JP2012166185A - Gas-liquid mixing nozzle device - Google Patents

Gas-liquid mixing nozzle device Download PDF

Info

Publication number
JP2012166185A
JP2012166185A JP2011088825A JP2011088825A JP2012166185A JP 2012166185 A JP2012166185 A JP 2012166185A JP 2011088825 A JP2011088825 A JP 2011088825A JP 2011088825 A JP2011088825 A JP 2011088825A JP 2012166185 A JP2012166185 A JP 2012166185A
Authority
JP
Japan
Prior art keywords
liquid
gas
liquid mixing
recess
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011088825A
Other languages
Japanese (ja)
Other versions
JP5039222B2 (en
Inventor
Yan-Hao Su
蘇▲彦▼豪
Guan-Ru Lin
林冠儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Steel Corp
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Publication of JP2012166185A publication Critical patent/JP2012166185A/en
Application granted granted Critical
Publication of JP5039222B2 publication Critical patent/JP5039222B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Nozzles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas-liquid mixing nozzle device having a slot element reducing a flow rate in which a liquid enters a gas-liquid mixing concave portion.SOLUTION: The gas-liquid mixing nozzle device includes a base 102 having a first to a third side surfaces, a sealing element 104, a throttle element, and a nozzle 108. The base includes a gas passage 200 and a liquid passage 300 provided in a concave state on the first side surface, and a liquid housing concave portion 400 and a gas-liquid mixing concave portion 500 respectively provided in a concave state on the second side surface and the third side surface. The liquid passage passes through from the first side surface to the liquid housing concave portion, the gas passage and the liquid housing concave portion pass through respectively from the first side surface and the second side surface to the gas-liquid mixing concave portion, and the liquid housing concave portion communicates to the gas-liquid mixing concave portion at a first part. The sealing element is provided at an opening of the liquid housing concave portion, and the throttle element projects from the sealing element to the first part, and reduces the cross-sectional area. Further, the nozzle is joined to an opening of the gas-liquid mixing concave portion.

Description

本発明は、ノズル装置に関し、特に、液体が気液混合凹部に入る流量を減少するスロットル素子を有する気液混合ノズル装置に関する。   The present invention relates to a nozzle device, and more particularly to a gas-liquid mixing nozzle device having a throttle element that reduces the flow rate of liquid entering a gas-liquid mixing recess.

普通のノズル装置では、その中にある流体を加速し、速い速度でノズルから放出することを主な機能とし、ノズルに採用される流体は、気体又は液体であってよい。   In a normal nozzle device, the main function is to accelerate the fluid contained therein and discharge it from the nozzle at a high speed, and the fluid employed in the nozzle may be a gas or a liquid.

また、普通のノズル装置は、一般的にノズルを固定するためのベースを含み、その内部において流体に必要な流路を提供して、流体供給源に提供された流体をベースにおける流路を介してノズルに到着させる。   Also, a common nozzle device generally includes a base for fixing the nozzle, and provides a flow path necessary for the fluid therein, and allows the fluid provided to the fluid supply source to pass through the flow path in the base. And arrive at the nozzle.

しかしながら、ノズル装置に採用された流体が液体である場合に、液体には、一定量の不純物を含むため、長い間使用した後、堆積物が生じさらに詰まる状況がよく発生する。なお、前記堆積物は、一般的にノズルの出口に沈積する。従って、詰まる状況を解決するために、ノズルを取り外して洗浄する必要がある。ノズルの内部空間が狭いため、ノズルの洗浄作業が難しくなった。   However, when the fluid employed in the nozzle device is a liquid, the liquid contains a certain amount of impurities, so that a situation in which deposits are generated and clogged often occurs after a long period of use. The deposit is generally deposited at the nozzle outlet. Therefore, in order to solve the clogging situation, it is necessary to remove and clean the nozzle. Since the internal space of the nozzle is narrow, it is difficult to clean the nozzle.

従って、本発明は、液体が気液混合凹部に入る流量を減少できるスロットル素子を有するため、液体における不純物が気液混合凹部に入る確率を下げることができ、さらに液体における不純物がノズルを詰める状況を低下させることができる気液混合ノズル装置を提供することを目的とする。   Therefore, since the present invention has a throttle element that can reduce the flow rate of liquid entering the gas-liquid mixing recess, the probability that impurities in the liquid enter the gas-liquid mixing recess can be lowered, and further, the impurities in the liquid clog the nozzle An object of the present invention is to provide a gas-liquid mixing nozzle device capable of reducing the above.

本発明の一実施例によって、気液混合ノズル装置を提供する。前記気液混合ノズル装置は、ベース、密閉素子、スロットル素子、ノズルを含む。前記ベースは、第1の側面、第2の側面、第3の側面を含み、第1の側面に凹設された気体通路と液体通路、第2の側面に凹設された液体収容凹部、第3の側面に凹設された気液混合凹部を更に含む。前記気体通路と液体通路がそれぞれに気体と液体を伝送し、液体収容凹部はお互いに連通する第1の部分と第2の部分を有し、なお、第2の部分は前記第2の側面に隣設され、前記液体通路は第1の側面から主に前記液体を収容する前記液体収容凹部に貫通する。また、前記気体通路と液体収容凹部はそれぞれに第1の側面及び第2の側面から気液混合凹部に貫通し、なお、液体収容凹部は前記第1の部分で気液混合凹部と連通する。前記密閉素子は液体収容凹部の第2の部分の開口部に設けられ、スロットル素子に関しては、前記密閉素子に接合され、前記液体収容凹部の第1の部分に突き出すことにより、第1の部分の横断面積を縮減する。なお、前記ノズルは、気液混合凹部における液体と気体がノズルの内部空間に入れるように、気液混合凹部の開口部に接合されている。   According to an embodiment of the present invention, a gas-liquid mixing nozzle device is provided. The gas-liquid mixing nozzle device includes a base, a sealing element, a throttle element, and a nozzle. The base includes a first side surface, a second side surface, and a third side surface, and includes a gas passage and a liquid passage recessed in the first side surface, a liquid containing recess recessed in the second side surface, 3 further includes a gas-liquid mixing recess recessed in the side surface. The gas passage and the liquid passage respectively transmit gas and liquid, and the liquid storage recess has a first portion and a second portion that communicate with each other, and the second portion is located on the second side surface. Adjacently provided, the liquid passage penetrates from the first side surface to the liquid storage recess that mainly stores the liquid. In addition, the gas passage and the liquid storage recess respectively penetrate the gas-liquid mixing recess from the first side surface and the second side surface, and the liquid storage recess communicates with the gas-liquid mixing recess in the first portion. The sealing element is provided in the opening of the second portion of the liquid storage recess, and the throttle element is joined to the sealing element and protrudes into the first portion of the liquid storage recess, thereby Reduce the cross-sectional area. The nozzle is joined to the opening of the gas-liquid mixing recess so that the liquid and gas in the gas-liquid mixing recess can enter the internal space of the nozzle.

