動源としては、圧電素子を用いた圧電型アクチュエータや、マグネット・コイルを用いた電磁型アクチュエータが採用される。
このように、微小電気機械素子100は、双方向に変位する可動部31を備え、この可動部31がスイッチング機能を有する。可動部31は、物理的作用力を加える駆動源D(可動側電極39c、第1アドレス電極39a、第2アドレス電極39b)によって回転変位される。本実施の形態による微小電気機械素子100では、物理的作用力として静電気力が利用される。この静電気力が可動部31を、重力、ヒンジ33の弾性力に抗して揺動駆動させる。このようにして静電気力によって可動部31が揺動変位して、揺動先端が基板37へと吸着される(張り付く)状態をプルイン(pull-in)と称す。すなわち、可動部31は、可動側電極39c、第1アドレス電極39a、第2アドレス電極39bに印加される変位制御信号がプルイン電圧に達して発生する静電気力で保持される。
これに対し、保持された可動部31は、このプルイン電圧より低いプルアウト(pull-out)電圧によって保持し続けられる。可動部31を保持し続ける電圧は、可動部31が電極から離れてしまう(プルアウトする)低い電圧より高くする必要がある。このように、可動部31が電極から離れないようにする最小の電圧を、プルアウト電圧と称す。
上記した変位制御信号は、プルイン電圧に達する前は、アナログ制御領域と言われ、2値では制御されない。すなわち、無段階的なアナログ制御が可能な領域となる。また、プルイン状態での変位量をε2,pull-in電圧印加時の変位量をε1とすると、ε1≒ε2/3の関係が成り立つ。つまり、可動部31は、変位の1/3までは、プルインされない。これは1/3則と呼ばれる。
ところで、本実施の形態による微小電気機械素子100は、可動部31が第1の方向に遷移して保持されるとき、可動部31に対し第1の方向に駆動源Dにより物理作用力が所定周期毎に加えられる。これにより、可動部31は、第1の方向及び第2の方向へ交互に変位を繰り返し、最終的に例えば第1の方向の最終変位位置、すなわち、基板37側の第1アドレス電極39aで保持されるようになっている。
図2は図1に示した微小電気機械素子の揺動過程を(a),(b),(c),(d)で表した動作説明図、図3は図1に示した微小電気機械素子の駆動時において印加される電圧と時間との相関を表したタイムチャートである。
本実施の形態では、可動部31が水平な平衡状態から変位される。すなわち、可動部31は、図2(a)に示すように、水平に平衡して停止している。次いで、図3に示す電圧Va,Vbの印加を開始し、可動側電極39cと第1アドレス電極39a、可動側電極39cと第2アドレス電極39bに、周波数fの周期で交互に電圧Va,Vbを印加する。この周波数fによる電圧の印加が所定時間続けられると、図2(c)に示すように、可動部31の揺動が徐々に拡大して行く。その結果、図2(d)に示すように、最終的に可動部31がpull-inを起こし、その後、図3に示すpull-out電圧以上の電圧で可動部31が基板37側へ保持されることとなる。
ここで、交互に加えられる電圧Va,Vbは、単純に電圧を印加してpull-inさせるときの電圧よりも小さいものとなる。なお、所定の周期は、可動部31の共振周波数に対応した周期としてもよい。このように電圧印加周期が、共振周波数となることで、可動部31に対する片側方向のみによる物理的作用力の印加(すなわち、電圧Vaのみ又は電圧Vbのみの印加)が可能となり、駆動エネルギーを低減することができる。これにより、最も低い電圧で最終変位させることが可能となる。また、粘性の作用が大きい場合には、交互に電圧を印加して最終変位させた方が低電圧化が可能となる。
なお、本実施の形態では、物理的作用力が、可動部31の複数の作用点に加えられる。このように、作用点が複数となることで、可動部31を挟む両側に物理的作用力が加えられるようになる。これにより、それぞれの作用点に、異なる大きさの物理的作用力を、異なるタイミングで加えられるようになり、多様な変位可動作用が得られるようになる。
また、本実施の形態では、可動部31の駆動源Dによる物理作用力が加わる前の状態が、可動部31が水平に平衡された状態である。水平に平衡された状態の可動部31に対し、例えば第1の方向に物理作用力が所定周期毎に加えられ、可動部31が第1の方向及び第2の方向へ交互に揺動変位を繰り返す。したがって、可動部31が第1の方向又は第2の方向の最終変位位置へ交互に接近可能となる。この場合、可動部31は初期状態において、水平平衡状態であるので、第1の方向又は第2の方向のいずれか任意方向に最初の物理的作用力を印加することが可能となる。
上記の微小電気機械素子100では、可動部31に対し第1の方向に駆動源Dにより物理作用力が所定周期毎に加えられ、可動部31が第1の方向及び第2の方向へ交互に揺動変位を繰り返す。これにより、可動部31には徐々に揺動エネルギーが蓄積されて行き、可動部31は少しずつ変位量が拡大され、最終的に第1の方向の最終変位位置へ近接して保持されることとなる。
したがって、この微小電気機械素子100によれば、可動部31が第1の方向に遷移して保持されるとき、可動部31に対し第1の方向に駆動源Dにより物理作用力が所定周期毎に加えられ、可動部31が第1の方向及び第2の方向へ交互に変位を繰り返し、最終的に可動部31が第1の方向の最終変位位置で保持されるので、低電圧を駆動源Dへ繰り返し印加し、小さい物理的作用力を所定周期毎に加えながら可動部31の変位を徐々に増大させ、その結果、可動部31を最終変位位置まで近接させることが可能となる。つまり、平衡状態の可動部31を一度に最終変位位置まで変位させる駆動電圧より、小さい駆動電圧で可動部31を最終変位位置まで変位させることができる。この結果、昇圧回路を設けることなく、小さいエネルギーで可動部31を遷移させることができ、微小電気機械素子100の低電圧化、低電流化、及び微細化を同時に達成することができる。
