US20050076866A1 - Electromechanical valve actuator - Google Patents

Electromechanical valve actuator Download PDF

Info

Publication number
US20050076866A1
US20050076866A1 US10/947,632 US94763204A US2005076866A1 US 20050076866 A1 US20050076866 A1 US 20050076866A1 US 94763204 A US94763204 A US 94763204A US 2005076866 A1 US2005076866 A1 US 2005076866A1
Authority
US
United States
Prior art keywords
armature
valve
valve actuator
connecting rod
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/947,632
Inventor
Mark Hopper
John Norton
Shawn Swales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visteon Global Technologies Inc
Original Assignee
Visteon Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visteon Global Technologies Inc filed Critical Visteon Global Technologies Inc
Priority to US10/947,632 priority Critical patent/US20050076866A1/en
Assigned to VISTEON GLOBAL TECHNOLOGIES, INC. reassignment VISTEON GLOBAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOPPER, MARK L., NORTON, JOHN D., SWALES, SHAWN H.
Priority to GB0421478A priority patent/GB2407209A/en
Priority to FR0410754A priority patent/FR2860912A1/en
Priority to DE102004050013A priority patent/DE102004050013B4/en
Publication of US20050076866A1 publication Critical patent/US20050076866A1/en
Assigned to JPMORGAN CHASE BANK reassignment JPMORGAN CHASE BANK SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VISTEON GLOBAL TECHNOLOGIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2105Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids comprising two or more coils
    • F01L2009/2109The armature being articulated perpendicularly to the coils axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2132Biasing means
    • F01L2009/2134Helical springs
    • F01L2009/2136Two opposed springs for intermediate resting position of the armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2167Sensing means
    • F01L2009/2169Position sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • H01F2007/086Structural details of the armature

Definitions

  • the present invention relates to electromechanical valve actuators and, more particularly, to compact electromechanical valve actuators.
  • Electromechanical valve actuators also known as electromagnetic valve actuators or EMVA
  • Electromechanical valve actuators allow selective opening and closing of the valves in response to various engine conditions.
  • Electromechanical valve actuators generally include two electromagnets formed from a lamination stack and an embedded power coil.
  • a spring loaded lever armature located between the electromagnets is movable between the electromagnets as the power coils are selectively energized to create a magnetic force to attract the armature to the energized electromagnet.
  • the surface of the electromagnets to which the armature is attracted when the power coil of an electromagnet is energized is generally referred to as a pole face.
  • the armature is operationally coupled to the valve so that as the armature moves between pole faces in pole-face-to-pole-face operation, the valve is opened and closed.
  • each valve includes a relatively large set of electromagnets for opening and closing the valves, making it difficult to position all the electromechanical valve actuators on engines, especially on engines that have four or more valves per cylinder.
  • Linear electromechanical valve actuators also generally draw a substantial amount of power from the alternator and with some engines having four or more valves per cylinder, the power drain on the alternator for the four or more electromechanical valve actuators is substantial. It is desirable to minimize power consumption of the electromechanical valve actuators in modern vehicles which have many competing power demands.
  • many manufacturers have recently been turning to lever electromechanical valve actuators, which due to their mechanical properties have substantial power savings.
  • lever electromechanical valve actuators One problem with lever electromechanical valve actuators is still the package size required on the cylinder head. The package size is increased because the valve on lever electromechanical valve actuators is located well outside the envelope of the electromagnets, thereby increasing the package space required for each electromechanical valve actuator.
  • An example of a prior art arrangement of lever electromechanical valve actuators 10 ′ over the cylinder 16 and location of the associated armature plate 32 ′ and valve 20 may be seen in FIG. 10 .
  • electromechanical valve actuators on an engine having four valves 20 per cylinder 16 require significantly more space than camshafts, thereby presenting packaging concerns in engine compartments where space is limited. Therefore, there is a need for a compact lever electromechanical valve actuator with low power consumption.
  • the present invention relates to electromechanical valve actuators and, more particularly, to compact lever electromechanical valve actuators.
  • Compact electromechanical valve actuators allow the individual electromechanical valve actuators or pairs of electromechanical valve actuators to be situated in close proximity.
  • the compact electromechanical valve actuator includes an armature plate having an armature envelope and a connecting rod pivotably coupled to the armature plate within the armature envelope.