本発明は、スロットル素子を利用して液体における不純物が気液混合凹部に入る確率を下げ、さらに液体における不純物による堆積物を主にスロットル素子に付着させることを長所とする。従って、詰まった場合に、スロットル素子を取り外して洗浄するだけでよく、ノズル洗浄に比べて、スロットル素子の構造が比較的に簡単であるため、気液混合ノズル装置の洗浄保護のプロセスを縮減でき、さらにかなりの時間及びコストを節約する。   The present invention has an advantage that a throttle element is used to reduce the probability that impurities in the liquid enter the gas-liquid mixing recess, and deposits due to impurities in the liquid are mainly attached to the throttle element. Therefore, in the case of clogging, it is only necessary to remove and clean the throttle element. Compared with nozzle cleaning, the structure of the throttle element is relatively simple, so that the process of cleaning protection of the gas-liquid mixing nozzle device can be reduced. And save considerable time and cost.

本発明の観点を好ましく理解するように、対応する図面に合わせて下記詳細な説明を参照してください。工業の標準慣例によると、図面中の各種の特徴は比例によって示したものではないことに注意すべきである。実際に、下記実施例を明確に説明するために、各種の特徴のサイズを任意に拡大又は縮小することができる。関連する図面内容を下記のように説明する。   For a better understanding of the aspects of the invention, please refer to the following detailed description in conjunction with the corresponding drawings. It should be noted that according to industry standard practice, the various features in the drawings are not shown to scale. In fact, the size of the various features can be arbitrarily expanded or reduced to clearly illustrate the following examples. Related drawings will be described as follows.

本発明の一実施例による気液混合ノズル装置を示す断面略図である1 is a schematic cross-sectional view showing a gas-liquid mixing nozzle device according to an embodiment of the present invention. 本発明の一実施例による気液混合ノズル装置の、図1Aにおける切断線1B−1Bに沿って切断した断面を示す断面略図である。1B is a schematic cross-sectional view showing a cross section cut along the cutting line 1B-1B in FIG. 1A of the gas-liquid mixing nozzle device according to one embodiment of the present invention. 本発明の他の実施例による気液混合ノズル装置を示す断面略図である4 is a schematic cross-sectional view showing a gas-liquid mixing nozzle device according to another embodiment of the present invention. 本発明の他の実施例による気液混合ノズル装置の、図2Aにおける切断線2B−2Bに沿って切断した断面を示す断面略図である。It is a cross-sectional schematic diagram which shows the cross section cut | disconnected along the cutting line 2B-2B in FIG. 2A of the gas-liquid mixing nozzle apparatus by the other Example of this invention. 本発明の比較例による複数の気液混合ノズル装置の、異なる液体総流量に対応する水流量の分布均一性を示す曲線図である。It is a curve figure which shows the distribution uniformity of the water flow rate corresponding to a different total liquid flow rate of the some gas-liquid mixing nozzle apparatus by the comparative example of this invention. 本発明の実施例1による複数の気液混合ノズル装置の、異なる液体総流量に対応する水流量の分布均一性を示す曲線図である。It is a curve figure which shows the distribution uniformity of the water flow rate corresponding to a different total liquid flow rate of the some gas-liquid mixing nozzle apparatus by Example 1 of this invention. 本発明の実施例2による複数の気液混合ノズル装置の、異なる液体総流量に対応する水流量の分布均一性を示す曲線図である。It is a curve figure which shows the distribution uniformity of the water flow rate corresponding to a different total liquid flow rate of the some gas-liquid mixing nozzle apparatus by Example 2 of this invention. 本発明の実施例3による複数の気液混合ノズル装置の、異なる液体総流量に対応する水流量の分布均一性を示す曲線図である。It is a curve figure which shows the distribution uniformity of the water flow rate corresponding to a different total liquid flow rate of the some gas-liquid mixing nozzle apparatus by Example 3 of this invention.

図1Aは、本発明の一実施例による気液混合ノズル装置を示す断面略図である。気液混合ノズル装置100は、ベース102、密閉素子104、スロットル素子106、ノズル108を含む。本実施例において、ベース102は、第1の側面102a、第2の側面102b、第3の側面102cを含み、なお、ベース102が、本質上、正規な立方体であり、具体的に言うと、ベース102の各側面がすべて平面であり、その隣接する任意の二つの側面がすべてお互いに垂直する。しかしながら、その他の実施例において、ベースは、その他の幾何構造を有してよく、本実施例に限られず、例えば、ベースは、アーチ形の曲面を含んでよい。なお、適宜な強度を提供して、ノズル108を固定するために、ベース102は、金属の材質を選んでよい。さびによる腐蝕を避けるように、ベース102は、更にステンレスのような材質を選んでよい。   FIG. 1A is a schematic cross-sectional view showing a gas-liquid mixing nozzle device according to an embodiment of the present invention. The gas-liquid mixing nozzle device 100 includes a base 102, a sealing element 104, a throttle element 106, and a nozzle 108. In the present embodiment, the base 102 includes a first side surface 102a, a second side surface 102b, and a third side surface 102c, and the base 102 is essentially a regular cube. Specifically, Each side of the base 102 is all flat, and any two adjacent sides are all perpendicular to each other. However, in other embodiments, the base may have other geometric structures and is not limited to this embodiment, for example, the base may include an arcuate curved surface. In addition, in order to provide appropriate strength and fix the nozzle 108, the base 102 may be made of a metal material. In order to avoid corrosion due to rust, the base 102 may be further made of a material such as stainless steel.