なお、可動部31は、駆動源Dにより最終変位位置に到達するときに、可動部31の速度が略ゼロとなるように制御されることが好ましい。これにより、可動部が小さなエネルギーで最終変位位置に衝突するため、従来可動部が大きな速度で最終変位位置へ到達することで生じていた衝突による振動や、非接触駆動の場合の最終変位位置へ到達する際のオーバーシュートを低減できる。
次に、本発明に係る微小電気機械素子の第2の実施の形態を説明する。
図4は第2の実施の形態に係る微小電気機械素子を斜視視(a)、断面視(b)で表す構成図である。なお、以下の各実施の形態において共通の部材には同一の符号を付し重複する説明は省略するものとする。
この実施の形態による微小電気機械素子200は、弾性変位可能に支持され第1の方向(図4の反時計回り方向)及びこれとは逆方向の第2の方向(図4の時計回り方向)との双方向に変位する可動部41と、可動部41へ第1の方向の物理的作用力を加える第1の駆動源D1と、可動部41へ第2の方向の物理的作用力を加える第2の駆動源D2とを備え、可動部41が駆動源D1,D2により変位する。
より具体的には、基板43と、基板43に空隙45を介して平行に配置される小片状の上記した可動部41と、可動部41の両縁部から延出される支持部であるヒンジ47と、このヒンジ47を介して可動部41を基板43に支持するスペーサ49とを備える。このような構成により、可動部41は、ヒンジ47の捩れによって回転変位が可能となっている。
基板43の上面には、ヒンジ47を中央として両側に第1の駆動源D1である第1アドレス電極51aと第2の駆動源D2である第2アドレス電極51bが設けられる。また、可動部41にもその一部に第1の駆動源D1及び第2の駆動源D2の共用構成要素である可動側電極51cが設けられている。微小電気機械素子200には基板43中に駆動回路53が設けられ、駆動回路53は可動側電極51cと第1アドレス電極51aとの間、可動側電極51cと第2アドレス電極51bとの間に電圧Vb,Va1,Va2を印加する。微小電気機械素子200は、基本動作として、第1アドレス電極51a、第2アドレス電極51b、可動側電極51cへ電圧を印加することによって、ヒンジ47を捩り中心として可動部41を揺動変位させる。つまり、可動部41がマイクロミラー部であることにより、光の反射方向がスイッチングされる。可動側電極51c、第1アドレス電極51aは、第1の駆動源D1を構成する。可動側電極51c、第2アドレス電極51bは、第2の駆動源D2を構成している。
本実施の形態において、可動部41は、特定方向の変位の最終位置に到達するに際し、基板43や図示しない停止部材に接触して停止する。つまり、接触型の微小電気機械素子を構成している。
可動部41は、それぞれの電極の電位を制御することにより、左右に回転変位可能となる。例えば、V1>V2のときには、第1アドレス電極51aと可動側電極51cに発生する静電気力が、第2アドレス電極51bと可動側電極51cに発生する静電気力より大きくなり、可動部41が左側に傾く。逆に、V1<V2のときは、第2アドレス電極51bと可動側電極51cに発生する静電気力が、第1アドレス電極51aと可動側電極51cに発生する静電気力より大きくなり、可動部41は右側に傾く。
このように、可動部41の可動側電極51c、第1アドレス電極51a、第2アドレス電極51bは、可動部41を回転変位させる第1の駆動源D1、第2の駆動源D2となっている。このような駆動源から可動部41へ加えられる物理的作用力が、静電気力となることで、高速な回転変位が可能となっている。
この微小電気機械素子200では、可動部41が第1の方向又は第2の方向のいずれかの方向に遷移して保持されるとき、可動部41に対し第1の駆動源D1及び第2の駆動源D2により第1の方向及び第2の方向へ物理作用力が交互に所定周期毎に加えられる。これにより、可動部41は、第1の方向及び第2の方向へ交互に変位を繰り返し、最終的に第1の方向又は第2の方向の最終変位位置で保持されるようになっている。
図5は図4に示した微小電気機械素子の揺動過程を(a),(b),(c),(d)で表した動作説明図、図6は図4に示した微小電気機械素子の駆動時において印加される電圧と時間との相関を表したタイムチャートである。
本実施の形態では、可動部41が水平な平衡状態から変位される。すなわち、可動部41は、図5(a)に示すように、水平に平衡して停止している。次いで、図6に示す電圧Va,Vbの印加を開始し、可動側電極51cと第1アドレス電極51a、可動側電極51cと第2アドレス電極51bに、周波数fの周期で交互に電圧Va,Vbを印加する。この周波数fによる電圧の印加が所定時間続けられると、図5(c)に示すように、可動部41の揺動が徐々に拡大して行く。その結果、図5(d)に示すように、最終的に可動部41がpull-inを起こし、その後、図6に示すpull-out電圧以上の電圧で可動部41が第1アドレス電極51a側へ保持されることとなる。
ここで、交互に加えられる電圧Va,Vbは、単純に電圧を印加してpull-inさせるときの電圧よりも小さいものとなる。なお、所定の周期は、可動部41の共振周波数に対応した周期としてもよい。このように電圧印加周期が、共振周波数となることで、可動部41に対する片側方向のみによる物理的作用力の印加(すなわち、電圧Vaのみ又は電圧Vbのみの印加)が可能となり、駆動エネルギーを低減することができる。これにより、最も低い電圧で最終変位させることが可能となる。また、粘性の作用が大きい場合には、交互に電圧を印加して最終変位させた方が低電圧化が可能となる。
