JP2007072141A - 画像形成方法、画像形成装置、プロセスカートリッジ - Google Patents

画像形成方法、画像形成装置、プロセスカートリッジ Download PDF

Info

Publication number
JP2007072141A
JP2007072141A JP2005258675A JP2005258675A JP2007072141A JP 2007072141 A JP2007072141 A JP 2007072141A JP 2005258675 A JP2005258675 A JP 2005258675A JP 2005258675 A JP2005258675 A JP 2005258675A JP 2007072141 A JP2007072141 A JP 2007072141A
Authority
JP
Japan
Prior art keywords
group
image forming
toner
electrostatic latent
latent image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005258675A
Other languages
English (en)
Inventor
Hiroshi Nakai
洋志 中井
Hitoshi Maruyama
仁志 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005258675A priority Critical patent/JP2007072141A/ja
Publication of JP2007072141A publication Critical patent/JP2007072141A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】 トナーを球形化した場合にもクリーニング不良が発生せず、かつ感光体摩耗も抑制され長期に渡って良好な画像を出力可能な画像形成方法、装置を提供する。
【解決手段】 静電潜像担持体に接触または近接させた帯電部材に交流成分を含む電圧を印加することによって生じる放電を利用して静電潜像担持体を帯電させ、静電潜像担持体上に形成された静電潜像をトナーにより現像し、この静電潜像担持体上の静電潜像を現像する画像形成方法において、静電潜像担持体の表面層に、少なくとも電荷輸送性構造を有しないラジカル重合性モノマーと電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋層を用い、かつトナーの添加剤が少なくとも1種の潤滑剤を含有し、潤滑剤の添加量A(重量%)と該トナーの円形度Bとの間に1≦A/(B−0.9)≦6の関係を成立させる。
【選択図】 なし

Description

本発明は、静電潜像担持体及び乾式現像剤を用いる画像形成方法、画像形成装置及びプロセスカートリッジに関する。
従来、電子写真プロセスを採用した画像形成装置においては、像担持体としての感光体表面を帯電させる帯電手段を有している。帯電手段で用いる帯電方式の一つとして、近接放電による帯電方式がある。これは、感光体表面に帯電部材を接触或いは非接触で近接させ、近接放電により感光体表面の帯電を行う方式である。
ところで近年、画像形成方法、装置において、高画質化、装置の小型化などがますます望まれる中、帯電装置も高画質化と小型化が課題となっている。このような課題に対して、像担持体に接触又は近接させた帯電部材を用いる近接放電方式を用いた帯電装置は、大掛かりな帯電装置を必要としないため有効である。
このような近接帯電方式では、帯電部材と感光体表面との微少な接触ムラ、あるいは非接触とした場合には帯電部材と感光体表面とのギャップ変動等により、感光体表面を均一に帯電させることが困難である。そのため近年では、直流(DC)成分に交流(AC)成分を重畳した、AC重畳帯電方式が多く用いられるようになっている。AC成分を重畳した近接帯電方式は、装置の小型化及び高画質化を実現できると同時に、帯電均一性を保ちながら帯電部材と感光体とを非接触にできることから、帯電部材自身の劣化も抑制することができるため、装置の小型化、高画質化、高耐久化に対しては非常に優位な技術であると言える。
しかしながら、こうしたAC重畳帯電は感光体表面を活性化させるため、感光体表面とトナーとの間の付着力が増加し、クリーニング性に対しては不利な構成である。さらに、近年では高画質の観点からトナーの小径化、球形化が進められており、さらにクリーニング性に対しての余裕度は低くなる一方である。
また近の検討から、近接放電による帯電方式は感光体表面を近傍に放電が集中するため、感光体表面を劣化させることが分かった。近接放電による感光体表面の劣化は機械的摺擦とは違い、感光体への当接部材がない場合においても発生する。
図1は、近接放電による感光体表面の劣化状態を調べるために、感光体表面に帯電部材のみを非接触状態で近接配置し、連続約150時間の帯電実験を行ったときの、感光体表面の膜厚の変化を測定した結果である。ここで使用した感光体は、表面の電荷輸送層にバインダー樹脂としてポリカーボネートを含有させた有機感光体であり、感光体に対して当接する部材を全て取り除き、DCバイアスにACバイアスを重畳した電圧が印加された非接触帯電ローラを用いて帯電を行った。この結果、感光体表面の膜の削れ量が次第に多くなり、感光体の膜厚が次第に減少している事実がわかった。膜厚減少のメカニズムについては現在検討中であり明らかにはなってはいないが、膜厚が減少した感光体を分析したところ、感光体を構成するポリカーボネートが分解されたと考えられるカルボン酸などが検出された。このように、近接放電によって感光体を構成する成分が分解されたと考えられる物質が検出されたことから、感光体の膜厚減少のメカニズムとしては、次のようなことが考えられる。
図2(a)、(b)は、近接放電によって感光体1表面が劣化する場合の感光体表面の状態を、帯電ローラ2aを感光体表面から微小ギャップをもって対向させた状態を例にとって示した説明図である。近接放電を行うと、感光体表面の放電領域では放電により発生した粒子(オゾン、電子、励起分子、イオン、プラズマなど)のエネルギーが感光体表面の電荷輸送層1aに照射される。このエネルギーが感光体表面を構成する分子の結合エネルギーに共鳴、吸収され、図2(a)に示すように、電荷輸送層1aは、樹脂分子鎖の切断による分子量低下、高分子鎖の絡み合い度の低下、樹脂の蒸発等の化学的劣化を生じる。このような近接放電による感光体の化学的劣化によって、感光体表面の電荷輸送層1aは次第にその膜厚を減少させてしまうと考えられる。このような状況下において、クリーニングブレード等で感光体表面を機械的に摺擦されると、感光体の摩耗がより一層促進されることになる。
このように、AC重畳帯電下ではクリーニング性、感光体摩耗の問題が顕著であり、これらを安定に両立させることが大きな課題となっている。
これらの課題に対する提案として、例えば特許文献7ではトナー中にステアリン酸亜鉛を0.01〜0.5部含有させる構成が開示されている。しかし、この構成ではトナー入力量が変動した場合に、感光体へのステアリン酸亜鉛の供給量が一定とならないため、特に感光体の化学的劣化に起因する摩耗に対して、効果を安定して得ることができない。
また、ステアリン酸亜鉛を一定に供給するための構成として、例えば特許文献4、特許文献6、特許文献2等には、感光体表面に固形状潤滑剤を塗布するための手段を設けた構成が開示されている。しかし、この構成ではトナー入力による塗布量の変動は少なくなるものの、別途に固形潤滑剤及び塗布手段が必要になることから、装置の小型化及び低コスト化に対して不利である。
さらに、摩耗を低減するための感光体側からのアプローチとしては、例えば特許文献8、特許文献6等には、硬化性のバインダー樹脂を用いることにより、感光体自身の耐摩耗性を向上させる構成が開示されている。しかしながら、これらの提案はAC重畳帯電下での使用を想定したものではなく、表面の変質についての考慮がなされていないため、クリーニング性との両立が困難である。
このように、電子写真プロセスの変化と共にシステム課題は多岐に渡ってきており、これらを簡便な方法で両立させるための構成は未だに提案されていないのが実状である。
特開2004−334092号公報 特開2004−334092号公報 特開2004−302452号公報 特開2002−055580号公報 特開2002−244487号公報 特開平08−262779号公報 特開平11−184340号公報 特開平05−216249号公報 特開2004−333961号公報
本発明は前記諸問題点にかんがみ、簡便な構成で装置の小型化、低コスト化を実現し、さらにトナーを球形化した場合にもクリーニング不良が発生せず、かつ感光体摩耗も抑制され長期に渡って良好な画像を出力可能な画像形成方法、画像形成装置及びプロセスカートリッジを提供することを目的とする。
本発明者らは鋭意検討の結果、感光体の耐摩耗性と表面維持の機能を切り分け、耐摩耗性については感光体側で、表面維持については潤滑剤で達成する構成とし、かつ潤滑剤の供給は必要最小限に行うことで、簡便な構成でシステムの安定を達成できることを見いだし本発明に至った。
本発明の請求項1に係る画像形成方法によれば、静電潜像担持体に接触または近接して設けられた帯電部材に交流成分を含む電圧を印加することによって生じる放電を利用して前記静電潜像担持体を帯電させ、前記静電潜像担持体上に形成された静電潜像をトナーにより現像し、ブレードを用いて前記静電潜像担持体のクリーニングを行い、前記静電潜像担持体上の静電潜像を現像する画像形成方法において、該静電潜像担持体の表面層に、少なくとも電荷輸送性構造を有しないラジカル重合性モノマーと電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋層を用い、かつ該トナーの添加剤が少なくとも1種の潤滑剤を含有し、該潤滑剤の添加量A(重量%)と該トナーの円形度Bとの間に
1≦A/(B−0.9)≦6
の関係が成立していることを特徴とする。
同請求項2に係るものは、請求項1に記載の画像形成方法において、前記トナーの円形度Bが0.94以上であるものを用いることを特徴とする。
同請求項3に係るものは、請求項1または2に記載の画像形成方法において、前記トナーに添加される潤滑剤に脂肪酸金属塩を用いることを特徴とする。
同請求項4に係るものは、請求項3に記載の画像形成方法において、前記脂肪酸金属塩にステアリン酸亜鉛を用いることを特徴とする。
同請求項5に係るものは、請求項1から4のいずれかに記載の画像形成方法において、前記電荷輸送性構造を有しないラジカル重合性モノマーに3官能以上のものを用い、前記電荷輸送性構造を有するラジカル重合性化合物に1官能のものを用いることを特徴とする。
同請求項6に係るものは、請求項5に記載の画像形成方法において、前記電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)を、250以下とすることを特徴とする。
同請求項7に係るものは、請求項1から6のいずれかに記載の画像形成方法において、前記電荷輸送性構造を有しないラジカル重合性モノマーの官能基に、アクリロイルオキシ基及び/又はメタクリロイルオキシ基を用いることを特徴とする。
同請求項8に係るものは、請求項1から7のいずれかに記載の画像形成方法において、前記電荷輸送性構造を有するラジカル重合性化合物の官能基に、アクリロイルオキシ基又はメタクリロイルオキシ基を用いることを特徴とする。
同請求項9に係る画像形成装置は、請求項1から8のいずれかに記載の画像形成方法を実施可能なことを特徴とする。
また本発明の請求項10に係る画像形成装置は、静電潜像担持体と、該静電潜像担持体に接触または近接して設けられた帯電部材に交流成分を含む電圧を印加することによって生じる放電を利用して前記静電潜像担持体を帯電させる帯電装置と、前記静電潜像担持体上に形成された静電潜像をトナーにより現像する現像装置と、ブレードを用いて前記静電潜像担持体のクリーニングを行うクリーニング装置を少なくとも備え、静電潜像担持体上の静電潜像を現像する画像形成装置において、該静電潜像担持体の表面層が、少なくとも電荷輸送性構造を有しないラジカル重合性モノマーと電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋層からなり、かつ該トナーの添加剤が少なくとも1種の潤滑剤を含有し、該潤滑剤の添加量A(重量%)と該トナーの円形度Bとの間に
1≦A/(B−0.9)≦6
の関係が成立していることを特徴とする。
同請求項11に係るものは、請求項10に記載の画像形成装置において、前記トナーの円形度Bが0.94以上であることを特徴とする。
同請求項12に係るものは、請求項10または11に記載の画像形成装置において、前記トナーに添加される潤滑剤が、脂肪酸金属塩であることを特徴とする。
同請求項13に係るものは、請求項12に記載の画像形成装置において、前記脂肪酸金属塩がステアリン酸亜鉛であることを特徴とする。
同請求項14に係るものは、請求項10から13のいずれかに記載の画像形成装置において、前記電荷輸送性構造を有しないラジカル重合性モノマーが3官能以上であり、前記電荷輸送性構造を有するラジカル重合性化合物が1官能であることを特徴とする。
同請求項15に係るものは、請求項14に記載の画像形成装置において、前記電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする。
同請求項16に係るものは、請求項10から15のいずれかに記載の画像形成装置において、前記電荷輸送性構造を有しないラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする。
同請求項17に係るものは、請求項10から16のいずれかに記載の画像形成装置において、前記電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする。
同請求項18に係るプロセスカートリッジは、請求項10から17のいずれかに記載の画像形成装置において用いるものであって、前記帯電装置、前記静電潜像担持体、前記現像装置及び前記クリーニング装置を一体にして備え、かつ画像形成装置本体に着脱自在としてなることを特徴とする。
同請求項19に係る画像形成装置は、請求項10から17のいずれかに記載の画像形成装置において、前記帯電装置、前記静電潜像担持体、前記現像装置及び前記クリーニング装置を一体にしてプロセスカ−トリッジとして画像形成装置本体に着脱自在としてなることを特徴とする。
本発明は、トナーの円形度及びトナーへの潤滑剤添加量が本発明の範囲内にあるため、長期に渡って良好なクリーニング性が維持されている。また、感光体表面層が耐摩耗に優れる架橋層からなっているため、トナーから潤滑剤が供給される画像部、潤滑剤が供給されない非画像部のいずれにおいても、感光体摩耗を抑制することができる。
以下本発明を実施するための最良の形態を、図等を参照して説明する。
まず、本発明における、システム安定化達成のための考え方について述べる。本発明においては、AC重畳帯電下での耐摩耗性を感光体材料で実現しているため、従来の考え方のように摩耗抑制のために潤滑剤を供給する必要はなく、クリーニング性を維持するためだけに供給すれば良い。クリーニング性はトナーの円形度が高い(=球形に近い)ほど不利になるため、円形度に応じた潤滑剤量が必要となる。
また、クリーニング性はトナー入力量が増加するほど不利となるため、トナー入力量に応じて潤滑剤の供給量が増加すれば良く、逆に言うとトナー入力のない箇所では潤滑剤は必要とされない。よって、感光体全面への潤滑剤供給が不要であるため、別個の固形潤滑剤及び塗布手段を設置することなく、トナーからの潤滑剤供給によっても安定したシステムが達成可能となる。
以下、個々の構成要素についてさらに詳細に説明する。
まず、本発明に用いられる感光体について説明する。
(感光体の層構成について)
感光体層構成の一例として以下の構成が挙げられる。
(1)導電性支持体/感光層/表面層
(2)導電性支持体/電荷発生層/表面層
(3)導電性支持体/電荷発生層/電荷輸送層/表面層
(4)導電性支持体/電荷輸送層/電荷発生層/表面層
(表面層について)
本発明における感光体の表面層は、加熱又は光エネルギー照射によって硬化されており、有機溶媒に対し不溶性である。感光体の表面層は、加熱又は光エネルギー照射によって硬化されることにより、長期繰り返し使用によっても感光体の機械的劣化が少なく、また感光体表面の耐傷性が顕著に向上し、高画質化並びに高安定化を実現することができる。
本発明において用いられる硬化性樹脂としては、熱硬化樹脂、光硬化樹脂、電子線硬化樹脂等が挙げられ、中でも紫外線硬化樹脂は硬度が高く、耐傷性に優れるため特に有効である。例えば、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、シリコーン樹脂等が好ましく用いられる。
しかし、感光体の静電特性を満足させるためには、表面層に電荷輸送機能を付与する必要がある。電荷輸送機能を持たせないと残留電位上昇や感度劣化を引き起こし、感光体の画質安定性を大きく低下させてしまう。表面層に電荷輸送機能を付与するためには、表面層に導電性を示す物質、例えば導電性フィラー等を分散させることによって実現できる場合もあるが、表面粗さが増加したり、静電特性が不安定となるため、本発明の効果が十分に得られなくなる恐れがある。また、架橋を阻害し十分な硬度が得られなくなる恐れもあり、本発明においては好ましくない。
本発明においては、電荷輸送構造を有さないラジカル重合性モノマーと電荷輸送性構造を有するラジカル重合性化合物とを硬化させることにより、静電特性の安定化と同時に、本発明における効果を十分に得ることが可能となり好ましい。これに対し、官能基を有しない低分子電荷輸送物質を表面層中に含有させた場合は、その相溶性の低さから低分子電荷輸送物質の析出や白濁現象が起こり、表面層の機械的強度の低下、残留電位上昇、感度劣化、表面粗さの増加等により画像欠陥の発生等を引き起こす。従って、表面層に電荷輸送機能を持たせるには、電荷輸送機能と官能基を有するラジカル重合性化合物を用い、ラジカル重合性モノマーと硬化させることが好ましい。
電荷輸送性構造を有するラジカル重合性化合物は、2官能以上のものを用いることも感光体表面の平滑性、静電特性、あるいは耐久性を損なわない範囲であれば可能である。しかし、2官能以上の電荷輸送性構造を有するラジカル重合性化合物を含有すると架橋結合密度を高めることはできるが、嵩高い正孔輸送性化合物が多数の結合で絡み合うため、表面層に歪みが生じ硬化反応が不均一となる。このため外部応力に対する回復力が局部的に低下し、耐摩耗性のバラツキが大きくなる。これにより局部的に凹凸が生じることによって本発明の効果が低減する恐れがある。従って、2官能以上の電荷輸送性構造を有するラジカル重合性化合物よりも、1官能の電荷輸送性構造を有するラジカル重合性化合物を用いた方が好ましい。
前記電荷輸送機能を有するラジカル重合性化合物と硬化させる電荷輸送性構造を有さないラジカル重合性モノマーとしては、1官能及び2官能のラジカル重合性モノマーを用いてもよいが、表面層中の架橋結合が希薄となり飛躍的な耐傷性向上が達成されない場合がある。本発明の感光体においては、表面層に3官能以上のラジカル重合性モノマーを用いることがより好ましく、これにより3次元の網目構造が発達し、架橋度並びに弾性変位率が高くなる傾向を示し、弾性変位率と硬度とを両立しやすくなる。このように、多官能のラジカル重合性モノマーを用いて硬化させることにより、感光体の機械的な耐摩耗性のみならず、耐傷性を顕著に向上させることが可能となり、本発明における画質安定化において有効かつ有用である。
よって、本発明においては、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化した表面層が最も好ましく、これにより静電特性の安定化と耐傷性の著しい向上が実現され、高耐久化を実現することが可能となる。
次に、本発明の表面層塗布液の構成材料について説明する。本発明に用いられる電荷輸送性を有しない3官能以上のラジカル重合性モノマーとは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を3個以上有するモノマーを指す。このラジカル重合性官能基としては、炭素−炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。
これらラジカル重合性官能基としては、例えば、下記に示す1−置換エチレン官能基、1,1−置換エチレン官能基が挙げられる。
(1)1−置換エチレン官能基としては、例えば以下の式で表わされる官能基が挙げられる。
CH2=CH−X1−
(ただし、式中、X1は、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、−CO−基、−COO−基、−CON(R10)−基(R10は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表す。)、または−S−基を表わす。)
これらの置換基を具体的に例示すると、ビニル基、スチリル基、2−メチル−1,3−ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリロイルアミノ基、ビニルチオエーテル基等が挙げられる。
1,1−置換エチレン官能基としては、例えば以下の式で表わされる官能基が挙げられる。
CH2=CH(Y)−X2−
(ただし、式中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、−COOR11基(R11は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または−CONR12R13(R12およびR13は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表わし、互いに同一または異なっていてもよい。)
また、X2は、前記式
CH2=CH−X1−
のX1と同一の置換基及び単結合、アルキレン基を表わす。ただし、Y、X2の少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。
これらの置換基を具体的に例示すると、α−塩化アクリロイルオキシ基、メタクリロイルオキシ基、α−シアノエチレン基、α−シアノアクリロイルオキシ基、α−シアノフェニレン基、メタクリロイルアミノ基等が挙げられる。
なお、これらX1、X2、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
これらのラジカル重合性官能基の中では、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用であり、3個以上のアクリロイルオキシ基を有する化合物は、例えば水酸基がその分子中に3個以上ある化合物とアクリル酸(塩)、アクリル酸ハライド、アクリル酸エステルを用い、エステル反応あるいはエステル交換反応させることにより得ることができる。また、3個以上のメタクリロイルオキシ基を有する化合物も同様にして得ることができる。また、ラジカル重合性官能基を3個以上有する単量体中のラジカル重合性官能基は、同一でも異なっても良い。
電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとしては、以下のものが例示されるが、これらの化合物に限定されるものではない。
すなわち、本発明において使用する前記ラジカル重合性モノマーとしては、例えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、HPA変性トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、PO変性トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、HPA変性トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、グリセロールトリアクリレート、ECH変性グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、PO変性グリセロールトリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、アルキル変性ジペンタエリスリトールテトラアクリレート、アルキル変性ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、EO変性リン酸トリアクリレート、2,2,5,5,−テトラヒドロキシメチルシクロペンタノンテトラアクリレートなどが挙げられ、これらは、単独又は2種類以上を併用しても差し支えない。
また、本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとしては、表面層中に緻密な架橋結合を形成するために官能基割合(分子量/官能基数)が250以下であることが望ましい。これにより、表面層の弾性変位率や硬度が向上し、感光体表面の耐傷性が高まる傾向が見られている。また、表面層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合は、表面層全量に対し20〜80重量%、好ましくは30〜70重量%であり、実質的には塗工液固形分中の3官能以上のラジカル重合性モノマーの割合に依存する。モノマー成分が20重量%未満では表面層の3次元架橋結合密度が少なく、従来の熱可塑性バインダー樹脂を用いた場合に比べ飛躍的な耐傷性向上が達成されない場合がある。また、80重量%を超えると電荷輸送性化合物の含有量が低下し、静電特性の劣化、特に残留電位上昇や感度劣化が生じる。使用されるプロセスによって要求される耐摩耗性や静電特性が異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物とは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しており、且つ1個のラジカル重合性官能基を有する化合物を指す。このラジカル重合性官能基としては、先のラジカル重合性モノマーで示したものが挙げられ、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用である。また、電荷輸送性構造としてはトリアリールアミン構造が有効であり、中でも下記一般式(化学式1)又は(化学式2)の構造で示される化合物を用いた場合、感度、残留電位等の静電特性が良好に持続される。