  • the electromechanical valve actuator further includes a spring assembly to which the armature plate applies a bi-directional force through the connecting rod to open and close the valve.
  • the connecting rod is located at least partially within the envelope of the electromagnets and the envelope of the armature plate to reduce the amount of space required on the engine. The location of the connecting rod allows the lever electromechanical valve actuators to be located at least partially over the valve.
  • FIG. 1 is a sectional view of the electromechanical valve actuator
  • FIG. 2 is an enlarged sectional view of the armature plate
  • FIG. 3 is a top sectional view
  • FIG. 4 is a perspective view of the armature plate and connecting rod with the electromagnets shown in phantom lines;
  • FIG. 5 is a perspective view of an alternative armature plate and connecting rod with the electromagnets shown in phantom lines;
  • FIG. 6 is a top plan view of a second alternative armature plate showing the reinforcing pins with hidden lines;
  • FIG. 7 is a top plan view of the valve electromagnets for use in connection with the second alternative armature plate shown in FIG. 6 ;
  • FIG. 8 is an enlarged sectional view of the connecting rod coupled to the armature spring assembly with a wedge fastener
  • FIG. 9 is an enlarged sectional view of an alternative embodiment with the connecting rod being coupled to the armature spring assembly with a pivot connection;
  • FIG. 10 is a prior art top plan view of the placement of lever electromechanical valve actuators on a cylinder head
  • FIG. 11 is a top view of the armature plate of a second alternative embodiment
  • FIG. 12 is a top view of the valve electromagnets of the second alternative embodiment
  • FIG. 13 is a perspective view of the electromechanical valve actuator of the second alternative embodiment with the electromagnets shown in phantom lines;
  • FIG. 14 is a side sectional view of a third alternative embodiment.
  • FIG. 15 is a top sectional view of the third alternative embodiment.
  • a lever electromechanical valve actuator 10 typically mounted on an internal combustion engine 12 to open and close a valve 20 (e.g., the intake or exhaust valves), is illustrated in FIG. 1 .
  • the lever electromechanical valve actuator 10 of the present invention provides greater freedom in placement on the engine 12 a more compact arrangement, and allows the lever electromechanical valve actuator 10 to be situated at least partially over the valve 20 .
  • the electromechanical valve actuator 10 generally includes an armature assembly 30 having an armature plate 32 , an electromagnet assembly 70 having electromagnets 72 , 74 , a connecting rod 90 and a spring assembly 60 .
  • the armature plate 32 is alternatively attracted to the electromagnets 72 , 74 , thereby applying a bi-directional force to the spring assembly 60 through the connecting rod 90 to open and close the valve 20 .
  • the valve 20 is similar to traditional valves and generally includes a valve head 22 with a valve stem 24 extending therefrom.
  • the valve 20 has an open and a closed position wherein in the closed position the valve head 22 seals a valve port 14 to the corresponding cylinder 16 .
  • the spring assembly 60 includes springs 62 and 64 sized to bias the armature plate 32 into an intermediate position, shown in FIG. 2 , while the electromagnets 74 , 74 are not energized.
  • the electromagnet assembly 70 controls the movement of the armature assembly 30 , and thereby the movement of the valve 20 .
  • the electromagnets 72 , 74 include cores 76 which may be formed from laminated plates (not shown) to improve the magnetic efficiency of the electromagnets 72 , 74 .
  • a coil 78 is situated within each core 76 and is selectively energized to attract the armature plate 32 to the electromagnets 72 , 74 .
  • C-blocks 8 , 9 generally secure the electromagnets 72 , 74 in position and are separated by a spacer block 6 to form the gap 15 between the electromagnets 72 , 74 in which the armature plate 32 is located.
  • the c-blocks 8 , 9 may be formed without the need for a spacer, as shown in FIGS. 14 and 15 .
  • the valve c-block 8 illustrated in FIG. 15 , may support a bushing 43 to help reduce friction and increase longevity of the electromechanical valve actuator 10 .
  • the armature c-block 9 is typically a mirror image of the valve c-block 8 , although other sizes, shapes, and configurations may be used.
  • the spacer block 6 or a two part spacer block may support a guide bushing to reduce friction.
  • the c-blocks 8 , 9 may be elongated and configured to hold a pair of electromechanical valve actuators 10 in line with each other (not shown).
  • the c-blocks 8 , 9 may also be formed as a double c-block, having an “E-configuration” (not shown) to hold a pair of adjacent electromechanical valve actuators 10 .