なお、本実施の形態では、物理的作用力が、可動部41の複数の作用点に加えられる。このように、作用点が複数となることで、ヒンジ47を挟む両側に物理的作用力が加えられるようになる。これにより、それぞれの作用点に、異なる大きさの物理的作用力を、異なるタイミングで加えられるようになり、多様な変位可動作用が得られるようになる。
また、本実施の形態では、第1の駆動源D1、第2の駆動源D2による物理作用力が加わる前の状態が、可動部41が水平に平衡された状態である。水平に平衡された状態の可動部41に対し、例えば第1の方向に物理作用力が所定周期毎に加えられ、可動部41が第1の方向及び第2の方向へ交互に揺動変位を繰り返す。したがって、可動部41が第1の方向又は第2の方向の最終変位位置へ交互に接近可能となる。この場合、可動部41は初期状態において、水平平衡状態であるので、第1の方向又は第2の方向のいずれか任意方向に最初の物理的作用力を印加することが可能となる。
したがって、この微小電気機械素子200によれば、可動部41に対し第1の駆動源D1及び第2の駆動源D2により第1の方向及び第2の方向へ物理作用力が所定周期で交互に加えられ、可動部41が第1の方向及び第2の方向へ交互に揺動を繰り返す。これにより、可動部41には徐々に揺動エネルギーが蓄積されて行き、可動部41は少しずつ変位量が拡大され、最終的に第1の方向又は第2の方向の最終変位位置へ近接して保持されることとなる。つまり、平衡状態の可動部41を一度に最終変位位置まで変位させる駆動電圧より、小さい駆動電圧で可動部41を最終変位位置まで変位可動できる。なお、この場合、電圧印加周期は、可動部41の共振周波数、及びそれ以外の振動周波数とすることもでき、共振周波数以外とした場合には可動部41の高速な変位可動が可能となる。
次に、本発明に係る微小電気機械素子の第3の実施の形態を説明する。
図7は第3の実施の形態に係る微小電気機械素子の揺動過程を(a),(b),(c),(d)で表した動作説明図、図8は図7に示した微小電気機械素子の駆動時において印加される電圧と時間との相関を表したタイムチャートである。
この実施の形態による微小電気機械素子300は、基本構成は第2の実施の形態で説明した微小電気機械素子200と略同一である。すなわち、可動部41、第1の駆動源D1、第2の駆動源D2、基板43、ヒンジ47を有している。但し、可動部41に対し第1の駆動源D1、第2の駆動源D2による物理作用力が加わる前の状態が、可動部41が第1の駆動源D1(第1アドレス電極51a)又は第2の駆動源D2(第2アドレス電極51b)による最終変位位置で平衡された状態となる。
つまり、可動部41が最終変位位置から逆方向に変位可動することとなる。すなわち、可動部41は、図8に示すように、pull-out電圧以上の電圧Vcの印加によって、図7(a)に示すように、一方の最終変位位置(第1アドレス電極51a)に傾いて停止している。次いで、図8に示す電圧Va,Vbの印加を開始し、可動側電極51cと第1アドレス電極51a、可動側電極51cと第2アドレス電極51bに、周波数fの周期で交互に電圧Va,Vbを印加する。この周波数fによる電圧の印加が所定時間続けられると、図7(c)に示すように、可動部41の揺動が徐々に拡大して行く。その結果、図7(d)に示すように、最終的に可動部41がpull-inを起こし、その後、図8に示すpull-out電圧以上の電圧で可動部41が第2アドレス電極51b側へ保持されることとなる。
ここで、交互に加えられる電圧Va,Vbは、単純に電圧を印加してpull-inさせるときの電圧よりも小さいものとなる。なお、所定の周期は、可動部41の共振周波数に対応した周期としてもよい。このように電圧印加周期が、共振周波数となることで、可動部41に対する片側方向のみによる物理的作用力の印加(すなわち、電圧Vaのみ又は電圧Vbのみの印加)が可能となり、駆動エネルギーを低減することができる。これにより、最も低い電圧で最終変位させることが可能となる。また、粘性の作用が大きい場合には、交互に電圧を印加して最終変位させた方が低電圧化が可能となる。
したがって、この微小電気機械素子300によれば、可動部41が駆動源による最終変位位置で平衡された状態、すなわち、第1の方向又は第2の方向の最終変位位置で保持された状態から物理的作用力が加えられる。この場合、最初の物理的作用力は、可動部41を保持する方向とは逆方向で加えられる。可動部41は、例えば第1の方向の最終変位位置に保持されている場合、保持のための物理的作用力が解除されると、弾性復元力と慣性とによって第2の方向へと揺動される。その際に、第2の方向への最初の物理的作用力が印加され、その後、所定周期で交互に物理的作用力が印加されることになる。したがって、水平に平衡された状態の可動部41に対し物理作用力が加えられる場合に比べ、最初に可動部41に作用する弾性復元力と慣性力が、可動部41の変位可動のためのエネルギーとして寄与することとなり、その分、より小さな駆動電圧で可動部41が最終変位位置まで可動変位可能となる。つまり、第2の実施の形態による微小電気機械素子200より小さな駆動電圧・駆動電流で可動部41が最終変位位置まで可動変位可能となる。
また、この実施の形態による微小電気機械素子300では、第1の方向又は第2の方向の最終変位位置で保持された状態から物理的作用力が加えられるので、電圧非印加時に生じている個々の素子の個体差による可動部41の変位バラツキが除去可能になる。これにより、可動部41がバラツキの無い状態からの一律に制御可能となる効果も有する。