(式中、R1は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR7(R7は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR8R9(R8及びR9は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar1、Ar2は置換もしくは未置換のアリーレン基を表わし、同一であっても異なってもよい。Ar3、Ar4は置換もしくは未置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル基、アルキレンオキシカルボニル基を表わす。m、nは0〜3の整数を表わす。)
以下に、前記一般式(化学式1、化学式2)の具体例を示す。
前記一般式(化学式1、化学式2)において、R1の置換基中、アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。
R1の置換基のうち、特に好ましいものは水素原子、メチル基である。
置換もしくは未置換のAr3、Ar4はアリール基であり、アリール基としては縮合多環式炭化水素基、非縮合環式炭化水素基及び複素環基が挙げられる。
この縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。
非縮合環式炭化水素基としては、ベンゼン、ジフェニルエーテル、ポリエチレンジフェニルエーテル、ジフェニルチオエーテル及びジフェニルスルホン等の単環式炭化水素化合物の1価基、あるいはビフェニル、ポリフェニル、ジフェニルアルカン、ジフェニルアルケン、ジフェニルアルキン、トリフェニルメタン、ジスチリルベンゼン、1,1−ジフェニルシクロアルカン、ポリフェニルアルカン、及びポリフェニルアルケン等の非縮合多環式炭化水素化合物の1価基、あるいは9,9−ジフェニルフルオレン等の環集合炭化水素化合物の1価基が挙げられる。
複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オキサジアゾール、及びチアジアゾール等の1価基が挙げられる。
また、前記Ar3、Ar4で表わされるアリール基は例えば以下に示すような置換基を有してもよい。
(1)ハロゲン原子、シアノ基、ニトロ基等。
(2)アルキル基、好ましくは、C1〜C12とりわけC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチル基、エチル基、n−ブチル基、i−プロピル基、t−ブチル基、s−ブチル基、n−プロピル基、トリフルオロメチル基、2−ヒドロキエチル基、2−エトキシエチル基、2−シアノエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−フェニルベンジル基等が挙げられる。
(3)アルコキシ基(−OR2)であり、R2は前記(2)で定義したアルキル基を表わす。具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
(4)アリールオキシ基であり、アリール基としてはフェニル基、ナフチル基が挙げられる。これは、C1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メトキシフェノキシ基、4−メチルフェノキシ基等が挙げられる。
(5)アルキルメルカプト基またはアリールメルカプト基であり、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。
(6)

(式中、R3及びR4は各々独立に水素原子、前記(2)で定義したアルキル基、またはアリール基を表わす。アリール基としては、例えばフェニル基、ビフェニル基又はナフチル基が挙げられ、これらはC1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。R3及びR4は共同で環を形成してもよい)具体的には、アミノ基、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(トリール)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。
(7)メチレンジオキシ基、又はメチレンジチオ基等のアルキレンジオキシ基又はアルキレンジチオ基等が挙げられる。
(8)置換又は無置換のスチリル基、置換又は無置換のβ−フェニルスチリル基、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等が挙げられる。
前記Ar1、Ar2で表わされるアリーレン基としては、前記Ar3、Ar4で表されるアリール基から誘導される2価基である。
前記Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。
置換もしくは無置換のアルキレン基としては、C1〜C12、好ましくはC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n−ブチレン基、i−プロピレン基、t−ブチレン基、s−ブチレン基、n−プロピレン基、トリフルオロメチレン基、2−ヒドロキエチレン基、2−エトキシエチレン基、2−シアノエチレン基、2−メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4−クロロフェニルエチレン基、4−メチルフェニルエチレン基、4−ビフェニルエチレン基等が挙げられる。
置換もしくは無置換のシクロアルキレン基としては、C5〜C7の環状アルキレン基であり、これらの環状アルキレン基にはフッ素原子、水酸基、C1〜C4のアルキル基、C1〜C4のアルコキシ基を有していても良い。具体的にはシクロヘキシリデン基、シクロへキシレン基、3,3−ジメチルシクロヘキシリデン基等が挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ、プロピレンオキシ、エチレングリコール、プロピレングリコール、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコールを表わし、アルキレンエーテル基アルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。
ビニレン基は、

で表わされる。R5は水素、アルキル基(前記(2)で定義されるアルキル基と同じ)、アリール基(前記Ar3、Ar4で表わされるアリール基と同じ)、aは1または2、bは1〜3を表わす。
前記Zは置換もしくは未置換のアルキレン基、置換もしくは無置換のアルキレンエーテル基、アルキレンオキシカルボニル基を表わす。
置換もしくは未置換のアルキレン基としは、前記Xのアルキレン基と同様なものが挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、前記Xのアルキレンエーテル基が挙げられる。
アルキレンオキシカルボニル基としては、カプロラクトン変性基が挙げられる。
また、本発明の1官能の電荷輸送構造を有するラジカル重合性化合物としてさらに好ましくは、下記一般式(化学式5)の構造の化合物が挙げられる。