  • the c-blocks 8 , 9 may also be configured to hold any number of electromechanical valve actuators 10 , such as holding as many electromechanical valves actuators as there are valves 20 per cylinder 16 .
  • the c-blocks 8 , 9 and spacer block 6 may be directly coupled to the engine 12 as illustrated in FIG. 1 or a housing (not shown) may secure them. In the illustrated embodiment, the housing generally fits over the electromechanical valve actuators 10 similar to a valve cover to protect the electromechanical valve actuators 10 from dirt and debris while retaining lubrication.
  • the housing may cover individual electromechanical valve actuators 10 , multiple electromechanical valve actuators 10 , such as a pair or all electromechanical valve actuators over a particular cylinder 16 or all electromechanical valve actuators on a bank of cylinders.
  • a base plate 17 may be installed on the engine 12 as shown in FIGS. 1 and 2 .
  • the armature assembly 30 includes the armature plate 32 and the connecting rod 90 .
  • the armature plate 32 pivots about an armature pivot axis 44 , near a pivot end 49 of the armature plate 32 , to open and close the valve 20 .
  • the connecting rod 90 is coupled to the armature plate 32 near a lever end 48 , opposite the armature pivot axis 44 , and in a manner that transmits forces from the armature plate 32 to the connecting rod 90 in both the opening and closing directions.
  • the armature plate 32 further includes a hinge pin 42 and at least one reinforcing pin 38 .
  • the hinge pin 42 provides an economical and easy to assemble pivot without precise welding or machining of the armature plate to the hinge pin 42 or to a holder for the hinge pin 42 .
  • the hinge rod aligns and secures the laminated plates 34 without precise machining of the armature plate and without welding the individual plates 34 together.
  • the hinge pin 42 may extend beyond the envelope of the armature plate 32 to allow attachment of a rotary position sensor 56 , as illustrated in FIG. 3 , for precise yet economical sensing of the rotational location of the armature plate 32 .
  • the hinge pin 42 also acts as a stiffening member to the armature plate 32 .
  • the hinge pin 42 is secured to the armature plate 32 with an interference fit, but other techniques, such as coining the ends of the hinge pin 42 or welding the hinge pin 42 to the armature plate 32 may be used.
  • the armature plate 32 also includes a reinforcing pin 38 disposed laterally from the hinge pin 42 . As illustrated in FIGS. 1-5 , the reinforcing pin 38 may act as a pivot pin 40 . More specifically, the connecting rod 90 may be pivotably coupled to the reinforcing pin 38 making that reinforcing pin 38 the pivot pin 40 .
  • the pivot pin 40 stiffens the armature plate 32 to prevent flex of the armature plate 32 as well as distributes forces from the connecting rod 90 longitudinally across the laminated plates 34 . More specifically, the reinforcing pin 38 prevents shearing of the laminated plates 34 as the armature plate 32 applies force to the connecting rod 90 .
  • a pivot pin 40 that also acts as a reinforcing pin 38 helps improve magnetic efficiency of the armature plate 32 by minimizing potential disruptors to the magnetic flux through the armature plate 32 near the lever end 48 .
  • the lever end 48 has the highest magnetic attraction and becomes saturated with magnetic flux, under some conditions.
  • the reinforcing pin 38 is secured to the armature plate 32 with an interference fit by being forcibly inserted into aligned holes in the laminated plates 34 , but may be secured to the armature plate 32 by any known method, including coining the ends of the reinforcing pin 38 or welding the reinforcing pin 38 in place.
  • a stiffer armature plate 32 minimizes flexing as the armature plate pivots and thereby provides more efficient operation.
  • the additional stiffening of the armature plate 32 also allows placement of the connecting rod 90 anywhere along the lever end 48 of the armature plate 32 , as illustrated in FIGS. 4 and 5 .
  • the longitudinal extent 52 of the armature plate 32 may be 1.2 times greater than the lateral extent 50 of the armature plate 32 , as illustrated in FIG. 11 .
  • the armature plate 32 may also include a protruding portion 54 ( FIG. 6 ) designed to improve the mechanical advantages of the lever electromechanical valve actuator 10 .
  • the electromagnets 72 , 74 may also include a protruding portion 55 , as illustrated on the valve electromagnets 74 in FIG. 7 .
