JP2006187707A - Two-fluid nozzle for cleaning and cleaning method and apparatus - Google Patents

Two-fluid nozzle for cleaning and cleaning method and apparatus Download PDF

Info

Publication number
JP2006187707A
JP2006187707A JP2005000552A JP2005000552A JP2006187707A JP 2006187707 A JP2006187707 A JP 2006187707A JP 2005000552 A JP2005000552 A JP 2005000552A JP 2005000552 A JP2005000552 A JP 2005000552A JP 2006187707 A JP2006187707 A JP 2006187707A
Authority
JP
Japan
Prior art keywords
liquid
cleaning
gas
fluid nozzle
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005000552A
Other languages
Japanese (ja)
Inventor
Toyofusa Yoshimura
豊房 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Equipment and Engineering Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Nikka Equipment and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Nikka Equipment and Engineering Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005000552A priority Critical patent/JP2006187707A/en
Publication of JP2006187707A publication Critical patent/JP2006187707A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-fluid nozzle for cleaning which enables an attempt of reducing the amount of a high-pressure gas used while retaining advantages of high cleaning effect and efficiency and very little damage on articles. <P>SOLUTION: The two-fluid nozzle spraying a liquid mist flow from a spraying outlet to impact the flow on an article to be cleaned and has a gas-liquid mixing section mixing a high-pressure gas with a high-pressure liquid to form liquid mist, a gas-introducing section introducing a high-pressure gas into the gas-liquid mixing section, a liquid-introducing section introducing a high-pressure liquid into the gas-liquid mixing section and an acceleration tube section having a passage from the gas-liquid mixing section to the spraying outlet within the tube section and imparting a momentum to the liquid mist within the passage to form a liquid mist flow. A spiral protrusion extending spirally in the longitudinal direction of the passage is formed on the inside wall of the passage within the acceleration tube. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は洗浄用2流体ノズルに関するものであり、さらに詳しくは半導体用ウエハや液晶ディスプレイ用ガラス基板、プラズマディスプレイ用ガラス基板などの各種電子部品を製造する過程で電子部品に付着した異物粒子を除去するために用いられる洗浄用2流体ノズルに関する。また、本発明は、その洗浄用2流体ノズルを用いた洗浄方法及び洗浄装置に関する。   The present invention relates to a two-fluid nozzle for cleaning, and more specifically, removes foreign particles adhering to electronic components in the process of manufacturing various electronic components such as semiconductor wafers, glass substrates for liquid crystal displays, and glass substrates for plasma displays. The present invention relates to a two-fluid nozzle for cleaning used for cleaning. The present invention also relates to a cleaning method and a cleaning apparatus using the two-fluid nozzle for cleaning.

一般に電子部品を製造する過程では製造過程で発生した異物粒子が製品に付着して、製造歩留りが低下する場合がある。かかる問題を回避するための方法は、製造工程の要所で製品に付着した異物粒子を除去するための洗浄工程を付加するのが常識となっている。一般に製品に付着した異物粒子は製品表面と異物粒子間のポテンシャルエネルギーの存在で強固に製品表面に固定された状態にあるため、これを除去するための洗浄工程では異物粒子にある種の外力を与えて製品表面から引き剥がす必要が生じる。かかる外力の付与には化学的もしくは機械的な方法が用いられるのが一般的であり、機械的な方法としては高圧ジェットのスプレーによる水洗や、超音波の振動を利用した超音波洗浄や、ブラシを用いたスクラブ洗浄などが広範に利用されている。近年、こうした各種の洗浄方法に加えて、高圧の液体と気体を混合した液体ミストによる2流体洗浄が試みられるようになってきている(例えば、特許文献1及び特許文献2を参照。)。   In general, in the process of manufacturing an electronic component, foreign particles generated in the manufacturing process may adhere to the product, resulting in a decrease in manufacturing yield. As a method for avoiding such a problem, it is common knowledge to add a cleaning process for removing foreign particles adhering to the product at the main points of the manufacturing process. In general, foreign particles adhering to a product are firmly fixed on the product surface due to the presence of potential energy between the product surface and the foreign particles. Therefore, a certain external force is applied to the foreign particles in the cleaning process for removing this. Need to be peeled off from the product surface. In general, a chemical or mechanical method is used to apply such an external force. As a mechanical method, water washing using a high-pressure jet spray, ultrasonic cleaning using ultrasonic vibration, or brushing is used. Scrub cleaning using a wide range is widely used. In recent years, in addition to these various cleaning methods, two-fluid cleaning using a liquid mist in which high-pressure liquid and gas are mixed has been attempted (see, for example, Patent Document 1 and Patent Document 2).

高圧ジェットのスプレーによる洗浄方法は加圧ポンプで10乃至20MPa程度まで純水を加圧し、高圧ノズルより噴射する。洗浄効果は優れているが問題点も多く、ひとつは加圧ポンプの負荷が大きいために加圧ポンプに使用される部品の劣化が進行しやすく、メンテナンスのための多額のランニングコストが生じることである。また、高圧ポンプ装置自体も大型化し設置スペースがかなり必要となることと、もうひとつの問題点はノズル噴射時に1kVを超える静電気が発生するために純水が帯電することである。このため、これの対策として純水の電気伝導度を増大させるために炭酸ガス発生装置が必要となり、システム全体の装置価格がかなり高額となる。また、高圧噴射と静電気のためにノズル先端開口部付近の磨耗がひどく、ノズル交換が頻繁になるために、ノズル費用が高額になるという問題点も有する。   The cleaning method by spraying with a high pressure jet pressurizes pure water to about 10 to 20 MPa with a pressure pump and injects it from a high pressure nozzle. Although the cleaning effect is excellent, there are many problems. One is that the load on the pressurization pump is so large that the parts used in the pressurization pump are likely to deteriorate, resulting in a large running cost for maintenance. is there. Further, the high-pressure pump device itself is increased in size and requires a large installation space, and another problem is that pure water is charged because static electricity exceeding 1 kV is generated during nozzle injection. For this reason, as a countermeasure against this, a carbon dioxide generator is required to increase the electrical conductivity of pure water, and the price of the entire system is considerably high. Further, there is a problem that the nozzle cost is high because the nozzle tip is frequently worn due to high pressure injection and static electricity, and the nozzles are frequently replaced.

超音波洗浄は広範に用いられているが、洗浄効果や洗浄効率では不十分であり、製品に作用するダメージ等も大きい。近年、洗浄効率が重視され、枚葉式による連続生産方式が採用されてきているが、この過程では短時間処理が前提であり、短時間の超音波洗浄では充分な洗浄効果が得られていない。また、超音波により、微小気泡が発生するが、発生と同時に激しく振動し、この振動衝撃で製品ダメージが発生しやすいことが知られている。   Ultrasonic cleaning is widely used, but the cleaning effect and cleaning efficiency are insufficient, and damage to the product is large. In recent years, emphasis has been placed on cleaning efficiency, and a single-wafer type continuous production method has been adopted. However, this process is premised on short-time treatment, and a sufficient cleaning effect is not obtained by short-time ultrasonic cleaning. . In addition, it is known that micro bubbles are generated by ultrasonic waves, but vibrates vigorously at the same time as they are generated, and product damage is likely to occur due to this vibration shock.

ブラシを用いたスクラブ洗浄はブラシにより直接外力を異物に作用させるのでブラシが接触した部分の異物除去効果は大きいが、一方では1μm以下の小さい異物にはブラシが接触する確率が低く除去しにくい問題点がある。さらにはブラシの中に取り込まれた異物により製品にキズを発生させる可能性もあり、回路を有する製品には適用しにくいという問題点がある。さらには、ブラシは使用する過程で次第に磨耗していくのでブラシ高さの調整やブラシ自体の管理が必要となるために管理が複雑となる。   Scrub cleaning using a brush directly applies an external force to the foreign matter with the brush, so the effect of removing the foreign matter at the portion where the brush is in contact is great, but on the other hand, the probability of the brush coming into contact with small foreign matter of 1 μm or less is low and difficult to remove There is a point. Furthermore, there is a possibility that the product is scratched by the foreign matter taken in the brush, and there is a problem that it is difficult to apply to a product having a circuit. Furthermore, since the brush is gradually worn out in the process of use, it is necessary to adjust the brush height and manage the brush itself, which makes the management complicated.

