JP2007071187A - Solenoid-driven valve - Google Patents

Solenoid-driven valve Download PDF

Info

Publication number
JP2007071187A
JP2007071187A JP2005262332A JP2005262332A JP2007071187A JP 2007071187 A JP2007071187 A JP 2007071187A JP 2005262332 A JP2005262332 A JP 2005262332A JP 2005262332 A JP2005262332 A JP 2005262332A JP 2007071187 A JP2007071187 A JP 2007071187A
Authority
JP
Japan
Prior art keywords
valve
valve shaft
force
pressing portion
valve stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005262332A
Other languages
Japanese (ja)
Inventor
Masahiko Asano
昌彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005262332A priority Critical patent/JP2007071187A/en
Publication of JP2007071187A publication Critical patent/JP2007071187A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2105Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids comprising two or more coils
    • F01L2009/2109The armature being articulated perpendicularly to the coils axes

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a solenoid-driven valve by reducing sliding resistance of a valve stem when closing the valve when torque of a torsion bar becomes maximum. <P>SOLUTION: This solenoid-driven valve has a valve 87 having the valve stem and reciprocating in the direction for extending the valve stem, and a disc 74 being a rocking member having one end slidingly supported by a housing 62 and having the other end provided with a chip 73 for pressing the valve stem in the direction for extending the valve stem. The disc 74, the chip 73 and the valve stem are positioned so that both a normal of an abutting surface of the valve stem in an abutting part of the chip 73 and the valve stem and a normal of an abutting surface of the chip 73 become the direction for extending the valve stem at a rocking angle of the disc 74 where force acting between the chip 73 and the valve stem becomes maximum. The solenoid-driven valve also has a valve closing electromagnet composed of a core 72 and a coil 80 held in a valve closing position by attracting the disc 74, and the torsion bar 68 being a first elastic member for adding force for separating the disc 74 from the valve closing electromagnet to the disc 74. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、電磁駆動弁に関し、特に内燃機関の給気弁または排気弁として用いられる電磁駆動弁に関する。   The present invention relates to an electromagnetically driven valve, and more particularly to an electromagnetically driven valve used as an intake valve or an exhaust valve of an internal combustion engine.

従来の内燃機関の電磁駆動弁に関して、たとえば、米国特許第6467441号明細書(特許文献1)には、ディスク(アーマチュア)の一端に支点を持ち、他端にて内燃機関の吸排気弁のステムエンドを押圧する押圧部を備える回転駆動式の電磁駆動弁が開示されており、この電磁駆動弁では、ステムエンドとディスクのステムエンド押圧部とはお互いにR形状で接触している。
米国特許第6467441号明細書
With respect to a conventional electromagnetically driven valve for an internal combustion engine, for example, US Pat. No. 6,467,441 (Patent Document 1) has a fulcrum at one end of a disk (armature) and the stem of an intake / exhaust valve of the internal combustion engine at the other end. A rotary drive type electromagnetically driven valve having a pressing portion for pressing an end is disclosed. In this electromagnetically driven valve, a stem end and a stem end pressing portion of a disk are in contact with each other in an R shape.
US Pat. No. 6,467,441

しかしながら、回転駆動式の電磁駆動弁では、ディスクが回転するにつれ、両者のR形状の曲率中心は弁軸上から相対的にずれていく。トーションバーのトルクが最大になる閉弁時に両者の曲率中心が軸からずれていると、バルブステムは横方向に押されるため、バルブステムの摺動抵抗が大きくなる。バルブステムの摺動抵抗が大きいと、スプリングの弾性力や電磁石による電磁力を強める必要があり部品が大型化してしまう。また大きな摺動抵抗に対して耐久性を持たせるために、バルブステムを太くしたり、ベアリングのボールを大きくしたりする必要が生ずる。   However, in the rotationally driven electromagnetically driven valve, as the disk rotates, the center of curvature of both R shapes is relatively displaced from the valve shaft. If the center of curvature of both of them is offset from the shaft when the torque of the torsion bar is maximized, the valve stem is pushed laterally, and the sliding resistance of the valve stem increases. When the sliding resistance of the valve stem is large, it is necessary to increase the elastic force of the spring and the electromagnetic force by the electromagnet, and the size of the component increases. Further, in order to provide durability against a large sliding resistance, it is necessary to make the valve stem thicker or make the ball of the bearing larger.