次に、本発明に係る微小電気機械素子の第4の実施の形態を説明する。
図9は第4の実施の形態に係る平行平板型の微小電気機械素子を表す断面図である。
この実施の形態による微小電気機械素子400は、所謂、平行平板型の素子であって、導電性と可撓性を有する平板状の可動部61の両端が基板43上に形成した絶縁膜63に所定の間隙65を有して固定されている。この基板43の可動部61の下方には、絶縁膜67を介して、第1アドレス電極69aが配設されており、また、可動部61の上方には絶縁膜63を介して第2アドレス電極69bが配設されている。さらに、可動部61の一部分には、可動側電極69cが設けられている。つまり、可動部61は、第1アドレス電極69aと第2アドレス電極69bとの間で両端が支持された両持ち梁状に構成されている。
このような平行平板型の微小電気機械素子400においても、可動部61が第1の方向に遷移して保持されるとき、可動部61に対し第1の方向及び第2の方向へ物理作用力が所定周期で交互に加えられ、可動部61が第1の方向及び第2の方向へ交互に変位を繰り返し、最終的に可動部61が第1の方向の最終変位位置で保持されるので、低電圧を繰り返し印加し、小さい物理的作用力を所定周期毎に加えながら可動部61の変位を徐々に増大させ、その結果、可動部61を最終変位位置まで近接させることが可能となる。つまり、平衡状態の可動部61を一度に最終変位位置まで変位させる駆動電圧より、小さい駆動電圧で可動部61を最終変位位置まで変位させることができる。この結果、昇圧回路を設けることなく、小さいエネルギーで可動部61を遷移させることができ、微小電気機械素子400の低電圧化、低電流化、及び微細化を同時に達成することができる。
次に、本発明に係る微小電気機械素子の第5の実施の形態を説明する。
図10は第5の実施の形態に係るコムドライブ型の微小電気機械素子を表す平面図である。
この実施の形態による微小電気機械素子500は、一対の平行な支持部71,71の間に、弾性変位可能なヒンジ73を介して可動部75が図10の左右方向に変位可動自在に支持されている。可動部75は、左右に設けられたコムドライブ77によって変位可動される。コムドライブ77は、櫛歯状に形成された図示しない基板に固定される外部電極板79aと、可動部75に固定される内部電極79bとを相互に差し入れて対向させ、この対向電極間に作用する静電気力によって可動部75を図10の左右に変位可動する。
このようなコムドライブ77によって駆動される微小電気機械素子500においても、可動部75が第1の方向に遷移して保持されるとき、可動部75に対し第1の方向及び第2の方向へ物理作用力が所定周期で交互に加えられ、可動部75が第1の方向及び第2の方向へ交互に変位を繰り返し、最終的に可動部75が第1の方向の最終変位位置で保持されるので、低電圧を繰り返し印加し、小さい物理的作用力を所定周期毎に加えながら可動部75の変位を徐々に増大させ、その結果、可動部75を最終変位位置まで近接させることが可能となる。つまり、平衡状態の可動部75を一度に最終変位位置まで変位させる駆動電圧より、小さい駆動電圧で可動部75を最終変位位置まで変位させることができる。この結果、昇圧回路を設けることなく、小さいエネルギーで可動部75を遷移させることができ、微小電気機械素子500の低電圧化、低電流化、及び微細化を同時に達成することができる。
次に、本発明に係る微小電気機械素子の第6の実施の形態を説明する。
図11は第6の実施の形態に係る電流駆動素子の斜視を(a)、駆動時において印加される電圧と時間との相関を(b)に表した説明図である。
この実施の形態による電流駆動素子600は、一次元に揺動し得る可動部を有する揺動体81と、磁界を発生させるための磁気回路83と、これらを保持するベースプレート85とを備えている。揺動体81は、可動部87と、可動部87を支持するための支持部89,91と、可動部87と支持部89,91を連結している連結部である一対のトーションバー93,95とを有している。一対のトーションバー93,95は、支持部89,91に対して可動部87を、トーションバー93,95を通る一本の軸の周りに揺動可能に支持している。
可動部87は平板状であり、その表面にミラーを有するとともに、裏面に駆動コイル97を有している。駆動コイル97は可動部87の周縁部を周回している。駆動コイル97の両端は、トーションバー93を通る配線を介して、支持部89に設けられた一対の電極パッド99、101にそれぞれ接続されている。磁気回路83は、磁界発生部材である一対の永久磁石103,105と、これらを保持するヨーク107とを備えている。
電極パッド99,101には図示しないフレキシブル配線基板(FPC)を経由して交流電流の駆動信号が印加される。これに応じて駆動コイル97には電流が流れる。駆動コイル97を流れる電流は、磁界成分との相互作用により、その大きさに依存して、ローレンツ力を受ける。駆動コイル97の揺動軸に平行な一対の対辺部分は、そこを流れる電流が受けるローレンツ力により、可動部87の面にほぼ垂直な方向の力を受ける。また、それら一対の対辺部分を流れる電流は互いに逆向きであるため、可動部87は揺動軸の周りの偶力を受ける。このため、可動部87は駆動コイル97を流れる電流の大きさに応じて揺動軸の周りに回転する。