2流体洗浄は洗浄効果、洗浄効率で優れており、メンテナンスも殆んど必要なく、製品ダメージも極めて少ないために、総合的に優れた洗浄方法として利用されるようになってきている。問題点としては高圧気体の使用量が多く、これにともない高圧気体のランニングコストが高額になることや高圧空気の場合は高圧空気を発生させるコンプレッサ等の付帯設備が高額になる点がある。
特開平6−104304号公報 特開平7−245282号公報
Two-fluid cleaning is excellent in cleaning effect and cleaning efficiency, requires almost no maintenance, and has very little product damage. Therefore, it has come to be used as a comprehensive cleaning method. The problem is that the amount of high-pressure gas used is large, and the running cost of the high-pressure gas increases accordingly, and in the case of high-pressure air, incidental equipment such as a compressor that generates high-pressure air is expensive.
JP-A-6-104304 JP 7-245282 A

2流体洗浄は洗浄効果、洗浄効率で優れており、メンテナンスも殆んど必要がなく、製品ダメージも極めて少ないために、総合的に優れた洗浄方法として利用されてきている。問題点は高圧気体の使用量が大きいために高圧気体のランニングコスト費用が高額になることであり、高圧空気の場合はこれを発生させるコンプレッサ等の付帯設備費用が他方法より高額になることである。本発明の目的は、洗浄効果、洗浄効率の優位点を維持し、製品ダメージが極めて少ないという優位点も維持した状態で高圧気体の使用量削減を図ることのできる2流体洗浄用ノズルを提供することにある。   Two-fluid cleaning is excellent in cleaning effect and cleaning efficiency, requires almost no maintenance, and has very little product damage. Therefore, it has been used as a comprehensive cleaning method. The problem is that the amount of high-pressure gas used is high, so the running cost of high-pressure gas is high. In the case of high-pressure air, the cost of incidental equipment such as compressors that generate this is higher than other methods. is there. An object of the present invention is to provide a two-fluid cleaning nozzle capable of reducing the amount of high-pressure gas used while maintaining the advantages of cleaning effect and cleaning efficiency and maintaining the advantage of extremely low product damage. There is.

本発明は、下記(1)〜(5)の洗浄用2流体ノズルに関する。
(1)噴出口から液体ミスト流を噴出して被洗浄物に衝突させる洗浄用2流体ノズルであって、
高圧の気体と高圧の液体とを混合して液体ミストを形成する気液混合部、
気液混合部に高圧の気体を導入する気体導入部、
気液混合部に高圧の液体を導入する液体導入部、及び、
気液混合部から噴出口に至る流通路を内部に有し、流通路内で液体ミストに運動量を付与して液体ミスト流を形成する加速管部
を有し、加速管部内の流通路内壁に、流通路の長さ方向にスパイラル状に延びるスパイラル突条が設けられていることを特徴とする洗浄用2流体ノズル。
The present invention relates to the following two fluid nozzles for cleaning (1) to (5).
(1) A two-fluid nozzle for cleaning that ejects a liquid mist flow from an outlet and collides with an object to be cleaned,
A gas-liquid mixing section that mixes high-pressure gas and high-pressure liquid to form liquid mist,
A gas introduction part for introducing a high-pressure gas into the gas-liquid mixing part,
A liquid introduction part for introducing a high-pressure liquid into the gas-liquid mixing part; and
It has a flow path from the gas-liquid mixing part to the jet outlet inside, it has an acceleration pipe part that gives momentum to the liquid mist in the flow path to form a liquid mist flow, and it is on the inner wall of the flow path in the acceleration pipe part A two-fluid nozzle for cleaning, wherein spiral ridges extending spirally in the length direction of the flow passage are provided.

(2)スパイラル突条の渦巻き角度が20度〜80度であることを特徴とする(1)に記載の洗浄用2流体ノズル。
(3)スパイラル突条の高さが0.05〜1mmであることを特徴とする(1)又は(2)に記載の洗浄用2流体ノズル。
(4)スパイラル突条が、テーパ角度が20〜80度のテーパ状断面を有することを特徴とする(1)〜(3)いずれかに記載の洗浄用2流体ノズル。
(5)スパイラル突条によって、流通路内壁の流通路の長さ方向の断面が凹凸を形成しており、凹部底部の幅及び凸部頂部の幅が、各々、0.1〜2mmであることを特徴とする(1)〜(4)いずれかに記載の洗浄用2流体ノズル。
(2) The two-fluid nozzle for cleaning according to (1), wherein the spiral angle of the spiral protrusion is 20 to 80 degrees.
(3) The two-fluid nozzle for cleaning according to (1) or (2), wherein the height of the spiral protrusion is 0.05 to 1 mm.
(4) The two-fluid nozzle for cleaning according to any one of (1) to (3), wherein the spiral protrusion has a tapered cross section having a taper angle of 20 to 80 degrees.
(5) The lengthwise cross section of the flow passage on the inner wall of the flow passage forms irregularities due to the spiral protrusions, and the width of the bottom of the concave portion and the width of the top of the convex portion are 0.1 to 2 mm, respectively. (2) The two-fluid nozzle for cleaning according to any one of (1) to (4).

また、本発明は、上記の本発明の洗浄用2流体ノズルを用いる下記(6)の洗浄方法に関する。
(6)上記(1)〜(5)いずれかに記載の洗浄用2流体ノズルを用いて被洗浄物を洗浄する方法であって、高圧の気体と高圧の液体とが洗浄用2流体ノズルの気液混合部に同時に導入されて液体ミストが形成されるように、高圧の気体を気体導入部に高圧の液体を液体導入部に同時に供給し、液体ミストが加速管部内の流通路を通過することによって形成される液体ミスト流を噴出口から噴出させて被洗浄物に衝突させる洗浄方法。
The present invention also relates to the following cleaning method (6) using the cleaning two-fluid nozzle of the present invention.
(6) A method for cleaning an object to be cleaned using the cleaning two-fluid nozzle according to any one of (1) to (5) above, wherein a high-pressure gas and a high-pressure liquid are used in the cleaning two-fluid nozzle. A high-pressure gas is supplied to the gas introduction unit and a high-pressure liquid is simultaneously supplied to the liquid introduction unit so that the liquid mist is formed simultaneously with the gas-liquid mixing unit, and the liquid mist passes through the flow passage in the acceleration pipe unit. A cleaning method in which a liquid mist flow formed by the above is ejected from an ejection port to collide with an object to be cleaned.

また、本発明は、上記の本発明の洗浄用2流体ノズルを有する下記(7)の洗浄装置に関する。
(7)上記(1)〜(5)いずれかに記載の洗浄用2流体ノズル、洗浄用2流体ノズルの気体導入部に高圧の気体を供給する気体供給手段、洗浄用2流体ノズルの液体導入部に高圧の液体を供給する液体供給手段、及び、洗浄用2流体ノズルと被洗浄物とを、洗浄用2流体ノズルから噴出される液体ミスト流が被洗浄物に衝突する位置に保持する保持手段を有する洗浄装置。
Moreover, this invention relates to the washing | cleaning apparatus of following (7) which has the 2 fluid nozzle for washing | cleaning of said invention.
(7) The cleaning two-fluid nozzle described in any one of (1) to (5) above, a gas supply means for supplying a high-pressure gas to the gas introduction part of the cleaning two-fluid nozzle, and the liquid introduction of the cleaning two-fluid nozzle Liquid supply means for supplying high-pressure liquid to the section, and holding the two-fluid cleaning nozzle and the object to be cleaned at a position where the liquid mist flow ejected from the two-fluid cleaning nozzle collides with the object to be cleaned Cleaning device having means.

本発明の洗浄用2流体ノズルでは高圧の気体及び高圧の液体を別々の経路から導入し、気液混合部で気体と液体を混合させることにより、微粒子状に分割し、該微粒子をさらに加速管部で加速して洗浄力を増大させるが、この際に加速管部の流通路内壁にスパイラル状に延びるスパイラル突条を形成したノズルは気体消費量が半分ほどでも従来ノズルの非スパイラルノズルと同程度の異物除去率を実現することができる。また、液体微粒子サイズも従来ノズルの40〜50μmから20〜30μmにさらに微細化すると同時に、速度も100m/sから200m/sと2倍ほどになる。   In the two-fluid nozzle for cleaning according to the present invention, a high-pressure gas and a high-pressure liquid are introduced from separate paths, and the gas and liquid are mixed in a gas-liquid mixing section to be divided into fine particles. In this case, the nozzle that has spiral ridges that extend spirally on the inner wall of the flow passage of the accelerating pipe has the same gas consumption as that of the conventional non-spiral nozzle. A degree of foreign matter removal can be achieved. Further, the liquid fine particle size is further refined from 40-50 μm to 20-30 μm of the conventional nozzle, and at the same time, the speed is doubled from 100 m / s to 200 m / s.