この発明の目的は、小型化された電磁駆動弁を提供することである。   An object of the present invention is to provide a miniaturized electromagnetically driven valve.

この発明は、要約すると、電磁駆動弁であって、弁軸を有し弁軸が延びる方向に沿って往復運動する弁と、一方端がベース部材に揺動自在に支持され他方端に弁軸を弁軸が延びる方向に沿って押圧する押圧部が設けられた揺動部材とを備える。押圧部と弁軸の間に働く力が最大となる揺動部材の揺動角度において、押圧部と弁軸との当接部での弁軸の当接面の法線と押圧部の当接面の法線がともに弁軸が延びる方向になるように、揺動部材と弁軸が位置決めされている。   In summary, the present invention is an electromagnetically driven valve that has a valve shaft and reciprocates along a direction in which the valve shaft extends, and a valve shaft at one end that is swingably supported by a base member. And a swinging member provided with a pressing portion that presses the valve along the direction in which the valve shaft extends. The normal of the contact surface of the valve shaft at the contact portion between the pressing portion and the valve shaft and the contact of the pressing portion at the swing angle of the swing member that maximizes the force acting between the pressing portion and the valve shaft. The swing member and the valve shaft are positioned so that the normals of the surfaces are in the direction in which the valve shaft extends.

好ましくは、電磁駆動弁は、揺動部材を吸着して閉弁位置に保持する閉弁用電磁石と、揺動部材を閉弁用電磁石から離す力を揺動部材に加える第1の弾性部材とをさらに備える。押圧部と弁軸の間に働く力が最大となる揺動部材の揺動角度は、揺動部材が閉弁位置であるときの角度である。   Preferably, the electromagnetically driven valve includes a valve closing electromagnet that attracts the swing member and holds it in the closed position, and a first elastic member that applies a force to the swing member to separate the swing member from the valve closing electromagnet. Is further provided. The swing angle of the swing member that maximizes the force acting between the pressing portion and the valve shaft is an angle when the swing member is in the valve closing position.

より好ましくは、電磁駆動弁は、揺動部材を吸着して開弁位置に保持する開弁用電磁石と、弁軸に対して弾性力を加えることにより、押圧部を介して揺動部材を閉弁用電磁石から離す力を揺動部材に加える第2の弾性部材とをさらに備える。   More preferably, the electromagnetically driven valve closes the oscillating member via the pressing portion by applying an elastic force to the valve shaft and a valve opening electromagnet that attracts and holds the oscillating member at the valve opening position. A second elastic member that applies a force separating the electromagnet for the valve to the swing member.

好ましくは、揺動部材は、磁性材のコア部と、押圧部に設けられ弁軸と当接する非磁性材のチップとを含む。   Preferably, the swing member includes a core portion of a magnetic material and a non-magnetic material tip that is provided in the pressing portion and abuts on the valve shaft.

より好ましくは、チップは、押圧部の当接面である凹面を有し、弁軸の当接面は凸面である。   More preferably, the tip has a concave surface that is a contact surface of the pressing portion, and the contact surface of the valve shaft is a convex surface.

本発明によれば、小型化された電磁駆動弁を実現できる。   According to the present invention, a miniaturized electromagnetically driven valve can be realized.

以下、本発明について図面を参照して詳しく説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、電磁駆動弁の検討例を示した図である。
内燃機関であるエンジンは、シリンダブロックとシリンダヘッドとシリンダ中を上下するピストンと各気筒の吸気ポートに設けられる電磁駆動式の吸気弁と各気筒の排気ポートに設けられる電磁駆動式の排気弁とを含む。吸気弁および排気弁は、気筒毎にたとえば2個ずつ設けられる。
FIG. 1 is a diagram illustrating an examination example of an electromagnetically driven valve.
An engine that is an internal combustion engine includes a cylinder block, a cylinder head, a piston that moves up and down in the cylinder, an electromagnetically driven intake valve that is provided at an intake port of each cylinder, and an electromagnetically driven exhaust valve that is provided at an exhaust port of each cylinder. including. For example, two intake valves and two exhaust valves are provided for each cylinder.