図1Aに示すベース102には、気体通路200、液体通路300、液体収容凹部400、気液混合凹部500を更に含む。前記気体通路200と液体通路300がベース102の第1の側面102aに凹設され、なお、気体通路200と液体通路300がそれぞれに気体と液体を伝送する。特定の実施例において、気体通路200と液体通路300は、一つ又は複数の配管を利用して、それぞれに気体供給源と液体供給源に接合されてよく、気体と液体をノズル108に伝送する。また、気体通路200と液体通路300は、いかなる従来の方式を利用しても製造することができ、例えば、ドリルを用いてベース102の第1の側面102aで穿孔して気体通路200と液体通路300を製造することができる。   The base 102 shown in FIG. 1A further includes a gas passage 200, a liquid passage 300, a liquid storage recess 400, and a gas-liquid mixing recess 500. The gas passage 200 and the liquid passage 300 are recessed in the first side surface 102a of the base 102, and the gas passage 200 and the liquid passage 300 transmit gas and liquid to the first side surface 102a. In certain embodiments, the gas passage 200 and the liquid passage 300 may be joined to a gas supply source and a liquid supply source, respectively, using one or more pipes, and transmit the gas and liquid to the nozzle 108. . Further, the gas passage 200 and the liquid passage 300 can be manufactured using any conventional method. For example, the gas passage 200 and the liquid passage are formed by drilling the first side surface 102a of the base 102 using a drill. 300 can be manufactured.

液体収容凹部400は、ベース102の第2の側面102bに凹設され、図1Aに示すようにお互いに連通する第1の部分402と第2の部分404を有する。なお、前記第2の部分404が第2の側面102bに隣設され、第1の部分402が第2の側面102bから比較的離れる。なお、前記液体通路300がベース102の第1の側面102aから当該液体収容凹部400に貫通する。より具体的に言うと、液体通路300が第1の側面102aから液体収容凹部400の第2の部分404に貫通する。しかしながら、その他の実施例において、液体通路300が第1の側面102aから液体収容凹部400の第1の部分402に貫通してもよい。図1Aに示す実施例において、液体収容凹部400は、主に、液体通路300に提供された液体を収容することに用いる。特定の実施例において、液体収容凹部400は、前記穿孔等のようないかなる従来の方式を利用しても製造することができる。   The liquid storage recess 400 is provided in the second side surface 102b of the base 102, and has a first portion 402 and a second portion 404 that communicate with each other as shown in FIG. 1A. The second portion 404 is provided adjacent to the second side surface 102b, and the first portion 402 is relatively separated from the second side surface 102b. The liquid passage 300 penetrates from the first side surface 102 a of the base 102 to the liquid storage recess 400. More specifically, the liquid passage 300 penetrates from the first side surface 102 a to the second portion 404 of the liquid storage recess 400. However, in other embodiments, the liquid passage 300 may penetrate the first portion 402 of the liquid containing recess 400 from the first side surface 102a. In the embodiment shown in FIG. 1A, the liquid storage recess 400 is mainly used to store the liquid provided in the liquid passage 300. In certain embodiments, the liquid containing recess 400 can be manufactured using any conventional method, such as the perforation.

前記気液混合凹部500に関しては、ベース102の第3の側面102cに凹設される。前記気体通路200と液体収容凹部400が、それぞれにベース102の第1の側面102aと第2の側面102bから当該気液混合凹部500に貫通し、なお、液体収容凹部400が第1の部分402で当該気液混合凹部500と連通する。図1Aに示す実施例において、気体通路200からの気体と液体通路300からの液体は、当該気液混合凹部500で充分に混合された後で、ノズル108に入る。   The gas / liquid mixing recess 500 is recessed in the third side surface 102 c of the base 102. The gas passage 200 and the liquid storage recess 400 penetrate the gas-liquid mixing recess 500 from the first side surface 102a and the second side surface 102b of the base 102, respectively. To communicate with the gas-liquid mixing recess 500. In the embodiment shown in FIG. 1A, the gas from the gas passage 200 and the liquid from the liquid passage 300 enter the nozzle 108 after being sufficiently mixed in the gas-liquid mixing recess 500.

前記密閉素子104が前記液体収容凹部400の第2の部分404の開口部404aに設けられる。なお、密閉素子104は、主にスロットル素子106に堆積した堆積物を洗浄しやすくするように設けられる。特定の実施例において、密閉素子104は、螺合又は係合の方式によって、液体収容凹部400の第2の部分404の開口部404aに設けられてよい。前記密閉素子104の設置方式(螺合又は係合)が当業者に熟知されていることを考慮して、ここで更に説明しない。   The sealing element 104 is provided in the opening 404 a of the second portion 404 of the liquid containing recess 400. The sealing element 104 is provided mainly to facilitate cleaning of deposits accumulated on the throttle element 106. In a particular embodiment, the sealing element 104 may be provided in the opening 404a of the second portion 404 of the liquid containing recess 400 by a screwing or engagement scheme. In view of the familiarity of those skilled in the art of the installation (screwing or engagement) of the sealing element 104, it will not be further described here.