(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、

を表わす。)
前記一般式(化学式5)で表わされる化合物としては、Rb、Rcの置換基として、特にメチル基、エチル基である化合物が好ましい。
本発明で用いる前記一般式(化1〜化3)、特に化学式5の1官能の電荷輸送構造を有するラジカル重合性化合物は、炭素−炭素間の二重結合が両側に開放されて重合するため、末端構造とはならず、連鎖重合体中に組み込まれ、3官能以上のラジカル重合性モノマーとの重合で架橋形成された重合体中では、高分子の主鎖中に存在し、かつ主鎖−主鎖間の架橋鎖中に存在(この架橋鎖には1つの高分子と他の高分子間の分子間架橋鎖と、1つの高分子内で折り畳まれた状態の主鎖のある部位と主鎖中でこれから離れた位置に重合したモノマー由来の他の部位とが架橋される分子内架橋鎖とがある)するが、主鎖中に存在する場合であってもまた架橋鎖中に存在する場合であっても、鎖部分から懸下するトリアリールアミン構造は、窒素原子から放射状方向に配置する少なくとも3つのアリール基を有し、バルキーであるが、鎖部分に直接結合しておらず鎖部分からカルボニル基等を介して懸下しているため立体的位置取りに融通性ある状態で固定されているので、これらトリアリールアミン構造は重合体中で相互に程よく隣接する空間配置が可能であるため、分子内の構造的歪みが少なく、また、電子写真感光体の表面層とされた場合に、電荷輸送経路の断絶を比較的免れた分子内構造を採りうるものと推測される。
本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物の具体例を以下に示すが、これらの構造の化合物に限定されるものではない。