図1において代表的に1つの電磁駆動弁が示されている。
エンジンのシリンダブロックにはエンジン回転数を検出するクランク角センサ6が取付けられている。各種センサ出力は、電子制御ユニット(ECU)30に入力され、このECU30は、燃料噴射弁の噴射時期や噴射量、点火プラグの点火時期を制御するとともに、電磁駆動ユニット(EDU)32に対して吸気弁または排気弁を駆動する電磁アクチュエータ24の開弁時期を指示する。
FIG. 1 representatively shows one electromagnetically driven valve.
A crank angle sensor 6 for detecting the engine speed is attached to the cylinder block of the engine. The various sensor outputs are input to an electronic control unit (ECU) 30, which controls the injection timing and injection amount of the fuel injection valve and the ignition timing of the spark plug and controls the electromagnetic drive unit (EDU) 32. The opening timing of the electromagnetic actuator 24 that drives the intake valve or the exhaust valve is instructed.

電子制御ユニット(ECU)30は、メモリ31を含む。メモリ31にはクランク角センサ6の出力に対応する通電パターンがマップとして記憶されている。   The electronic control unit (ECU) 30 includes a memory 31. The memory 31 stores an energization pattern corresponding to the output of the crank angle sensor 6 as a map.

この電磁駆動弁は、弁軸を有し弁軸が延びる方向に沿って往復運動するバルブ87と、一方端がハウジング62に揺動自在に支持され他方端に弁軸を弁軸が延びる方向に沿って押圧するカムフォロアチップ73が設けられた揺動部材であるディスク74とを備える。   This electromagnetically driven valve has a valve 87 that has a valve shaft and reciprocates along the direction in which the valve shaft extends, and one end that is swingably supported by the housing 62 and the other end that has the valve shaft in the direction in which the valve shaft extends. And a disc 74 that is a swinging member provided with a cam follower tip 73 that is pressed along.

電磁駆動弁は、ディスク74を吸着して閉弁位置に保持する閉弁用コア72およびコイル80から成る閉弁用電磁石と、ディスク74を閉弁用電磁石から離す力をディスク74に加える第1の弾性部材であるトーションバー68とをさらに備える。   The electromagnetically driven valve has a valve closing electromagnet comprising a valve closing core 72 and a coil 80 that attracts and holds the disk 74 in the valve closing position, and a first force that applies a force to the disk 74 to separate the disk 74 from the valve closing electromagnet. And a torsion bar 68 which is an elastic member.

電磁駆動弁は、揺動部材を吸着して開弁位置に保持する開弁用コア78およびコイル82から成る開弁用電磁石と、弁軸に対して弾性力を加えることにより、カムフォロアチップ73を介してディスクを開弁用電磁石から離す力をディスク74に加える第2の弾性部材であるロアスプリング86とをさらに備える。   The electromagnetically driven valve attracts the cam follower chip 73 by applying an elastic force to the valve shaft and a valve-opening electromagnet including a valve-opening core 78 and a coil 82 that attracts the swinging member and holds it in the valve-opening position. And a lower spring 86 as a second elastic member for applying a force to the disc 74 to separate the disc from the valve opening electromagnet.

バルブ87は、上下に昇降することにより、シリンダヘッド10に設けられた吸気口または排気口を開閉する。バルブ87から上方に延びるバルブ軸88の上部には中間ステム76が設けられる。中間ステム76の上端にはカムフォロアピン75が取付けられている。バルブ87は、バルブ軸88が延びる方向に沿って往復運動する。   The valve 87 moves up and down to open and close an intake port or an exhaust port provided in the cylinder head 10. An intermediate stem 76 is provided on the upper portion of the valve shaft 88 extending upward from the valve 87. A cam follower pin 75 is attached to the upper end of the intermediate stem 76. The valve 87 reciprocates along the direction in which the valve shaft 88 extends.