図1Aに示す実施例において、スロットル素子106が密閉素子104に接合され、なお、スロットル素子106が更に液体収容凹部400の第1の部分402に突き出すことによって、当該第1の部分402の横断面積を縮減する。また、図1Aと図1Bを共に参照すれば、図1Bは図1Aにおける切断線1B−1Bに沿って切断した断面を示す断面略図である。この実施例において、スロットル素子106が柱状体であり、この柱状体と液体収容凹部400の第1の部分402の壁面が、図1Bに示すような流路を形成し、しかも液体収容凹部400に収容された液体が、この流路を介して気液混合凹部500に入る。本実施例において、スロットル素子106が溶接方式で密閉素子104に接合される。しかしながら、特定の実施例において、前記スロットル素子106が螺合方式又は係合方式によって密閉素子104に接合されてもよい。   In the embodiment shown in FIG. 1A, the throttle element 106 is joined to the sealing element 104, and the throttle element 106 further protrudes into the first portion 402 of the liquid containing recess 400, so that the cross-sectional area of the first portion 402 is increased. Reduce. Referring to FIGS. 1A and 1B, FIG. 1B is a schematic cross-sectional view showing a cross section taken along the cutting line 1B-1B in FIG. 1A. In this embodiment, the throttle element 106 is a columnar body, and the wall surface of the columnar body and the first portion 402 of the liquid containing recess 400 forms a flow path as shown in FIG. The accommodated liquid enters the gas-liquid mixing recess 500 through this flow path. In this embodiment, the throttle element 106 is joined to the sealing element 104 by a welding method. However, in a specific embodiment, the throttle element 106 may be joined to the sealing element 104 by a screwing method or an engagement method.

図1Aに示す実施例におけるノズル108に関しては、気液混合凹部500の開口部500aに接合され、つまりベース102の第3の側面102cに接合され、これによって、気液混合凹部500における液体と気体がノズル108の内部空間108aに入ることができる。   As for the nozzle 108 in the embodiment shown in FIG. 1A, it is joined to the opening 500a of the gas-liquid mixing recess 500, that is, it is joined to the third side surface 102c of the base 102. Can enter the internal space 108 a of the nozzle 108.

また、図1Aに示す実施例において、液体収容凹部400の第1の部分402は、第1の部分402の口径を第2の部分404から離れる方向(矢印Aに示すように)に沿って次第に縮減させる傾斜面402aを更に含む。なお、気体通路200は、第3の部分202と、前記ベース102の第1の側面102aに隣設された第4の部分204とを更に有し、第3の部分202で気液混合凹部500と連通する。前記気体通路200の第3の部分202は、第3の部分202の口径を第4の部分204から離れる方向(矢印Bに示すように)に沿って次第に縮減させる傾斜面202aを更に含む。なお、前記傾斜面402aと傾斜面202aは、主に液体収容凹部400の第1の部分402を流れる液体と気体通路200の第3の部分202を流れる気体を速めるように設けられ、それにより気液混合凹部500に入った液体と気体をより迅速に混合させる。   Further, in the embodiment shown in FIG. 1A, the first portion 402 of the liquid containing recess 400 gradually increases in the direction of the first portion 402 away from the second portion 404 (as indicated by the arrow A). It further includes an inclined surface 402a to be reduced. The gas passage 200 further includes a third portion 202 and a fourth portion 204 provided adjacent to the first side surface 102 a of the base 102, and the gas-liquid mixing recess 500 is formed in the third portion 202. Communicate with. The third portion 202 of the gas passage 200 further includes an inclined surface 202a that gradually reduces the diameter of the third portion 202 along the direction away from the fourth portion 204 (as indicated by arrow B). The inclined surface 402a and the inclined surface 202a are provided so as to expedite the liquid flowing mainly through the first portion 402 of the liquid containing recess 400 and the gas flowing through the third portion 202 of the gas passage 200. The liquid and gas that have entered the liquid mixing recess 500 are mixed more rapidly.

図2Aは、本発明の他の実施例による気液混合ノズル装置を示す断面略図であり、図2Bは、本発明の他の実施例による気液混合ノズル装置の、図2Aにおける切断線2B−2Bに沿って切断した断面を示す断面略図である。図2Aと図2Bの実施例において、気液混合ノズル装置100aにおける各構造の変化及び各構造の間の相対的な関係は、すべて図1Aと図1Bに示す気液混合ノズル装置100と似ているため、ここで詳しく述べず、以下、異なる部分だけについて説明する。   FIG. 2A is a schematic cross-sectional view illustrating a gas-liquid mixing nozzle device according to another embodiment of the present invention, and FIG. 2B is a cross-sectional view of the gas-liquid mixing nozzle device according to another embodiment of the present invention. It is a cross-sectional schematic diagram which shows the cross section cut | disconnected along 2B. 2A and 2B, the structure of the gas-liquid mixing nozzle device 100a and the relative relationship between the structures are all similar to those of the gas-liquid mixing nozzle device 100 shown in FIGS. 1A and 1B. Therefore, only the different parts will be described below.

気液混合ノズル装置100aでは、スロットル素子110で前記気液混合ノズル装置100において柱状体となるスロットル素子106を置き換える。このスロットル素子110は、端部110a、第1の通路110b、第2の通路110cを有するチョーク・ライン(choke line)である。前記第1の通路110bが端部110aに凹設され、第2の通路110cがこのチョーク・ラインの側面に凹設され、この第1の通路110bと第2の通路110cが図2Aに示すように流路を形成する。また、前記チョーク・ラインの側面が液体収容凹部400の第1の部分402の壁面と接触するため、図2Bに示すような断面構造を形成し、それにより液体収容凹部400からの液体は第1の通路110bを介して気液混合凹部500に入る。より具体的に言うと、液体収容凹部400に収容された液体は、先ず、第2の通路110cを介して第1の通路110bに入り、次に、第1の通路110bを介して気液混合凹部500に入り、つまり液体収容凹部400における液体が第1の通路110bと第2の通路110cが形成した流路を介して気液混合凹部500に入る。   In the gas-liquid mixing nozzle device 100a, the throttle element 110 replaces the throttle element 106 which is a columnar body in the gas-liquid mixing nozzle device 100. The throttle element 110 is a choke line having an end 110a, a first passage 110b, and a second passage 110c. The first passage 110b is recessed in the end portion 110a, the second passage 110c is recessed in the side surface of the choke line, and the first passage 110b and the second passage 110c are as shown in FIG. 2A. A flow path is formed in Further, since the side surface of the choke line is in contact with the wall surface of the first portion 402 of the liquid containing recess 400, a cross-sectional structure as shown in FIG. 2B is formed, so that the liquid from the liquid containing recess 400 is the first. Enters the gas-liquid mixing recess 500 through the passage 110b. More specifically, the liquid stored in the liquid storage recess 400 first enters the first passage 110b via the second passage 110c, and then gas-liquid mixing via the first passage 110b. Entering the recess 500, that is, the liquid in the liquid storage recess 400 enters the gas-liquid mixing recess 500 through the flow path formed by the first passage 110b and the second passage 110c.