ここで、電極パッド99,101に印加される駆動信号が図11(b)に示す交流電流であるため、駆動コイル97に流れる電流は交流電流である。電流の方向が交互に切り替わるため、可動部87が受ける偶力の方向は交互に切り替わり、これに応じて可動部87の回転方向も交互に切り替わる。そして、本実施の形態においても、可動部87に対し第1の方向及び第2の方向へ物理作用力が所定周期で交互に加えられる。
この電流駆動素子600においても、可動部87が第1の方向に遷移して保持されるとき、可動部87に対し第1の方向及び第2の方向へ物理作用力が所定周期で交互に加えられ、可動部87が第1の方向及び第2の方向へ交互に変位を繰り返し、最終的に可動部87が第1の方向の最終変位位置で保持されるので、低電圧を繰り返し印加し、小さい物理的作用力を所定周期毎に加えながら可動部87の変位を徐々に増大させ、その結果、可動部87を最終変位位置まで近接させることが可能となる。つまり、平衡状態の可動部87を一度に最終変位位置まで変位させる駆動電圧より、小さい駆動電圧で可動部87を最終変位位置まで変位させることができる。この結果、昇圧回路を設けることなく、小さいエネルギーで可動部87を遷移させることができ、電流駆動素子600の低電圧化、低電流化、及び微細化を同時に達成することができる。
次に、本発明に係る微小電気機械素子の第7の実施の形態を説明する。
図12は第7の実施の形態に係る2つ以上の物理的作用力が設定可能に構成された微小電気機械素子を斜視視(a)、断面視(b)で表す構成図、図13は図12に示した微小電気機械素子の駆動時において印加される電圧と時間との相関を表したタイムチャートである。
この実施の形態による微小電気機械素子700は、可動部31の一端がヒンジ33、スペーサ35を介して基板37に支持固定されている。つまり、可動部31は、他端が自由端となった片持ち梁状に構成される。そして、基板37上には可動部31の自由端に対向して第1アドレス電極39a、第1振動制御電極111aが設けられ、可動部31を挟んだ第1アドレス電極39a、第1振動制御電極111aの反対側には対向基板113に形成される第2アドレス電極39b、第2振動制御電極111bが設けられている。また、可動部31には可動側電極39cが設けられている。
この微小電気機械素子700では、可動側電極39cと第1アドレス電極39aとに駆動電圧V1、可動側電極39cと第2アドレス電極39bとに駆動電圧V2が印加されるとともに、第1振動制御電極111aと可動側電極39c、第2振動制御電極111bと可動側電極39cとには物理作用力を所定周期毎に加えるためのパルス電圧V3,V4が印加される。つまり、可動部31のそれぞれの遷移方向に対して2つ以上の物理的作用力が設定可能に構成されている。
この微小電気機械素子700では、例えば図13(b)に示す第2アドレス電極39bに対する前回の保持電圧であるpull-out電圧Vcが解除された後、図13(c),(d)に示すように、第1振動制御電極111aと第2振動制御電極111bにパルス電圧Va,Vbが交互に印加される。これにより、可動部31は、徐々に揺動エネルギーが蓄積されて行き、少しずつ変位量が拡大される。そして、最終的に第1の方向の最終変位位置へ近接したとき、図13(a)に示すpull-out電圧Vcが第1アドレス電極39aに印加されて保持されることとなる。
したがって、この微小電気機械素子700によれば、可動部31が第1の方向に遷移して保持されるとき、可動部31に対し第1の方向に物理作用力が所定周期毎に加えられ、可動部31が第1の方向及び第2の方向へ交互に変位を繰り返し、最終的に可動部31が第1の方向の最終変位位置で保持されるので、低電圧を繰り返し印加し、小さい物理的作用力を所定周期毎に加えながら可動部31の変位を徐々に増大させ、その結果、可動部31を最終変位位置まで近接させることが可能となる。また、可動部31に対し、保持用の物理的作用力と、揺動用の物理的作用力とが別々に印加可能となり、可動部31の揺動・保持制御回路が簡素に構成可能となる。
次に、本発明に係る微小電気機械素子を用いた微小電気機械素子アレイの実施の形態を説明する。
図14は本発明に係る微小電気機械素子を用いて構成された微小電気機械素子アレイの構成を表すブロック図である。
上記の各実施の形態に開示した微小電気機械素子100、200、300、400、500、700のそれぞれは、1次元又は2次元配列することによって微小電気機械素子アレイを構成することができる。
この微小電気機械素子アレイでは、高速なスイッチング動作の可能となった微小電気機械素子100、200、300、400、500、700がアレイ化され、低電圧で高速な駆動が可能となり、従来より早いアドレス電圧の書込みが低電圧で可能となる。
すなわち、個々の微小電気機械素子を必要最小限の静電気力で高速作動させ、アレイ全体の高速動作が可能となる。これにより、例えば高速な感光材露光や、より高画素数のプロジェクタ表示等が可能となる。また、例えば光通信用の光スイッチアレイでは高精度が求められるため、個々の素子のばらつきに起因する作動誤差の補正が必要となるが、本微小電気機械素子アレイによれば、補正に対応させて個々の微小電気機械素子の印加電圧を変えることで、作動誤差の補正を容易に行うことができる。
また、光通信用の微小電気機械素子アレイでは高精度が求められるため、個々の素子のばらつきに起因する作動誤差の補正が必要となる。したがって、微小電気機械素子アレイにおいては、各素子ごとにこの補正を行わなければならない。これに対し、本実施の形態による微小電気機械素子アレイによれば、この補正に対応させて個々の微小電気機械素子100、200、300、400、500、700における変位制御信号を変えることで、作動誤差の補正を容易に行うことができる。