バルブ軸88とシリンダヘッド10との間にはストロークボールベアリング89が設けられており、バルブ軸88が上下方向に可動に支持されている。中間ステム76の下方端には鍔部84が設けられており、鍔部84とシリンダヘッド10との間にはロアスプリング86が配置されている。   A stroke ball bearing 89 is provided between the valve shaft 88 and the cylinder head 10, and the valve shaft 88 is supported movably in the vertical direction. A flange 84 is provided at the lower end of the intermediate stem 76, and a lower spring 86 is disposed between the flange 84 and the cylinder head 10.

電磁アクチュエータ24は、ハウジング62に固定された開弁用の電磁石と閉弁用の電磁石とを含む。開弁用電磁石は開弁用コア78と、コイル82とを含む。閉弁用電磁石は閉弁用コア72とコイル80とを含む。コイル80とコイル82とは結線されて共用化されているモノコイル構造である。これらの開弁用および閉弁用電磁石によってディスク74が吸着される。ディスク74は一方端がハウジング62に揺動自在に支持される揺動部材である。   The electromagnetic actuator 24 includes a valve opening electromagnet and a valve closing electromagnet fixed to the housing 62. The valve opening electromagnet includes a valve opening core 78 and a coil 82. The valve closing electromagnet includes a valve closing core 72 and a coil 80. The coil 80 and the coil 82 have a monocoil structure that is connected and shared. The disc 74 is adsorbed by these opening and closing electromagnets. The disk 74 is a swinging member whose one end is supported by the housing 62 so as to be swingable.

そしてアッパスプリングであるトーションバー68の弾性力によってディスク74は下向きすなわち開弁方向の力を中間ステム76に与える。ディスク74の他方端にはカムフォロアチップ73が取付けられている。カムフォロアチップ73は中間ステム76の上端に固着されているカムフォロアピン75と当接し中間ステム76に対して下向きすなわち開弁方向の力を与える。   The disk 74 applies a downward force, that is, a valve opening direction force to the intermediate stem 76 by the elastic force of the torsion bar 68 as an upper spring. A cam follower chip 73 is attached to the other end of the disk 74. The cam follower tip 73 abuts on a cam follower pin 75 fixed to the upper end of the intermediate stem 76 and applies a downward force, that is, a valve opening direction force to the intermediate stem 76.

これに対してロアスプリング86は鍔部84を押上げることにより中間ステム76に対して上向きすなわち閉弁方向の力を与える。トーションバー68およびロアスプリング86の合力として、バルブ87が全閉となったときには開く方向に力が発生して逆にバルブ87が全開となったときには閉じる方向に力が発生する。ディスク74と吸着する電磁石のコイルとの距離が大きいときにこのスプリングによる力を利用することにより、電磁石のサイズを小さくすることができる。   On the other hand, the lower spring 86 pushes up the collar portion 84 to apply an upward force, that is, a valve closing direction force to the intermediate stem 76. As a resultant force of the torsion bar 68 and the lower spring 86, a force is generated in the opening direction when the valve 87 is fully closed, and conversely, a force is generated in the closing direction when the valve 87 is fully opened. When the distance between the disk 74 and the coil of the electromagnet to be adsorbed is large, the size of the electromagnet can be reduced by using the force of the spring.

図2は、図1のII−II断面における断面図である。
図2を参照して、開弁用コア78にはコイル82が巻回されている。開弁用コア78の一部分には中間ステム76およびストロークボールベアリング83が収められる穴が設けられている。
2 is a cross-sectional view taken along the line II-II in FIG.
Referring to FIG. 2, a coil 82 is wound around the valve opening core 78. A part of the valve opening core 78 is provided with a hole for accommodating the intermediate stem 76 and the stroke ball bearing 83.