また、複数の前記気液混合ノズル装置100又は気液混合ノズル装置100aを垂直に排列し、且つこれらの気液混合ノズル装置100又は気液混合ノズル装置100aを同一の気体供給源及び同一の液体供給源に並列連結すると、静水圧差によって液体流量の分配が不均一になる現象を有効に抑制でき、その原理は、下記のように説明される。   A plurality of the gas-liquid mixing nozzle devices 100 or gas-liquid mixing nozzle devices 100a are arranged vertically, and these gas-liquid mixing nozzle devices 100 or gas-liquid mixing nozzle devices 100a are arranged in the same gas supply source and in the same liquid. When connected in parallel to the supply source, the phenomenon of non-uniform distribution of the liquid flow rate due to the hydrostatic pressure difference can be effectively suppressed, and the principle is explained as follows.

液体が口径の小さい流路(図1Aと図2Aに示すような第1の部分402と気液混合凹部500が接合する口径の小さい流路)を通過する場合を考えると、液体がこの口径の小さい流路を通過する前後は、エネルギー保存となり、数学公式で以下のように表示する。   Considering the case where the liquid passes through a small-diameter channel (a small-diameter channel where the first portion 402 and the gas-liquid mixing recess 500 are joined as shown in FIGS. 1A and 2A), the liquid has this caliber. Before and after passing through a small flow path, energy is preserved, and is displayed as follows in a mathematical formula.

Figure 2012166185
Figure 2012166185

なお、

Figure 2012166185
が内部エネルギーであり、
Figure 2012166185
が圧力エネルギーであり、
Figure 2012166185
が運動エネルギーであり、
Figure 2012166185
が位置エネルギーであり、
Figure 2012166185
がシステム(つまり口径の小さい流路)仕事量であり、
Figure 2012166185
が熱量入力であり、かつ
Figure 2012166185
が定数である。 In addition,
Figure 2012166185
Is internal energy,
Figure 2012166185
Is pressure energy,
Figure 2012166185
Is kinetic energy,
Figure 2012166185
Is the potential energy,
Figure 2012166185
Is the work load of the system (that is, the small diameter channel),
Figure 2012166185
Is the heat input, and
Figure 2012166185
Is a constant.

前記システムを簡略化して、その中の位置エネルギー、システム仕事量、熱量入力、摩擦力による内部エネルギーの損失を考慮しないと、以上の式(1)は、下記のように簡略化された。   If the system is simplified and the loss of internal energy due to potential energy, system work, heat input, and frictional force therein is not taken into account, the above equation (1) is simplified as follows.

Figure 2012166185
Figure 2012166185

Figure 2012166185
とし、仮に流体が前記口径の小さい流路に入る前の流路の断面積は、口径の小さい流路の断面積よりはるかに大きいとすれば、つまり仮に
Figure 2012166185
とすることができるため、以上の式(2)は、下記のように簡略化された。
Figure 2012166185
If the cross-sectional area of the flow path before the fluid enters the small-diameter flow path is much larger than the cross-sectional area of the small-diameter flow path, that is,
Figure 2012166185
Therefore, the above equation (2) has been simplified as follows.

Figure 2012166185
Figure 2012166185

また、

Figure 2012166185
であり、なお、
Figure 2012166185
が液体流量であり、
Figure 2012166185
が口径の小さい流路の断面積である。従って、以上の式(3)は、下記のように調整することができる。 Also,
Figure 2012166185
And,
Figure 2012166185
Is the liquid flow rate,
Figure 2012166185
Is the cross-sectional area of the channel having a small diameter. Therefore, the above equation (3) can be adjusted as follows.

Figure 2012166185
Figure 2012166185

以上の式(4)から分かるように、口径の小さい流路の断面積が小さければ小さいほど、同様な流量を維持するために、システムに必要な圧力差

Figure 2012166185
が大きい。なお、口径の小さい流路の断面積が小さければ小さいほど、圧力差
Figure 2012166185
の変動による流量の変化
Figure 2012166185
も小さい。 As can be seen from the above equation (4), the smaller the cross-sectional area of the small-diameter channel, the smaller the pressure difference required for the system to maintain the same flow rate.
Figure 2012166185
Is big. Note that the smaller the cross-sectional area of the channel with the smaller diameter, the smaller the pressure difference.
Figure 2012166185
In flow rate due to fluctuations
Figure 2012166185
Is also small.

上述した原理によれば、以上のように複数の気液混合ノズル装置100又は気液混合ノズル装置100aを垂直に排列した場合に、その内のスロットル素子106又はスロットル素子110によって、第1の部分402の横断面積を縮小して、複数の気液混合ノズル装置100又は気液混合ノズル装置100aの間における静水圧差による流量変異を下げることができる。従って、複数の気液混合ノズル装置100又は気液混合ノズル装置100aからなるシステムの流量分布変異の全体を許容範囲に抑えることができる。   According to the above-described principle, when a plurality of gas-liquid mixing nozzle devices 100 or gas-liquid mixing nozzle devices 100a are arranged vertically as described above, the first portion is controlled by the throttle element 106 or the throttle element 110 therein. The cross-sectional area of 402 can be reduced to reduce the flow rate variation due to the hydrostatic pressure difference between the plurality of gas-liquid mixing nozzle devices 100 or the gas-liquid mixing nozzle devices 100a. Therefore, the entire flow distribution variation of the system composed of the plurality of gas-liquid mixing nozzle devices 100 or the gas-liquid mixing nozzle devices 100a can be suppressed within an allowable range.

以下、実際の実施例を比較例と比較することにより、前記原理を応用した後で発生した効果をより具体的に説明する。   Hereinafter, the effects generated after applying the above principle will be described more specifically by comparing actual examples with comparative examples.