また、本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物は、表面層の電荷輸送性能を付与するために重要で、この成分は表面層全量に対し20〜80重量%、好ましくは30〜70重量%である。この成分が20重量%未満では表面層の電荷輸送性能が充分に保てず、繰り返しの使用で感度低下、残留電位上昇などの電気特性の劣化が現れる。また、80重量%を超えると電荷輸送構造を有しない3官能モノマーの含有量が低下し、架橋結合密度の低下を招き高い耐摩耗性が発揮されない。使用されるプロセスによって要求される電気特性や耐摩耗性が異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の表面層は、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものが好ましいが、もちろん1官能及び2官能のラジカル重合性モノマー及びラジカル重合性オリゴマーを用いたり、あるいは併用させることもできる。これらのラジカル重合性モノマー、オリゴマーとしては、公知のものが利用できる。
1官能のラジカルモノマーとしては、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマーなどが挙げられる。
2官能のラジカル重合性モノマーとしては、例えば、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、EO変性ビスフェノールAジアクリレート、EO変性ビスフェノールFジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられる。
機能性モノマーとしては、例えば、オクタフルオロペンチルアクリレート、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2−パーフルオロイソノニルエチルアクリレートなどのフッ素原子を置換したもの、特公平5−60503号公報、特公平6−45770号公報記載のシロキサン繰り返し単位:20〜70のアクリロイルポリジメチルシロキサンエチル、メタクリロイルポリジメチルシロキサンエチル、アクリロイルポリジメチルシロキサンプロピル、アクリロイルポリジメチルシロキサンブチル、ジアクリロイルポリジメチルシロキサンジエチルなどのポリシロキサン基を有するビニルモノマー、アクリレート及びメタクリレートが挙げられる。
ラジカル重合性オリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。
また、本発明の表面層に前記硬化系樹脂を用いる場合、必要に応じて架橋反応を効率よく進行させるために表面層中に重合開始剤を使用してもよい。
熱重合開始剤としては、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(パーオキシベンゾイル)ヘキシン−3、ジ−t−ブチルベルオキサイド、t−ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイドなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4,4’−アゾビス−4−シアノ吉草酸などのアゾ系開始剤が挙げられる。
光重合開始剤としては、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−2−モルフォリノ(4−メチルチオフェニル)プロパン−1−オン、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、などのアセトフェノン系またはケタール系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、などのベンゾインエーテル系光重合開始剤、ベンゾフェノン、4−ヒドロキシベンゾフェノン、o−ベンゾイル安息香酸メチル、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルフェニールエーテル、アクリル化ベンゾフェノン、1,4−ベンゾイルベンゼン、などのベンゾフェノン系光重合開始剤、2−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン、などのチオキサントン系光重合開始剤、その他の光重合開始剤としては、エチルアントラキノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,4−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、メチルフェニルグリオキシエステル、9,10−フェナントレン、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、が挙げられる。また、光重合促進効果を有するものを単独または前記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4,4‘−ジメチルアミノベンゾフェノン、などが挙げられる。
これらの重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100重量部に対し、0.5〜40重量部、好ましくは1〜20重量部である。
さらに、本発明の塗工液は必要に応じて各種可塑剤(応力緩和や接着性向上の目的)、レベリング剤、ラジカル反応性を有しない低分子電荷輸送物質などの添加剤が含有できる。これらの添加剤は公知のものが使用可能であり、可塑剤としてはジブチルフタレート、ジオクチルフタレート等の一般の樹脂に使用されているものが利用可能で、その使用量は塗工液の総固形分に対し20重量%以下、好ましくは10%以下に抑えられる。また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが利用でき、その使用量は塗工液の総固形分に対し3重量%以下が適当である。これらの添加量が必要以上に多くなると、硬化を阻害したり、表面に析出したり、塗膜が白濁化したりすることがあり、感光体の耐傷性や耐摩耗性に大きな影響を及ぼす恐れがあるため、必要最小量に留める必要がある。
本発明の表面層は、各種ラジカル重合性化合物等を含有する塗工液を塗布、硬化することにより形成される。かかる塗工液は、ラジカル重合性モノマーが液体である場合、これに他の成分を溶解して塗布することも可能であるが、必要に応じて溶媒により希釈して塗布される。このとき用いられる溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラヒドロフラン、ジオキサン、プロピルエーテルなどのエーテル系、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系、ベンゼン、トルエン、キシレンなどの芳香族系、メチルセロソルブ、エチルセロソルブ、セロソルブアセテートなどのセロソルブ系などが挙げられる。これらの溶媒は、単独または2種以上を混合して用いてもよい。溶媒による希釈率は組成物の溶解性、塗工法、目的とする膜厚により変わり、任意である。塗布は、浸漬塗工法やスプレーコート、ビードコート、リングコート法などを用いて行うことができる。
塗工液の希釈溶媒については、下層(感光層、電荷輸送層あるいは電荷発生層)を容易に溶解する溶媒を多量に用いると下層の樹脂バインダーや低分子電荷輸送物質などの組成物が表面層に混入し、硬化反応の妨げになるばかりでなく、塗工液中に予め非硬化材料を多量に含有させた場合と同様な状態となり、表面の不均一硬化が発生する。逆に、下層を全く溶解しない溶媒を使用した場合、表面層と下層の接着性が低下し、硬化反応時の体積収縮から表面層にクレーター状のはじきが現れ、感光体の表面粗さが増大したり、低い弾性変位率の下層が部分的に露出する。これらの対策としては、混合溶媒を使用し下層の溶解性をコントロールする、液組成や塗工法により塗工表面層に含有される溶媒量を低減する、下層に高分子電荷輸送物質などを用い下層成分の混入を抑える、下層と表面層の間に溶解性の低い中間層や良好な接着性の中間層を設ける、などが挙げられる。
本発明においては、かかる塗工液を塗布後、外部からエネルギーを与え硬化させ、表面層を形成するものが好ましいが、このとき用いられる外部エネルギーとしては熱、光、放射線がある。熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用い塗工表面側あるいは支持体側から加熱することによって行なわれる。加熱温度は100℃以上、170℃以下が好ましく、100℃未満では反応速度が遅く、完全に反応が終了しない。170℃より高温では反応が不均一に進行し表面層中に大きな歪みが発生する。硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、さらに100℃以上に加温し反応を完結させる方法も有効である。光のエネルギーとしては主に紫外光に発光波長をもつ高圧水銀灯やメタルハライドランプなどのUV照射光源が利用できるが、ラジカル重合性含有物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。照射光量は50mW/cm以上、1000mW/cm以下が好ましく、50mW/cm未満では硬化反応に時間を要する。1000mW/cmより強いと反応の進行が不均一となり、表面層の荒れが激しくなる。放射線のエネルギーとしては電子線を用いるものが挙げられる。これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さから熱及び光のエネルギーを用いたものが有用である。
本発明の表面層においては、静電特性を維持するため嵩高い電荷輸送性構造を含有させ、且つ高強度化のため架橋結合密度を高める必要がある。この様な表面層塗工後の硬化にあたっては、非常に高いエネルギーを外部から加え急激に反応を進めると、硬化が不均一に進行し弾性変位率τeのばらつきが大きくなり、本発明の有効性が低下する恐れがある。このため加温条件、光の照射強度、重合開始剤量により反応速度制御が可能な熱や光の外部エネルギーを用いたものが好ましい。
本発明における感光体表面層を得るための具体的な手法について例示すると、例えば、塗工液として、3つのアクリロイルオキシ基を有するアクリレートモノマーと、一つのアクリロイルオキシ基を有するトリアリールアミン化合物を使用する場合、アクリレート化合物に加え、重合開始剤をアクリレート化合物全量に対し3〜10重量%添加し、さらに溶媒を加えて塗工液を調製する。例えば、表面層の下層となる電荷輸送層において、電荷輸送物質としてトリアリールアミン系ドナー、及びバインダー樹脂として、ポリカーボネートを使用し、表面層をスプレー塗工により形成する場合、前記塗工液の溶媒としては、テトラヒドロフラン、2−ブタノン、酢酸エチル等が好ましく、その使用割合は、アクリレート化合物全量に対し2倍量〜8倍量である。
次いで、例えば、アルミシリンダー等の支持体上に、下引き層、電荷発生層、前記電荷輸送層を順次積層した感光体上に、前記調製した塗工液をスプレー等により塗布する。その後、比較的低温で短時間乾燥し(25〜80℃、1〜10分間)、UV照射あるいは加熱して硬化させる。UV照射の場合、メタルハライドランプ等を用いるが、照度は50mW/cm以上、1000mW/cm以下が好ましく、例えば200mW/cmのUV光を照射する場合、多方向から均一に20秒程度照射すればよい。このときドラム温度は50℃を超えないように制御する。熱硬化の場合、加熱温度は100〜170℃が好ましく、例えば加熱手段として送風型オーブンを用い、加熱温度を150℃に設定した場合、加熱時間は20分〜3時間である。硬化終了後は、残留溶媒低減のため100〜150℃で10〜30分加熱して、本発明の感光体を得る。
表面層が電荷輸送層の表面部分である場合、前述の表面層作製方法に記載したように、かかる電荷輸送層の下層部分上に本発明のラジカル重合性組成物を含有する塗工液を塗布、必要に応じて乾燥後、熱や光の外部エネルギーにより硬化反応を開始させ、表面層が形成される。このとき、表面層の膜厚は、1〜20μm、好ましくは2〜10μmである。1μmより薄いと膜厚ムラによって耐久性がバラツキ、20μmより厚いと電荷輸送層全体の膜厚が厚くなり電荷の拡散から画像の再現性が低下する。
(中間層について)
本発明の感光体においては、表面層が感光層の表面部分となる場合、表面層への下層成分の混入を抑え、あるいは下層との接着性を改善する目的で中間層を設けることが可能である。中間層には、一般にバインダー樹脂を主成分として用いる。これら樹脂としては、ポリアミド、アルコール可溶性ナイロン、水溶性ポリビニルブチラール、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。中間層の形成法としては、前述のごとく一般に用いられる塗工法が採用される。なお、中間層の厚さは0.05〜2μm程度が適当である。
(導電性支持体について)
導電性支持体としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいはアルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理を施した管などを使用することができる。また、特開昭52−36016号公報に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体として用いることができる。
この他、前記支持体上に導電性粉体を適当なバインダー樹脂に分散して塗工したものについても、本発明の導電性支持体として用いることができる。この導電性粉体としては、カーボンブラック、アセチレンブラック、また、アルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などが挙げられる。また、同時に用いられるバインダー樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂が挙げられる。このような導電性層は、これらの導電性粉体とバインダー樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
さらに、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、ポリテトラフロロエチレン系フッ素樹脂などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体として良好に用いることができる。
(感光層について)
次に感光層について説明する。感光層は積層構造でも単層構造でもよい。積層構造の場合には、感光層は電荷発生機能を有する電荷発生層と電荷輸送機能を有する電荷輸送層とから構成される。また、単層構造の場合には、感光層は電荷発生機能と電荷輸送機能を同時に有する層である。以下、積層構造の感光層及び単層構造の感光層のそれぞれについて述べる。
(電荷発生層について)
電荷発生層は、電荷発生機能を有する電荷発生物質を主成分とする層で、必要に応じてバインダー樹脂を併用することもできる。電荷発生物質としては、無機系材料と有機系材料を用いることができる。無機系材料には、結晶セレン、アモルファス・セレン、セレン−テルル、セレン−テルル−ハロゲン、セレン−ヒ素化合物や、アモルファス・シリコン等が挙げられる。アモルファス・シリコンにおいては、ダングリングボンドを水素原子、ハロゲン原子でターミネートしたものや、ホウ素原子、リン原子等をドープしたものが良好に用いられる。
一方、有機系材料としては、公知の材料を用いることができる。例えば、金属フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、オキサジアゾール骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾール骨格を有するアゾ顔料、ジスチリルカルバゾール骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料などが挙げられる。これらの電荷発生物質は、単独または2種以上の混合物として用いることができる。
電荷発生層に必要に応じて用いられるバインダー樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。これらのバインダー樹脂は、単独または2種以上の混合物として用いることができる。バインダー樹脂の量は、電荷発生物質100重量部に対し0〜500重量部、好ましくは10〜300重量部が適当である。バインダー樹脂の添加は、分散前あるいは分散後どちらでも構わない。
電荷発生層を形成する方法には、真空薄膜作製法と溶液分散系からのキャスティング法とが大きく挙げられる。前者の方法には、真空蒸着法、グロー放電分解法、イオンプレーティング法、スパッタリング法、反応性スパッタリング法、CVD法等が用いられ、上述した無機系材料、有機系材料が良好に形成できる。また、後者のキャスティング法によって電荷発生層を設けるには、上述した無機系もしくは有機系電荷発生物質を必要ならばバインダー樹脂と共にテトラヒドロフラン、ジオキサン、ジオキソラン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、シクロペンタノン、アニソール、キシレン、メチルエチルケトン、アセトン、酢酸エチル、酢酸ブチル等の溶媒を用いてボールミル、アトライター、サンドミル、ビーズミル等により分散し、分散液を適度に希釈して塗布することにより形成できる。また、必要に応じて、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のレベリング剤を添加することができる。塗布は、浸漬塗工法やスプレーコート、ビードコート、リングコート法などを用いて行なうことができる。
以上のようにして設けられる電荷発生層の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.05〜2μmである。
(電荷輸送層について)
電荷輸送層は、電荷輸送機能を有する層で、電荷輸送物質及びバインダー樹脂を主成分とする層である。電荷輸送物質としては、正孔輸送物質と電子輸送物質とがある。電子輸送物質としては、たとえばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ジフェノキノン誘導体などの電子受容性物質が挙げられる。これらの電子輸送物質は、単独または2種以上の混合物として用いることができる。
正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等、その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
バインダー樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。また、バインダー樹脂として、電荷輸送機能を有する高分子電荷輸送物質、例えば、アリールアミン骨格やベンジジン骨格やヒドラゾン骨格やカルバゾール骨格やスチルベン骨格やピラゾリン骨格等を有するポリカーボネート、ポリエステル、ポリウレタン、ポリエーテル、ポリシロキサン、アクリル樹脂等の高分子材料やポリシラン骨格を有する高分子材料等を用いることも可能であり、有用である。
電荷輸送物質の量はバインダー樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。但し、高分子電荷輸送物質を用いる場合は、単独でもバインダー樹脂との併用も可能である。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。これらは単独で使用しても2種以上混合して使用しても良い。
また、必要により可塑剤、レベリング剤を添加することもできる。電荷輸送層に用いられる可塑剤としては、ジブチルフタレート、ジオクチルフタレート等、一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、バインダー樹脂100重量部に対して0〜30重量部程度が適当である。電荷輸送層に併用できるレベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが使用され、その使用量は、バインダー樹脂100重量部に対して0〜1重量部程度が適当である。
電荷輸送層の膜厚は解像度・応答性の点から、30μm以下とすることが好ましく、25μm以下がより好ましい。下限値に関しては、使用するシステム(特に帯電電位等)に異なるが、5μm以上が好ましい。
(感光層が単層の場合について)
単層構造の感光層は電荷発生機能と電荷輸送機能を同時に有する層である。感光層は電荷発生物質および電荷輸送物質およびバインダー樹脂を適当な溶剤に溶解ないし分散し、これを塗布、乾燥することによって形成できる。また、必要により可塑剤やレベリング剤、酸化防止剤等を添加することもできる。
バインダー樹脂としては先に電荷輸送層で挙げたバインダー樹脂のほかに、電荷発生層で挙げたバインダー樹脂を混合して用いてもよい。もちろん、先に挙げた高分子電荷輸送物質も良好に使用できる。バインダー樹脂100重量部に対する電荷発生物質の量は5〜40重量部が好ましく、電荷輸送物質の量は0〜190重量部が好ましく、さらに好ましくは50〜150重量部である。感光層は、電荷発生物質、バインダー樹脂を電荷輸送物質とともにテトラヒドロフラン、ジオキサン、ジクロロエタン、シクロヘキサン等の溶媒を用いて分散機等で分散した塗工液を、浸漬塗工法やスプレーコート、ビードコート、リングコートなどで塗工して形成できる。感光層の膜厚は、5〜25μm程度が適当である。
(下引き層について)
本発明の感光体においては、導電性支持体と感光層との間に下引き層を設けることができる。下引き層は一般には樹脂を主成分とするが、これらの樹脂はその上に感光層を溶剤で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。また、下引き層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてもよい。
これらの下引き層は、前述の感光層の如く適当な溶媒及び塗工法を用いて形成することができる。さらに本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の下引き層には、Al2O3を陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物やSiO、SnO、TiO、ITO、CeO等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。下引き層の膜厚は0〜5μmが適当である。
(各層への酸化防止剤の添加について)
また本発明においては、耐環境性の改善のため、とりわけ、感度低下、残留電位の上昇を防止する目的で、表面層、感光層、電荷発生層、電荷輸送層、下引き層、中間層等の各層に酸化防止剤を添加することができる。
本発明に用いることができる酸化防止剤として、下記のものが挙げられる。
(フェノール系化合物)
2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス−(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’−ビス(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアッシド]クリコ−ルエステル、トコフェロール類などである。
(パラフェニレンジアミン類)
N−フェニル−N’−イソプロピル−p−フェニレンジアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N,N’−ジ−イソプロピル−p−フェニレンジアミン、N,N’−ジメチル−N,N’−ジ−t−ブチル−p−フェニレンジアミンなどが挙げられる。
(ハイドロキノン類)
2,5−ジ−t−オクチルハイドロキノン、2,6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなどが挙げられる。
(有機硫黄化合物類)
ジラウリル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、ジテトラデシル−3,3’−チオジプロピオネートなどが挙げられる。
(有機燐化合物類)
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4−ジブチルフェノキシ)ホスフィンなどが挙げられる。
これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。
本発明における酸化防止剤の添加量は、添加する層の総重量に対して0.01〜10重量%である。
次に、本発明に用いられるトナーについて詳細に説明する。
本発明におけるトナーは、少なくとも結着樹脂、着色剤からなる混合物を、熱ロールミルで溶融混練した後、冷却固化せしめ、これを粉砕分級して母体を得る粉砕型のトナーを用いても良いが、本発明において特に好ましく用いられるのは、少なくとも窒素原子を含む官能基を有するポリエステルプレポリマー、ポリエステル、着色剤、離型剤とを有機溶媒中に分散させたトナー材料液を、水系溶媒中で架橋及び/又は伸長反応させて得られる重合型のトナーである。
(円形度について)
本発明においては、平均円形度が0.94以上のトナーを用いることが好ましい。この円形度は、乾式粉砕で製造されるトナーでは、熱的又は機械的に球形化処理する。熱的には、例えば、アトマイザーなどに熱気流とともにトナー粒子を噴霧することで球形化処理を行うことができる。また、機械的にはボールミル等の混合機に比重の軽いガラス等の混合媒体とともに投入して攪拌することで、球形化処理することができる。ただし、熱的球形化処理では凝集し粒径の大きいトナー粒子又は機械的球形化処理では微粉が発生するために再度の分級工程が必要になる。また、水系溶媒中で製造されるトナーでは、溶媒を除去する工程で強い攪拌を与えることで、真球状からラクビーボール状の間の形状を制御することができ、さらに、表面のモフォロジーも滑らかなものから梅干形状の間で制御することができる。
円形度は、円形度=(粒子投影面積と同じ面積の円の周囲長/粒子投影像の周囲長)で定義され、トナーが真球に近いほど1に近い値となる。円形度の高いトナーは、キャリア又は現像スリーブ上において電気力線の影響を受けやすく、静電潜像の電気力線に沿って忠実に現像されるため、微小な潜像ドットを再現する際には緻密で均一なトナー配置をとりやすいために細線再現性が高くなる。また、円形度の高いトナーは、その表面は滑らかで適度な流動性をもつために電気力線の影響を受けやすく電気力線に沿って忠実に転移しやすいために転写率が高くなり、高品位の画像を得ることができるが、クリーニングに対しては不利となる。本発明においては、トナーの円形度に応じて、トナーに外添する潤滑剤の量を変化させるが、これについては後述する。
次に、本発明において用いられるトナーの構成材料及び製造方法について詳細に説明する。
(変性ポリエステル)
本発明に係るトナーはバインダー樹脂として変性ポリエステル(i)を含む。変性ポリエステル(i)としては、ポリエステル樹脂中にエステル結合以外の結合基が存在する、またはポリエステル樹脂中に構成の異なる樹脂成分が共有結合、イオン結合などで結合している状態をさす。具体的には、ポリエステル末端に、カルボン酸基、水酸基と反応するイソシアネート基などの官能基を導入し、さらに活性水素含有化合物と反応させ、ポリエステル末端を変性したものを指す。
変性ポリエステル(i)としては、イソシアネート基を有するポリエステルプレポリマー(A)とアミン類(B)との反応により得られるウレア変性ポリエステルなどが挙げられる。イソシアネート基を有するポリエステルプレポリマー(A)としては、多価アルコール(PO)と多価カルボン酸(PC)の重縮合物で、かつ活性水素基を有するポリエステルを、さらに多価イソシアネート化合物(PIC)と反応させたものなどが挙げられる。前記ポリエステルの有する活性水素基としては、水酸基(アルコール性水酸基及びフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基などが挙げられ、これらのうち好ましいものはアルコール性水酸基である。
ウレア変性ポリエステルは、以下のようにして生成される。
多価アルコール化合物(PO)としては、2価アルコール(DIO)および3価以上の多価アルコール(TO)が挙げられ、(DIO)単独、または(DIO)と少量の(TO)との混合物が好ましい。2価アルコール(DIO)としては、アルキレングリコール(エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオールなど);アルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど);前記脂環式ジオールのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物;前記ビスフェノール類のアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物などが挙げられる。これらのうち好ましいものは、炭素数2〜12のアルキレングリコールおよびビスフェノール類のアルキレンオキサイド付加物であり、特に好ましいものはビスフェノール類のアルキレンオキサイド付加物、およびこれと炭素数2〜12のアルキレングリコールとの併用である。3価以上の多価アルコール(TO)としては、3〜8価またはそれ以上の多価脂肪族アルコール(グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなど);3価以上のフェノール類(トリスフェノールPA、フェノールノボラック、クレゾールノボラックなど);前記3価以上のポリフェノール類のアルキレンオキサイド付加物などが挙げられる。
多価カルボン酸(PC)としては、2価カルボン酸(DIC)および3価以上の多価カルボン酸(TC)が挙げられ、(DIC)単独、および(DIC)と少量の(TC)との混合物が好ましい。2価カルボン酸(DIC)としては、アルキレンジカルボン酸(コハク酸、アジピン酸、セバシン酸など);アルケニレンジカルボン酸(マレイン酸、フマール酸など);芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸など)などが挙げられる。これらのうち好ましいものは、炭素数4〜20のアルケニレンジカルボン酸および炭素数8〜20の芳香族ジカルボン酸である。3価以上の多価カルボン酸(TC)としては、炭素数9〜20の芳香族多価カルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。なお、多価カルボン酸(PC)としては、上述のものの酸無水物または低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステルなど)を用いて多価アルコール(PO)と反応させてもよい。
多価アルコール(PO)と多価カルボン酸(PC)の比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、通常2/1〜1/1、好ましくは1.5/1〜1/1、さらに好ましくは1.3/1〜1.02/1である。
多価イソシアネート化合物(PIC)としては、脂肪族多価イソシアネート(テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエートなど);脂環式ポリイソシアネート(イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネートなど);芳香族ジイソシアネート(トリレンジイソシアネート、ジフェニルメタンジイソシアネートなど);芳香脂肪族ジイソシアネート(α,α,α’,α’−テトラメチルキシリレンジイソシアネートなど);イソシアネート類;前記ポリイソシアネートをフェノール誘導体、オキシム、カプロラクタムなどでブロックしたもの;およびこれら2種以上の併用が挙げられる。
多価イソシアネート化合物(PIC)の比率は、イソシアネート基[NCO]と、水酸基を有するポリエステルの水酸基[OH]の当量比[NCO]/[OH]として、通常5/1〜1/1、好ましくは4/1〜1.2/1、さらに好ましくは2.5/1〜1.5/1である。[NCO]/[OH]が5を超えると低温定着性が悪化する。[NCO]のモル比が1未満では、ウレア変性ポリエステルを用いる場合、そのエステル中のウレア含量が低くなり、耐ホットオフセット性が悪化する。
イソシアネート基を有するポリエステルプレポリマー(A)中の多価イソシアネート化合物(PIC)構成成分の含有量は、通常0.5〜40重量%、好ましくは1〜30重量%、さらに好ましくは2〜20重量%である。0.5重量%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。また、40重量%を超えると低温定着性が悪化する。
イソシアネート基を有するポリエステルプレポリマー(A)中の1分子当たりに含有されるイソシアネート基は、通常1個以上、好ましくは、平均1.5〜3個、さらに好ましくは、平均1.8〜2.5個である。1分子当たり1個未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。
次に、ポリエステルプレポリマー(A)と反応させるアミン類(B)としては、2価アミン化合物(B1)、3価以上の多価アミン化合物(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、およびB1〜B5のアミノ基をブロックしたもの(B6)などが挙げられる。
2価アミン化合物(B1)としては、芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4’−ジアミノジフェニルメタンなど);脂環式ジアミン(4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、イソホロンジアミンなど);および脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)などが挙げられる。3価以上の多価アミン化合物(B2)としては、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。アミノアルコール(B3)としては、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。アミノメルカプタン(B4)としては、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。アミノ酸(B5)としては、アミノプロピオン酸、アミノカプロン酸などが挙げられる。B1〜B5のアミノ基をブロックしたもの(B6)としては、前記B1〜B5のアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)から得られるケチミン化合物、オキサゾリジン化合物などが挙げられる。これらアミン類(B)のうち好ましいものは、B1およびB1と少量のB2の混合物である。
アミン類(B)の比率は、イソシアネート基を有するポリエステルプレポリマー(A)中のイソシアネート基[NCO]と、アミン類(B)中のアミノ基[NHx]の当量比[NCO]/[NHx]として、通常1/2〜2/1、好ましくは1.5/1〜1/1.5、さらに好ましくは1.2/1〜1/1.2である。[NCO]/[NHx]が2を超えたり1/2未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。
また、ウレア変性ポリエステル中には、ウレア結合と共にウレタン結合を含有していてもよい。ウレア結合含有量とウレタン結合含有量のモル比は、通常100/0〜10/90であり、好ましくは80/20〜20/80、さらに好ましくは、60/40〜30/70である。ウレア結合のモル比が10%未満では、耐ホットオフセット性が悪化する。
本発明で用いられる変性ポリエステル(i)は、ワンショット法、プレポリマー法により製造される。変性ポリエステル(i)の重量平均分子量は、通常1万以上、好ましくは2万〜1000万、さらに好ましくは3万〜100万である。この時のピーク分子量は1000〜10000が好ましく、1000未満では伸長反応しにくくトナーの弾性が少なくその結果耐ホットオフセット性が悪化する。また10000を超えると定着性の低下や粒子化や粉砕において製造上の課題が高くなる。変性ポリエステル(i)の数平均分子量は、後述の変性されていないポリエステル(ii)を用いる場合は特に限定されるものではなく、前記重量平均分子量とするのに得やすい数平均分子量でよい。変性ポリエステル(i)単独の場合は、数平均分子量は、通常20000以下、好ましくは1000〜10000、さらに好ましくは2000〜8000である。20000を超えると低温定着性及びフルカラー装置に用いた場合の光沢性が悪化する。
変性ポリエステル(i)を得るためのポリエステルプレポリマー(A)とアミン類(B)との架橋及び/又は伸長反応には、必要により反応停止剤を用い、得られるウレア変性ポリエステルの分子量を調整することができる。反応停止剤としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミンなど)、およびそれらをブロックしたもの(ケチミン化合物)などが挙げられる。
(未変性ポリエステル)
本発明においては、前記変性されたポリエステル(i)単独使用だけでなく、この変性ポリエステル(i)と共に、未変性ポリエステル(ii)をバインダー樹脂成分として含有させることもできる。未変性ポリエステル(ii)を併用することで、低温定着性及びフルカラー装置に用いた場合の光沢性が向上し、単独使用より好ましい。未変性ポリエステル(ii)としては、前記変性ポリエステル(i)のポリエステル成分と同様な多価アルコール(PO)と多価カルボン酸(PC)との重縮合物などが挙げられ、好ましいものも変性ポリエステル(i)と同様である。また、未変性ポリエステル(ii)は無変性のポリエステルだけでなく、ウレア結合以外の化学結合で変性されているものでもよく、例えばウレタン結合で変性されていてもよい。変性ポリエステル(i)と未変性ポリエステル(ii)は少なくとも一部が相溶していることが低温定着性、耐ホットオフセット性の面で好ましい。従って、変性ポリエステル(i)のポリエステル成分と未変性ポリエステル(ii)は類似の組成が好ましい。未変性ポリエステル(ii)を含有させる場合の変性ポリエステル(i)と未変性ポリエステル(ii)の重量比は、通常5/95〜80/20、好ましくは5/95〜30/70、さらに好ましくは5/95〜25/75、特に好ましくは7/93〜20/80である。変性ポリエステル(i)の重量比が5%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。
未変性ポリエステル(ii)のピーク分子量は、通常1000〜10000、好ましくは2000〜8000、さらに好ましくは2000〜5000である。1000未満では耐熱保存性が悪化し、10000を超えると低温定着性が悪化する。未変性ポリエステル(ii)の水酸基価は5以上であることが好ましく、さらに好ましくは10〜120、特に好ましくは20〜80である。5未満では耐熱保存性と低温定着性の両立の面で不利になる。未変性ポリエステル(ii)の酸価は1〜5が好ましく、より好ましくは2〜4である。ワックスに高酸価ワックスを使用するため、バインダーは低酸価バインダーが帯電や高体積抵抗につながるので二成分系現像剤に用いるトナーにはマッチしやすい。
バインダー樹脂のガラス転移点(Tg)は通常35〜70℃、好ましくは55〜65℃である。35℃未満ではトナーの耐熱保存性が悪化し、70℃を超えると低温定着性が不十分となる。ウレア変性ポリエステルは、得られるトナー母体粒子の表面に存在しやすいため、本発明のトナーにおいては、公知のポリエステル系トナーと比較して、ガラス転移点が低くても耐熱保存性が良好な傾向を示す。
(着色剤)
着色剤としては、公知の染料及び顔料が全て使用でき、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ピグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びそれらの混合物が使用できる。着色剤の含有量はトナーに対して通常1〜15重量%、好ましくは3〜10重量%である。
着色剤は樹脂と複合化されたマスターバッチとして用いることもできる。マスターバッチの製造、またはマスターバッチとともに混練されるバインダー樹脂としては、ポリスチレン、ポリ−p−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体、あるいはこれらとビニル化合物との共重合体、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックスなどが挙げられ、単独あるいは混合して使用できる。
(荷電制御剤)
荷電制御剤としては公知のものが使用でき、例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩等である。具体的にはニグロシン系染料のボントロン03、4級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、4級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、4級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、4級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージ NX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、4級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。このうち、特にトナーを負極性に制御する物質が好ましく使用される。
荷電制御剤の使用量は、バインダー樹脂の種類、必要に応じて使用される添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくはバインダー樹脂100重量部に対して、0.1〜10重量部の範囲で用いられる。好ましくは、0.2〜5重量部の範囲がよい。10重量部を超える場合にはトナーの帯電性が大きすぎ、荷電制御剤の効果を減退させ、現像ローラとの静電気的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招く。
(離型剤)
離型剤としては、融点が50〜120℃の低融点のワックスが、バインダー樹脂との分散の中でより離型剤として効果的に定着ローラとトナー界面との間で働き、これにより定着ローラにオイルの如き離型剤を塗布することなく高温オフセットに対し効果を示す。このようなワックス成分としては、以下のものが挙げられる。ロウ類及びワックス類としては、カルナバワックス、綿ロウ、木ロウ、ライスワックス等の植物系ワックス、ミツロウ、ラノリン等の動物系ワックス、オゾケライト、セルシン等の鉱物系ワックス、及びおよびパラフィン、マイクロクリスタリン、ペトロラタム等の石油ワックス等が挙げられる。また、これら天然ワックスの外に、フィッシャー・トロプシュワックス、ポリエチレンワックス等の合成炭化水素ワックス、エステル、ケトン、エーテル等の合成ワックス等が挙げられる。さらに、12−ヒドロキシステアリン酸アミド、ステアリン酸アミド、無水フタル酸イミド、塩素化炭化水素等の脂肪酸アミド及び、低分子量の結晶性高分子樹脂である、ポリ−n−ステアリルメタクリレート、ポリ−n−ラウリルメタクリレート等のポリアクリレートのホモ重合体あるいは共重合体(例えば、n−ステアリルアクリレート−エチルメタクリレートの共重合体等)等、側鎖に長いアルキル基を有する結晶性高分子等も用いることができる。
荷電制御剤、離型剤はマスターバッチ、バインダー樹脂とともに溶融混練することもできるし、もちろん有機溶剤に溶解、分散する際に加えても良い。
(外添剤)
トナー粒子の流動性や現像性、帯電性を補助するための外添剤として、無機微粒子が好ましく用いられる。この無機微粒子の一次粒子径は、5×10−3〜2μmであることが好ましく、特に5×10−3〜0.5μmであることが好ましい。また、BET法による比表面積は、20〜500m/gであることが好ましい。この無機微粒子の使用割合は、トナーの0.01〜5重量%であることが好ましく、特に0.01〜2.0重量%であることが好ましい。
無機微粒子の具体例としては、例えばシリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などを挙げることができる。中でも、流動性付与剤としては、疎水性シリカ微粒子と疎水性酸化チタン微粒子を併用するのが好ましい。特に両微粒子の平均粒径が5×10−2μm以下のものを使用して攪拌混合を行った場合、トナーとの静電力、ファンデルワールス力は格段に向上することより、所望の帯電レベルを得るために行われる現像装置内部の攪拌混合によっても、トナーから流動性付与剤が脱離することなく、ホタルなどが発生しない良好な画像品質が得られて、さらに転写残トナーの低減が図られる。
酸化チタン微粒子は、環境安定性、画像濃度安定性に優れている反面、帯電立ち上がり特性の悪化傾向にあることより、酸化チタン微粒子添加量がシリカ微粒子添加量よりも多くなると、この副作用の影響が大きくなることが考えられる。しかし、疎水性シリカ微粒子及び疎水性酸化チタン微粒子の添加量が0.3〜1.5重量%の範囲では、帯電立ち上がり特性が大きく損なわれず、所望の帯電立ち上がり特性が得られ、すなわち、コピーの繰り返しを行っても、安定した画像品質が得られる。
(潤滑剤)
本発明においては、この他にトナーに潤滑剤を外添させる。トナーに外添させる潤滑剤は、ステアリン酸亜鉛等の脂肪酸金属塩、ポリテトラフルオロエチレン等のフッ素系樹脂等の微粒子を用いることができるが、特にステアリン酸亜鉛が好ましい。トナーに潤滑剤を外添させることで、クリーニングに対して不利な画像面積率の高い画像を形成した場合にも、トナーから感光体表面に供給される潤滑剤の量は多くなることで、感光体表面の摩擦係数が低下し、クリーニング性が維持できる。逆に、画像面積率が低い場合には、感光体表面に潤滑剤はほとんど供給されないが、トナーの入力量も少ないのでクリーニング性に対しては問題がない。
また本発明においては、先述のようにトナーの円形度に応じて、潤滑剤の添加量を調整する。本発明では、トナー母体重量に対する潤滑剤の添加量をA(重量%)、トナーの平均円形度をBとした時、
1≦A/(B−0.9)≦6
の関係が成り立つようにする。例えば、トナーの円形度が0.91の場合には、潤滑剤の添加量は0.01〜0.06重量%、円形度が0.96の場合には、潤滑剤の添加量は0.06〜0.36重量%の範囲とする必要がある。添加量が下限以下ではクリーニング不良が発生してしまうため好ましくない。また上限以上ではクリーニング性に対する効果が飽和するため、それ以上添加してもコストアップを招くのみである。さらに、過剰な添加量は現像剤の帯電量に影響を及ぼすため好ましくない。このような関係を規定することにより、システムを安定に保つために必要な最低限量の潤滑剤が常に供給され、無駄のない簡便な構成で、安定な画像を長期に渡って得ることができる。
次に、トナーの製造方法について説明する。ここでは、好ましい製造方法について示すが、これに限られるものではない。
(トナーの製造方法)
(1)着色剤、未変性ポリエステル、イソシアネート基を有するポリエステルプレポリマー、離型剤を有機溶媒中に分散させトナー材料液を作る。有機溶媒は、沸点が100℃未満の揮発性であることが、トナー母体粒子形成後の除去が容易である点から好ましい。具体的には、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトンなどを単独あるいは2種以上組合せて用いることができる。特に、トルエン、キシレン等の芳香族系溶媒および塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素が好ましい。有機溶媒の使用量は、ポリエステルプレポリマー100重量部に対し、通常0〜300重量部、好ましくは0〜100重量部、さらに好ましくは25〜70重量部である。
(2)トナー材料液を界面活性剤、樹脂微粒子の存在下、水系媒体中で乳化させる。水系媒体は、水単独でも良いし、アルコール(メタノール、イソプロピルアルコール、エチレングリコールなど)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブなど)、低級ケトン類(アセトン、メチルエチルケトンなど)などの有機溶媒を含むものであってもよい。
トナー材料液100重量部に対する水系媒体の使用量は、通常50〜2000重量部、好ましくは100〜1000重量部である。50重量部未満ではトナー材料液の分散状態が悪く、所定の粒径のトナー粒子が得られない。20000重量部を超えると経済的でない。
また、水系媒体中の分散を良好にするために、界面活性剤、樹脂微粒子等の分散剤を適宜加える。
界面活性剤としては、アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、リン酸エステルなどのアニオン性界面活性剤、アルキルアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリンなどのアミン塩型や、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、ピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウムなどの4級アンモニウム塩型のカチオン性界面活性剤、脂肪酸アミド誘導体、多価アルコール誘導体などの非イオン界面活性剤、例えばアラニン、ドデシルジ(アミノエチル)グリシン、ジ(オクチルアミノエチル)グリシンやN−アルキル−N,N−ジメチルアンモニウムべタインなどの両性界面活性剤が挙げられる。
また、フルオロアルキル基を有する界面活性剤を用いることにより、非常に少量でその効果をあげることができる。好ましく用いられるフルオロアルキル基を有するアニオン性界面活性剤としては、炭素数2〜10のフルオロアルキルカルボン酸及びその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−[ω−フルオロアルキル(C6〜C11)オキシ]−1−アルキル(C3〜C4)スルホン酸ナトリウム、3−[ω−フルオロアルカノイル(C6〜C8)−N−エチルアミノ]−1−プロパンスルホン酸ナトリウム、フルオロアルキル(C11〜C20)カルボン酸及び金属塩、パーフルオロアルキルカルボン酸(C7〜C13)及びその金属塩、パーフルオロアルキル(C4〜C12)スルホン酸及びその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N−プロピル−N−(2−ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(C6〜C10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(C6〜C10)−N−エチルスルホニルグリシン塩、モノパーフルオロアルキル(C6〜C16)エチルリン酸エステルなどが挙げられる。
商品名としては、サーフロンS−111、S−112、S−113(旭硝子社製)、フロラードFC−93、FC−95、FC−98、FC−129(住友3M社製)、ユニダインDS−101、DS−102(ダイキン工業社製)、メガファックF−110、F−120、F−113、F−191、F−812、F−833(大日本インキ社製)、エクトップEF−102、103、104、105、112、123A、123B、306A、501、201、204、(トーケムプロダクツ社製)、フタージェントF−100、F150(ネオス社製)などが挙げられる。
また、カチオン性界面活性剤としては、フルオロアルキル基を右する脂肪族1級、2級もしくは2級アミン酸、パーフルオロアルキル(C6−C10)スルホンアミドプロピルトリメチルアンモニウム塩などの脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩、商品名としてはサーフロンS−121(旭硝子社製)、フロラードFC−135(住友3M社製)、ユニダインDS−202(ダイキンエ業杜製)、メガファックF−150、F−824(大日本インキ社製)、エクトップEF−132(トーケムプロダクツ社製)、フタージェントF−300(ネオス社製)などが挙げられる。
樹脂微粒子は、水系媒体中で形成されるトナー母体粒子を安定化させるために加えられる。このために、トナー母体粒子の表面上に存在する被覆率が10〜90%の範囲になるように加えられることが好ましい。例えば、ポリメタクリル酸メチル微粒子1μm、及び3μm、ポリスチレン微粒子0.5μm及び2μm、ポリ(スチレン―アクリロニトリル)微粒子1μm、商品名では、PB−200H(花王社製)、SGP(総研社製)、テクノポリマーSB(積水化成品工業社製)、SGP−3G(総研社製)、ミクロパール(積水ファインケミカル社製)等がある。
また、リン酸三カルシウム、炭酸カルシウム、酸化チタン、コロイダルシリカ、ヒドロ
キシアパタイト等の無機化合物分散剤も用いることができる。
前記の樹脂微粒子、無機化合物分散剤と併用して使用可能な分散剤として、高分子系保護コロイドにより分散液滴を安定化させても良い。例えばアクリル酸、メタクリル酸、α−シアノアクリル酸、α−シアノメタクリル酸、イタコン酸、クロトン酸、フマール酸、マレイン酸または無水マレイン酸などの酸類、あるいは水酸基を含有する(メタ)アクリル系単量体、例えばアクリル酸−β−ヒドロキシエチル、メタクリル酸−β−ヒドロキシエチル、アクリル酸−β−ヒドロキシプロビル、メタクリル酸−β−ヒドロキシプロピル、アクリル酸−γ−ヒドロキシプロピル、メタクリル酸−γ−ヒドロキシプロピル、アクリル酸−3−クロロ2−ヒドロキシプロビル、メタクリル酸−3−クロロ−2−ヒドロキシプロピル、ジエチレングリコールモノアクリル酸エステル、ジエチレングリコールモノメタクリル酸エステル、グリセリンモノアクリル酸エステル、グリセリンモノメタクリル酸エステル、N−メチロールアクリルアミド、N−メチロールメタクリルアミドなど、ビニルアルコールまたはビニルアルコールとのエーテル類、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテルなど、またはビニルアルコールとカルボキシル基を含有する化合物のエステル類、例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなど、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドあるいはこれらのメチロール化合物、アクリル酸クロライド、メタクリル酸クロライドなどの酸クロライド類、ビニルピリジン、ビニルピロリドン、ビニルイミダゾール、エチレンイミンなどの含窒素化合物、またはその複素環を有するものなどのホモポリマーまたは共重合体、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン、ポリオキシエチレンアルキルアミド、ポリオキシプロピレンアルキルアミド、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルフェニルエーテル、ポリオキシエチレンステアリルフェニルエステル、ポリオキシエチレンノニルフェニルエステルなどのポリオキシエチレン系、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース類などが使用できる。
分散の方法としては特に限定されるものではないが、低速せん断式、高速せん断式、摩擦式、高圧ジェット式、超音波などの公知の設備が適用できる。この中でも、分散体の粒径を2〜20μmにするために高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は特に限定はないが、通常1000〜30000rpm、好ましくは5000〜20000rpmである。分散時間は特に限定はないが、バッチ方式の場合は、通常0.1〜5分である。分散時の温度としては、通常、0〜150℃(加圧下)、好ましくは40〜98℃である。
(3)乳化液の作製と同時に、アミン類(B)を添加し、イソシアネート基を有するポリエステルプレポリマー(A)との反応を行わせる。
この反応は、分子鎖の架橋及び/又は伸長を伴う。反応時間は、ポリエステルプレポリマー(A)の有するイソシアネート基構造とアミン類(B)との反応性により選択されるが、通常10分〜40時間、好ましくは2〜24時間である。反応温度は、通常、0〜150℃、好ましくは40〜98℃である。また、必要に応じて公知の触媒を使用することができる。具体的にはジブチルチンラウレート、ジオクチルチンラウレートなどが挙げられる。
(4)反応終了後、乳化分散体(反応物)から有機溶媒を除去し、洗浄、乾燥してトナー母体粒子を得る。
有機溶媒を除去するためには、系全体を徐々に層流の攪拌状態で昇温し、一定の温度域で強い攪拌を与えた後、脱溶媒を行うことで紡錘形のトナー母体粒子が作製できる。また、分散安定剤としてリン酸カルシウム塩などの酸、アルカリに溶解可能な物を用いた場合は、塩酸等の酸により、リン酸カルシウム塩を溶解した後、水洗するなどの方法によって、トナー母体粒子からリン酸カルシウム塩を除去する。その他酵素による分解などの操作によっても除去できる。
(5)前記で得られたトナー母体粒子に、荷電制御剤を打ち込み、ついで、シリカ微粒子、酸化チタン微粒子等の無機微粒子を外添させ、トナーを得る。
荷電制御剤の打ち込み、及び無機微粒子の外添は、ミキサー等を用いた公知の方法によって行われる。これにより、小粒径であって、粒径分布のシャープなトナーを容易に得ることができる。
本発明における現像剤は前記トナーのみを用いる1成分現像剤を用いても、前記トナーをキャリアと混合した2成分現像剤を用いても良い。
本発明におけるキャリアとしては、磁性を有した核体粒子に必要に応じて被覆層を設けたものが広く一般に用いられる。核体粒子としては従来より公知の磁性体が使用され、例えば鉄、コバルト、ニッケル等の強磁性金属やマグネタイト、ヘマタイト、フェライトなどの合金あるいは化合物等が挙げられる。
また、被覆層に用いられる樹脂としては、ポリオレフィン樹脂、例えばポリエチレン、ポリプロピレン、塩素化ポリエチレン及びクロロスルホン化ポリエチレン;ポリビニル及びポリビニリデン系樹脂、例えばポリスチレン、アクリル樹脂(例えばポリメチルメタクリレート)、ポリアクリロニトリル、ポリビニルアセテート、ポリビニルアルコール、ポリビニルブチラール、ポリ塩化ビニル、ポリビニルカルバゾール、ポリビニルエーテル及びポリビニルケトン;塩化ビニル/酢酸ビニル共重合体;スチレン/アクリル酸共重合体;オルガノシロキサン結合からなるストレートシリコーン樹脂のようなシリコーン樹脂又はその変性品(例えばアルキド樹脂、ポリエステル、エポキシ樹脂、ポリウレタン等による変性品);フッ素樹脂;ポリエステル、例えばポリエチレンテレフタレート;ポリウレタン;ポリカーボネート;アミノ樹脂、例えば尿素・ホルムアルデヒド樹脂;エポキシ樹脂等が挙げられる。
これらの樹脂の中でもトナースペントを防止する点で好ましいのは、アクリル樹脂、シリコーン樹脂又はその変性品及びフッ素樹脂であり、特にシリコーン樹脂又はその変性品が好ましい。被覆層の形成法としては、従来と同様、キャリア核体粒子の表面に噴霧法、浸漬法等の手段で樹脂を塗布すればよい。
また、キャリア抵抗の調整等の目的で、被覆層中に微粉末を添加することができる。被覆層中に分散される微粉末は、0.01〜5.0μm程度の粒径のものが好ましい。また、該微粉末は被覆樹脂100重量部に対して2〜30重量部添加されることが好ましく、特に5〜20重量部が好ましい。微粉末としては従来より公知のものが使用され、例えばシリカ、アルミナ、チタニア等の金属酸化物やカーボンブラック等の顔料が挙げられる。
次に、本発明における帯電装置及びクリーニング装置について説明する。
本発明における帯電装置は、回動可能なローラ状の帯電部材(以下、帯電ローラという)を感光体に接触させて配置する接触帯電方式と、帯電ローラを感光体に非接触に配置する非接触帯電方式とがある。本発明は接触帯電方式にも適用できるが、接触帯電方式においては感光体表面との接触性を向上させ、かつ感光体に機械的ストレスを与えない弾性部材を用いる事が好ましい。しかし弾性部材を用いた場合には帯電ニップ幅が広くなり、これによって帯電ローラ側に保護物質が付着しやすくなることがある。よって、高耐久化の為には、非接触帯電方式を採用する方が有利である。
図3は、本発明の画像形成方法に用いる帯電装置の説明図である。帯電ローラ2aは軸部21aとローラ部21bとからなる。ローラ部21bは軸部21aの回転によって回動可能であり、感光体1表面のうち画像が形成される画像形成領域11に対向する部分は感光体1と非接触である。この帯電ローラ2aは、その長手方向(軸方向)の寸法が画像形成領域よりも少し長く設定されており、その長手方向の両端部にスペーサ22を設けている。これら2つのスペーサ22を感光体1表面両端部の非画像形成領域12に当接させることによって、感光体1と帯電ローラ2aとの間に微小なギャップ14を形成している。この微小なギャップ14は、帯電ローラと感光体1との最近接部における距離が1〜100[μm]に維持できるよう構成している。このギャップ14のより好ましい範囲は、10〜80[μm]、さらに好ましくは30〜65[μm]であり、本実施形態の装置では、50μmに設定した。また、軸部21aをスプリングからなる加圧バネ15によって感光体1側に加圧している。これにより、微小なギャップ14を精度よく維持することができる。また、帯電ローラはスペーサ22を介して感光体表面に連れ回って回転する。
帯電ローラ2aには帯電用の電源を接続している。これにより、感光体1表面と帯電ローラ2a表面との間の微小な空隙での近接放電により、感光体1表面を均一に帯電する。印加電圧は、本実施形態においては直流成分であるDC電圧にAC成分であるAC電圧を重畳した交番電圧を用いている。帯電ローラ2aに印加する印加電圧としてDC電圧にAC電圧を重畳させた交番電圧を印加すると、微小ギャップ変動による帯電電位のばらつきなどの影響が抑制されて均一な帯電が可能となる。
帯電ローラ2aは円柱状を呈する導電性支持体としての芯金と、芯金の外周面上に形成された抵抗調整層を有する。帯電ローラ2aの表面は硬質であることが望ましい。ローラ部材としてはゴム部材も使用できるが、ゴム部材もように変形しやすい部材であると感光体1との微小ギャップ14の均一な維持が困難となり、作像条件によっては帯電ローラ2aの中央部のみが感光体1表面に突発的に接触する可能性がある。帯電ローラ2aが感光体1表面に局所的/突発的に接触することによって生じる保護物質の乱れに対応することは困難であるため、非接触帯電方式を使用する場合にはたわみが少ない硬質の部材が望ましい。
表面が硬質な帯電ローラ2aの具体例としては、例えば、抵抗調整層を高分子型イオン導電剤が分散する熱可塑性樹脂組成物(ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル、ポリスチレン及びその共重合体等)により形成し、抵抗調整層の表面を硬化剤により硬化皮膜処理されたものが挙げられる。また硬化皮膜処理は、例えば、イソシアネート含有化合物を含む処理溶液に抵抗調整層を浸漬させることにより行われるが、抵抗調整層の表面に改めて硬化処理皮膜層を形成することにより行われてもよい。本実施形態では、帯電ローラ2aをφ10mm(直径10mm)で形成した。
また、本発明におけるクリーニング装置の一例を図4に示す。このクリーニング装置は、クリーニングブレード7a、支持部材7b、トナー回収コイル7c、ブレード加圧スプリング7dを備える。クリーニングブレード7aは、転写後に残留する感光体1上のトナーを除去する。支持部材7bに貼着してクリーニング装置に配設されるが、支持部材7bは特に限定されず、金属、プラスチック、セラミック等を用いることができる。
クリーニングブレード7aは、摩擦係数の低い弾性体として、ウレタン樹脂、シリコーン樹脂、フッ素樹脂等のうちウレタンエラストマー、シリコーンエラストマー、フッ素エラストマーを挙げることができる。クリーニングブレード7aとしては、熱硬化性のウレタン樹脂が好ましく、特に、ウレタンエラストマーが、耐摩耗性、耐オゾン性、耐汚染性の観点から好ましい。エラストマーには、ゴムも含まれる。クリーニングブレード7aは、硬度(JIS―A)が、65〜85度の範囲が好ましい。また、クリーニングブレード8aは、厚さが0.8〜3.0mmで、突き出し量が3〜15mmの範囲にあることが好ましい。さらに、その他の条件として当接圧、当接角度、食い込み量等は適宜決定することができる。
次に、本発明における画像形成装置について説明する。本発明に用いる画像形成装置は、これまでの電子写真装置等、条件を満たす公知のプロセスを有する装置すべてを使用することができる。また、トナー単色による画像形成装置だけでなく、2色以上の複数色トナーを用いたカラー画像形成装置でも良い。画像読み取り時に色分解された各分解色ごとの信号を、帯電、レーザー光露光による画像書き込みとそれに対応するカラートナーが現像されるというプロセスを繰り返し、イエロー、マゼンタ、シアン、黒トナーの4色トナー像が、感光体上に形成され一括して記録紙に転写されるものでも良い。
また、トナー像の形成方法、記録材への転写方法も異なるものであってもよい。例えば中間転写体を有した画像形成装置や、複数の作像部を並列に配置したタンデム式のカラー画像形成装置等も、本発明において好ましく使用することができる。
さらには前記の他、予め画像情報をROM、フレキシブルディスク等の画像メモリに記憶させ、必要に応じて画像メモリ内の情報を取り出して、画像形成部に出力させることができる。従って、画像読み取り部を持つものだけでなく、コンピュータ等からの情報をメモリに記憶させ画像形成部へ出力させる装置も、本発明の画像形成装置に含まれる。これらの最も一般的なものとして、LEDプリンタやLBP(レーザービームプリンタ)がある。
さらに、本発明の画像形成方法を構成する部品は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていても良いが、プロセスカートリッジの形態でそれらの中に組み込まれ、着脱自在としたものであっても良い。ここで言うプロセスカートリッジとは、感光体を内蔵し、他に帯電手段、現像手段、クリーニング手段の構成要素のうち、少なくとも一つの手段を一体に支持した装置(部品)である。
以下に本発明の実験例を挙げて本発明について具体的に説明するが、本発明はこれらの実験例のみに限定されるものではない。なお、下記文中の「部」は重量部を表す。
<実験例1>
(感光体の作製)
φ30mmのアルミニウムシリンダー上に、下記組成の下引き層用塗工液、電荷発生層用塗工液、電荷輸送層用塗工液を順次、塗布、乾燥することにより、3.5μmの下引き層、0.2μmの電荷発生層、18μmの電荷輸送層を形成した。この電荷輸送層上に下記組成の表面層用塗工液をスプレー塗工し、メタルハライドランプ:160W/cm、照射距離:120mm、照射強度:200mW/cm2、照射時間:20秒の条件で光照射を行い、さらに130℃で20分乾燥を加え4μmの表面層を設け、電子写真感光体1を作製した。
〔下引き層用塗工液〕
・アルキッド樹脂 6部
(ベッコゾール1307−60−EL、大日本インキ化学工業製)
・メラミン樹脂 4部
(スーパーベッカミン G−821−60、大日本インキ化学工業製)
・酸化チタン 40部
・メチルエチルケトン 50部
〔電荷発生層用塗工液〕
・下記構造式(I)のビスアゾ顔料 2.5部
・ポリビニルブチラール(XYHL、UCC製) 0.5部
・シクロヘキサノン 200部
・メチルエチルケトン 80部

〔電荷輸送層用塗工液〕
・ビスフェノールZポリカーボネート 10部
(パンライトTS−2050、帝人化成製)
・下記構造式(II)の低分子電荷輸送物質(D−1) 7部
・テトラヒドロフラン 100部
・1%シリコーンオイルのテトラヒドロフラン溶液 1部
(KF50−100CS、信越化学工業製)

〔表面層用塗工液〕
・電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99
・1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
・光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
・テトラヒドロフラン 100部
(トナーの作製)
<トナー1>
下記材料組成分からなる組成物をミキサーで混合後、2本ロールミキサーで溶融混練し、圧延冷却して[混練物1]を得た。次に、[混練物1]をジェットミルによる衝突板方式の粉砕機(日本ニューマチック工業社製I式ミル)で粉砕し、旋回流による風力分級(日本ニューマチック工業社製DS分級機)を行い、体積平均粒径約6μmの[粉体1]を得た。
−材料組成−
ポリエステル樹脂 100部
カーボンブラック 6部
オリエント化学工業社製 E−84 2部
カルナウバワックス 3部
このとき、[粉体1]の円形度Bは0.91であった。
この[粉体1]に疎水性シリカ(クラリアントジャパン社製H2000)を1.0重量%、及び潤滑剤としてポリテトラフルオロエチレン(ダイキン工業社製ルブロンL−2)を0.02重量%添加し、ミキサーで混合してトナーを作製した。このとき、A/(B−0.9)=2であり、本発明の範囲内である。
(現像剤の作製)
このように作製したトナー7部をフェライトキャリア(粒径50μm)93部と混合し、トナー濃度7%の現像剤を得た。
(評価)
評価装置は(株)リコー製プリンタIpsio color8000の黒ステーションを改造したものを用いた。帯電部材としては直径10mmの硬質樹脂ローラを用い、感光体とのギャップを50μmに調整した。帯電条件としては−600VのDC成分に、AC成分としてVpp=3kV、周波数=1.5kHzの正弦波を重畳した交番電界を印可した。この改造評価機を用い、前記のように作製した現像剤、トナー及び感光体を搭載し、図5に示すような縦帯チャートを用いて10000枚のランニングを行った。このときの帯画像部のクリーニング不良有無を目視で観察し、程度の良好なものから5〜1の順に5段階のランク分けを行って、画像上不具合が発生しない許容範囲をランク4以上とした。また、10000枚でクリーニング不良が未発生のものについてはラン枚数を20000、50000枚まで延長して確認を行い、50000枚後もクリーニング不良が未発生なものについては、帯画像部及び非画像部の感光体摩耗量を評価した。結果をに示す。
<実験例2>
実験例1において、トナー作製時に添加するポリテトラフルオロエチレンの添加量を0.05重量%にした以外は、実施例1と同様にトナーを作製、評価した。このときA/(B−0.9)=5であり、本発明の範囲内である。
<実験例3>
実験例1で作製した[混練物1]を機械式粉砕機(ターボ工業社製ターボミル)による粉砕と旋回流による風力分級(日本ニューマチック工業社製DS分級機)を行い、体積平均粒径が約6μmの[粉体2]を得た。このとき、[粉体2]の円形度B=0.94であった。この[粉体2]に疎水性シリカ(クラリアントジャパン社製H2000)を1.0重量%、及び潤滑剤としてポリテトラフルオロエチレン(ダイキン工業社製ルブロンL−2)を0.05重量%添加し、ミキサーで混合してトナーを得た。このようにして作製したトナーを用いた以外は、実験例1と同様に評価を行った。このとき、A/(B−0.9)=1.25であり、本発明の範囲内である。
<実験例4>
実験例3において、トナー作製時に添加するポリテトラフルオロエチレンの添加量を0.20重量%にした以外は、実験例1と同様にトナーを作製、評価した。このときA/(B−0.9)=5であり、本発明の範囲内である。
<実験例5>
下記の方法、条件により順次〔水相1〕、〔プレポリマー1〕、〔ケチミン化合物1〕、〔顔料・WAX分散液1〕を調整し、その後乳化、脱溶剤、洗浄、乾燥によりトナーを作製した。
〔水相1〕
<微粒子分散液1;有機微粒子エマルションの合成>
撹拌棒及び温度計をセットした反応容器に、水683部、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(エレミノールRS−30、三洋化成工業製)11部、スチレン83部、メタクリル酸83部、アクリル酸ブチル110部、過硫酸アンモニウム1部を仕込み、400回転/分で15分間撹拌したところ、白色の乳濁液が得られた。これを加熱して系内温度75℃まで昇温し5時間反応させた。さらに、1%過硫酸アンモニウム水溶液30部を加え、75℃で5時間熟成してビニル系樹脂(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液[微粒子分散液1]を得た。この[微粒子分散液1]をLA−920で測定したところ、体積平均粒径は105nmであった。また、[微粒子分散液1]の一部を乾燥して樹脂分を単離し、Tgと分子量を測定した。樹脂分のTgは59℃であり、重量平均分子量は15万であった。
<水相の調整>
前記[微粒子分散液1]83部、水990部、ドデシルジフェニルェーテルジスルホン酸ナトリウムの48.5%水溶液(エレミノールMON−7:三洋化成工業製)37部、酢酸エチル90部を混合撹拌し、乳白色の液体を得た。これを[水相1]とする。
〔プレポリマー1〕
<中間体ポリエステル1>
冷却管、撹拌機および窒索導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物682部、ビスフェノールAプロピレンオキサイド2モル付加物81部、テレフタル酸283部、無水トリメリット酸22部及びジブチルチンオキサイド2部を入れ、常圧で230℃で8時間反応し、さらに10〜15mmHgの減圧で5時間反応して[中間体ポリエステル1]を得た。[中間体ポリエステル1]は、数平均分子量2100、重量平均分子量9500、Tg55℃、酸価0.5、水酸基価51であった。
<プレポリマー1の調整>
次に、冷却管、撹拌機及び窒素導入管の付いた反応容器中に、[中間体ポリエステル1]410部、イソホロンジイソシアネート89部、酢酸エチル500部を入れ100℃で5時間反応し、[プレポリマー1]を得た。得られた[プレポリマー1]の遊離イソシアネートは1.53重量%であった。
〔ケチミン化合物1〕
<ケチミンの合成>
撹拌棒および温度計をセットした反応容器に、イソホロンジアミン170部とメチルエチルケトン75部を仕込み、50℃で5時間反応を行い、[ケチミン化合物1]を得た。[ケチミン化合物1]のアミン価は418であった。
〔油相:顔料・WAX分散液1〕
<低分子ポリエステル1の合成>
冷却管、撹拌機および窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物229部、ビスフェノールAプロピレンオキサイド3モル付加物529部、テレフタル酸208部、アジピン酸46部およびジブチルチンオキサイド2部を入れ、常圧で230℃で8時間反応し、さらに10〜15mmHgの減圧で5時聞反応した後、反応容器に無水トリメリット酸44部を入れ、180℃、常圧で2時間反応して[低分子ポリエステル1]を得た。得られた[低分子ポリエステル1]は、数平均分子量2500、重量平均分子量6700、Tg43℃、酸価25であった。
<マスターバッチ(MB)の調整>
水1200部、カーボンブラック(Printex35(商品名):デクサ製)540部[DBP吸油量=42ml/100mg、pH=9.5]、ポリエステル樹脂1200部を加え、ヘンシェルミキサー(三井鉱山社製)で混合し、混合物を2本ロールを用いて150℃で30分混練後、圧延冷却しパルペライザーで粉砕して[マスターバッチ1]を得た。
<顔料・WAX分散液1の調整>
撹拌棒および温度計をセットした容器に、前記[低分子ポリエステル1]378部、カルナバWAX110部、CCA(サリチル酸金属錯体E−84:オリエント化学工業)22部、酢酸エチル947部を仕込み、撹拌下80℃に昇温し、80℃に保ったまま5時間保持し、その後1時間かけて30℃に冷却した。次いで、容器に[マスターバッチ1]500部、酢酸エチル500部を仕込み、1時間混合して[原料溶解液1]を得た。
前記で得た[原料溶解液1]1324部を別の容器に移し、ビーズミル(ウルトラビスコミル(商品名)、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒、0.5mmジルコニアビーズの充填を80体積%、3パスの条件で、カーボンブラックとWAXの分散を行った。次いで、[低分子ポリエステル1]の65%酢酸エチル溶液1324部を加え、前記条件のビーズミルで1パスし、[顔料・WAX分散液1]を得た。得られた[顔料・WAX分散液1]の固形分濃度(130℃、30分)は50%であった。
[乳化および脱溶剤]
前記で得た、[顔料・WAX分散液1]749部、[プレポリマー1]を115部、[ケチミン化合物1]2.9部を容器に入れ、TKホモミキサー(特殊機化製)で5,000rpmで1分間混合した後、容器に[水相1]1200部を加え、TKホモミキサーで、回転数13,000rpmで20分間混合し[乳化スラリー1]を得た。撹拌機及び温度計をセットした容器に、[乳化スラリー1]を投入し、30℃で8時間脱溶剤した後、45℃で4時間熟成を行い、[分散スラリー1]を得た。[分散スラリー1]は、体積平均粒径5.99μm、個数平均粒径5.70μm(マルチサイザーIIで測定)であった。
[洗浄及び乾燥]
得られた[分散スラリー1]100部を減圧濾過した後、下記手順で処理を行った。
(1)濾過ケーキにイオン交換水100部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過した。
(2)前記(1)の濾過ケーキに10%水酸化ナトリウム水溶液100部を加え、TKホモミキサーで混合(回転数12,000rpmで30分間)した後、減圧濾過した。
(3)前記(2)の濾過ケーキに10%塩酸100部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過した。
(4)前記(3)の濾過ケーキにイオン交換水300部を加え、TKホモミキサーで混合(回転数12,000rpmで10分間)した後濾過操作を2回行い[濾過ケーキ1]を得た。[濾過ケーキ1]を循風乾燥機にて45℃で48時間乾燥し、目開き75μmメッシュで篩い体積平均粒径約6.0μmの[粉体3]を得た。このとき、[粉体3]の円形度B=0.97であった。
この[粉体3]に疎水性シリカ(クラリアントジャパン社製H2000)を1.0重量%、及び潤滑剤としてポリテトラフルオロエチレン(ダイキン工業社製ルブロンL−2)を0.20重量%添加し、ミキサーで混合してトナーを得た。このようにして作製したトナーを用いた以外は、実験例1と同様に評価を行った。このとき、A/(B−0.9)=2.86であり、本発明の範囲内である。
<実験例6>
実験例5において、トナー作製時に添加するポリテトラフルオロエチレンの添加量を0.40重量%にした以外は、実施例1と同様にトナーを作製、評価した。このとき、A/(B−0.9)=5.71であり、本発明の範囲内である。
<実験例7、8>
実験例5、6において、トナー作製時に添加する潤滑剤として、ポリテトラフルオロエチレンの代わりにステアリン酸亜鉛(堺化学工業社製SZ−2000)を用いた以外は、それぞれ実施例5、6と同様に評価を行った。
<比較例1>
実験例1において、トナー作製時にポリテトラフルオロエチレンを添加しなかった以外は、実験例1と同様に評価を行った。このとき、A/(B−0.9)=0であり、本発明の範囲外である。
<比較例2>
実験例3において、トナー作製時に添加するポリテトラフルオロエチレンの添加量を0.02重量%にした以外は、実験例1と同様に評価を行った。このとき、A/(B−0.9)=0.5であり、本発明の範囲外である。
<比較例3>
実験例7において、トナー作製時に添加するステアリン酸亜鉛の添加量を0.05重量%にした以外は、実験例1と同様に評価を行った。このとき、A/(B−0.9)=0.71であり、本発明の範囲外である。
<比較例4>
実験例7において、感光体作製時に表面層の塗布を行わず、下引き/電荷発生層/電荷輸送層の構成の感光体を使用した以外は、実験例5と同様に評価を行った。
実験例2〜8、及び比較例1〜4の結果を表3に示す。
以上のように、実施例1〜8においては、トナーの円形度及びトナーへの潤滑剤添加量が本発明の範囲内にあるため、長期に渡って良好なクリーニング性が維持されている。また、感光体表面層が耐摩耗に優れる架橋層からなっているため、トナーから潤滑剤が供給される画像部、潤滑剤が供給されない非画像部のいずれにおいても、感光体摩耗を抑制することができる。これに対して比較例1〜3では本発明の範囲外であるため、早期にクリーニング不良が発生してしまう。また、比較例4では、感光体の耐摩耗性が不足しているため、トナーから潤滑剤が供給されない非画像部での摩耗量が特に大きくなってしまう。
近接放電による感光体表面の劣化状態を調べる帯電実験における感光体表面の膜厚の変化を測定した結果を示す図 近接放電によって感光体表面が劣化する例の説明図 本発明の画像形成方法に用いる帯電装置の説明図 本発明におけるクリーニング装置の一例を示す図 実験例1の評価のための縦帯チャートを示す図
符号の説明
1 感光体
1a 電荷輸送層
2a 帯電ローラ

Claims (19)

  1. 静電潜像担持体に接触または近接して設けられた帯電部材に交流成分を含む電圧を印加することによって生じる放電を利用して前記静電潜像担持体を帯電させ、前記静電潜像担持体上に形成された静電潜像をトナーにより現像し、ブレードを用いて前記静電潜像担持体のクリーニングを行い、前記静電潜像担持体上の静電潜像を現像する画像形成方法において、該静電潜像担持体の表面層に、少なくとも電荷輸送性構造を有しないラジカル重合性モノマーと電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋層を用い、かつ該トナーの添加剤が少なくとも1種の潤滑剤を含有し、該潤滑剤の添加量A(重量%)と該トナーの円形度Bとの間に
    1≦A/(B−0.9)≦6
    の関係が成立していることを特徴とする画像形成方法。
  2. 請求項1に記載の画像形成方法において、前記トナーの円形度Bが0.94以上であるものを用いることを特徴とする画像形成方法。
  3. 請求項1または2に記載の画像形成方法において、前記トナーに添加される潤滑剤に脂肪酸金属塩を用いることを特徴とする画像形成方法。
  4. 請求項3に記載の画像形成方法において、前記脂肪酸金属塩にステアリン酸亜鉛を用いることを特徴とする画像形成方法。
  5. 請求項1から4のいずれかに記載の画像形成方法において、前記電荷輸送性構造を有しないラジカル重合性モノマーに3官能以上のものを用い、前記電荷輸送性構造を有するラジカル重合性化合物に1官能のものを用いることを特徴とする画像形成方法。
  6. 請求項5に記載の画像形成方法において、前記電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)を、250以下とすることを特徴とする画像形成方法。
  7. 請求項1から6のいずれかに記載の画像形成方法において、前記電荷輸送性構造を有しないラジカル重合性モノマーの官能基に、アクリロイルオキシ基及び/又はメタクリロイルオキシ基を用いることを特徴とする画像形成方法。
  8. 請求項1から7のいずれかに記載の画像形成方法において、前記電荷輸送性構造を有するラジカル重合性化合物の官能基に、アクリロイルオキシ基又はメタクリロイルオキシ基を用いることを特徴とする画像形成方法。
  9. 請求項1から8のいずれかに記載の画像形成方法を実施可能なことを特徴とする画像形成装置。
  10. 静電潜像担持体と、該静電潜像担持体に接触または近接して設けられた帯電部材に交流成分を含む電圧を印加することによって生じる放電を利用して前記静電潜像担持体を帯電させる帯電装置と、前記静電潜像担持体上に形成された静電潜像をトナーにより現像する現像装置と、ブレードを用いて前記静電潜像担持体のクリーニングを行うクリーニング装置を少なくとも備え、静電潜像担持体上の静電潜像を現像する画像形成装置において、該静電潜像担持体の表面層が、少なくとも電荷輸送性構造を有しないラジカル重合性モノマーと電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋層からなり、かつ該トナーの添加剤が少なくとも1種の潤滑剤を含有し、該潤滑剤の添加量A(重量%)と該トナーの円形度Bとの間に
    1≦A/(B−0.9)≦6
    の関係が成立していることを特徴とする画像形成装置。
  11. 請求項10に記載の画像形成装置において、前記トナーの円形度Bが0.94以上であることを特徴とする画像形成装置。
  12. 請求項10または11に記載の画像形成装置において、前記トナーに添加される潤滑剤が、脂肪酸金属塩であることを特徴とする画像形成装置。
  13. 請求項12に記載の画像形成装置において、前記脂肪酸金属塩がステアリン酸亜鉛であることを特徴とする画像形成装置。
  14. 請求項10から13のいずれかに記載の画像形成装置において、前記電荷輸送性構造を有しないラジカル重合性モノマーが3官能以上であり、前記電荷輸送性構造を有するラジカル重合性化合物が1官能であることを特徴とする画像形成装置。
  15. 請求項14に記載の画像形成装置において、前記電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする画像形成装置。
  16. 請求項10から15のいずれかに記載の画像形成装置において、前記電荷輸送性構造を有しないラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする画像形成装置。
  17. 請求項10から16のいずれかに記載の画像形成装置において、前記電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする画像形成装置。
  18. 請求項10から17のいずれかに記載の画像形成装置において用いるプロセスカートリッジであって、前記帯電装置、前記静電潜像担持体、前記現像装置及び前記クリーニング装置を一体にして備え、かつ画像形成装置本体に着脱自在としてなることを特徴とするプロセスカ−トリッジ。
  19. 請求項10から17のいずれかに記載の画像形成装置において、前記帯電装置、前記静電潜像担持体、前記現像装置及び前記クリーニング装置を一体にしてプロセスカ−トリッジとして画像形成装置本体に着脱自在としてなることを特徴とする画像形成装置。
JP2005258675A 2005-09-07 2005-09-07 画像形成方法、画像形成装置、プロセスカートリッジ Pending JP2007072141A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005258675A JP2007072141A (ja) 2005-09-07 2005-09-07 画像形成方法、画像形成装置、プロセスカートリッジ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005258675A JP2007072141A (ja) 2005-09-07 2005-09-07 画像形成方法、画像形成装置、プロセスカートリッジ

Publications (1)

Publication Number Publication Date
JP2007072141A true JP2007072141A (ja) 2007-03-22

Family

ID=37933637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005258675A Pending JP2007072141A (ja) 2005-09-07 2005-09-07 画像形成方法、画像形成装置、プロセスカートリッジ

Country Status (1)

Country Link
JP (1) JP2007072141A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025790A (ja) * 2007-06-19 2009-02-05 Ricoh Co Ltd 電子写真感光体、製造方法、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2010231078A (ja) * 2009-03-27 2010-10-14 Fuji Xerox Co Ltd 画像形成装置
JP2011197131A (ja) * 2010-03-17 2011-10-06 Fuji Xerox Co Ltd 画像形成装置、及び、プロセスカートリッジ
US8859173B2 (en) 2010-02-23 2014-10-14 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, cured film, and organic electroluminescent device
US8927183B2 (en) 2007-06-19 2015-01-06 Ricoh Company, Ltd. Electrophotographic photoreceptor, method for preparing the electrophotographic photoreceptor, and image forming method and apparatus and process cartridge using the electrophotographic photoreceptor
JP2015187621A (ja) * 2014-03-26 2015-10-29 富士ゼロックス株式会社 画像形成装置、及びプロセスカートリッジ
JP2016070968A (ja) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2016170214A (ja) * 2015-03-11 2016-09-23 富士ゼロックス株式会社 画像形成方法、画像形成装置、及びプロセスカートリッジ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280251A (ja) * 2002-03-20 2003-10-02 Ricoh Co Ltd 電子写真用トナーおよび画像形成装置
JP2004258588A (ja) * 2003-02-28 2004-09-16 Ricoh Co Ltd 画像形成装置及びプロセスカートリッジ
JP2004302452A (ja) * 2003-03-20 2004-10-28 Ricoh Co Ltd 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2005070274A (ja) * 2003-08-22 2005-03-17 Ricoh Co Ltd 画像形成装置、プロセスカートリッジ、トナー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280251A (ja) * 2002-03-20 2003-10-02 Ricoh Co Ltd 電子写真用トナーおよび画像形成装置
JP2004258588A (ja) * 2003-02-28 2004-09-16 Ricoh Co Ltd 画像形成装置及びプロセスカートリッジ
JP2004302452A (ja) * 2003-03-20 2004-10-28 Ricoh Co Ltd 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2005070274A (ja) * 2003-08-22 2005-03-17 Ricoh Co Ltd 画像形成装置、プロセスカートリッジ、トナー

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025790A (ja) * 2007-06-19 2009-02-05 Ricoh Co Ltd 電子写真感光体、製造方法、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
US8927183B2 (en) 2007-06-19 2015-01-06 Ricoh Company, Ltd. Electrophotographic photoreceptor, method for preparing the electrophotographic photoreceptor, and image forming method and apparatus and process cartridge using the electrophotographic photoreceptor
JP2010231078A (ja) * 2009-03-27 2010-10-14 Fuji Xerox Co Ltd 画像形成装置
US8859173B2 (en) 2010-02-23 2014-10-14 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge, image forming apparatus, cured film, and organic electroluminescent device
JP2011197131A (ja) * 2010-03-17 2011-10-06 Fuji Xerox Co Ltd 画像形成装置、及び、プロセスカートリッジ
US8883381B2 (en) 2010-03-17 2014-11-11 Fuji Xerox Co., Ltd. Image forming apparatus, and processing cartridge
JP2015187621A (ja) * 2014-03-26 2015-10-29 富士ゼロックス株式会社 画像形成装置、及びプロセスカートリッジ
JP2016070968A (ja) * 2014-09-26 2016-05-09 富士ゼロックス株式会社 画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2016170214A (ja) * 2015-03-11 2016-09-23 富士ゼロックス株式会社 画像形成方法、画像形成装置、及びプロセスカートリッジ

Similar Documents

Publication Publication Date Title
JP5006164B2 (ja) 画像形成装置、画像形成方法及びプロセスカートリッジ
JP5311098B2 (ja) 感光体用保護剤、及び保護層形成装置、並びに画像形成装置
JP4590344B2 (ja) 静電潜像担持体及びそれを用いた画像形成装置、プロセスカートリッジ及び画像形成方法
JP4979253B2 (ja) 画像形成装置及びプロセスカートリッジ
JP4335055B2 (ja) 画像形成方法
JP2009156902A (ja) 高速のフルカラー画像形成方法、画像形成装置及びトナー
JP4965217B2 (ja) 画像形成装置
JP4597837B2 (ja) 画像形成方法、画像形成装置及び電子写真用カートリッジ
US20060199092A1 (en) Electrostatic latent image bearer, and image forming method, image forming apparatus and process cartridge using the electrostatic latent image bearer
JP5316010B2 (ja) 保護層形成装置、並びにそれを用いた画像形成装置及びプロセスカートリッジ
JP5892462B2 (ja) 画像形成装置及びプロセスカートリッジ
JP2007072141A (ja) 画像形成方法、画像形成装置、プロセスカートリッジ
JP4267504B2 (ja) プロセスカートリッジ、画像形成装置及び画像形成方法
JP4953741B2 (ja) クリーニング装置、並びに、これを備える画像形成装置及びプロセスカートリッジ
JP2013190642A (ja) 画像形成装置、及び、プロセスカートリッジ
JP4526032B2 (ja) 画像形成装置、画像形成方法及び画像形成装置用プロセスカートリッジ
JP2009288478A (ja) 画像形成装置及びそれに用いる保護剤ブロック
JP2007292866A (ja) 画像形成装置およびプロセスカートリッジ
JP5251421B2 (ja) タンデム型画像形成装置、画像形成方法、プロセスカートリッジ
JP5338361B2 (ja) 画像形成装置
JP2012247749A (ja) 画像形成装置、画像形成方法、及びプロセスカートリッジ
JP5641308B2 (ja) 画像形成装置、及び画像形成装置用プロセスカートリッジ
JP5176751B2 (ja) 感光体用保護剤、及び保護層形成装置、並びに画像形成装置、及びプロセスカートリッジ
JP2006250989A (ja) 画像形成装置
JP5560930B2 (ja) 画像形成装置及びプロセスカートリッジ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629