図3は、閉弁時の中間ステムに加わる力を説明するための拡大図である。
図1、図3を参照して、ディスク74は、電磁石に吸着されやすい強磁性体である。その一方、カムフォロアチップ73は、中間ステムに磁束が漏れないように非磁性体にするのが好ましい。したがって、平板状のディスク74に凹面のR形状を有するカムフォロアチップ73が突出することになる。
FIG. 3 is an enlarged view for explaining the force applied to the intermediate stem when the valve is closed.
Referring to FIGS. 1 and 3, the disk 74 is a ferromagnetic material that is easily attracted to an electromagnet. On the other hand, the cam follower tip 73 is preferably made of a non-magnetic material so that magnetic flux does not leak into the intermediate stem. Therefore, the cam follower chip 73 having a concave R shape protrudes from the flat disk 74.

閉弁時すなわちコイル80側にディスク74が吸着されている時には、トーションバー68の弾性力は最も大きな状態となっている。   When the valve 74 is closed, that is, when the disk 74 is adsorbed on the coil 80 side, the elastic force of the torsion bar 68 is in the largest state.

この状態においてコイル80の通電が停止されるとトーションバー68に蓄えられているばね力が図3の接線力F0としてカムフォロアチップ73からカムフォロアピン75に加わる。   When the energization of the coil 80 is stopped in this state, the spring force stored in the torsion bar 68 is applied from the cam follower tip 73 to the cam follower pin 75 as a tangential force F0 in FIG.

この力F0は中間ステム76を押し下げようとする力F2と横方向から中間ステム76を押そうとする力F1とに成分を分けることができる。   This force F0 can be divided into a force F2 that pushes down the intermediate stem 76 and a force F1 that pushes the intermediate stem 76 from the lateral direction.

すなわち、バルブの軸X−Xから開弁時における接触点がずれていたり、また接触点がずれていなくても接触点におけるカムフォロアチップの法線およびカムフォロアピン75の接触点における法線が軸X−Xからずれていたりすると、中間ステム76を横方向に押そうとする分力F1が発生してしまう。   That is, the contact point at the time of valve opening is shifted from the axis XX of the valve, and even if the contact point is not shifted, the normal line of the cam follower tip at the contact point and the normal line at the contact point of the cam follower pin 75 are the axis X. If it deviates from −X, a component force F1 that tries to push the intermediate stem 76 in the lateral direction is generated.

図4は、図1のA1部を拡大して示し、横方向の分力F1がストロークボールベアリングに与える力を説明するための図である。   FIG. 4 is an enlarged view of the portion A1 in FIG. 1, and is a diagram for explaining the force applied to the stroke ball bearing by the lateral component force F1.

図4を参照して、ストロークボールベアリング83は、ボール91〜99と、ボール91〜99の位置を拘束するケージ90とを含む。図4に示すように分力F1がカムフォロアピン75に加わるとカムフォロアピン75に近い側のボール91を力F4で押すことになる。この力に対する抗力が発生し、ストロークボールベアリング83における転動摩擦ないし摺動摩擦が増大するという問題が生ずる。   Referring to FIG. 4, stroke ball bearing 83 includes balls 91 to 99 and a cage 90 that restrains the positions of balls 91 to 99. As shown in FIG. 4, when the component force F1 is applied to the cam follower pin 75, the ball 91 closer to the cam follower pin 75 is pushed with the force F4. A resistance against this force is generated, which causes a problem that rolling friction or sliding friction in the stroke ball bearing 83 increases.

また、抗力が大きくなると、強度面からボールベアリングのボールサイズを大きくする必要が生じ、このためベアリング取付けスペースを拡大すべく図2に示した開弁用コア78の上面積の減少やベアリングの高コスト化を招くなどの問題も発生する。   In addition, when the drag increases, it is necessary to increase the ball size of the ball bearing in terms of strength. For this reason, in order to increase the bearing mounting space, the upper area of the valve opening core 78 shown in FIG. Problems such as incurring costs also occur.