図14は本発明に係る微小電気機械素子を用いて構成された微小電気機械素子アレイの構成を表すブロック図である。
微小電気機械素子アレイ800は、例えば微小電気機械素子200のそれぞれがメモリ回路121と駆動回路(駆動電圧制御回路)53とを有することが好ましい。このようなメモリ回路121が備えられることで、メモリ回路121に対して予め素子変位信号の書き込みが可能となる。このメモリ回路121には予め素子変位信号が書き込まれる。微小電気機械素子200のスイッチングのとき、各々の微小電気機械素子200のメモリ回路121に記憶された素子変位信号と、微小電気機械素子200への印加電圧を制御する駆動電圧制御回路53により、本発明の変位制御信号、振動制御信号で微小電気機械素子200の信号電極(第1アドレス電極39a、第2アドレス電極39b)に出力する。このとき、共通電極(可動電極)89に対しても所望の電圧が出力される。
このように、メモリ回路121を用いて微小電気機械素子200を駆動すると、複数の微小電気機械素子200のそれぞれを任意の駆動パターンで動作させることが容易にでき、より高速なアクティブ駆動が可能となる。なお、ここでは、第2の実施の形態による微小電気機械素子200を用いて微小電気機械素子アレイ800を構成する例を示したが、これに限らず、他の構成による微小電気機械素子100、300、400、500、700の何れかが用いられてもよい。
この微小電気機械素子アレイ800は、上記したいずれかの実施の形態に係る微小電気機械素子を1次元又は2次元に配列したので、個々の微小電気機械素子を低電圧で作動させ、アレイ全体の低電圧動作が可能となる。また、個々の微小電気機械素子に昇圧回路を設ける必要が無くなるので、アレイ全体の小型化が可能となる。
また、微小電気機械素子アレイ800では、それぞれの可動部31を変調駆動させる制御部となる駆動電圧制御回路53が設けられているので、可動部31が駆動電圧制御回路53によって駆動制御されることで、可動部31が最終変位位置に到達する前に、可動側電極39cと、第1アドレス電極39a又は第2アドレス電極39bとの間の電極間電圧の絶対値が減少又は増加、或いは増減され、可動部が最終変位位置へ少ないエネルギーで衝突するので、衝突による振動やオーバーシュートを低減できる。
したがって、この微小電気機械素子アレイ800によれば、上記したいずれかの実施の形態に係る微小電気機械素子を1次元又は2次元に配列したので、個々の微小電気機械素子を低電圧で作動させ、アレイ全体の低電圧動作が可能となる。また、個々の微小電気機械素子に昇圧回路を設ける必要が無くなるので、アレイ全体の小型化が可能となる。これにより、例えば低電圧での感光材露光や、プロジェクタ表示等が可能となる。また、光通信用の光スイッチアレイでは高精度が求められるため、個々の素子のばらつきに起因する作動誤差の補正が必要となるが、本発明に係る微小電気機械素子アレイ800によれば、補正に対応させて個々の微小電気機械素子の変位制御信号を変えることが可能なので、作動誤差の補正を容易に行うことができる。
発明に係る微小電気機械素子の概略構成を表す斜視図である。 図1に示した微小電気機械素子の揺動過程を(a),(b),(c),(d)で表した動作説明図である。 図1に示した微小電気機械素子の駆動時において印加される電圧と時間との相関を表したタイムチャートである。 第2の実施の形態に係る微小電気機械素子を斜視視(a)、断面視(b)で表す構成図である。 図4に示した微小電気機械素子の揺動過程を(a),(b),(c),(d)で表した動作説明図である。 図4に示した微小電気機械素子の駆動時において印加される電圧と時間との相関を表したタイムチャートである。 第3の実施の形態に係る微小電気機械素子の揺動過程を(a),(b),(c),(d)で表した動作説明図である。 図7に示した微小電気機械素子の駆動時において印加される電圧と時間との相関を表したタイムチャートである。 第4の実施の形態に係る平行平板型の微小電気機械素子を表す断面図である。 第5の実施の形態に係るコムドライブ型の微小電気機械素子を表す平面図である。 第6の実施の形態に係る電流駆動素子の斜視を(a)、駆動時において印加される電圧と時間との相関を(b)に表した説明図である。 第7の実施の形態に係る2つ以上の物理的作用力が設定可能に構成された微小電気機械素子を斜視視(a)、断面視(b)で表す構成図である。 図12に示した微小電気機械素子の駆動時において印加される電圧と時間との相関(a)〜(d)を表したタイムチャートである。 本発明に係る微小電気機械素子を用いて構成された微小電気機械素子アレイの構成を表すブロック図である。 接点部を分離した従来の微小電気機械素子の概略構成図である。
符号の説明
31,41,61,75,87 可動部
39a 第1アドレス電極(信号電極)
39b 第2アドレス電極(信号電極)
39c 可動側電極(共通電極)
53 駆動回路(制御部)
100,200,300,400,500,700 微小電気機械素子
121 メモリ回路
800 微小電気機械素子アレイ
D 駆動源
D1 第1の駆動源
D2 第2の駆動源
f 周波数

Claims (11)

  1. 弾性変位可能に支持され第1の方向及びこれとは逆方向の第2の方向との双方向に変位する可動部と、前記可動部へ前記第1の方向の物理的作用力を加える駆動源とを備え、前記可動部が前記駆動源により変位する微小電気機械素子であって、
    前記可動部が前記第1の方向に遷移して保持されるとき、前記可動部に対し前記第1の方向に前記駆動源により前記物理作用力が所定周期毎に加えられ、前記可動部が前記第1の方向及び前記第2の方向へ交互に変位を繰り返し、最終的に前記可動部が前記第1の方向の最終変位位置で保持されることを特徴とする微小電気機械素子。
  2. 弾性変位可能に支持され第1の方向及びこれとは逆方向の第2の方向との双方向に変位する可動部と、前記可動部へ前記第1の方向の物理的作用力を加える第1の駆動源と、前記可動部へ前記第2の方向の物理的作用力を加える第2の駆動源と、を備え、前記可動部が前記駆動源により変位する微小電気機械素子であって、
    前記可動部が前記第1の方向又は前記第2の方向のいずれかの方向に遷移して保持されるとき、前記可動部に対し前記第1の駆動源及び前記第2の駆動源により前記第1の方向及び前記第2の方向へ前記物理作用力が交互に所定周期毎に加えられ、前記可動部が前記第1の方向及び前記第2の方向へ交互に変位を繰り返し、最終的に前記可動部が前記第1の方向又は前記第2の方向の最終変位位置で保持されることを特徴とする微小電気機械素子。
  3. 前記可動部の前記駆動源による物理作用力が加わる前の状態が、前記可動部が水平に平衡された状態であることを特徴とする請求項1又は請求項2記載の微小電気機械素子。
  4. 前記可動部の前記駆動源による物理作用力が加わる前の状態が、前記可動部が前記駆動源による最終変位位置で平衡された状態であることを特徴とする請求項1又は請求項2記載の微小電気機械素子。
  5. 前記物理的作用力が、前記可動部の複数の作用点に加えられることを特徴とする請求項1〜請求項4のいずれか1項記載の微小電気機械素子。
  6. 前記所定周期が、前記可動部の共振周波数に対応した周期であることを特徴とする請求項1〜請求項5のいずれか1項記載の微小電気機械素子。
  7. 前記物理的作用力が、静電気力であることを特徴とする請求項1〜請求項6のいずれか1項記載の微小電気機械素子。
  8. 前記可動部のそれぞれの遷移方向に対して2つ以上の前記物理的作用力が設定可能に構成されたことを特徴とする請求項1〜請求項7のいずれか1項記載の微小電気機械素子。
  9. 請求項1〜請求項8のいずれか1項記載の微小電気機械素子を1次元又は2次元に配列したことを特徴とする微小電気機械素子アレイ。
  10. 前記微小電気機械素子のそれぞれがメモリ回路を含む駆動回路を有し、前記可動部と、該可動部に対峙する少なくとも2つ以上の固定部とに設けられた電極のうち一方が前記駆動回路からの素子変位信号の入力される信号電極であり、他方が共通電極であることを特徴とする請求項9記載の微小電気機械素子アレイ。
  11. それぞれの前記可動部を変調駆動させる制御部が設けられたことを特徴とする請求項9又は請求項10記載の微小電気機械素子アレイ。
JP2005259406A 2005-09-07 2005-09-07 微小電気機械素子及び微小電気機械素子アレイ Abandoned JP2007074826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259406A JP2007074826A (ja) 2005-09-07 2005-09-07 微小電気機械素子及び微小電気機械素子アレイ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259406A JP2007074826A (ja) 2005-09-07 2005-09-07 微小電気機械素子及び微小電気機械素子アレイ

Publications (1)

Publication Number Publication Date
JP2007074826A true JP2007074826A (ja) 2007-03-22

Family

ID=37935783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259406A Abandoned JP2007074826A (ja) 2005-09-07 2005-09-07 微小電気機械素子及び微小電気機械素子アレイ

Country Status (1)

Country Link
JP (1) JP2007074826A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200027831A (ko) * 2018-09-05 2020-03-13 서강대학교산학협력단 전기기계적 스위칭 소자의 구동 방법
KR20210142946A (ko) * 2020-05-19 2021-11-26 서강대학교산학협력단 동적 슬링샷 기반의 저전압 전기기계 스위치 및 이의 구동 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325882A (ja) * 1991-04-24 1992-11-16 Ricoh Co Ltd アクチュエータ
JP2002218771A (ja) * 2001-01-24 2002-08-02 Matsushita Electric Ind Co Ltd アクチュエータおよびその製造方法
JP2002534947A (ja) * 1998-12-29 2002-10-15 ハネウエル・インコーポレーテッド 共通の電極を有する静電作動器の非平行アレイのための駆動方法
JP2004130270A (ja) * 2002-10-15 2004-04-30 Tadashi Nakanuma 振動発生装置
JP2005027402A (ja) * 2003-06-30 2005-01-27 Kyocera Corp 圧電アクチュエータ及び液体吐出装置