(比較例)
まず、12本の気液混合ノズル装置を垂直に排列し、かつ番号をつけ、この12本の気液混合ノズル装置の配置高さ及び対応する静水圧差は、以下の表に示した。なお、高さ及び静水圧差がすべて番号12の気液混合ノズル装置を基準とした。

Figure 2012166185
(Comparative example)
First, 12 gas-liquid mixing nozzle devices were arranged vertically and numbered, and the arrangement height of the 12 gas-liquid mixing nozzle devices and the corresponding hydrostatic pressure difference are shown in the following table. In addition, the height and the hydrostatic pressure difference were all based on the gas-liquid mixing nozzle device having the number 12.
Figure 2012166185

この比較例において、気液混合ノズルは、その構造が図1A及び図1Bに示す構造に似ているが、スロットル素子106を含まず、なお、図1Aに示す第1の部分402と気液混合凹部500が接合する口径の小さい流路が口径6.6mmであることで異なる。   In this comparative example, the gas-liquid mixing nozzle is similar in structure to the structure shown in FIGS. 1A and 1B, but does not include the throttle element 106, and the first portion 402 shown in FIG. The flow path having a small diameter to which the recess 500 is joined is different in that the diameter is 6.6 mm.

この12本の気液混合ノズルを同一の気体供給源及び同一の液体供給源に並列連結し、次に、この12本の気液混合ノズルに、6種類の異なる液体総流量を与え、なお、液体総流量がそれぞれに25リットル/分(l/min)、37l/min、50l/min、75l/min、100l/min、125l/minである。異なる液体総流量を与える場合に、各気液混合ノズル装置に対応する水流量を図3のよに記録した。   The twelve gas-liquid mixing nozzles are connected in parallel to the same gas supply source and the same liquid supply source, and then six different liquid total flow rates are given to the twelve gas-liquid mixing nozzles, The total liquid flow rates are 25 l / min (l / min), 37 l / min, 50 l / min, 75 l / min, 100 l / min, and 125 l / min, respectively. When different liquid total flow rates were given, the water flow rate corresponding to each gas-liquid mixing nozzle device was recorded as shown in FIG.

図3から分かるように、気液混合ノズル装置が上方に近づけば近づくほど、水流量が小さい。また、総流量が低ければ低いほど、複数の気液混合ノズル装置の間の相対的異なりも大きい。なお、総流量を25l/min及び37l/minに下げた場合に、それぞれ4本及び2本の気液混合ノズル装置が液体を噴き出せないようになった。   As can be seen from FIG. 3, the closer the gas-liquid mixing nozzle device is to the upper side, the smaller the water flow rate. In addition, the lower the total flow rate, the greater the relative difference between the plurality of gas-liquid mixing nozzle devices. It should be noted that when the total flow rate was lowered to 25 l / min and 37 l / min, the four and two gas-liquid mixing nozzle devices could not eject the liquid, respectively.

(実施例1)
実施例1において、採用された関連実験条件は、前記比較例と同様であるが、実施例1の気液混合ノズル装置が図1A及び図1Bに示すような構造を採用し、つまりスロットル素子106を含むことで比較例と異なる。また、スロットル素子106が直経5mmの柱状体である。
Example 1
In the first embodiment, the related experimental conditions adopted are the same as in the comparative example, but the gas-liquid mixing nozzle device of the first embodiment employs the structure shown in FIGS. 1A and 1B, that is, the throttle element 106. It differs from a comparative example by including. The throttle element 106 is a columnar body having a straight diameter of 5 mm.

実験結果を図4に記録する。図4から分かるように、複数の気液混合ノズル装置の水流量の分布均一性は、前記スロットル素子106が取り付けていない比較例よりかなり優れている。しかしながら、総流量を25l/minに下げた場合に、まだ2本の気液混合ノズル装置が液体を噴き出せない。   The experimental results are recorded in FIG. As can be seen from FIG. 4, the water flow distribution uniformity of the plurality of gas-liquid mixing nozzle devices is considerably superior to the comparative example in which the throttle element 106 is not attached. However, when the total flow rate is lowered to 25 l / min, the two gas-liquid mixing nozzle devices still cannot eject the liquid.

(実施例2)
実施例2において、採用された関連実験条件は、前記比較例と同様であるが、実施例2の気液混合ノズル装置が図2A及び図2Bに示すような構造を採用し、つまりチョーク・ラインであるスロットル素子110を含み、このチョーク・ラインの第1の通路110bの口径が4mmであることで比較例と異なる。
(Example 2)
In Example 2, the related experimental conditions adopted are the same as in the comparative example, but the gas-liquid mixing nozzle device of Example 2 adopts the structure shown in FIGS. 2A and 2B, that is, the choke line. This is different from the comparative example in that the diameter of the first passage 110b of the choke line is 4 mm.

実験結果を図5に記録する。図4及び図5から分かるように、その内、複数の気液混合ノズル装置の水流量の分布均一性が前記実施例1に似ている。   The experimental results are recorded in FIG. As can be seen from FIGS. 4 and 5, the water flow distribution uniformity of the plurality of gas-liquid mixing nozzle devices is similar to that of the first embodiment.

(実施例3)
実施例3において、採用された関連実験条件は、前記比較例と同様であるが、実施例3の気液混合ノズル装置が図2A及び図2Bに示すような構造を採用し、つまりチョーク・ラインであるスロットル素子110を含み、このチョーク・ラインの第1の通路110bの口径が3mmであることで比較例と異なる。
(Example 3)
In Example 3, the related experimental conditions adopted are the same as in the comparative example, but the gas-liquid mixing nozzle device of Example 3 adopts the structure shown in FIGS. 2A and 2B, that is, the choke line. This is different from the comparative example in that the diameter of the first passage 110b of the choke line is 3 mm.

実験結果を図6に記録する。図4、図5及び図6から分かるように、図4及び図5に示す複数の気液混合ノズル装置の水流量の分布均一性に比べて、実施例3は、更に向上した。総流量が25l/minに下がっても、上方に位置する番号1及び2の気液混合ノズル装置は、依然として液体を噴き出すことができる。   The experimental results are recorded in FIG. As can be seen from FIGS. 4, 5, and 6, Example 3 was further improved as compared to the water flow distribution uniformity of the plurality of gas-liquid mixing nozzle devices shown in FIGS. 4 and 5. Even when the total flow rate is lowered to 25 l / min, the gas-liquid mixing nozzle devices of Nos. 1 and 2 located above can still eject the liquid.