図5は、本発明の実施の形態に係る電磁駆動弁の構成を示した図である。
図5に示した電磁駆動弁は、図1に示した検討例の電磁駆動弁の構成においてアクチュエータ24を全体的にθだけ回転して搭載している。他の部分の構成については図1で説明した検討例と同様であるので説明は繰返さない。
FIG. 5 is a diagram showing the configuration of the electromagnetically driven valve according to the embodiment of the present invention.
The electromagnetically driven valve shown in FIG. 5 has the actuator 24 entirely rotated by θ in the configuration of the electromagnetically driven valve of the examination example shown in FIG. Since the configuration of the other parts is the same as in the study example described with reference to FIG. 1, description thereof will not be repeated.

アクチュエータ24をθだけ回転することにより、カムフォロアチップ73と弁軸の間に働く力が最大となるディスク74の揺動角度において、カムフォロアチップ73と弁軸との当接部での弁軸の当接面の法線とカムフォロアチップ73の当接面の法線がともに弁軸が延びる方向になるように、ディスク74およびカムフォロアチップ73と弁軸が位置決めされる。   By rotating the actuator 24 by θ, the contact of the valve shaft at the contact portion between the cam follower tip 73 and the valve shaft is obtained at the swing angle of the disk 74 where the force acting between the cam follower tip 73 and the valve shaft is maximized. The disc 74, the cam follower tip 73, and the valve shaft are positioned so that the normal of the contact surface and the normal of the contact surface of the cam follower tip 73 are in the direction in which the valve shaft extends.

そして、カムフォロアチップ73と弁軸の間に働く力が最大となるディスク74の揺動角度は、ディスク74が閉弁位置、つまりコイル80側に吸着された状態であるときの角度である。コイル80での吸着が開放されると、トーションバー68における最大トルクがディスク74に与えられ、カムフォロアチップ73と弁軸の間に働く力が最大となる。   The rocking angle of the disk 74 at which the force acting between the cam follower chip 73 and the valve shaft is maximum is an angle when the disk 74 is in the closed position, that is, in the state where it is attracted to the coil 80 side. When the adsorption by the coil 80 is released, the maximum torque in the torsion bar 68 is applied to the disk 74, and the force acting between the cam follower tip 73 and the valve shaft is maximized.

図6は、図5のA2部を拡大して示し、閉弁時に中間ステムに加わる力を説明するための図である。   FIG. 6 is an enlarged view of the A2 portion of FIG. 5 for explaining the force applied to the intermediate stem when the valve is closed.

図5、図6に示すように、本発明の実施の形態においては、開弁用のアッパスプリングであるトーションバー68のトルクが最大となる閉弁時に、カムフォロア接点でのトーションバー68による力の方向とバルブ軸X−Xとを一致させるようにアクチュエータ全体をθだけ回転して搭載する。   As shown in FIGS. 5 and 6, in the embodiment of the present invention, when the torque of the torsion bar 68 that is the upper spring for valve opening becomes maximum, the force of the torsion bar 68 at the cam follower contact is reduced. The entire actuator is rotated by θ so that the direction matches the valve axis XX.

このような位置決めによってアッパスプリングの中間ステム76に対する横方向の分力を概ねゼロにして、この分力に起因した中間ステム76部分の摺動または転動抵抗の低減を図ることができ、ストロークボールベアリングの小型化および低コスト化を可能とすることができる。   By such positioning, the lateral force of the upper spring with respect to the intermediate stem 76 can be made substantially zero, and the sliding or rolling resistance of the intermediate stem 76 caused by this component force can be reduced, and the stroke ball It is possible to reduce the size and cost of the bearing.

なお、図5に示した例においてはアクチュエータ全体を回転して搭載したが、これに限られるものではなく、弁軸を押圧する押圧部と弁軸との間に働く力が最大となる揺動角度において押圧部と弁軸との当接部での弁軸の当接面の法線と押圧部の当接面の法線がともに弁軸X−Xと一致するように揺動部材すなわちディスクと弁軸が位置決めされておればよい。   In the example shown in FIG. 5, the entire actuator is rotated and mounted. However, the present invention is not limited to this, and the swing that maximizes the force acting between the pressing portion that presses the valve shaft and the valve shaft is provided. The swing member, that is, the disk, so that the normal of the contact surface of the valve shaft at the contact portion between the pressing portion and the valve shaft and the normal of the contact surface of the pressing portion coincide with the valve shaft XX at an angle. And the valve shaft only needs to be positioned.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