また、高圧気体の消費量を従来ノズルの半分ほどに低減しても従来と同程度の異物除去率95%以上が実現できるようになり、高圧気体のランニングコストを大幅に低減すると同時に、高圧空気の場合はコンプレッサ等の付帯設備費も大幅に低減することができる。2流体洗浄が洗浄力、洗浄効率で優れており、メンテナンスがほとんど不要で、被洗浄物に対してもダメージが極めて少なく、総合的に優れた洗浄方法であることは既に説明しているが、本発明により、唯一といってもよい問題点である高圧気体の消費量が多いという点が解消できたので、経済的にも大幅に改善されたといえる。   In addition, even if the consumption of high-pressure gas is reduced to about half that of the conventional nozzle, a foreign matter removal rate of 95% or more, which is the same as that of the conventional nozzle, can be realized. In this case, the cost of incidental equipment such as a compressor can be significantly reduced. We have already explained that 2-fluid cleaning is superior in terms of cleaning power and cleaning efficiency, requires almost no maintenance, has very little damage to objects to be cleaned, and is a comprehensive cleaning method. According to the present invention, since the high pressure gas consumption, which is the only problem that can be said to be the only problem, has been solved, it can be said that the present invention has been greatly improved economically.

図1に、本発明の洗浄用2流体ノズルを用いた本発明の洗浄方法の一態様の系統図を模式的に示す。洗浄チャンバ1の内部で洗浄用2流体ノズル2と被洗浄物3を相対運動させながら、洗浄用2流体ノズル2に高圧の気体を供給する配管4と高圧の液体を供給する配管5から高圧の気体及び高圧の液体を供給する。高圧の気体は、配管4から洗浄用2流体ノズル2の気体導入部に供給され、高圧の液体はそれと同時に配管5から洗浄用2流体ノズルの液体導入部に供給される。洗浄用2流体ノズル2の内部ではこれらを混合して液体を微細な液体ミストに分割し、さらに液体ミストに被洗浄物3への方向の運動量を与えて、洗浄用2流体ノズルの先端の噴出口から液体ミスト流6を噴出する。この噴出した液体ミスト流6を被洗浄物3に衝突させ、被洗浄物3に付着した異物を除去して洗浄するのである。この実施態様では、洗浄を適切に行うために、高圧の気体を供給する配管4と高圧の液体を供給する配管5の経路の一部に、それぞれバルブ7,7が設けられており、洗浄用2流体ノズル2と被洗浄物3の相対運動に同期したバルブ7,7の開閉を制御系8にて行う。さらに、洗浄チャンバ1内部に噴出した気体と液体を回収するためのドレイン9を付加することが望ましい。   FIG. 1 schematically shows a system diagram of one embodiment of the cleaning method of the present invention using the cleaning two-fluid nozzle of the present invention. While relatively moving the cleaning two-fluid nozzle 2 and the object to be cleaned 3 in the cleaning chamber 1, a high-pressure gas is supplied to the cleaning two-fluid nozzle 2 from a pipe 4 and a high-pressure liquid is supplied from a pipe 5. Supply gas and high pressure liquid. The high-pressure gas is supplied from the pipe 4 to the gas introduction part of the cleaning two-fluid nozzle 2, and the high-pressure liquid is simultaneously supplied from the pipe 5 to the liquid introduction part of the cleaning two-fluid nozzle. Inside the cleaning two-fluid nozzle 2, these are mixed to divide the liquid into fine liquid mists, and the liquid mist is given a momentum in the direction toward the object to be cleaned 3, and the tip of the cleaning two-fluid nozzle is ejected. A liquid mist flow 6 is ejected from the outlet. The ejected liquid mist flow 6 is made to collide with the object 3 to be cleaned, and the foreign matter adhering to the object 3 to be cleaned is removed and cleaned. In this embodiment, in order to perform cleaning appropriately, valves 7 and 7 are respectively provided in a part of the path of the pipe 4 for supplying high-pressure gas and the pipe 5 for supplying high-pressure liquid. The control system 8 opens and closes the valves 7 and 7 synchronized with the relative movement of the two-fluid nozzle 2 and the object 3 to be cleaned. Furthermore, it is desirable to add a drain 9 for recovering the gas and liquid ejected into the cleaning chamber 1.

本発明の洗浄用2流体ノズル2は、その一例を断面図として図2に示すような構造を有するものであり、そのA−A′の断面図を図3に示す。この洗浄用2流体ノズル2は、高圧の気体を導入する気体導入部101B及び高圧の液体を導入する液体導入部101Aを有する導入部101と、導入された気体及び液体を混合して液体の微粒子である液体ミストを形成するための気液混合部102と、液体ミストに運動量を付与して液体ミスト流を形成するための加速管部103から構成される。気液混合部102においては、ノズル本体内に混合室108が設けられている。液体導入部101Aは、ノズル本体を液体供給口104から混合室108まで貫通する液体流路105からなり、気体導入部101Bは、ノズル本体を気体供給口106から混合室108まで貫通する気体流路107からなる。気体流路107は、気体供給口106から混合室108に至る途中で、4流路に分岐している。分岐は気体と液体の混合を向上させる点で好ましいが、必須ではなく、また、分岐数も特に制限はない。加速管部103は、内部に、混合室108から噴出口111までノズル本体を貫通する流通路109を有する。流通路109の内壁には、流通路109の長さ方向にスパイラル状に延びるスパイラル突条が設けられている。   The two-fluid nozzle 2 for cleaning according to the present invention has a structure as shown in FIG. 2 as an example of a sectional view, and FIG. The cleaning two-fluid nozzle 2 includes a gas introduction unit 101B for introducing a high-pressure gas and a introduction unit 101 having a liquid introduction unit 101A for introducing a high-pressure liquid, and the introduced gas and liquid are mixed to form liquid fine particles. The gas-liquid mixing unit 102 for forming the liquid mist and the accelerating tube unit 103 for imparting a momentum to the liquid mist to form a liquid mist flow. In the gas-liquid mixing unit 102, a mixing chamber 108 is provided in the nozzle body. The liquid introduction unit 101A includes a liquid channel 105 that penetrates the nozzle body from the liquid supply port 104 to the mixing chamber 108, and the gas introduction unit 101B includes a gas channel that penetrates the nozzle body from the gas supply port 106 to the mixing chamber 108. 107. The gas channel 107 is branched into four channels on the way from the gas supply port 106 to the mixing chamber 108. Although branching is preferable in terms of improving the mixing of gas and liquid, it is not essential and the number of branches is not particularly limited. The accelerating tube portion 103 has a flow passage 109 passing through the nozzle body from the mixing chamber 108 to the jet port 111 inside. On the inner wall of the flow passage 109, a spiral ridge extending in a spiral shape in the length direction of the flow passage 109 is provided.

高圧の液体は、液体供給口104から液体流路105を経て混合室108内に導入される。それと同時に、高圧の気体は、気体供給口106から気体流路107を経て混合室108内に導入される。混合室108内で、導入された高圧の気体と高圧の液体とが衝突し、液体は微細化され、多数の液体微粒子を含む液体ミストが形成される。この液体微粒子を含んだ液体ミストは、混合室108から加速管部103内の流通路109へ噴出し、流通路109内で加速されると共に被洗浄物への方向の運動量が与えられ、スパイラル突条によってスパイラル状に進行する液体ミスト流110を形成し、噴出口111から被洗浄物に向けて噴射される。本発明の洗浄用2流体ノズル2からの液体ミスト流110の噴出を外観図にて示したのが図4で、加速管部103先端の噴出口111から噴出した液体ミスト流110は、特定の立体角をもって広がる傾向を示す。   The high-pressure liquid is introduced from the liquid supply port 104 into the mixing chamber 108 via the liquid channel 105. At the same time, high-pressure gas is introduced into the mixing chamber 108 from the gas supply port 106 through the gas flow path 107. In the mixing chamber 108, the introduced high-pressure gas collides with the high-pressure liquid, the liquid is refined, and a liquid mist including a large number of liquid fine particles is formed. The liquid mist containing the liquid fine particles is ejected from the mixing chamber 108 to the flow passage 109 in the accelerating pipe portion 103, accelerated in the flow passage 109, and given a momentum in the direction toward the object to be cleaned. A liquid mist flow 110 that travels in a spiral shape is formed by the strip, and is ejected from the ejection port 111 toward the object to be cleaned. FIG. 4 shows an external view of the ejection of the liquid mist flow 110 from the cleaning two-fluid nozzle 2 of the present invention, and the liquid mist flow 110 ejected from the ejection port 111 at the tip of the acceleration tube 103 is a specific one. It shows a tendency to spread with a solid angle.