本発明では、実施形態を前述の通り開示したが、これは本発明を限定するものではなく、当業者であれば、本発明の精神と領域から逸脱しない限り、多様の変動や修正を加えることができ、従って本発明の保護範囲は、後の特許請求の範囲の記載によって限定される。   In the present invention, the embodiment has been disclosed as described above, but this does not limit the present invention, and various changes and modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention is limited by the description of the following claims.

100…気液混合ノズル装置、 102…ベース、 102b…第2の側面、 104…密閉素子、 108…ノズル、 110…スロットル素子、 110b…第1の通路、 200…気体通路、 202a…傾斜面、 300…液体通路、 402…第1の部分、 404…第2の部分、 500…気液混合凹部、 1B-1B…切断線、 A…矢印、 100a…気液混合ノズル装置、 102a…第1の側面、 102c…第3の側面、 106…スロットル素子、 108a…内部空間、 110a…端部、 110c…第2の通路、 202…第3の部分、 204…第4の部分、 400…液体収容凹部、 402a…傾斜面、 404a…開口部、 500a…開口部、 2B-2B…切断線、 B…矢印


DESCRIPTION OF SYMBOLS 100 ... Gas-liquid mixing nozzle apparatus, 102 ... Base, 102b ... 2nd side surface, 104 ... Sealing element, 108 ... Nozzle, 110 ... Throttle element, 110b ... First passage, 200 ... Gas passage, 202a ... Inclined surface, DESCRIPTION OF SYMBOLS 300 ... Liquid channel | path, 402 ... 1st part, 404 ... 2nd part, 500 ... Gas-liquid mixing recessed part, 1B-1B ... Cutting line, A ... Arrow, 100a ... Gas-liquid mixing nozzle apparatus, 102a ... 1st Side surface 102c ... Third side surface 106 ... Throttle element 108a ... Internal space 110a ... End portion 110c ... Second passage 202 ... Third portion 204 ... Fourth portion 400 ... Liquid containing recess 402a ... inclined surface, 404a ... opening, 500a ... opening, 2B-2B ... cutting line, B ... arrow


Claims (7)

第1の側面、第2の側面、第3の側面を含み、前記第1の側面に凹設され、気体を伝送する気体通路と、前記第1の側面に凹設され、液体を伝送する液体通路と、前記第2の側面に凹設され、お互いに連通する第1の部分と第2の部分を有し、前記第2の部分が前記第2の側面に隣設され、前記液体通路が前記第1の側面から貫通し、前記液体を収容する液体収容凹部と、前記第3の側面に凹設され、前記気体通路と前記液体収容凹部がそれぞれに前記第1の側面及び前記第2の側面から貫通し、前記液体収容凹部が前記第1の部分で前記気液混合凹部と連通する気液混合凹部と、を更に含むベースと、
前記液体収容凹部の前記第2の部分の開口部に設けられる密閉素子と、
前記密閉素子に接合され、前記液体収容凹部の前記第1の部分に突き出すことにより、前記第1の部分の横断面積を縮減するスロットル素子と
前記気液混合凹部における前記液体と前記気体をその内部空間に入れるように、前記気液混合凹部の開口部に接合されているノズルと
を備える気液混合ノズル装置。
A first side surface, a second side surface, and a third side surface, including a gas passage that is recessed in the first side surface and transmits gas, and a liquid that is recessed in the first side surface and transmits liquid A passage, and a first portion and a second portion that are recessed in the second side surface and communicate with each other, the second portion is adjacent to the second side surface, and the liquid passage is A liquid containing recess that penetrates from the first side surface and stores the liquid, and is recessed in the third side surface, and the gas passage and the liquid containing recess are respectively provided in the first side surface and the second side surface. A base that further includes a gas-liquid mixing recess that penetrates from a side surface, and wherein the liquid-receiving recess communicates with the gas-liquid mixing recess in the first portion;
A sealing element provided at the opening of the second portion of the liquid-containing recess;
A throttle element that is joined to the sealing element and protrudes into the first portion of the liquid containing recess, thereby reducing a cross-sectional area of the first portion; and the liquid and the gas in the gas-liquid mixing recess A gas-liquid mixing nozzle device comprising: a nozzle joined to an opening of the gas-liquid mixing recess so as to enter the space.
前記スロットル素子が柱状体であり、前記柱状体と前記液体収容凹部の前記第1の部分の壁面が流路を形成し、前記液体収容凹部に収容された前記液体が前記流路を介して前記気液混合凹部に入る請求項1に記載の気液混合ノズル装置。   The throttle element is a columnar body, and the wall surface of the columnar body and the first portion of the liquid storage recess forms a flow path, and the liquid stored in the liquid storage recess passes through the flow path. The gas-liquid mixing nozzle device according to claim 1 which enters a gas-liquid mixing crevice. 前記スロットル素子は、端部と、前記端部に凹設される第1の通路と、チョーク・ラインの側面に凹設される第2の通路とを有するチョーク・ラインであり、前記第1の通路と前記第2の通路が流路を形成し、前記チョーク・ラインの側面が前記液体収容凹部の前記第1の部分の壁面と接触し、
前記液体収容凹部に収容された前記液体が前記流路を介して前記気液混合凹部に入る請求項1に記載の気液混合ノズル装置。
The throttle element is a choke line having an end portion, a first passage recessed at the end portion, and a second passage recessed at a side surface of the choke line, A passage and the second passage form a flow path, and a side surface of the choke line is in contact with a wall surface of the first portion of the liquid containing recess;
The gas-liquid mixing nozzle device according to claim 1, wherein the liquid stored in the liquid storage recess enters the gas-liquid mixing recess via the flow path.
前記スロットル素子が溶接方式、螺合方式、係合方式からなる群から選ばれる方式で前記密閉素子に接合される請求項1に記載の気液混合ノズル装置。   The gas-liquid mixing nozzle device according to claim 1, wherein the throttle element is joined to the sealing element by a method selected from the group consisting of a welding method, a screwing method, and an engagement method. 前記密閉素子が、螺合方式及び係合方式からなる群から選ばれる方式で前記液体収容凹部の前記第2の部分の開口部に設けられる請求項1に記載の気液混合ノズル装置。   2. The gas-liquid mixing nozzle device according to claim 1, wherein the sealing element is provided at an opening of the second portion of the liquid storage recess by a method selected from the group consisting of a screwing method and an engagement method. 前記液体収容凹部の前記第1の部分が、前記第1の部分の口径を前記第2の部分から離れる方向に沿って次第に縮減させる傾斜面を更に含む請求項1に記載の気液混合ノズル装置。   2. The gas-liquid mixing nozzle device according to claim 1, wherein the first portion of the liquid containing recess further includes an inclined surface that gradually reduces the diameter of the first portion along a direction away from the second portion. . 前記気体通路が、第3の部分と、前記第1の側面に隣設される第4の部分とを更に有し、前記第3の部分で前記気液混合凹部と連通し、
前記第3の部分が、前記第3の部分の口径を前記第4の部分から離れる方向に沿って次第に縮減させる傾斜面を更に含む請求項1に記載の気液混合ノズル装置。
The gas passage further includes a third portion and a fourth portion provided adjacent to the first side surface, and communicates with the gas-liquid mixing recess at the third portion;
2. The gas-liquid mixing nozzle device according to claim 1, wherein the third portion further includes an inclined surface that gradually reduces the diameter of the third portion along a direction away from the fourth portion.
JP2011088825A 2011-02-09 2011-04-13 Gas-liquid mixing nozzle device Expired - Fee Related JP5039222B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100104312A TWI458559B (en) 2011-02-09 2011-02-09 Gas-liquid nozzle device
TW100104312 2011-02-09