電磁駆動弁の検討例を示した図である。It is the figure which showed the example of examination of an electromagnetically driven valve. 図1のII−II断面における断面図である。It is sectional drawing in the II-II cross section of FIG. 閉弁時の中間ステムに加わる力を説明するための拡大図である。It is an enlarged view for demonstrating the force added to the intermediate stem at the time of valve closing. 図1のA1部を拡大して示し、横方向の分力F1がストロークボールベアリングに与える力を説明するための図である。FIG. 2 is an enlarged view of a portion A1 in FIG. 1 and is a diagram for explaining a force applied to a stroke ball bearing by a lateral component force F1. 本発明の実施の形態に係る電磁駆動弁の構成を示した図である。It is the figure which showed the structure of the electromagnetically driven valve which concerns on embodiment of this invention. 図5のA2部を拡大して示し、閉弁時に中間ステムに加わる力を説明するための図である。FIG. 6 is an enlarged view of a portion A2 in FIG. 5 for explaining the force applied to the intermediate stem when the valve is closed.

符号の説明Explanation of symbols

6 クランク角センサ、10 シリンダヘッド、24 電磁アクチュエータ、30 電子制御ユニット、31 メモリ、32 電磁弁駆動ユニット、62 ハウジング、68 トーションバー、72 閉弁用コア、73 カムフォロアチップ、74 ディスク、75 カムフォロアピン、76 中間ステム、78 開弁用コア、80,82 コイル、83,89 ストロークボールベアリング、84 鍔部、86 ロアスプリング、87 バルブ、88 バルブ軸、90 ケージ、91〜99 ボール。   6 Crank angle sensor, 10 Cylinder head, 24 Electromagnetic actuator, 30 Electronic control unit, 31 Memory, 32 Solenoid valve drive unit, 62 Housing, 68 Torsion bar, 72 Valve closing core, 73 Cam follower tip, 74 Disc, 75 Cam follower pin , 76 Intermediate stem, 78 Valve opening core, 80, 82 coil, 83, 89 stroke ball bearing, 84 collar, 86 lower spring, 87 valve, 88 valve shaft, 90 cage, 91-99 ball.

Claims (5)