噴出した液体ミスト流110の形状は、噴出口111の形状を変えることで制御することが可能であり、図5に示すように、噴出した液体ミスト流110の形状を円形にするには、図2の矢印Bの方向からみた噴出口111の形状を、円形201にすればよい。かかる場合には円形のスプレパターン202を得ることができる。また、噴出した液体ミスト流110の形状を扁平にするには、図6に示すように、図2の矢印Bの方向からみた噴出口111の形状を、長方形203にすればよい。かかる場合には扁平のスプレパターン204を得ることができるのである。かかるパターンの選択は洗浄目的に応じて任意に制御することができる。   The shape of the ejected liquid mist flow 110 can be controlled by changing the shape of the ejection port 111, and as shown in FIG. The shape of the spout 111 seen from the direction of the arrow B in FIG. In such a case, a circular spray pattern 202 can be obtained. Further, in order to flatten the shape of the ejected liquid mist flow 110, the shape of the ejection port 111 seen from the direction of the arrow B in FIG. In such a case, a flat spray pattern 204 can be obtained. Selection of such a pattern can be arbitrarily controlled according to the purpose of cleaning.

液体微粒子の形成には適正な液体及び気体の流量が必要であり、適正な流量を実現するには液体及び気体を加圧して洗浄用2流体ノズル2に供給することが必要である。   The formation of liquid fine particles requires an appropriate flow rate of liquid and gas, and in order to achieve an appropriate flow rate, it is necessary to pressurize and supply the liquid and gas to the cleaning two-fluid nozzle 2.

本発明の洗浄用2流体ノズル及び洗浄方法に適した気体及び液体の圧力は、それぞれ、気体の圧力が大気圧に200kPa〜900kPaを加えたものであり、液体の圧力が大気圧に200kPa〜900kPaを加えたものであることが望ましい。さらに好ましくは、気体及び至液体の圧力は、それぞれ、大気圧に300kPa〜600kPaを加えたものである。かかる圧力の下限は洗浄力が低下することから、上限は洗浄に要する気体、液体の消費量が増加することから定められるものである。   The gas and liquid pressures suitable for the two-fluid nozzle for cleaning and the cleaning method of the present invention are the gas pressure obtained by adding 200 kPa to 900 kPa to atmospheric pressure, and the liquid pressure is 200 kPa to 900 kPa to atmospheric pressure. It is desirable to add. More preferably, the pressures of the gas and the liquid are those obtained by adding 300 kPa to 600 kPa to the atmospheric pressure. The lower limit of the pressure is determined because the detergency decreases, and the upper limit is determined because the consumption of gas and liquid required for cleaning increases.

このような圧力から得られる気体及び液体の流量はそれぞれ、気体の流量が20〜200リットル/分であることが望ましく、30〜150リットル/分であることがより望ましく、液体の流量が0.2〜5リットル/分であることが望ましく、0.3〜2リットル/分であることがより好ましい。かかる流量の下限は洗浄力が低下することから、上限は洗浄に要する気体、液体の消費量が増加することから定められるものである。   The flow rates of the gas and the liquid obtained from such a pressure are each preferably 20 to 200 liters / minute, more preferably 30 to 150 liters / minute, and the liquid flow rate is preferably 0.1 to liters / minute. 2 to 5 liters / minute is desirable, and 0.3 to 2 liters / minute is more preferable. The lower limit of the flow rate is determined because the cleaning power decreases, and the upper limit is determined because the consumption of gas and liquid required for cleaning increases.

このような圧力及び流量から得られる液体ミスト中の液体微粒子の平均粒径は、20〜200μmの範囲となり、さらに噴出口111から噴出する液体微粒子の平均流速は30〜300m/秒にもなるのである。このように高速の液体微粒子が被洗浄物に衝突する運動エネルギが被洗浄物に付着した異物を除去するのに十分なものであることから、極めて有効な洗浄力が得られるのである。   Since the average particle diameter of the liquid fine particles in the liquid mist obtained from such pressure and flow rate is in the range of 20 to 200 μm, and the average flow velocity of the liquid fine particles ejected from the ejection port 111 is 30 to 300 m / sec. is there. As described above, since the kinetic energy at which the high-speed liquid fine particles collide with the object to be cleaned is sufficient to remove the foreign matter adhering to the object to be cleaned, a very effective cleaning power can be obtained.

上記のような有効な洗浄力を得るためには、加速管部103の流通路の形状には工夫が必要であり、本発明では、加速管部内の流通路内壁に、流通路の長さ方向にスパイラル状に延びるスパイラル突条を設けている。図8に、図7に示す洗浄用2流体ノズルの断面(図2の洗浄用2流体ノズルと同じ態様)の点線で囲った部分の部分拡大図を示す。図7及び図8に示すように流通路109の内壁にスパイラル突条を形成することによって、液体微粒子の平均粒径を混合室108内での状態からさらに微細化し、噴出速度を加速させることに有効である。   In order to obtain the above effective cleaning power, it is necessary to devise the shape of the flow passage of the acceleration pipe portion 103. In the present invention, the length direction of the flow passage is formed on the inner wall of the flow passage in the acceleration pipe portion. Are provided with spiral ridges extending in a spiral shape. FIG. 8 is a partially enlarged view of a portion surrounded by a dotted line of a cross section of the cleaning two-fluid nozzle shown in FIG. 7 (the same mode as the cleaning two-fluid nozzle of FIG. 2). As shown in FIGS. 7 and 8, by forming spiral ridges on the inner wall of the flow passage 109, the average particle size of the liquid fine particles is further refined from the state in the mixing chamber 108, and the ejection speed is accelerated. It is valid.

混合室の容積は、被洗浄物や除去対象の種類等によって異なり、特に制限はないが、電子部品を被洗浄物とする場合、通常、1cm3〜5cm3であることが好ましく、1.5cm3〜3cm3であることがより好ましい。 Volume of the mixing chamber is different depending on the type of the object to be cleaned and the removal target is not particularly limited, when the electronic component and the article to be cleaned, usually, is preferably 1 cm 3 to 5 cm 3, 1.5 cm More preferably, it is 3 to 3 cm 3 .

加速管部内の流通路の横断面は、円形であることが好ましく、そのサイズは被洗浄物や除去対象の種類等によって異なり、特に制限はない。電子部品を被洗浄物とする場合、通常、流通路の直径はφ0.5mm〜φ5mmであることが好ましく、φ1mm〜φ3mmであることがより好ましく、流通路の長さは、3mm〜60mmであることが好ましく、5mm〜30mmであることがより好ましい。また、通路は直通路であることが好ましい。流通路の内壁に形成されるスパイラル突条の形状は、流通路内壁の流通路の長さ方向の断面がV字状、四角形、台形状、V字の頂部又は、四角形や台形の角にアールがついた形状等、特に制限はない。断面が台形の場合、流通路内壁の長さ方向の断面が凹凸を形成する。スパイラル突条の渦巻き角度は20度〜80度とすることが好ましく、30度〜60度とすることが更に好ましい。なお、ここでスパイラル突条の渦巻き角度とは、流通路の長さ方向の中心軸に対する、スパイラル突条の底部の一辺の接線の傾斜角を意味する。スパイラル突条の高さは、0.05〜1mmであることが好ましく、0.2〜0.5mmであることがより好ましい。また、スパイラル突条の上記断面は、テーパ角度が20〜80度のテーパ状断面であることが好ましく、30〜60度のテーパ状断面であることがより好ましい。また、例えば断面が台形の場合、流通路内壁の長さ方向の断面が凹凸を形成するが、凹部底部の幅及び突部頂部の幅が、各々0.1〜2mmであることが好ましく、0.3〜0.8mmであることがより好ましい。   The cross section of the flow passage in the accelerating tube portion is preferably circular, and its size varies depending on the object to be cleaned, the type of object to be removed, and the like, and there is no particular limitation. When an electronic component is an object to be cleaned, the diameter of the flow path is preferably φ0.5 mm to φ5 mm, more preferably φ1 mm to φ3 mm, and the length of the flow path is 3 mm to 60 mm. It is preferably 5 mm to 30 mm. The passage is preferably a straight passage. The shape of the spiral ridge formed on the inner wall of the flow passage is such that the longitudinal cross section of the flow passage on the inner wall of the flow passage is V-shaped, quadrangular, trapezoidal, the top of the V-shape, or the corner of the quadrilateral or trapezoid There are no particular restrictions on the shape with the mark. When the cross section is trapezoidal, the cross section in the length direction of the inner wall of the flow passage forms irregularities. The spiral angle of the spiral protrusion is preferably 20 to 80 degrees, more preferably 30 to 60 degrees. Here, the spiral angle of the spiral ridge means an inclination angle of a tangent on one side of the bottom of the spiral ridge with respect to the central axis in the length direction of the flow passage. The height of the spiral protrusion is preferably 0.05 to 1 mm, and more preferably 0.2 to 0.5 mm. Moreover, it is preferable that the said cross section of a spiral protrusion is a taper-shaped cross section whose taper angle is 20-80 degree | times, and it is more preferable that it is a taper-shaped cross section of 30-60 degree | times. For example, when the cross section is trapezoidal, the lengthwise cross section of the inner wall of the flow passage forms irregularities, and the width of the bottom of the recess and the width of the top of the protrusion are each preferably 0.1 to 2 mm. More preferably, it is 3 to 0.8 mm.