JP2005504355A (ja) * 2001-10-04 2005-02-10 ディーコン エーエス 特に光学用途のための切り替えデバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325882A (ja) * 1991-04-24 1992-11-16 Ricoh Co Ltd アクチュエータ
JP2002534947A (ja) * 1998-12-29 2002-10-15 ハネウエル・インコーポレーテッド 共通の電極を有する静電作動器の非平行アレイのための駆動方法
JP2002218771A (ja) * 2001-01-24 2002-08-02 Matsushita Electric Ind Co Ltd アクチュエータおよびその製造方法
JP2005504355A (ja) * 2001-10-04 2005-02-10 ディーコン エーエス 特に光学用途のための切り替えデバイス
JP2004130270A (ja) * 2002-10-15 2004-04-30 Tadashi Nakanuma 振動発生装置
JP2005027402A (ja) * 2003-06-30 2005-01-27 Kyocera Corp 圧電アクチュエータ及び液体吐出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200027831A (ko) * 2018-09-05 2020-03-13 서강대학교산학협력단 전기기계적 스위칭 소자의 구동 방법
KR102119470B1 (ko) * 2018-09-05 2020-06-16 서강대학교산학협력단 전기기계적 스위칭 소자의 구동 방법
KR20210142946A (ko) * 2020-05-19 2021-11-26 서강대학교산학협력단 동적 슬링샷 기반의 저전압 전기기계 스위치 및 이의 구동 방법
KR102605542B1 (ko) 2020-05-19 2023-11-23 서강대학교산학협력단 동적 슬링샷 기반의 저전압 전기기계 스위치 및 이의 구동 방법

Similar Documents

Publication Publication Date Title
US7468829B2 (en) Microelectromechanical modulation device and microelectromechanical modulation device array, and image forming apparatus
US7436575B2 (en) Small thin film movable element, small thin film movable element array and method of driving small thin film movable element array
JP2006343590A (ja) 微小電気機械素子アレイ装置及びその駆動方法
JP2004117832A (ja) ミラーデバイス、光スイッチ、電子機器およびミラーデバイス駆動方法
US20070258124A1 (en) Method and system for resonant operation of a reflective spatial light modulator
JP2007065698A (ja) デジタルマイクロミラーリセット方法
JP2007192902A (ja) 微小電気機械素子の駆動方法及び微小電気機械素子アレイの駆動方法、微小電気機械素子及び微小電気機械素子アレイ、並びに画像形成装置
JP6568591B2 (ja) Memsアクチュエータ、複数のmemsアクチュエータを備えるシステム、およびmemsアクチュエータを製造する方法
JP4484778B2 (ja) 微小薄膜可動素子および微小薄膜可動素子アレイ並びに微小薄膜可動素子の駆動方法
JP3129219B2 (ja) 光スキャナ
JP2008295174A (ja) 揺動装置、同装置を用いた光走査装置、映像表示装置、及び揺動装置の制御方法
JP4810154B2 (ja) 微小電気機械素子の駆動方法、微小電気機械素子アレイ及び画像形成装置
JP4872453B2 (ja) マイクロアクチュエータ、光学デバイス及び表示装置
JP4392410B2 (ja) 電磁力駆動スキャニングマイクロミラー及びこれを使用した光スキャニング装置
JP2006346817A (ja) 微小電気機械素子アレイ装置及びその駆動方法
EP1706774B1 (en) Micro-mirrors with flexure springs
JP4695956B2 (ja) 微小電気機械式変調素子及び微小電気機械式変調素子アレイ並びに画像形成装置
JP2007199101A (ja) 微小電気機械素子アレイ装置及び画像形成装置
JP2007074826A (ja) 微小電気機械素子及び微小電気機械素子アレイ
JP2007017769A (ja) 光通信用微小薄膜可動素子及び微小薄膜可動素子アレイ
JPH09159938A (ja) マイクロミラー装置
JP2006323001A (ja) 揺動体装置、およびそれを用いた光偏向器
JP2008003309A (ja) 微小電気機械素子及び微小電気機械素子アレイ並びに変調装置
JP2007245246A (ja) 静電容量型memsアクチュエータ
KR100677204B1 (ko) 2축 회전이 가능한 마이크로미러

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110203