弁軸を有し、前記弁軸が延びる方向に沿って往復運動する弁と、
一方端がベース部材に揺動自在に支持され、他方端に前記弁軸を前記弁軸が延びる方向に沿って押圧する押圧部が設けられた揺動部材とを備え、
前記押圧部と前記弁軸の間に働く力が最大となる前記揺動部材の揺動角度において、前記押圧部と前記弁軸との当接部での前記弁軸の当接面の法線と前記押圧部の当接面の法線がともに前記弁軸が延びる方向になるように、前記揺動部材と前記弁軸が位置決めされた電磁駆動弁。
A valve having a valve shaft and reciprocating along a direction in which the valve shaft extends;
A swing member provided at one end with a base member so as to be swingable, and provided with a pressing portion at the other end for pressing the valve shaft along a direction in which the valve shaft extends;
The normal line of the contact surface of the valve shaft at the contact portion between the pressing portion and the valve shaft at the swing angle of the swing member that maximizes the force acting between the press portion and the valve shaft. An electromagnetically driven valve in which the swing member and the valve shaft are positioned such that the normal line of the contact surface of the pressing portion and the normal line of the pressing portion are in the direction in which the valve shaft extends.
前記揺動部材を吸着して閉弁位置に保持する閉弁用電磁石と、
前記揺動部材を前記閉弁用電磁石から離す力を前記揺動部材に加える第1の弾性部材とをさらに備え、
前記押圧部と前記弁軸の間に働く力が最大となる前記揺動部材の揺動角度は、前記揺動部材が前記閉弁位置であるときの角度である、請求項1に記載の電磁駆動弁。
A valve-closing electromagnet that attracts the rocking member and holds it in the valve-closing position;
A first elastic member that applies a force to the swing member to separate the swing member from the valve closing electromagnet;
2. The electromagnetic wave according to claim 1, wherein a swing angle of the swing member that maximizes a force acting between the pressing portion and the valve shaft is an angle when the swing member is in the valve closing position. Drive valve.
前記揺動部材を吸着して開弁位置に保持する開弁用電磁石と、
前記弁軸に対して弾性力を加えることにより、前記押圧部を介して前記揺動部材を前記閉弁用電磁石から離す力を前記揺動部材に加える第2の弾性部材とをさらに備える、請求項2に記載の電磁駆動弁。
A valve-opening electromagnet that attracts the rocking member and holds it in the valve-opening position;
And a second elastic member that applies a force to the swinging member to separate the swinging member from the valve-closing electromagnet via the pressing portion by applying an elastic force to the valve shaft. Item 3. The electromagnetically driven valve according to Item 2.
前記揺動部材は、
磁性材のコア部と、
前記押圧部に設けられ前記弁軸と当接する非磁性材のチップとを含む、請求項1に記載の電磁駆動弁。
The swing member is
A core of magnetic material;
2. The electromagnetically driven valve according to claim 1, comprising a tip made of a non-magnetic material provided in the pressing portion and abutting against the valve shaft.
前記チップは、
前記押圧部の当接面である凹面を有し、
前記弁軸の当接面は凸面である、請求項4に記載の電磁駆動弁。
The chip is
A concave surface that is a contact surface of the pressing portion;
The electromagnetically driven valve according to claim 4, wherein the contact surface of the valve shaft is a convex surface.
JP2005262332A 2005-09-09 2005-09-09 Solenoid-driven valve Withdrawn JP2007071187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262332A JP2007071187A (en) 2005-09-09 2005-09-09 Solenoid-driven valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262332A JP2007071187A (en) 2005-09-09 2005-09-09 Solenoid-driven valve

Publications (1)

Publication Number Publication Date
JP2007071187A true JP2007071187A (en) 2007-03-22

Family

ID=37932846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262332A Withdrawn JP2007071187A (en) 2005-09-09 2005-09-09 Solenoid-driven valve

Country Status (1)

Country Link
JP (1) JP2007071187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275708A (en) * 2009-07-15 2009-11-26 Toyota Motor Corp Solenoid-driven valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275708A (en) * 2009-07-15 2009-11-26 Toyota Motor Corp Solenoid-driven valve
JP4706781B2 (en) * 2009-07-15 2011-06-22 トヨタ自動車株式会社 Solenoid valve

Similar Documents

Publication Publication Date Title
US5893344A (en) Valve deactivator for pedestal type rocker arm
JP2007040238A (en) Electromagnetic driving valve
JP4155243B2 (en) Solenoid valve
JPS63289208A (en) Engine valve control device
JP2007071187A (en) Solenoid-driven valve
JP2007046503A (en) Solenoid-driven valve
US7971562B2 (en) Continuous variable valve lift device
US20050076866A1 (en) Electromechanical valve actuator
JP2006057521A (en) Solenoid drive valve
JP2007182841A (en) Valve driving device
US20070058321A1 (en) Electromagnetically driven valve and control method thereof
JP2006057715A (en) Electromagnetic drive valve
JP2006022776A (en) Solenoid-driven valve
JP4124183B2 (en) Electromagnetically driven valve and control method thereof
JP2007205302A (en) Intake air control device for engine
JP4724009B2 (en) Engine intake control device
JP2009228590A (en) Air intake and exhaust valve driving system of internal combustion engine
JP2009264199A (en) Variable valve gear
JP2006070968A (en) Solenoid driving valve
JP2007154714A (en) Solenoid valve
JP6962204B2 (en) Rocker arm
JP2007170625A (en) Electromagnetic drive valve
JP2007192174A (en) Intake control device for engine
JP2008190350A (en) Forced opening/closing device for direct driven valve
JP2006336737A (en) Solenoid actuated valve

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202