加速管部の流通路内壁のスパイラル形状の渦巻き角度20〜80度は、液体微粒子の微細化と高速化に特に効果的な範囲であり、この範囲以外では効果が著しく低減する傾向がある。その他のスパイラル突条の高さ0.005〜1mm、テーパ形状角度20〜80度、凹部底部の幅及び突部頂部の幅0.1〜2mmについても、それらの範囲が液体微粒子の微細化、高速化に特に効果的であり、これらの範囲以外では効果が著しく低減する傾向がある。   The spiral-shaped spiral angle of 20 to 80 degrees on the inner wall of the flow passage of the accelerating pipe portion is a particularly effective range for miniaturization and speeding up of liquid fine particles, and the effect tends to be remarkably reduced outside this range. For other spiral protrusion heights of 0.005 to 1 mm, taper shape angles of 20 to 80 degrees, recess bottom width and protrusion top width of 0.1 to 2 mm, these ranges are finer liquid particles, This is particularly effective for speeding up, and the effect tends to be remarkably reduced outside these ranges.

かかる高速の液体微粒子を含む液体ミスト流を有効に洗浄物に到達させるためには、噴出口111から噴出する液体ミスト流中の液体微粒子の断面形状が円形もしくは楕円であるとともに、この液体ミスト流の噴出口111から噴射される扇形スプレ形状の頂点部角度が30度〜90度であることが望ましい。   In order for the liquid mist flow containing such high-speed liquid fine particles to reach the cleaning object effectively, the cross-sectional shape of the liquid fine particles in the liquid mist flow ejected from the ejection port 111 is circular or elliptical, and the liquid mist flow It is desirable that the apex angle of the fan-shaped spray shape ejected from the jet outlet 111 is 30 to 90 degrees.

液体微粒子の断面形状が円形もしくは楕円であると、広い面積を有する被洗浄物の全面を洗浄物に衝突する液体ミスト流で掃引が簡単になり、好ましい。また、扇形スプレ形状の頂点部角度が上記範囲の下限より小さいと、洗被浄物に衝突する液体微粒子の面積が小さくなりすぎて、洗浄に時間がかかりすぎ、経済性に劣ることとなる。一方、この角度が上記範囲の上限より大きいと、噴出口から比洗浄物に衝突するまでの距離が長くなりすぎて、大気中で液体微粒子が減速されて洗浄力が低下する微粒子の割合が多くなり、経済性に劣ることとなる。   It is preferable that the cross-sectional shape of the liquid fine particles is a circle or an ellipse, because the entire surface of the object to be cleaned having a large area can be easily swept by the liquid mist flow that collides with the object to be cleaned. On the other hand, if the apex angle of the fan-shaped spray shape is smaller than the lower limit of the above range, the area of the liquid fine particles colliding with the object to be cleaned becomes too small, and it takes too much time for cleaning, resulting in poor economic efficiency. On the other hand, if this angle is larger than the upper limit of the above range, the distance from the jet outlet to the specific cleaning object becomes too long, and the proportion of the fine particles in which the liquid fine particles are decelerated in the atmosphere and the cleaning power decreases is large. It will be inferior in economic efficiency.

同様の問題が噴出口と被洗浄物間の距離についても発生する。経済性の観点から、本発明の洗浄方法では、噴出口と被洗浄物との距離が10〜100mmであることが望ましく、20〜50mmであることがより好ましい。   A similar problem occurs with respect to the distance between the jet outlet and the object to be cleaned. From the economical viewpoint, in the cleaning method of the present invention, the distance between the jet outlet and the object to be cleaned is preferably 10 to 100 mm, and more preferably 20 to 50 mm.

本発明の洗浄方法に用いる気体の種類は、加圧された気体であれば特に制限はないが、加圧された空気、窒素ガス、炭酸ガス、アルゴンガスなどが好ましい。空気は主として経済性の観点から有利であり、窒素ガスは容易に不純物を含まない高純度のガスが得られることから汚染防止とその不燃性から可燃性の液体と組合わせた場合に安全性の観点から有利であり、炭酸ガスは水に溶解して電気伝導度を増大することから静電気防止の観点で有利である。   The type of gas used in the cleaning method of the present invention is not particularly limited as long as it is a pressurized gas, but pressurized air, nitrogen gas, carbon dioxide gas, argon gas and the like are preferable. Air is mainly advantageous from the economical point of view, and nitrogen gas is easy to obtain a high-purity gas that does not contain impurities, so it is safe when combined with flammable liquids to prevent contamination and its nonflammability. Carbon dioxide gas is advantageous from the viewpoint of static electricity prevention because it dissolves in water and increases electrical conductivity.

本発明の洗浄方法に用いる液体の種類は、加圧された液体であれば特に制限はないが、加圧された純水、化学薬品を溶解した洗浄液、有機溶剤などが好ましい。純水は主として経済性の観点と、容易に不純物を含まない高純度の純水が得られることから汚染防止の観点から有利であり、各種の化学薬品を溶解した洗浄液は純水による洗浄に化学反応を併用したい場合に好適である。有機溶剤はレジスト剥離などの目的で洗浄作用に加えて溶剤の溶解力を併用したい場合に好適である。   The type of liquid used in the cleaning method of the present invention is not particularly limited as long as it is a pressurized liquid, but pressurized pure water, a cleaning solution in which a chemical is dissolved, an organic solvent, and the like are preferable. Pure water is advantageous mainly from the viewpoint of economy and from the viewpoint of preventing contamination because high-purity pure water that does not contain impurities can be obtained easily. Cleaning liquids that dissolve various chemicals are suitable for cleaning with pure water. It is suitable when a reaction is desired to be used together. The organic solvent is suitable when it is desired to use the solvent dissolving power in addition to the cleaning action for the purpose of removing the resist.

本発明の洗浄装置に用いられる気体供給手段、即ち本発明の洗浄用2流体ノズルの気体導入部に高圧の気体を供給する手段としては、例えば、オイルフリースクリュー圧縮機と、それと洗浄用2流体ノズルの気体導入部との間の高圧の気体の流路となる配管、配管の経路の一部に設けられたバルブとからなる構成が挙げられる。また、液体供給手段、即ち本発明の洗浄用2流体ノズルの液体導入部に高圧の液体を供給する手段としては、例えば、渦流タービンポンプと、それと洗浄用2流体ノズルの液体導入部との間の高圧の液体の流路となる配管、配管の経路の一部に設けられたバルブとからなる構成が挙げられる。   Examples of the gas supply means used in the cleaning apparatus of the present invention, that is, means for supplying a high-pressure gas to the gas introduction part of the cleaning two-fluid nozzle of the present invention include an oil-free screw compressor and two cleaning fluids The structure which consists of the piping used as the flow path of the high voltage | pressure gas between the gas introduction parts of a nozzle, and the valve | bulb provided in a part of piping path | route is mentioned. The liquid supply means, that is, means for supplying a high-pressure liquid to the liquid introduction portion of the cleaning two-fluid nozzle of the present invention includes, for example, a vortex turbine pump and the liquid introduction portion of the two-fluid cleaning nozzle. The structure which consists of the pipe | tube used as the flow path of this high-pressure liquid, and the valve | bulb provided in a part of path | route of piping is mentioned.

本発明の洗浄装置に用いられる保持手段、即ち洗浄用2流体ノズルと被洗浄物とを、洗浄用2流体ノズルから噴出される液体ミスト流が被洗浄物に衝突する位置に保持する手段としては、洗浄用2流体ノズルと被洗浄物とを相対的に移動させながら保持するものが好ましい。両者を相対的に移動可能に保持することにより、大面積の被洗浄物や、複数の被洗浄物を効率的に洗浄することができる。保持手段の一例としては、洗浄用2流体ノズルを一定位置に固定するノズルホルダーと、被洗浄物を搬送する並列に配置された複数のローラを有するローラ搬送機構とからなるものが挙げられる。   The holding means used in the cleaning apparatus of the present invention, that is, means for holding the cleaning two-fluid nozzle and the object to be cleaned at a position where the liquid mist flow ejected from the cleaning two-fluid nozzle collides with the object to be cleaned. The two-fluid nozzle for cleaning and the object to be cleaned are preferably held while being relatively moved. By holding both of them to be relatively movable, it is possible to efficiently clean a large-area object to be cleaned or a plurality of objects to be cleaned. As an example of the holding means, there may be mentioned one constituted by a nozzle holder for fixing the cleaning two-fluid nozzle at a fixed position and a roller transport mechanism having a plurality of rollers arranged in parallel for transporting the object to be cleaned.

本発明の洗浄用2流体ノズル及び洗浄装置の配管を含めた流路の接液部の構成材質としては、Ti、ステンレススチールなどの鉄系合金、セラミックス、石英、高分子材料などが挙げられる。この材質は、高圧に耐える機械的強度と材質そのものの溶解による被洗浄物の汚染防止の観点から経済的に選択されるべきものであり、ステンレススチールは安価な配管とノズルの提供に適しており、フッソ樹脂、ポリイミド、PEEKなどに代表される高分子材料は金属イオンを溶出しない低汚染ノズルの提供に適している。勿論、これら以外の金属材料、高分子材料、セラミックスなども使用可能である。   Examples of the constituent material of the liquid contact portion of the flow path including the two-fluid nozzle for cleaning and the pipe of the cleaning device of the present invention include iron-based alloys such as Ti and stainless steel, ceramics, quartz, and polymer materials. This material should be selected economically from the viewpoint of mechanical strength that can withstand high pressure and prevention of contamination of the object to be cleaned by melting the material itself, and stainless steel is suitable for providing inexpensive piping and nozzles. Polymer materials typified by fluorine resin, polyimide, PEEK and the like are suitable for providing a low contamination nozzle that does not elute metal ions. Of course, other metal materials, polymer materials, ceramics, etc. can be used.

本発明の洗浄用2流体ノズルを駆動して洗浄を効率良く行うためには、高圧の気体を供給する配管と高圧の液体を供給する配管の経路の一部にバルブを設け、必要な時間内にのみ、気体と液体をノズルに供給することが好ましい。   In order to perform the cleaning efficiently by driving the two-fluid nozzle for cleaning according to the present invention, a valve is provided in a part of the pipe for supplying high-pressure gas and the pipe for supplying high-pressure liquid. It is preferable to supply gas and liquid to the nozzle only.

さらに、バルブの開閉は被洗浄物とノズルの相対運動に同期して、洗浄すべき位置がノズルの前面に配置されたときにのみ、ノズルを駆動して洗浄する必要がある。かかる制御系がない場合には気体、液体の消費量に対して洗浄の効率が著しく低下するのである。   Further, the opening and closing of the valve needs to be driven and cleaned only when the position to be cleaned is arranged on the front surface of the nozzle in synchronization with the relative movement of the object to be cleaned and the nozzle. In the absence of such a control system, the cleaning efficiency is significantly reduced with respect to the amount of gas and liquid consumed.

本発明の洗浄方法及び洗浄装置は、該ノズルを複数併用することも可能であり、相対的に大きな形状の被洗浄物に対しては、複数のノズルを同時に駆動して洗浄時間を短縮することが望ましい場合もある。   In the cleaning method and the cleaning apparatus of the present invention, a plurality of nozzles can be used in combination. For a relatively large object to be cleaned, a plurality of nozzles are simultaneously driven to shorten the cleaning time. May be desirable.

本発明の洗浄装置には、さらに、洗浄チャンバ内部に噴出した気体と液体を回収するためのドレインを付加することが望ましい。ドレインを用いることにより、洗浄チャンバ内部が負圧となって、気体液体が所望外の部分に漏れ出すのを防止することができる。   In the cleaning apparatus of the present invention, it is further desirable to add a drain for recovering the gas and liquid ejected into the cleaning chamber. By using the drain, the inside of the cleaning chamber becomes a negative pressure, and the gas liquid can be prevented from leaking to an undesired portion.

本発明の実施形態の一例を図9にて以下に述べる。
図9は、図2に示した構造を有する本発明の洗浄用2流体ノズル301を基板302の洗浄に利用するのに適した洗浄装置の一部を示した斜視図である。複数の洗浄用2流体ノズル301が直線状に配列してノズルホルダ303に固定されて、基板302の上方に配置されており、幅の広い基板302を効率良く洗浄することができる。さらに、ローラ搬送機構304を用いて基板302を一方向に移動できるようにする。
An example of the embodiment of the present invention will be described below with reference to FIG.
FIG. 9 is a perspective view showing a part of a cleaning apparatus suitable for using the cleaning two-fluid nozzle 301 of the present invention having the structure shown in FIG. A plurality of cleaning two-fluid nozzles 301 are linearly arranged and fixed to the nozzle holder 303 and arranged above the substrate 302, so that the wide substrate 302 can be efficiently cleaned. Further, the substrate 302 can be moved in one direction using the roller transport mechanism 304.

洗浄用2流体ノズル301に高圧の空気と高圧の純水を供給して、洗浄用2流体ノズル301内で形成した液体ミスト流をスプレパターン305のように基板302に噴射して、基板302に付着した異物粒子を除去することができる。   High-pressure air and high-pressure pure water are supplied to the cleaning two-fluid nozzle 301, and a liquid mist flow formed in the cleaning two-fluid nozzle 301 is sprayed onto the substrate 302 like a spray pattern 305, to the substrate 302. Adhering foreign particles can be removed.

かかる図9の洗浄装置で洗浄用2流体ノズル301に供給する空気と純水の圧力を系統的に変えて洗浄力の評価を試みた。   With the cleaning device of FIG. 9, the pressure of air and pure water supplied to the cleaning two-fluid nozzle 301 was systematically changed to try to evaluate the cleaning power.

評価時の実験条件は300×400mmのガラス基板上に平均粒子径3μmの固着型スペーサを2万個ほど散布し、150℃で15分間加熱して固着させた後に室温まで冷却し、該ガラス基板を相対速度20mm/sで移動させながら、洗浄用2流体ノズルの噴出口−基板間距離40mmに設定して洗浄をおこなった結果から得られたものである。また、このときのノズル仕様は混合室の容積が2.2cm3であり、加速管部の流通路の長さが20mmであり、流通路の口径はφ2mmであり、材質はステンレススチールであり、流通路内壁部分にスパイラル突条を形成したものと形成しないものとで洗浄力と気体消費量の関係を比較した。両者の差異はスパイラル突条が形成されているかいないかだけで、その他の構造・形状は全く同じである。このときのスパイラル突条の仕様は、図7と図8に示すようにスパイラル全体の渦巻き角度を45度、スパイラル突条の高さhを0.6mm、スパイラル突条のテーパ形状の角度を45度、凹部底部の幅a及び凸部頂部の幅bをそれぞれ0.5mmとした。 The experimental conditions at the time of evaluation were that about 20,000 fixed type spacers having an average particle diameter of 3 μm were dispersed on a 300 × 400 mm glass substrate, heated at 150 ° C. for 15 minutes to be fixed, and then cooled to room temperature. This is obtained from the result of cleaning with the nozzle-substrate distance of 40 mm of the two-fluid nozzle for cleaning while moving the nozzle at a relative speed of 20 mm / s. The nozzle specifications at this time are such that the volume of the mixing chamber is 2.2 cm 3 , the length of the flow path of the accelerating tube is 20 mm, the diameter of the flow path is φ2 mm, and the material is stainless steel. The relationship between cleaning power and gas consumption was compared between the case where spiral ridges were formed on the inner wall of the flow passage and the case where spiral ridges were not formed. The only difference between them is whether or not spiral ridges are formed, and the other structures and shapes are exactly the same. The specifications of the spiral ridge at this time are shown in FIGS. 7 and 8, in which the spiral angle of the entire spiral is 45 degrees, the height h of the spiral ridge is 0.6 mm, and the taper angle of the spiral ridge is 45 degrees. The width a of the bottom of the concave portion and the width b of the top of the convex portion were each 0.5 mm.

評価方法としては高圧気体の消費量と洗浄力の尺度となるスペーサ除去率の関係で95%の除去率が得られる高圧気体の消費量をスパイラル突条付きノズルと非スパイラル突条ノズルとで比較した。供給される高圧の気体として500kPaの空気を、供給される高圧の液体として500kPaの純水を用いた。その結果は図10に示すように、95%の除去率が得られる高圧気体の消費量はスパイラル突条付きノズルでは75リットル/分であり、非スパイラル突条ノズルでは150リットル/分であり、スパイラル突条付きノズルは気体消費量が半分ほどでも従来品の非スパイラル突条ノズルと同程度の異物除去率が得られることが分かった。   The evaluation method is a comparison between high-pressure gas consumption and non-spiral ridge nozzles that can achieve a removal rate of 95% due to the relationship between high-pressure gas consumption and spacer removal rate, which is a measure of cleaning power. did. 500 kPa air was used as the high-pressure gas to be supplied, and 500 kPa pure water was used as the high-pressure liquid to be supplied. As a result, as shown in FIG. 10, the consumption of high-pressure gas at which a removal rate of 95% is obtained is 75 liters / minute for the spiral ridge nozzle, and 150 liters / minute for the non-spiral ridge nozzle, It was found that the nozzle with the spiral ridge can obtain the same foreign matter removal rate as that of the conventional non-spiral ridge nozzle even when the gas consumption is about half.

上記の洗浄の結果から、本発明で洗浄用2流体ノズルの加速管部流通路の内壁部分にスパイラル突条を形成したものは、異物除去率95%以上を確保した状態で気体流量を半分以下にすることができ、2流体洗浄方法の問題点である気体のランニングコストが高額になる点およびコンプレッサ等の付帯設備費が高額になる点を解消することができることがわかる。   As a result of the above cleaning, in the present invention, in the case where the spiral ribs are formed on the inner wall portion of the accelerating pipe portion flow passage of the cleaning two-fluid nozzle, the gas flow rate is less than half with the foreign matter removal rate being 95% or more. It can be seen that the problem of the two-fluid cleaning method, that is, the high gas running cost and the high cost of incidental equipment such as a compressor can be solved.

さらに、スパイラル形状ノズルと非スパイラルノズルから噴射される液体微粒子のサイズと速度を異物除去率95%が実現できる洗浄条件で両者を比較すると、非スパイラルノズルの従来品は微粒子径40乃至50μmで速度100m/sであったが、本発明の該スパイラル形状ノズルは微粒子径20乃至30μmで速度200m/sであった。該スパイラル形状ノズルから噴射される液体微粒子はさらに微細化し、速度が2倍になっていることが分かる。一般的に洗浄力は微粒子速度に比例することが分かっており、気体消費量を半分ほどにしても従来ノズルと同等以上の異物除去率を得ることができるのは液体微粒子の微細化と高速化にあると言える。   Furthermore, when comparing the size and speed of the liquid fine particles ejected from the spiral shaped nozzle and the non-spiral nozzle under cleaning conditions that can achieve a foreign matter removal rate of 95%, the conventional non-spiral nozzle has a fine particle diameter of 40 to 50 μm. The spiral nozzle of the present invention had a fine particle diameter of 20 to 30 μm and a speed of 200 m / s. It can be seen that the liquid fine particles ejected from the spiral-shaped nozzle are further refined and the speed is doubled. In general, it is known that the cleaning power is proportional to the fine particle velocity. Even if the gas consumption is reduced to about half, the removal rate of foreign particles equal to or higher than that of conventional nozzles can be obtained. It can be said that

本発明の洗浄方法を系統図にて模式的に示した図。The figure which showed the washing | cleaning method of this invention typically with the systematic diagram. 本発明の一態様の洗浄用2流体ノズルの断面図。Sectional drawing of the 2 fluid nozzle for washing | cleaning of 1 aspect of this invention. 図2のA−A′部分の断面図。Sectional drawing of the AA 'part of FIG. 本発明の一態様の洗浄用2流体ノズルから液体ミスト流が噴出する様子の外観を示す斜視図。The perspective view which shows the external appearance of a mode that a liquid mist flow ejects from the 2 fluid nozzle for washing | cleaning of 1 aspect of this invention. 本発明の一態様の2流体ノズルの加速管部の噴出口形状とスプレパターンの一例を示す平面図。The top view which shows an example of the jet nozzle shape of the acceleration pipe part of the 2 fluid nozzle of 1 aspect of this invention, and a spray pattern. 本発明の一態様の2流体ノズルの加速管部の噴出口形状とスプレパターンの一例を示す平面図。The top view which shows an example of the jet nozzle shape of the acceleration pipe part of the 2 fluid nozzle of 1 aspect of this invention, and a spray pattern. 本発明の一態様の洗浄用2流体ノズルの断面図。Sectional drawing of the 2 fluid nozzle for washing | cleaning of 1 aspect of this invention. 図7の点線で囲った部分の部分拡大図。The elements on larger scale of the part enclosed with the dotted line of FIG. 本発明の一態様の洗浄装置を用いて洗浄を行なっている様子を示す斜視図。The perspective view which shows a mode that it wash | cleans using the washing | cleaning apparatus of 1 aspect of this invention. 本発明の洗浄用2流体ノズルと従来品のスペーサ除去率と気体消費量の関係を示した図。The figure which showed the relationship between the 2 fluid nozzle for washing | cleaning of this invention, the spacer removal rate of a conventional product, and gas consumption.

符号の説明Explanation of symbols

1…洗浄チャンバ
2…洗浄用2流体ノズル
3…被洗浄物
4…気体を供給する配管
5…液体を供給する配管
6…液体ミスト流
7…バルブ
8…制御系
9…ドレイン
101…導入部
101A…液体導入部
101B…気体導入部
102…混合部
103…加速管部
104…液体供給口
105…液体流路
106…気体供給口
107…気体流路
108…混合室
109…加速管部内の流通路
110…液体ミスト流
111…噴出口
201…加速管の噴出口形状
202…スプレパターン
203…加速管部の噴出口形状
204…スプレパターン
301…洗浄用2流体ノズル
302…基板
303…ノズルホルダ
304…搬送ローラ
305…スプレパターン
DESCRIPTION OF SYMBOLS 1 ... Cleaning chamber 2 ... Cleaning 2 fluid nozzle 3 ... Object to be cleaned 4 ... Pipe supplying gas 5 ... Pipe supplying liquid 6 ... Liquid mist flow 7 ... Valve 8 ... Control system 9 ... Drain 101 ... Introduction part 101A DESCRIPTION OF SYMBOLS Liquid introduction part 101B ... Gas introduction part 102 ... Mixing part 103 ... Acceleration pipe part 104 ... Liquid supply port 105 ... Liquid flow path 106 ... Gas supply port 107 ... Gas flow path 108 ... Mixing chamber 109 ... Flow path in acceleration pipe part DESCRIPTION OF SYMBOLS 110 ... Liquid mist flow 111 ... Jet nozzle 201 ... Accelerator pipe jet shape 202 ... Spray pattern 203 ... Accelerator pipe jet nozzle shape 204 ... Spray pattern 301 ... Cleaning 2 fluid nozzle 302 ... Substrate 303 ... Nozzle holder 304 ... Conveyance roller 305 ... Spray pattern

Claims (7)

噴出口から液体ミスト流を噴出して被洗浄物に衝突させる洗浄用2流体ノズルであって、
高圧の気体と高圧の液体とを混合して液体ミストを形成する気液混合部、
気液混合部に高圧の気体を導入する気体導入部、
気液混合部に高圧の液体を導入する液体導入部、及び、
気液混合部から噴出口に至る流通路を内部に有し、流通路内で液体ミストに運動量を付与して液体ミスト流を形成する加速管部
を有し、加速管部内の流通路内壁に、流通路の長さ方向にスパイラル状に延びるスパイラル突条が設けられていることを特徴とする洗浄用2流体ノズル。
A two-fluid nozzle for cleaning that ejects a liquid mist flow from a jet outlet and collides with an object to be cleaned,
A gas-liquid mixing section that mixes high-pressure gas and high-pressure liquid to form liquid mist,
A gas introduction part for introducing a high-pressure gas into the gas-liquid mixing part,
A liquid introduction part for introducing a high-pressure liquid into the gas-liquid mixing part; and
It has a flow path from the gas-liquid mixing part to the jet outlet inside, it has an acceleration pipe part that gives momentum to the liquid mist in the flow path to form a liquid mist flow, and it is on the inner wall of the flow path in the acceleration pipe part A two-fluid nozzle for cleaning, wherein spiral ridges extending spirally in the length direction of the flow passage are provided.
スパイラル突条の渦巻き角度が20度〜80度であることを特徴とする請求項1に記載の洗浄用2流体ノズル。   The two-fluid nozzle for cleaning according to claim 1, wherein the spiral angle of the spiral protrusion is 20 to 80 degrees. スパイラル突条の高さが0.05〜1mmであることを特徴とする請求項1又は2に記載の洗浄用2流体ノズル。   The two-fluid nozzle for cleaning according to claim 1 or 2, wherein the height of the spiral protrusion is 0.05 to 1 mm. スパイラル突条が、テーパ角度が20〜80度のテーパ状断面を有することを特徴とする請求項1〜3いずれかに記載の洗浄用2流体ノズル。   The two-fluid nozzle for cleaning according to any one of claims 1 to 3, wherein the spiral protrusion has a tapered cross section having a taper angle of 20 to 80 degrees. スパイラル突条によって、流通路内壁の流通路の長さ方向の断面が凹凸を形成しており、凹部底部の幅及び凸部頂部の幅が、各々、0.1〜2mmであることを特徴とする請求項1〜4いずれかに記載の洗浄用2流体ノズル。   The spiral ridges form irregularities in the cross-section in the length direction of the flow passage on the inner wall of the flow passage, and the width of the bottom of the concave portion and the width of the top of the convex portion are 0.1 to 2 mm, respectively. The two-fluid nozzle for cleaning according to any one of claims 1 to 4. 請求項1〜5いずれかに記載の洗浄用2流体ノズルを用いて被洗浄物を洗浄する方法であって、高圧の気体と高圧の液体とが洗浄用2流体ノズルの気液混合部に同時に導入されて液体ミストが形成されるように、高圧の気体を気体導入部に高圧の液体を液体導入部に同時に供給し、液体ミストが加速管部内の流通路を通過することによって形成される液体ミスト流を噴出口から噴出させて被洗浄物に衝突させる洗浄方法。   A method for cleaning an object to be cleaned using the cleaning two-fluid nozzle according to any one of claims 1 to 5, wherein a high-pressure gas and a high-pressure liquid are simultaneously supplied to a gas-liquid mixing portion of the cleaning two-fluid nozzle. A liquid formed by supplying a high-pressure gas to the gas introduction part and a high-pressure liquid to the liquid introduction part at the same time so that a liquid mist is formed by being introduced, and the liquid mist passes through the flow passage in the acceleration pipe part. A cleaning method in which a mist flow is ejected from a jet outlet and collides with an object to be cleaned. 請求項1〜5いずれかに記載の洗浄用2流体ノズル、洗浄用2流体ノズルの気体導入部に高圧の気体を供給する気体供給手段、洗浄用2流体ノズルの液体導入部に高圧の液体を供給する液体供給手段、及び、洗浄用2流体ノズルと被洗浄物とを、洗浄用2流体ノズルから噴出される液体ミスト流が被洗浄物に衝突する位置に保持する保持手段を有する洗浄装置。
The two-fluid nozzle for cleaning according to any one of claims 1 to 5, a gas supply means for supplying a high-pressure gas to a gas introducing portion of the two-fluid nozzle for cleaning, and a high-pressure liquid for a liquid introducing portion of the two-fluid nozzle for cleaning. A cleaning apparatus having liquid supply means for supplying, and holding means for holding the cleaning two-fluid nozzle and the object to be cleaned at a position where the liquid mist flow ejected from the cleaning two-fluid nozzle collides with the object to be cleaned.
JP2005000552A 2005-01-05 2005-01-05 Two-fluid nozzle for cleaning and cleaning method and apparatus Pending JP2006187707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005000552A JP2006187707A (en) 2005-01-05 2005-01-05 Two-fluid nozzle for cleaning and cleaning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005000552A JP2006187707A (en) 2005-01-05 2005-01-05 Two-fluid nozzle for cleaning and cleaning method and apparatus