Publications (2)

Publication Number Publication Date
JP2012166185A true JP2012166185A (en) 2012-09-06
JP5039222B2 JP5039222B2 (en) 2012-10-03

Family

ID=46970884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088825A Expired - Fee Related JP5039222B2 (en) 2011-02-09 2011-04-13 Gas-liquid mixing nozzle device

Country Status (2)

Country Link
JP (1) JP5039222B2 (en)
TW (1) TWI458559B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6559873B1 (en) * 2018-12-11 2019-08-14 三菱日立パワーシステムズ株式会社 Gas-liquid mixing device and exhaust gas desulfurization device equipped with gas-liquid mixing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127657A (en) * 1989-10-11 1991-05-30 Hashimoto Denki Co Ltd Mixer in two-pack pressure mixing sprayer for adhesive or the like
JP2001259359A (en) * 2000-03-16 2001-09-25 Sumitomo Seika Chem Co Ltd Exhaust gas treatment device
JP2006187707A (en) * 2005-01-05 2006-07-20 Hitachi Chem Co Ltd Two-fluid nozzle for cleaning and cleaning method and apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206676B2 (en) * 2002-03-07 2009-01-14 株式会社ササクラ Ozone mixing apparatus and ozone mixing method
JP2005296874A (en) * 2004-04-14 2005-10-27 Ikeuchi:Kk Supermicromist spray nozzle
TWM308794U (en) * 2006-06-20 2007-04-01 Shu-Huei Hung Nebulizer nozzle
TW201103636A (en) * 2009-07-31 2011-02-01 Hellen Entpr Co Ltd Two-fluid nozzle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127657A (en) * 1989-10-11 1991-05-30 Hashimoto Denki Co Ltd Mixer in two-pack pressure mixing sprayer for adhesive or the like
JP2001259359A (en) * 2000-03-16 2001-09-25 Sumitomo Seika Chem Co Ltd Exhaust gas treatment device
JP2006187707A (en) * 2005-01-05 2006-07-20 Hitachi Chem Co Ltd Two-fluid nozzle for cleaning and cleaning method and apparatus

Also Published As

Publication number Publication date
TW201233446A (en) 2012-08-16
JP5039222B2 (en) 2012-10-03
TWI458559B (en) 2014-11-01

Similar Documents

Publication Publication Date Title
US8365812B2 (en) Shell and tube heat exchanger
US20190314866A1 (en) Device and Method for Hydrodynamic Surface Cleaning Based on Micro-Hydropercussion Effect
JP5039222B2 (en) Gas-liquid mixing nozzle device
US4356131A (en) Circulating device for liquids containing long-chain molecules
JPS59501682A (en) Equipment for erosion treatment of solid surfaces by cavitation forming flow
JP4057555B2 (en) Fluid ejection device for surface treatment of flat panel display
CN103949349A (en) Apparatus for cleaning and discharging liquid in purifying case of oil smoke purifier
EP1957838B1 (en) Non-return valve
CN203908118U (en) Uniform distribution device, falling film evaporator and water chilling unit
CN203908116U (en) Uniform distribution device, falling film evaporator and water chilling unit
RU2523482C2 (en) Device for uniform fluid flows separation in chemical apparatuses to two or several flows
US7421757B1 (en) Pump valve mechanism
AT500633A2 (en) PULSATION DAMPENERS
US20150300862A1 (en) Fouling Resistant Flow Manifold
JP2020006350A (en) Gas-liquid contact device
CN212504090U (en) High-efficient deamination device of little efflux surface anti-scaling
DK2663409T3 (en) BUY A PIPE CLEANING TOOL
CN206793352U (en) Absorption tower for flue gas desulphurization system
Amin et al. Economic design of pipe-nozzle discharge lines delivering free jets
JP2018058008A (en) Gas-liquid contactor
Aly Improving the pipe culvert efficiency by using inclined headwalls
CN203174202U (en) Oil removal device for aluminum plate base used in production of CTP (Computer-to-print) plate
JPH0347918B2 (en)
CN203908119U (en) Uniform distribution device, falling film evaporator and water chilling unit
JP6761456B2 (en) Multi-stage distribution weir and distribution device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees