JP2007073615A - Cleaning nozzle and cleaning method using it - Google Patents

Cleaning nozzle and cleaning method using it Download PDF

Info

Publication number
JP2007073615A
JP2007073615A JP2005256661A JP2005256661A JP2007073615A JP 2007073615 A JP2007073615 A JP 2007073615A JP 2005256661 A JP2005256661 A JP 2005256661A JP 2005256661 A JP2005256661 A JP 2005256661A JP 2007073615 A JP2007073615 A JP 2007073615A
Authority
JP
Japan
Prior art keywords
cleaning
nozzle
compressed gas
cleaning liquid
throat portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005256661A
Other languages
Japanese (ja)
Other versions
JP4120991B2 (en
Inventor
Kiyotaka Shuzenji
清隆 周善寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefecture
Original Assignee
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefecture filed Critical Fukuoka Prefecture
Priority to JP2005256661A priority Critical patent/JP4120991B2/en
Publication of JP2007073615A publication Critical patent/JP2007073615A/en
Application granted granted Critical
Publication of JP4120991B2 publication Critical patent/JP4120991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning nozzle and a cleaning method using the same, capable of removing a contaminant at a low cost with no damage on an object. <P>SOLUTION: A cleaning nozzle 10 comprises a nozzle body 18 equipped with a cross-sectionally circular divergent part 13 gradually enlarging in flow direction on the lower stream side of a throat 11, and a cleaning liquid supply pipe 21 that discharges a cleaning liquid 20 in the same direction as the flow of a compressed air 15 that is supplied to the nozzle body 18. The discharge opening 22 of the cleaning liquid supply pipe 21 is arranged near the throat 11 away from an inside wall surface 23 of the nozzle body 18, with the compressed air 15 advancing at sonic speed in the throat 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微細な氷粒子及び過冷却液滴を超音速で噴射する洗浄ノズル及びそれを用いた洗浄方法に関する。 The present invention relates to a cleaning nozzle that ejects fine ice particles and supercooled droplets at supersonic speed, and a cleaning method using the same.

近年の半導体デバイスの微細化、多層化、及び基板の大口径化に伴い、環境負荷が少なく、洗浄効果の高い洗浄装置が望まれており、例えば、アイスブラスト(氷の噴霧)を利用した洗浄装置として、特許文献1には、液体窒素が供給されている容器の中に水滴を噴霧して氷粒子を生成させ、この氷粒子を洗浄対象物(半導体ウエハ、ガラス基板等)の表面に高速で衝突させて、汚染物質を除去するウエハ洗浄装置が開示されている。また、特許文献2には、水とこれより凝固点の低い有機化合物液(イソプロピルアルコール等)との混合物を水の凝固点以下に冷却して、氷粒子を含む固液共存のシャーベット状とした洗浄材を洗浄対象物に噴射して衝突させて汚染物質を除去する洗浄装置が開示されている。更に、特許文献3には、圧縮空気が供給されるラバールノズルと、ラバールノズルの上流側側面に設けられラバールノズルに洗浄液を供給する小径の水孔とを備えた超音速ノズルが開示されている。 Along with the recent miniaturization and multilayering of semiconductor devices and the increase in substrate diameter, there is a demand for a cleaning apparatus that has a low environmental impact and a high cleaning effect. For example, cleaning using ice blasting (ice spraying) As an apparatus, Patent Document 1 discloses that ice particles are generated by spraying water droplets in a container to which liquid nitrogen is supplied, and the ice particles are rapidly applied to the surface of an object to be cleaned (semiconductor wafer, glass substrate, etc.). A wafer cleaning apparatus is disclosed that removes contaminants by collision. Patent Document 2 discloses a cleaning material in which a mixture of water and an organic compound liquid (isopropyl alcohol or the like) having a lower freezing point is cooled below the freezing point of water to form a sherbet-like coexisting solid liquid containing ice particles. A cleaning device is disclosed in which contaminants are removed by jetting a target to be cleaned and causing it to collide. Further, Patent Document 3 discloses a supersonic nozzle including a Laval nozzle to which compressed air is supplied and a small-diameter water hole that is provided on the upstream side surface of the Laval nozzle and supplies cleaning liquid to the Laval nozzle.

特開平6−132273号公報JP-A-6-132273 特開2003−151942号公報JP 2003-151942 A 特開平10−223587号公報Japanese Patent Laid-Open No. 10-223587

しかしながら、特許文献1の発明では、氷粒子の粒径が数十μmと比較的大きく、高い洗浄効果を有する反面、洗浄対象物表面にダメージを与えるので、利用される工程が限られ、また、液体窒素及びその付帯設備を必要とするため、コストがかかるという問題があった。また、特許文献2の発明では、水と有機化合物液を混合した混合液を機械式冷凍機で冷却するので、コストが高くなるという問題があった。更に、特許文献3の発明では、ラバールノズルを通過して超音速かつ低温の圧縮空気によって、洗浄液が加速されると共に冷却され氷粒子となり、この氷粒子を超音速ノズルから噴出して、被洗浄物の表面に付着している汚染物質を除去することができるが、水孔が超音速ノズルの側面に設けられているので、洗浄液がラバールノズルの突出部分及び内側壁面の影響を受け速度が低下し、洗浄液を効率よく冷却できず、氷粒子の生成が少なくなると共に、超音速ノズルの噴出口から噴出される氷粒子の噴出範囲が偏るという問題があった。 However, in the invention of Patent Document 1, the particle size of ice particles is relatively large, such as several tens of μm, and has a high cleaning effect, but damages the surface of the object to be cleaned. Since liquid nitrogen and its ancillary facilities are required, there is a problem that costs are increased. Further, in the invention of Patent Document 2, there is a problem that the cost increases because the mixed liquid obtained by mixing water and the organic compound liquid is cooled by a mechanical refrigerator. Further, in the invention of Patent Document 3, the cleaning liquid is accelerated and cooled by the supersonic and low-temperature compressed air passing through the Laval nozzle, and cooled to become ice particles. The ice particles are ejected from the supersonic nozzle, and the object to be cleaned Contaminants adhering to the surface of the nozzle can be removed, but since the water hole is provided on the side surface of the supersonic nozzle, the cleaning liquid is affected by the protruding part of the Laval nozzle and the inner wall surface, and the speed decreases. There was a problem that the cleaning liquid could not be cooled efficiently, the generation of ice particles was reduced, and the ejection range of the ice particles ejected from the supersonic nozzle ejection port was biased.

本発明はかかる事情に鑑みてなされたもので、低コストで汚染物質を除去でき、しかも、洗浄対象物を損傷しない洗浄ノズル及びそれを用いた洗浄方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a cleaning nozzle that can remove contaminants at a low cost and that does not damage an object to be cleaned, and a cleaning method using the same.

前記目的に沿う第1の発明に係る洗浄ノズルは、断面円形のスロート(喉)部の下流側に流れ方向に拡径するダイバージェント(divergent)部を備えたノズル本体と、該ノズル本体に供給される圧縮気体(以下、圧縮気体Aともいう)の流れと同方向に洗浄液を吐出する洗浄液供給管とを有する洗浄ノズルであって、
前記洗浄液供給管の吐出口が、前記ノズル本体の内側壁面から離れた前記スロート部の近傍に配置され、しかも、前記圧縮気体が前記スロート部で音速となっている。
A cleaning nozzle according to a first aspect of the present invention that meets the above-described object is a nozzle body that includes a divergent portion that expands in the flow direction on the downstream side of a throat portion having a circular cross-section, and is supplied to the nozzle body. A cleaning nozzle having a cleaning liquid supply pipe for discharging the cleaning liquid in the same direction as the flow of the compressed gas (hereinafter also referred to as compressed gas A),
The discharge port of the cleaning liquid supply pipe is disposed in the vicinity of the throat portion away from the inner wall surface of the nozzle body, and the compressed gas has a sound velocity at the throat portion.

圧縮気体としては、空気、窒素等が使用できる。圧縮気体は、スロート部で音速となるように、2〜10気圧程度に圧縮されてノズル本体に供給される。また、洗浄液としては、純水等が使用できる。なお、圧縮気体及び洗浄液は、洗浄対象物を損傷(化学反応等)させない材料を使用する。圧縮気体は、スロート部から拡径するダイバージェント部で断熱膨張して、音速(330m/sec程度)から更に加速して超音速(400〜500m/sec程度)になると共に、低温(−60〜−110℃程度)に冷却される。 As the compressed gas, air, nitrogen, or the like can be used. The compressed gas is compressed to about 2 to 10 atm so as to be sonic at the throat portion and supplied to the nozzle body. Further, pure water or the like can be used as the cleaning liquid. The compressed gas and the cleaning liquid use materials that do not damage (chemical reaction, etc.) the object to be cleaned. The compressed gas undergoes adiabatic expansion at the divergent portion that expands from the throat portion, further accelerates from the sound speed (about 330 m / sec) to supersonic speed (about 400 to 500 m / sec), and at a low temperature (−60 to -110 ° C).

圧縮気体の流れの中に供給された洗浄液は、高速(100m/sec以上、超音速まで)の圧縮気体中に供給される液体の衝突によって微粒化される。この微粒化された洗浄液(液滴)は、ダイバージェント部で−60〜−110℃程度に冷却されている圧縮気体によって急激に冷却され、微細な氷粒子及び過冷却液滴のいずれか一方又は双方となる。ここで、過冷却液滴とは、0℃以下に冷却された液滴である。 The cleaning liquid supplied in the flow of the compressed gas is atomized by the collision of the liquid supplied in the high-speed (100 m / sec or more, up to supersonic speed) compressed gas. The atomized cleaning liquid (droplet) is rapidly cooled by a compressed gas cooled to about −60 to −110 ° C. in a divergent portion, and either one of fine ice particles and supercooled droplets or Become both. Here, the supercooled droplet is a droplet cooled to 0 ° C. or lower.

第1の発明に係る洗浄ノズルにおいて、前記ノズル本体は、前記スロート部の上流側が流れ方向に縮径してコンバージェント(convergent)部となってラバールノズル(laval nozzle)が形成されているのが好ましい。
ラバールノズルは、スロート部の上流側にコンバージェント部が、スロート部の下流側にダイバージェント部が形成される。ここで、ラバールノズルは、特性曲線法(H.W.Lipmann and A.Roshko:「Elements of Gasdynamics」、1960)によって、圧縮気体を適切に断熱膨張させ、洗浄液を微粒化して低温に冷却可能な形状に設計(解析)される。特性曲線法によって設計されたラバールノズルにおいては、ラバールノズルに供給された圧縮気体が、コンバージェント部で亜音速であり、断面積の小さいスロート部で音速となり、断面積の大きくなったダイバージェント部で圧力が下がって超音速となる。
In the cleaning nozzle according to the first aspect of the present invention, it is preferable that the nozzle body has a convergent portion formed on the upstream side of the throat portion to form a convergent portion and a laval nozzle is formed. .
The Laval nozzle has a convergent portion upstream of the throat portion and a divergent portion downstream of the throat portion. Here, the Laval nozzle has a shape that allows the compressed gas to be appropriately adiabatically expanded by the characteristic curve method (HW Lipmann and A. Roshko: “Elements of Gasdynamics”, 1960) to atomize the cleaning liquid and cool it to a low temperature. Designed (analyzed). In the Laval nozzle designed by the characteristic curve method, the compressed gas supplied to the Laval nozzle is subsonic at the convergent part, becomes sonic at the throat part with a small cross-sectional area, and pressure at the divergent part with a large cross-sectional area. Falls and becomes supersonic.

第1の発明に係る洗浄ノズルにおいて、前記洗浄液供給管中には、前記洗浄液と混合される別の圧縮気体(以下、圧縮気体Bという)を供給する気体供給管を配設することもできる。
気体供給管から供給される別の圧縮気体Bの成分は、圧縮気体Aと同じであってもよく、しかも、圧縮気体Aよりも高圧で圧縮されて高速で吐出されるのが好ましい。洗浄液は、高速の別の圧縮気体Bと混合されて、微粒化が促進される。
In the cleaning nozzle according to the first aspect of the present invention, a gas supply pipe for supplying another compressed gas (hereinafter referred to as compressed gas B) mixed with the cleaning liquid may be disposed in the cleaning liquid supply pipe.
The component of another compressed gas B supplied from the gas supply pipe may be the same as that of the compressed gas A, and is preferably compressed at a higher pressure than the compressed gas A and discharged at a high speed. The cleaning liquid is mixed with another compressed gas B having a high speed to promote atomization.

第1の発明に係る洗浄ノズルにおいて、前記洗浄液供給管の前記吐出口は、前記スロート部中心から上流方向及び下流方向にぞれぞれ前記スロート部の直径の5倍の長さの範囲以内に配置するのが好ましい。
ここで、吐出口をスロート部の中心からスロート部の直径の5倍以上の長さの範囲より上流側に配置した場合には、洗浄液が流速の遅くかつ温度の高い圧縮気体中に吐出されるため、生成する液滴の粒径が大きくなり、冷却効率も低下する。また、吐出口をスロート部の中心からスロート部の直径の5倍以上の長さの範囲より下流側に配置した場合には、ノズル本体出口(噴射口)までの距離が短くなり、液滴を十分に冷却することができない。
In the cleaning nozzle according to the first aspect of the present invention, the discharge port of the cleaning liquid supply pipe is within a range of five times the diameter of the throat portion in the upstream direction and the downstream direction from the center of the throat portion, respectively. It is preferable to arrange.
Here, when the discharge port is arranged on the upstream side from the center of the throat portion with a length of 5 times or more the diameter of the throat portion, the cleaning liquid is discharged into the compressed gas having a low flow rate and a high temperature. For this reason, the particle size of the generated droplets increases, and the cooling efficiency also decreases. In addition, when the discharge port is arranged downstream from the center of the throat part at a length more than 5 times the diameter of the throat part, the distance to the nozzle body outlet (jet port) becomes short, and the droplets It cannot be cooled sufficiently.

第1の発明に係る洗浄ノズルにおいて、前記ノズル本体は、前記ダイバージェント部の下流側に、流れ方向に徐々に拡径する加速冷却部を有してもよい。
第1の発明に係る洗浄ノズルにおいて、前記圧縮気体は温度及び湿度が調整され、更に前記洗浄液は温度が調整されているのが好ましい。
ここで、例えば、圧縮気体は、温度を0〜40℃、好ましくは10〜30℃(常温程度)に、湿度を露点温度換算で−20〜0℃、好ましくは−15〜−5℃に調整される。また、洗浄液は、温度を−5〜30℃、好ましくは0〜20℃に調整される。
第1の発明に係る洗浄ノズルにおいて、前記スロート部の上流側には、前記圧縮気体の流れを揃える整流板を設けることもできる。
In the cleaning nozzle according to the first aspect of the present invention, the nozzle body may include an accelerated cooling section that gradually expands in the flow direction on the downstream side of the divergent section.
In the cleaning nozzle according to the first aspect of the present invention, it is preferable that the temperature and humidity of the compressed gas are adjusted, and the temperature of the cleaning liquid is adjusted.
Here, for example, the compressed gas is adjusted to a temperature of 0 to 40 ° C., preferably 10 to 30 ° C. (about room temperature), and a humidity in terms of dew point temperature of −20 to 0 ° C., preferably −15 to −5 ° C. Is done. The temperature of the cleaning liquid is adjusted to -5 to 30 ° C, preferably 0 to 20 ° C.
In the cleaning nozzle according to the first aspect of the present invention, a rectifying plate that aligns the flow of the compressed gas may be provided upstream of the throat portion.

前記目的に沿う第2の発明に係る洗浄方法は、断面円形のスロート部の下流側に、流れ方向に拡径するダイバージェント部を備えたノズル本体の上流側から圧縮気体を供給して該スロート部で該圧縮気体を音速とする第1工程と、
前記ノズル本体の内側壁面から離れた前記スロート部の近傍に配置される洗浄液供給管の吐出口から前記ノズル本体に供給される圧縮気体の流れと同方向に洗浄液を吐出する第2工程と、
前記ダイバージェント部での圧縮気体の流れにより前記洗浄液が微粒化されて生成した液滴が、急激に冷却されて微細な氷粒子及び過冷却液滴のいずれか一方又は双方からなる洗浄材が生成する第3工程と、
超音速の前記洗浄材を前記ノズル本体の噴射口から噴射して、洗浄対象物に衝突させて該洗浄対象物上の汚染物質を剥離させる第4工程と、
前記洗浄材を前記洗浄対象物表面を滑走させて、前記剥離した汚染物質を除去する第5工程とを有する。
A cleaning method according to a second aspect of the present invention is directed to supplying a compressed gas from an upstream side of a nozzle body provided with a divergent portion that expands in the flow direction on the downstream side of a throat portion having a circular cross section. A first step of setting the compressed gas to sound velocity at a part;
A second step of discharging the cleaning liquid in the same direction as the flow of the compressed gas supplied to the nozzle body from the discharge port of the cleaning liquid supply pipe disposed in the vicinity of the throat portion away from the inner wall surface of the nozzle body;
The droplets generated by atomizing the cleaning liquid by the compressed gas flow in the divergent section are rapidly cooled to generate a cleaning material consisting of one or both of fine ice particles and supercooled droplets. A third step to perform,
A fourth step of injecting the supersonic cleaning material from the nozzle main body and causing the cleaning object to collide with the object to be cleaned to separate the contaminants on the object to be cleaned;
And a fifth step of sliding the cleaning material on the surface of the cleaning object to remove the peeled contaminants.

請求項1〜7に記載の洗浄ノズルにおいては、洗浄液供給管の吐出口が、ノズル本体の内側壁面から離れたスロート部の近傍に配置されているので、吐出された洗浄液がノズル本体の内側壁面に形成される境界層領域の影響を受け難くなり、ノズル本体の内側壁面での洗浄液、すなわち、微粒化された液滴の速度低下を防止して、微粒化された液滴を十分に加速でき低温に冷却できる。
特に、請求項2記載の洗浄ノズルにおいては、スロート部の上流側が流れ方向に縮径してコンバージェント部となってラバールノズルが形成されているので、コンバージェント部の速度が亜音速でも、スロート部で音速まで加速することができる。
In the cleaning nozzle according to any one of claims 1 to 7, since the discharge port of the cleaning liquid supply pipe is disposed in the vicinity of the throat portion separated from the inner wall surface of the nozzle body, the discharged cleaning liquid is disposed on the inner wall surface of the nozzle body. It is difficult to be affected by the boundary layer area formed on the nozzle, and the speed of the cleaning liquid on the inner wall surface of the nozzle body, that is, the atomized liquid droplets, can be prevented and the atomized liquid droplets can be sufficiently accelerated. Can cool to low temperatures.
In particular, in the cleaning nozzle according to claim 2, since the upstream side of the throat portion is reduced in diameter in the flow direction to form a convergent portion and a Laval nozzle is formed, even if the speed of the convergent portion is subsonic, the throat portion Can accelerate to the speed of sound.

請求項3記載の洗浄ノズルにおいては、洗浄液供給管中に洗浄液と混合される別の圧縮気体Bを供給する気体供給管が配設されているので、液滴を所定の粒度に微粒化することができる。
請求項4記載の洗浄ノズルにおいては、洗浄液供給管の吐出口が所定範囲以内に配置されているので、洗浄液が圧縮気体の流れで加速されて微細な液滴となって、微細な氷粒子及び過冷却液滴のいずれか一方又は双方からなる洗浄材を生成することができる。また、洗浄材がノズル本体の内側壁面に形成される境界層領域の影響を受け難く、ノズル本体の内側壁面での速度低下を防止でき、洗浄材が十分に加速して、より低温に冷却される。
In the cleaning nozzle according to claim 3, since the gas supply pipe for supplying another compressed gas B to be mixed with the cleaning liquid is disposed in the cleaning liquid supply pipe, the droplets are atomized to a predetermined particle size. Can do.
In the cleaning nozzle according to claim 4, since the discharge port of the cleaning liquid supply pipe is disposed within a predetermined range, the cleaning liquid is accelerated by the flow of the compressed gas to form fine droplets, and the fine ice particles and A cleaning material comprising either or both of the supercooled droplets can be generated. In addition, the cleaning material is not easily affected by the boundary layer region formed on the inner wall surface of the nozzle body, and the speed reduction on the inner wall surface of the nozzle body can be prevented, and the cleaning material is sufficiently accelerated and cooled to a lower temperature. The

請求項5記載の洗浄ノズルにおいては、ノズル本体が、ダイバージェント部の下流側に、流れ方向に徐々に拡径する加速冷却部を有しているので、ノズル本体の内側壁面との境界層領域での速度低下を防止して、微粒化された液滴を十分に加速して冷却できる。
請求項6記載の洗浄ノズルにおいては、圧縮気体の温度及び湿度と、洗浄液の温度とがそれぞれ調整されているので、液滴の凍結比率を変化させることができる。
請求項7記載の洗浄ノズルにおいては、スロート部の上流側に圧縮気体の流れを揃える整流板が設けられているので、圧力損失を少なくして、圧縮気体をスムーズに効率よくスロート部に供給し、圧縮気体のスロート部での速度を音速にできる。
In the cleaning nozzle according to claim 5, since the nozzle main body has an acceleration cooling section that gradually expands in the flow direction on the downstream side of the divergent section, the boundary layer region with the inner wall surface of the nozzle main body In this case, it is possible to sufficiently reduce the speed drop and to sufficiently accelerate the atomized droplets and cool them.
In the cleaning nozzle according to the sixth aspect, since the temperature and humidity of the compressed gas and the temperature of the cleaning liquid are adjusted, the freezing ratio of the droplets can be changed.
In the cleaning nozzle according to claim 7, since the flow straightening plate for aligning the flow of the compressed gas is provided on the upstream side of the throat portion, the pressure loss is reduced, and the compressed gas is smoothly and efficiently supplied to the throat portion. The speed of the compressed gas at the throat portion can be made the speed of sound.

請求項8記載の洗浄方法においては、微細な氷粒子及び過冷却液滴のいずれか一方又は双方からなる洗浄材をノズル本体の噴射口から超音速で噴射して洗浄対象物に衝突させるので、氷粒子は融解して水となり、過冷却液滴は瞬時に過冷却解除されて氷となり、洗浄対象物に衝突した洗浄材はシャーベット状となり、優れた洗浄効果を有する。しかも、洗浄材がシャーベット状となっているので、洗浄対象物表面で滑走し易くなる。 In the cleaning method according to claim 8, since the cleaning material consisting of one or both of fine ice particles and supercooled droplets is injected from the injection port of the nozzle body at supersonic speed and collides with the object to be cleaned. The ice particles melt to become water, the supercooled droplets are instantly released from supercooling to become ice, and the cleaning material that has collided with the object to be cleaned becomes a sherbet and has an excellent cleaning effect. Moreover, since the cleaning material has a sherbet shape, it is easy to slide on the surface of the cleaning object.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の第1の実施の形態に係る洗浄ノズルの説明図、図2は同洗浄ノズル内の圧縮気体の速度と温度の関係を示すグラフ、図3は本発明の第2の実施の形態に係る洗浄ノズルの説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory diagram of the cleaning nozzle according to the first embodiment of the present invention, FIG. 2 is a graph showing the relationship between the speed and temperature of the compressed gas in the cleaning nozzle, and FIG. It is explanatory drawing of the washing nozzle which concerns on 2 embodiment.

図1を参照して、本発明の第1の実施の形態に係る洗浄ノズル10について説明する。
洗浄ノズル10のノズル本体18は、管内径が最小となる断面円形のスロート部(喉部)11と、スロート部11の上流側にあって流れ方向に縮径されたコンバージェント部12と、スロート部11の下流側にあって流れ方向に拡径されたダイバージェント部13とによって形成されるラバールノズル14を有している。なお、ラバールノズル14は、スロート部11の直径を、例えば、3〜10mmとし、コンバージェント部12及びダイバージェント部13を、供給される圧縮気体が適切に断熱膨張されて低温に冷却されるような形状に、特性曲線法で設計(解析)し、求められた形状に加工して製作される。
A cleaning nozzle 10 according to a first embodiment of the present invention will be described with reference to FIG.
The nozzle body 18 of the cleaning nozzle 10 includes a throat portion (throat portion) 11 having a circular cross-section with a minimum tube inner diameter, a convergent portion 12 which is upstream of the throat portion 11 and has a diameter reduced in the flow direction, and a throat It has a Laval nozzle 14 formed by a divergent portion 13 which is downstream of the portion 11 and is expanded in the flow direction. The Laval nozzle 14 has a diameter of the throat portion 11 of, for example, 3 to 10 mm, and the compressed gas supplied to the convergent portion 12 and the divergent portion 13 is appropriately adiabatically expanded and cooled to a low temperature. The shape is designed (analyzed) by the characteristic curve method and processed into the required shape.

ノズル本体18には、ラバールノズル14の上流側に、図示しない圧縮気体供給機構から2〜10気圧(例えば、5気圧)に加圧された圧縮気体Aの一例である圧縮空気15が供給される圧縮気体供給部16が設けられている。また、ラバールノズル14のダイバージェント部13の下流側に、流れ方向に徐々に拡径する加速冷却部17が設けられている。通常、パイプ内に供給された流体は、パイプの内側壁面付近(境界層領域)で速度が低下するが、同径のパイプでは、パイプの出口付近で速度低下を起こす境界層領域が広がり、パイプの中心以外では流体の速度が低下する。しかしながら、加速冷却部17は、この境界層領域を考慮して流れ方向に徐々に拡径し、圧縮空気15とノズル本体18の内側壁面23とによって形成される境界層領域において圧縮空気15の速度低下の影響を抑えるので、ノズル本体18の出口(噴射口19)付近でも広範囲で高速の流れを十分に確保できるようになっている。 Compressed air 15 that is an example of compressed gas A pressurized to 2 to 10 atmospheres (for example, 5 atmospheres) from a compressed gas supply mechanism (not shown) is supplied to the nozzle body 18 upstream of the Laval nozzle 14. A gas supply unit 16 is provided. Further, an acceleration cooling section 17 that gradually increases in diameter in the flow direction is provided on the downstream side of the divergent section 13 of the Laval nozzle 14. Normally, the speed of the fluid supplied into the pipe decreases near the inner wall surface (boundary layer area) of the pipe, but in the case of a pipe of the same diameter, the boundary layer area where the speed decreases near the outlet of the pipe widens. The velocity of the fluid is reduced outside the center of the center. However, the accelerated cooling unit 17 gradually increases in diameter in the flow direction in consideration of the boundary layer region, and the velocity of the compressed air 15 in the boundary layer region formed by the compressed air 15 and the inner wall surface 23 of the nozzle body 18. Since the influence of the reduction is suppressed, a high-speed flow can be sufficiently secured in a wide range even near the outlet (jet 19) of the nozzle body 18.

ここで、ノズル本体18は、圧縮気体供給部16、ラバールノズル14、及び加速冷却部17によって構成されている。また、圧縮気体供給部16、ラバールノズル14、及び加速冷却部17は、例えば、テフロン(登録商標)樹脂でそれぞれ形成され、一体化されている。なお、ノズル本体18は、一体形成して製造してもよい。スロート部11の中心からノズル本体18の下流側端部の噴射口19までの距離は、例えば、100〜300mmとなって、圧縮空気15を十分に加速することができる。 Here, the nozzle body 18 includes a compressed gas supply unit 16, a Laval nozzle 14, and an acceleration cooling unit 17. Moreover, the compressed gas supply part 16, the Laval nozzle 14, and the acceleration cooling part 17 are each formed, for example with the Teflon (trademark) resin, and are integrated. The nozzle body 18 may be manufactured by being integrally formed. The distance from the center of the throat portion 11 to the injection port 19 at the downstream end of the nozzle body 18 is, for example, 100 to 300 mm, and the compressed air 15 can be sufficiently accelerated.

圧縮空気15は、スロート部11で音速となるように、圧縮気体供給機構で圧力が調整された後、圧縮気体供給部16に送られている。なお、圧縮空気15は、圧縮気体供給部16から亜音速(例えば、50m/sec程度)でコンバージェント部12に供給されている。圧縮空気15は、コンバージェント部12で加速され、スロート部11で音速(330m/sec程度)となり、ダイバージェント部13で更に加速され、例えば、400〜500m/sec程度(例えば、500m/sec)の超音速となっている。なお、圧縮空気15は、ダイバージェント部13で、加速されて超音速となると共に、図2に示すように、温度が、およそ−60〜−110℃程度(本実施の形態では、およそ−110℃)となる。 The compressed air 15 is sent to the compressed gas supply unit 16 after the pressure is adjusted by the compressed gas supply mechanism so that the throat unit 11 has a sound velocity. The compressed air 15 is supplied from the compressed gas supply unit 16 to the convergent unit 12 at a subsonic speed (for example, about 50 m / sec). The compressed air 15 is accelerated by the convergent portion 12, becomes a sound velocity (about 330 m / sec) by the throat portion 11, and further accelerated by the divergent portion 13, for example, about 400 to 500 m / sec (for example, 500 m / sec). It has become supersonic speed. The compressed air 15 is accelerated at the divergent portion 13 to become supersonic and has a temperature of about −60 to −110 ° C. (in the present embodiment, about −110 as shown in FIG. 2). ° C).

また、圧縮気体供給機構には、図示しない温度及び湿度調整部が設けられ、圧縮気体供給部16に供給される圧縮空気15の温度を、例えば0〜40℃(例えば、常温)に、湿度を例えば、露点温度換算で−20〜0℃(例えば、−10℃)に調整している。また、スロート部11の上流側には整流板19aが設けられ、圧縮空気15の流れが揃えられて圧力損失が少なくなり、圧縮空気15がスムーズにスロート部11に供給される。 Further, the compressed gas supply mechanism is provided with a temperature and humidity adjusting unit (not shown), and the temperature of the compressed air 15 supplied to the compressed gas supply unit 16 is set to 0 to 40 ° C. (for example, normal temperature), for example. For example, it is adjusted to −20 to 0 ° C. (for example, −10 ° C.) in terms of dew point temperature. Further, a rectifying plate 19a is provided on the upstream side of the throat portion 11, the flow of the compressed air 15 is aligned, the pressure loss is reduced, and the compressed air 15 is smoothly supplied to the throat portion 11.

また、洗浄ノズル10は、管状のノズル本体18内に供給される圧縮空気15の流れと同方向に洗浄液(例えば、純水)20を吐出する洗浄液供給管21を備えている。ここで、洗浄液20の温度を、−5〜30℃(例えば、25℃)に調整している。洗浄液供給管21の吐出口22は、スロート部11の近傍かつノズル本体18の内側壁面23から離れた位置、例えば、スロート部11の中心から上流方向及び下流方向にぞれぞれスロート部11の直径の5倍(例えば、1倍)の長さの範囲以内である吐出口配置位置(図中、2点鎖線で示す)24内に配置されている。 The cleaning nozzle 10 includes a cleaning liquid supply pipe 21 that discharges a cleaning liquid (for example, pure water) 20 in the same direction as the flow of the compressed air 15 supplied into the tubular nozzle body 18. Here, the temperature of the cleaning liquid 20 is adjusted to −5 to 30 ° C. (for example, 25 ° C.). The discharge port 22 of the cleaning liquid supply pipe 21 is located near the throat portion 11 and away from the inner wall surface 23 of the nozzle body 18, for example, the throat portion 11 from the center of the throat portion 11 in the upstream direction and the downstream direction, respectively. It is arranged in a discharge port arrangement position (shown by a two-dot chain line in the figure) 24 that is within a range of a length of 5 times the diameter (for example, 1 time).

ここで、洗浄ノズル10は、圧縮気体供給部16に供給された圧縮空気15をコンバージェント部12、スロート部11、及びダイバージェント部13を介して、超音速かつ低温の流れとし、圧縮空気15中に吐出した洗浄液20を、圧縮空気15の高速の流れによって液滴30とし、更に液滴30が冷却されて微細な氷粒子31及び過冷却液滴(0℃以下に冷却された液滴)32のいずれか一方又は双方からなる洗浄材33を生成させ、この洗浄材33をノズル本体18の噴射口19から洗浄対象物(例えば、シリコンウエハ等)35に噴射して衝突させ、洗浄対象物35表面の汚染物質36を除去する図示しない洗浄装置に組み込まれて使用される。 Here, the cleaning nozzle 10 converts the compressed air 15 supplied to the compressed gas supply unit 16 into a supersonic and low-temperature flow via the convergent unit 12, the throat unit 11, and the divergent unit 13. The cleaning liquid 20 discharged therein is changed into droplets 30 by the high-speed flow of the compressed air 15, and the droplets 30 are further cooled to form fine ice particles 31 and supercooled droplets (droplets cooled to 0 ° C. or lower). A cleaning material 33 made of either one or both of the cleaning materials 33 is generated, and this cleaning material 33 is jetted from an injection port 19 of the nozzle body 18 onto a cleaning object (for example, a silicon wafer) 35 to collide with the cleaning object 33. 35 is used by being incorporated in a cleaning device (not shown) for removing the contaminant 36 on the surface.

次に、洗浄ノズル10を使用した洗浄方法について説明する。
(第1工程)
まず、圧縮気体供給機構から所定の圧力(5気圧)、温度(常温)、及び湿度(露点温度換算−10℃)の圧縮空気15をノズル本体18の圧縮気体供給部16に供給する。圧縮空気15は、圧縮空気15の流れ方向に縮径するコンバージェント部12によって加速されて音速(およそ330m/sec)となる。なお、圧縮空気15は、スロート部11を通過した後、拡径するダイバージェント部13で圧力が低下して超音速(およそ500m/sec)まで加速されると共に、およそ−110℃に冷却される。
Next, a cleaning method using the cleaning nozzle 10 will be described.
(First step)
First, compressed air 15 having a predetermined pressure (5 atm), temperature (normal temperature), and humidity (dew point temperature conversion −10 ° C.) is supplied from the compressed gas supply mechanism to the compressed gas supply unit 16 of the nozzle body 18. The compressed air 15 is accelerated by the convergent portion 12 whose diameter is reduced in the flow direction of the compressed air 15 to become a sound velocity (approximately 330 m / sec). The compressed air 15 passes through the throat portion 11 and is then accelerated to a supersonic speed (approximately 500 m / sec) by the divergent portion 13 that expands in diameter, and is cooled to approximately −110 ° C. .

(第2工程)
次に、吐出口配置位置24内に配置された洗浄液供給管21の吐出口22から圧縮空気15の流れと同方向に洗浄液20を吐出する。
(第3工程)
ダイバージェント部13において、圧縮空気15の高速の流れにより、洗浄液20が圧縮空気15と衝突して、例えば、数μm程度、例えば、平均粒径が7μm程度に微粒化された液滴30が生成する。液滴30は、ダイバージェント部13内の冷却された−110℃の圧縮空気15によって急激に冷却されて微細な氷粒子31及び過冷却液滴32のいずれか一方又は双方からなる洗浄材33が生成する。
(Second step)
Next, the cleaning liquid 20 is discharged in the same direction as the flow of the compressed air 15 from the discharge port 22 of the cleaning liquid supply pipe 21 disposed in the discharge port arrangement position 24.
(Third step)
In the divergent section 13, the cleaning liquid 20 collides with the compressed air 15 due to the high-speed flow of the compressed air 15, thereby generating droplets 30 that are atomized to, for example, about several μm, for example, an average particle diameter of about 7 μm. To do. The droplets 30 are rapidly cooled by the cooled −110 ° C. compressed air 15 in the divergent section 13, and the cleaning material 33 including one or both of the fine ice particles 31 and the supercooled droplets 32 is formed. Generate.

(第4工程)
超音速の洗浄材33をノズル本体18の噴射口19から噴射して、洗浄対象物35に衝突させて洗浄対象物35上の汚染物質36を剥離させる。洗浄対象物35に衝突した洗浄材33は、氷粒子31が融解して水となり、過冷却液滴32が瞬時に過冷却解除されて氷となってシャーベット状となる。シャーベット状の洗浄材33は、優れた洗浄効果を有する。なお、平均粒径が7μmの液滴30から形成される氷粒子31では、洗浄対象物35が損傷しない。
(第5工程)
更に、シャーベット状の洗浄材33は、洗浄対象物35表面を滑走し、剥離した汚染物質36を除去する。
(4th process)
The supersonic cleaning material 33 is sprayed from the injection port 19 of the nozzle body 18 and collides with the cleaning object 35 to separate the contaminant 36 on the cleaning object 35. The cleaning material 33 that has collided with the object to be cleaned 35 is melted into ice particles 31 to become water, and the supercooled droplets 32 are instantly released from supercooling to become ice and become a sherbet. The sherbet-shaped cleaning material 33 has an excellent cleaning effect. Note that the object to be cleaned 35 is not damaged by the ice particles 31 formed from the droplets 30 having an average particle diameter of 7 μm.
(5th process)
Further, the sherbet-like cleaning material 33 slides on the surface of the cleaning object 35 and removes the polluted contaminants 36.

図3を参照して、本発明の第2の実施の形態に係る洗浄ノズル40について説明する。なお、洗浄ノズル10と同一の構成要素については同一の番号を付してその詳しい説明を省略する。
洗浄ノズル40は、ノズル本体18内に供給される圧縮空気15の流れと同方向に洗浄液20を吐出する洗浄液供給管41中に、洗浄液20と混合される別の圧縮気体Bの一例である圧縮空気42を供給する気体供給管43が配設されている点が、洗浄ノズル10と異なっている。これによって、液滴30を所定の粒度に微細化することができ、より細かい液滴30とすることで、冷却速度を高め、過冷却液滴32よりも氷粒子31の割合の多い洗浄材33を生成でき、洗浄能力を向上させることができる。
With reference to FIG. 3, the washing nozzle 40 which concerns on the 2nd Embodiment of this invention is demonstrated. The same components as those of the cleaning nozzle 10 are denoted by the same reference numerals, and detailed description thereof is omitted.
The cleaning nozzle 40 is a compressed gas that is an example of another compressed gas B mixed with the cleaning liquid 20 in the cleaning liquid supply pipe 41 that discharges the cleaning liquid 20 in the same direction as the flow of the compressed air 15 supplied into the nozzle body 18. The point from which the gas supply pipe | tube 43 which supplies the air 42 is arrange | positioned differs from the washing nozzle 10. FIG. Accordingly, the droplets 30 can be refined to a predetermined particle size, and by making the droplets 30 finer, the cooling rate is increased, and the cleaning material 33 having a larger proportion of ice particles 31 than the supercooled droplets 32. Can be generated, and the cleaning ability can be improved.

次に、本発明の作用効果を確認するために行った実施例について説明する。ここで、図4は洗浄ノズルでの除去可能な汚染物質の平均粒径を示すグラフである。
スロート部を5mmとして特性曲線法で設計したラバールノズルと、ラバールノズルの上流側に設けられた圧縮気体供給部と、ラバールノズルの下流側に設けられ徐々に拡径する加速冷却部とが設けられたノズル本体内に、圧縮気体の流れと同方向に洗浄液を吐出する洗浄液供給管を備えた洗浄ノズルを用いて、洗浄対象物表面の汚染物質を除去した。
Next, examples carried out for confirming the effects of the present invention will be described. Here, FIG. 4 is a graph showing the average particle size of contaminants that can be removed by the cleaning nozzle.
Nozzle body provided with a Laval nozzle designed by the characteristic curve method with a throat portion of 5 mm, a compressed gas supply unit provided on the upstream side of the Laval nozzle, and an acceleration cooling unit provided on the downstream side of the Laval nozzle and gradually expanding in diameter Inside, a contaminant on the surface of the object to be cleaned was removed using a cleaning nozzle provided with a cleaning liquid supply pipe for discharging the cleaning liquid in the same direction as the flow of the compressed gas.

また、比較例として、特許文献3記載の超音速ノズルを使用して同様に洗浄対象物を洗浄した。図4に示すように、洗浄材の噴射速度が同じ場合には、実施例の洗浄ノズルの使用によって、より微細な汚染物質を除去可能なことが解った。これは、本発明の洗浄ノズルによって製造される洗浄材が、微細であると共に、洗浄ノズルの噴射口から洗浄対象物表面に向けて超音速かつ均一に噴出されているためであると解される。 As a comparative example, the object to be cleaned was similarly cleaned using a supersonic nozzle described in Patent Document 3. As shown in FIG. 4, it was found that when the cleaning material injection speed is the same, finer contaminants can be removed by using the cleaning nozzle of the example. It is understood that this is because the cleaning material produced by the cleaning nozzle of the present invention is fine and is ejected from the cleaning nozzle injection port toward the surface of the object to be cleaned in a supersonic and uniform manner. .

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の洗浄ノズル及び洗浄方法を構成する場合も本発明の権利範囲に含まれる。
例えば、前記実施の形態の洗浄ノズル及び洗浄方法において、圧縮気体A及び別の圧縮気体Bとして圧縮空気を、洗浄液として純水をそれぞれ使用したが、洗浄対象物を劣化させず、汚染物質を除去できるもの、例えば、圧縮気体として窒素等を、洗浄液としてアルコール等を使用してもよい。また、ノズル本体をテフロン(登録商標)樹脂で形成したが、他の合成樹脂、又は金属等で形成してもよい。更に、前記実施の形態の洗浄ノズルは、ノズル本体がラバールノズルを有しているが、ノズル本体がスロート部の下流側にダイバージェント部を備えていればよく、スロート部の上流側にコンバージェント部を設けなくてもよい。
The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. The case where the cleaning nozzle and the cleaning method of the present invention are configured by combining the above is also included in the scope of the right of the present invention.
For example, in the cleaning nozzle and the cleaning method of the above-described embodiment, compressed air is used as the compressed gas A and another compressed gas B, and pure water is used as the cleaning liquid, but the contaminants are removed without deteriorating the object to be cleaned. For example, nitrogen may be used as the compressed gas, and alcohol may be used as the cleaning liquid. Moreover, although the nozzle body is formed of Teflon (registered trademark) resin, it may be formed of other synthetic resin or metal. Further, in the cleaning nozzle of the above-described embodiment, the nozzle body has a Laval nozzle, but the nozzle body only needs to have a divergent portion on the downstream side of the throat portion, and the convergent portion on the upstream side of the throat portion. May not be provided.

本発明の第1の実施の形態に係る洗浄ノズルの説明図である。It is explanatory drawing of the washing nozzle which concerns on the 1st Embodiment of this invention. 同洗浄ノズル内の圧縮気体の速度と温度の関係を示すグラフである。It is a graph which shows the relationship between the speed of compressed gas in the washing nozzle, and temperature. 本発明の第2の実施の形態に係る洗浄ノズルの説明図である。It is explanatory drawing of the washing nozzle which concerns on the 2nd Embodiment of this invention. 洗浄ノズルでの除去可能な汚染物質の平均粒径を示すグラフである。It is a graph which shows the average particle diameter of the contaminant which can be removed with a washing nozzle.

符号の説明Explanation of symbols

10:洗浄ノズル、11:スロート部、12:コンバージェント部、13:ダイバージェント部、14:ラバールノズル、15:圧縮空気、16:圧縮気体供給部、17:加速冷却部、18:ノズル本体、19:噴射口、19a:整流板、20:洗浄液、21:洗浄液供給管、22:吐出口、23:内側壁面、24:吐出口配置位置、30:液滴、31:氷粒子、32:過冷却液滴、33:洗浄材、35:洗浄対象物、36:汚染物質、40:洗浄ノズル、41:洗浄液供給管、42:圧縮空気、43:気体供給管 10: Cleaning nozzle, 11: Throat section, 12: Convergent section, 13: Divergent section, 14: Laval nozzle, 15: Compressed air, 16: Compressed gas supply section, 17: Acceleration cooling section, 18: Nozzle body, 19 : Injection port, 19a: current plate, 20: cleaning liquid, 21: cleaning liquid supply pipe, 22: discharge port, 23: inner wall surface, 24: discharge port arrangement position, 30: droplet, 31: ice particles, 32: supercooling Droplet, 33: Cleaning material, 35: Object to be cleaned, 36: Contaminant, 40: Cleaning nozzle, 41: Cleaning liquid supply pipe, 42: Compressed air, 43: Gas supply pipe

Claims (8)

断面円形のスロート部の下流側に流れ方向に拡径するダイバージェント部を備えたノズル本体と、該ノズル本体に供給される圧縮気体の流れと同方向に洗浄液を吐出する洗浄液供給管とを有する洗浄ノズルであって、
前記洗浄液供給管の吐出口が、前記ノズル本体の内側壁面から離れた前記スロート部の近傍に配置され、しかも、前記圧縮気体が前記スロート部で音速となっていることを特徴とする洗浄ノズル。
A nozzle body having a divergent portion that expands in the flow direction on the downstream side of the throat portion having a circular cross section, and a cleaning liquid supply pipe that discharges the cleaning liquid in the same direction as the flow of the compressed gas supplied to the nozzle body A cleaning nozzle,
A cleaning nozzle, wherein a discharge port of the cleaning liquid supply pipe is disposed in the vicinity of the throat portion separated from an inner wall surface of the nozzle body, and the compressed gas has a sound velocity at the throat portion.
請求項1記載の洗浄ノズルにおいて、前記ノズル本体は、前記スロート部の上流側が流れ方向に縮径してコンバージェント部となってラバールノズルが形成されていることを特徴とする洗浄ノズル。 The cleaning nozzle according to claim 1, wherein the nozzle body has a Laval nozzle formed as a convergent portion by reducing the diameter of the upstream side of the throat portion in the flow direction. 請求項1及び2のいずれか1項に記載の洗浄ノズルにおいて、前記洗浄液供給管中には、前記洗浄液と混合される別の圧縮気体を供給する気体供給管が配設されていることを特徴とする洗浄ノズル。 3. The cleaning nozzle according to claim 1, wherein a gas supply pipe for supplying another compressed gas to be mixed with the cleaning liquid is disposed in the cleaning liquid supply pipe. And cleaning nozzle. 請求項1〜3のいずれか1項に記載の洗浄ノズルにおいて、前記洗浄液供給管の前記吐出口は、前記スロート部中心から上流方向及び下流方向にぞれぞれ前記スロート部の直径の5倍の長さの範囲以内に配置されていることを特徴とする洗浄ノズル。 The cleaning nozzle according to any one of claims 1 to 3, wherein the discharge port of the cleaning liquid supply pipe is five times the diameter of the throat portion in the upstream direction and the downstream direction from the center of the throat portion, respectively. The cleaning nozzle is arranged within the range of the length of. 請求項1〜4のいずれか1項に記載の洗浄ノズルにおいて、前記ノズル本体は、前記ダイバージェント部の下流側に流れ方向に徐々に拡径する加速冷却部を有していることを特徴とする洗浄ノズル。 The cleaning nozzle according to any one of claims 1 to 4, wherein the nozzle body has an accelerated cooling part that gradually expands in a flow direction on a downstream side of the divergent part. Cleaning nozzle to do. 請求項1〜5のいずれか1項に記載の洗浄ノズルにおいて、前記圧縮気体は温度及び湿度が調整され、更に前記洗浄液は温度が調整されていることを特徴とする洗浄ノズル。 The cleaning nozzle according to any one of claims 1 to 5, wherein the temperature and humidity of the compressed gas are adjusted, and the temperature of the cleaning liquid is adjusted. 請求項1〜6のいずれか1項に記載の洗浄ノズルにおいて、前記スロート部の上流側には、前記圧縮気体の流れを揃える整流板が設けられていることを特徴とする洗浄ノズル。 The cleaning nozzle according to any one of claims 1 to 6, wherein a rectifying plate that aligns the flow of the compressed gas is provided upstream of the throat portion. 断面円形のスロート部の下流側に、流れ方向に拡径するダイバージェント部を備えたノズル本体の上流側から圧縮気体を供給して該スロート部で該圧縮気体を音速とする第1工程と、
前記ノズル本体の内側壁面から離れた前記スロート部の近傍に配置される洗浄液供給管の吐出口から前記ノズル本体に供給される圧縮気体の流れと同方向に洗浄液を吐出する第2工程と、
前記ダイバージェント部での圧縮気体の流れにより前記洗浄液が微粒化されて生成した液滴が、急激に冷却されて微細な氷粒子及び過冷却液滴のいずれか一方又は双方からなる洗浄材が生成する第3工程と、
超音速の前記洗浄材を前記ノズル本体の噴射口から噴射して、洗浄対象物に衝突させて該洗浄対象物上の汚染物質を剥離させる第4工程と、
前記洗浄材を前記洗浄対象物表面を滑走させて、前記剥離した汚染物質を除去する第5工程とを有することを特徴とする洗浄方法。
A first step of supplying a compressed gas from an upstream side of a nozzle body provided with a divergent portion that expands in the flow direction on the downstream side of the throat portion having a circular cross section, and setting the compressed gas to a sound velocity at the throat portion;
A second step of discharging the cleaning liquid in the same direction as the flow of the compressed gas supplied to the nozzle body from the discharge port of the cleaning liquid supply pipe disposed in the vicinity of the throat portion away from the inner wall surface of the nozzle body;
The droplets generated by atomizing the cleaning liquid by the compressed gas flow in the divergent section are rapidly cooled to generate a cleaning material consisting of one or both of fine ice particles and supercooled droplets. A third step to perform,
A fourth step of injecting the supersonic cleaning material from the nozzle main body and causing the cleaning object to collide with the object to be cleaned to separate the contaminants on the object to be cleaned;
And a fifth step of sliding the cleaning material on the surface of the object to be cleaned to remove the peeled contaminants.
JP2005256661A 2005-09-05 2005-09-05 Cleaning nozzle and cleaning method using the same Active JP4120991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256661A JP4120991B2 (en) 2005-09-05 2005-09-05 Cleaning nozzle and cleaning method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256661A JP4120991B2 (en) 2005-09-05 2005-09-05 Cleaning nozzle and cleaning method using the same

Publications (2)

Publication Number Publication Date
JP2007073615A true JP2007073615A (en) 2007-03-22
JP4120991B2 JP4120991B2 (en) 2008-07-16

Family

ID=37934835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256661A Active JP4120991B2 (en) 2005-09-05 2005-09-05 Cleaning nozzle and cleaning method using the same

Country Status (1)

Country Link
JP (1) JP4120991B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270627A (en) * 2007-04-24 2008-11-06 Rix Corp Dicing apparatus and dicing method
WO2010110546A2 (en) * 2009-03-24 2010-09-30 주식회사 지디머신즈 Slit type supersonic nozzle and surface treatment device having the same
JP2011523893A (en) * 2008-06-04 2011-08-25 パスート ダイナミックス ピーエルシー Improved mist generating apparatus and method
CN102886323A (en) * 2011-07-18 2013-01-23 宝山钢铁股份有限公司 Narrow slit nozzle
JP2014069100A (en) * 2012-09-27 2014-04-21 Furusho Electric Industry Co Ltd Washing apparatus with rapid-cooling nozzle
JP2014527912A (en) * 2011-09-29 2014-10-23 アルファ・ラバル・コーポレイト・エービー Device comprising a centrifuge and method for purification of gas
KR20150034452A (en) * 2013-09-26 2015-04-03 주식회사 선익시스템 A Linear Type Evaporator with a Mixing Zone
KR20150034453A (en) * 2013-09-26 2015-04-03 주식회사 선익시스템 A Linear Type Evaporator with a Slit Nozzle
KR20150034455A (en) * 2013-09-26 2015-04-03 주식회사 선익시스템 A Linear Type Evaporator for Large Area Substrates
CN105234116A (en) * 2015-11-03 2016-01-13 吉首大学 Cyclone water direct injection type washing device
JP2016505371A (en) * 2012-12-18 2016-02-25 ポステック アカデミー‐インダストリー ファウンデーション Liquid film removal method using high-speed particle beam
JP2018001789A (en) * 2016-06-27 2018-01-11 株式会社ダイフク Car washing machine and car washing method
JP2018001043A (en) * 2016-06-27 2018-01-11 株式会社ダイフク Ice particle injection device and ice particle injection method
KR101853689B1 (en) * 2016-05-23 2018-05-03 주식회사 선익시스템 Deposited material injection device for deposition device
JP6353599B1 (en) * 2017-12-27 2018-07-04 リックス株式会社 Two-fluid nozzle
JP2019084523A (en) * 2017-11-10 2019-06-06 福岡県 Jet nozzle and jet method
WO2021251123A1 (en) * 2020-06-12 2021-12-16 エムケー精工株式会社 Nozzle and cleaning apparatus
JP2022544375A (en) * 2019-08-13 2022-10-18 アプライド マテリアルズ インコーポレイテッド Apparatus and method for CMP temperature control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692167B2 (en) 2012-06-05 2015-04-01 株式会社デンソー Method and apparatus for cleaning and removing contaminants from workpieces
KR102649715B1 (en) 2020-10-30 2024-03-21 세메스 주식회사 Surface treatment apparatus and surface treatment method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270627A (en) * 2007-04-24 2008-11-06 Rix Corp Dicing apparatus and dicing method
JP2011523893A (en) * 2008-06-04 2011-08-25 パスート ダイナミックス ピーエルシー Improved mist generating apparatus and method
US8991727B2 (en) 2008-06-04 2015-03-31 Tyco Fire & Security Gmbh Mist generating apparatus and method
WO2010110546A2 (en) * 2009-03-24 2010-09-30 주식회사 지디머신즈 Slit type supersonic nozzle and surface treatment device having the same
WO2010110546A3 (en) * 2009-03-24 2010-11-25 주식회사 지디머신즈 Slit type supersonic nozzle and surface treatment device having the same
CN102886323A (en) * 2011-07-18 2013-01-23 宝山钢铁股份有限公司 Narrow slit nozzle
JP2014527912A (en) * 2011-09-29 2014-10-23 アルファ・ラバル・コーポレイト・エービー Device comprising a centrifuge and method for purification of gas
US9314729B2 (en) 2011-09-29 2016-04-19 Alfa Laval Corporate Ab Device comprising a centrifugal separator and a method for cleaning of a gas
JP2014069100A (en) * 2012-09-27 2014-04-21 Furusho Electric Industry Co Ltd Washing apparatus with rapid-cooling nozzle
JP2016505371A (en) * 2012-12-18 2016-02-25 ポステック アカデミー‐インダストリー ファウンデーション Liquid film removal method using high-speed particle beam
KR102201598B1 (en) 2013-09-26 2021-01-12 (주)선익시스템 A Linear Type Evaporator with a Mixing Zone
KR20150034453A (en) * 2013-09-26 2015-04-03 주식회사 선익시스템 A Linear Type Evaporator with a Slit Nozzle
KR20150034452A (en) * 2013-09-26 2015-04-03 주식회사 선익시스템 A Linear Type Evaporator with a Mixing Zone
KR20150034455A (en) * 2013-09-26 2015-04-03 주식회사 선익시스템 A Linear Type Evaporator for Large Area Substrates
KR102235339B1 (en) 2013-09-26 2021-04-02 (주)선익시스템 A Linear Type Evaporator for Large Area Substrates
KR102235367B1 (en) 2013-09-26 2021-04-02 (주)선익시스템 A Linear Type Evaporator with a Slit Nozzle
CN105234116A (en) * 2015-11-03 2016-01-13 吉首大学 Cyclone water direct injection type washing device
KR101853689B1 (en) * 2016-05-23 2018-05-03 주식회사 선익시스템 Deposited material injection device for deposition device
JP2018001789A (en) * 2016-06-27 2018-01-11 株式会社ダイフク Car washing machine and car washing method
JP2018001043A (en) * 2016-06-27 2018-01-11 株式会社ダイフク Ice particle injection device and ice particle injection method
JP2019084523A (en) * 2017-11-10 2019-06-06 福岡県 Jet nozzle and jet method
JP6990848B2 (en) 2017-11-10 2022-01-12 福岡県 Injection nozzle and injection method
JP2019115901A (en) * 2017-12-27 2019-07-18 リックス株式会社 Two-fluid nozzle
JP6353599B1 (en) * 2017-12-27 2018-07-04 リックス株式会社 Two-fluid nozzle
JP2022544375A (en) * 2019-08-13 2022-10-18 アプライド マテリアルズ インコーポレイテッド Apparatus and method for CMP temperature control
WO2021251123A1 (en) * 2020-06-12 2021-12-16 エムケー精工株式会社 Nozzle and cleaning apparatus

Also Published As

Publication number Publication date
JP4120991B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4120991B2 (en) Cleaning nozzle and cleaning method using the same
KR100227018B1 (en) Cleaning apparatus and method for semiconductor process
US5390450A (en) Supersonic exhaust nozzle having reduced noise levels for CO2 cleaning system
US5616067A (en) CO2 nozzle and method for cleaning pressure-sensitive surfaces
US7484670B2 (en) Blasting method and apparatus
KR101275515B1 (en) High velocity low pressure emitter
KR100562727B1 (en) Mist spray nozzle of internal mixed air
JP4151796B1 (en) Deburring and cleaning apparatus and deburring and cleaning method
JP5650896B2 (en) Substrate processing apparatus and substrate processing method
US6578369B2 (en) Nozzle design for generating fluid streams useful in the manufacture of microelectronic devices
WO2014199705A1 (en) Device for continuous generation of single-component cryogenic fine solid particles, and method for continuous generation of single component cryogenic fine solid particles
KR20030040014A (en) Two-fluid cleaning jet nozzle, cleaning equipment and method of fabricating semiconductor device employing the same
JP2006187707A (en) Two-fluid nozzle for cleaning and cleaning method and apparatus
JP2011131168A (en) Spray granulation apparatus and spray granulation method
JP2004351267A (en) Method and apparatus for producing micro mist
US20100279587A1 (en) Apparatus and method for particle radiation by frozen gas particles
JP6990848B2 (en) Injection nozzle and injection method
JPH11297653A (en) Surface cleaning method and apparatus
CN115283369A (en) Carbon dioxide state control system and method
US20140367493A1 (en) Device for spraying dry ice, particularly frozen carbon dioxide, and nozzle for said device
US20220168762A1 (en) Device for generating a co2 snow jet
JPH03296475A (en) Cleaning apparatus
JP2006272210A (en) Atomization washing device
US20240157381A1 (en) Supersonic nozzle for decontamination and/or disinfection
JP2008126584A (en) Ink jet apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071029

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4120991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250