Publications (1)

Publication Number Publication Date
JP2006187707A true JP2006187707A (en) 2006-07-20

Family

ID=36795363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005000552A Pending JP2006187707A (en) 2005-01-05 2005-01-05 Two-fluid nozzle for cleaning and cleaning method and apparatus

Country Status (1)

Country Link
JP (1) JP2006187707A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786332B1 (en) * 2006-12-29 2007-12-14 세메스 주식회사 Apparatus for cleaning the substrate
WO2008113068A2 (en) * 2007-03-15 2008-09-18 Johnsondiversey Inc. Cleaning system and method of use
JP2011183239A (en) * 2010-03-04 2011-09-22 East Japan Railway Co Washing apparatus
JP2012166185A (en) * 2011-02-09 2012-09-06 China Steel Corp Gas-liquid mixing nozzle device
CN103447184A (en) * 2013-09-10 2013-12-18 中国矿业大学 Pulse water jet flow air suction atomization device
WO2016027950A1 (en) * 2014-08-18 2016-02-25 박종하 Cleaning apparatus using liquid mixed with gas
CN106216126A (en) * 2016-09-11 2016-12-14 中国计量大学 It is applicable to the effervescent atomizer of shear shinning non-Newtonian fluid
KR20170053009A (en) * 2015-11-05 2017-05-15 세메스 주식회사 Injection Unit and Apparatus for treating Substrate with the same
JP2017204495A (en) * 2016-05-09 2017-11-16 株式会社荏原製作所 Substrate cleaning device
TWI718564B (en) * 2018-06-20 2021-02-11 大陸商瀋陽芯源微電子設備股份有限公司 Device for cleaning wafer surface particles
US10991602B2 (en) 2016-05-09 2021-04-27 Ebara Corporation Substrate washing device
WO2021222765A1 (en) * 2020-05-01 2021-11-04 Agilent Technologies, Inc Pipette tip washing devices and methods
CN114247677A (en) * 2020-09-24 2022-03-29 中国科学院微电子研究所 Cleaning equipment and cleaning method for glue outlet nozzle
WO2022084160A1 (en) * 2020-10-22 2022-04-28 Lam Research Ag Apparatus for processing a wafer-shaped article

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786332B1 (en) * 2006-12-29 2007-12-14 세메스 주식회사 Apparatus for cleaning the substrate
WO2008113068A2 (en) * 2007-03-15 2008-09-18 Johnsondiversey Inc. Cleaning system and method of use
WO2008113068A3 (en) * 2007-03-15 2009-01-15 Johnson Diversey Inc Cleaning system and method of use
JP2011183239A (en) * 2010-03-04 2011-09-22 East Japan Railway Co Washing apparatus
JP2012166185A (en) * 2011-02-09 2012-09-06 China Steel Corp Gas-liquid mixing nozzle device
CN103447184A (en) * 2013-09-10 2013-12-18 中国矿业大学 Pulse water jet flow air suction atomization device
WO2016027950A1 (en) * 2014-08-18 2016-02-25 박종하 Cleaning apparatus using liquid mixed with gas
US10391528B2 (en) 2014-08-18 2019-08-27 Jong-Ha Park Cleaning apparatus using liquid mixed with gas
KR20170053009A (en) * 2015-11-05 2017-05-15 세메스 주식회사 Injection Unit and Apparatus for treating Substrate with the same
KR101885103B1 (en) * 2015-11-05 2018-08-06 세메스 주식회사 Injection Unit and Apparatus for treating Substrate with the same
JP2017204495A (en) * 2016-05-09 2017-11-16 株式会社荏原製作所 Substrate cleaning device
US10991602B2 (en) 2016-05-09 2021-04-27 Ebara Corporation Substrate washing device
CN106216126A (en) * 2016-09-11 2016-12-14 中国计量大学 It is applicable to the effervescent atomizer of shear shinning non-Newtonian fluid
TWI718564B (en) * 2018-06-20 2021-02-11 大陸商瀋陽芯源微電子設備股份有限公司 Device for cleaning wafer surface particles
WO2021222765A1 (en) * 2020-05-01 2021-11-04 Agilent Technologies, Inc Pipette tip washing devices and methods
CN114247677A (en) * 2020-09-24 2022-03-29 中国科学院微电子研究所 Cleaning equipment and cleaning method for glue outlet nozzle
WO2022084160A1 (en) * 2020-10-22 2022-04-28 Lam Research Ag Apparatus for processing a wafer-shaped article

Similar Documents

Publication Publication Date Title
US10828677B2 (en) Cleaning flat objects with a pulsed-liquid jet
JP2006187707A (en) Two-fluid nozzle for cleaning and cleaning method and apparatus
JP4120991B2 (en) Cleaning nozzle and cleaning method using the same
KR100227018B1 (en) Cleaning apparatus and method for semiconductor process
CN102754192B (en) Substrate cleaning method and substrate cleaning device
KR100982492B1 (en) Two-fluid jet nozzle for cleaning substrate
US20070234951A1 (en) Methods and apparatus for cleaning a substrate
KR20110039040A (en) Two-fluid injection nozzle
JP2001137797A (en) Dry cleaning apparatus using cluster and method therefor
JP2002011419A (en) Cleaning method and cleaning device used for the same
JP4448458B2 (en) Substrate cleaning method and substrate cleaning apparatus
KR20060050162A (en) A cleaning method and a cleaning apparatus for performing the method
JP2012035166A (en) Fluid ejecting nozzle and washing device using the same
CN205069600U (en) Base plate processing apparatus and be used for its mixing nozzle
JP2008118065A (en) Substrate treatment method and substrate treatment device
JPH11297653A (en) Surface cleaning method and apparatus
KR100698472B1 (en) A nozzle structure for a surface cleanning
JP2011171691A (en) Semiconductor cleaning system using micro-nano solid
KR100862231B1 (en) Apparatus for injecting cleaning liquid and apparatus for cleaning a substrate having the same
JP2004031924A (en) Aerosol cleaning method and device
JP2003209088A (en) Aerosol cleaning method and device thereof
JPH03296475A (en) Cleaning apparatus
WO2010097896A1 (en) Cleaning nozzle and cleaning method
CN218692238U (en) Multi-nozzle cleaning device integrating carbon dioxide snowflakes and plasma
CN112735984B (en) Wafer surface cleaning assembly