  • the armature plate 32 may be formed with surfaces that are not parallel, as illustrated in FIG. 14 . In FIG. 14 , the armature plate 32 tapers from the pivot end 49 to the lever end 48 .
  • the armature plate 32 includes a recess 36 .
  • the recess 36 receives the connecting rod 90 so that at least a portion of the connecting rod 90 is located within the envelope of the armature plate 32 .
  • envelope of the armature plate or “armature plate envelope” generally refers to the outer perimeter of the armature plate 32 without any recesses, such as the illustrated recess 36 .
  • any point within the outer perimeter of the armature plate 32 irrespective of the recess 36 is located within the envelope of the armature plate 32
  • the envelope of the armature plate 32 generally does not include any welded protrusions that do not function to magnetically attract the armature plate 32 to the electromagnets 72 , 74 .
  • the recess 36 is designed to provide the space necessary for the connecting rod 90 to pivot freely about pivot pin 40 .
  • a compact electromechanical valve actuator 10 facilitates packaging flexibility, such as allowing the electromechanical valve actuators 10 to be placed in close proximity to one another on the engine 12 . As shown in FIGS.
  • the recess 36 may be located anywhere within the envelope of the armature so long as the connecting rod 90 may drive the valve 20 without interfering with the power coils 78 .
  • the electromechanical valve actuator 10 may be located at least partially over the valve 20 as illustrated in FIG. 3 . Even when the connecting rod 90 is pivotably coupled to the armature plate 32 closer to the lateral center, as illustrated in FIG. 13 , the recess 36 may still extend from the lever end 48 to beyond the pivot pin 40 .
  • the recess 36 extending to the lever end 48 facilitates manufacturing and shipping of the armature assembly 30 by allowing the connecting rod 90 , specifically the shaft 96 to be rotated and to be generally aligned with the armature plate 32 for shipping. Aligning the connecting rod 90 with the armature plate 32 during shipping shrinks the size required for each armature assembly 30 , and minimizes potential damage to the armature assembly during shipment.
  • the connecting rod 90 may be made in almost any size and shape so long as it transfers bi-directional force from the armature assembly 30 to the spring assembly 60 .
  • the connecting rod 90 is illustrated in FIGS. 1 and 8 as having a pivot pin passage on an armature end 92 and a wedge 100 secured to the valve end 94 with a shaft 96 therebetween.
  • the wedge 100 is similar to wedges used in valve spring retainers for camshafts for ease of manufacture and low cost.
  • the connecting rod 90 pivots about the pivot pin 40 and the design of the spring assembly 60 including the wedge 100 allows some pivoting relative to the valve stem 24 during the arcuate movement of the lever end 48 of the armature plate 32 . In FIG.
  • the connecting rod 90 extends toward the valve 20 and during opening of the valve 20 , the connecting rod 90 is axially displaced to contact the valve stem 24 .
  • the wedge 100 is mechanically trapped between the connecting rod 90 and the armature spring retainer 68 by the force applied by the armature spring 64 .
  • the wedge 100 includes two keepers which are assembled into a groove (not shown) on the connecting rod 90 and the force applied by the armature spring 64 to the armature spring retainer 68 keeps the wedge 100 secured within the groove on the connecting rod 90 , so that the connecting rod 90 may apply bi-directional force to the spring assembly 60 .
  • the wedge 100 may be press fit, welded, or otherwise secured on the connecting rod 90 .
  • the slightly rounded ends of the valve stem 24 and connecting rod 90 allow a limited range of pivotal movement relative to each other as the armature plate 32 pivots.
  • the valve spring 62 is also retained by a valve spring retainer 66 .
  • the connecting rod 90 may include other variations where the connecting rod extends toward the valve stem 24 and pushes directly on the armature spring retainer 68 , valve spring retainer 66 , or valve stem 24 to provide bi-directional force to the spring assembly 60 without using the wedge.
  • the connecting rod 90 may be coupled to the armature spring retainer 68 with a retainer pin 69 in place of the wedge 100 allowing the connecting rod 90 to freely pivot at both ends 92 and 94 .
  • the spring assembly 60 is located between the electromagnet assembly 70 and the cylinder 16 as illustrated in FIG. 1 .
  • the spring assembly 60 includes the valve spring 62 and the armature spring 64 , each of which are, as illustrated, preferably located below the armature plate 32 for a more compact valve actuator 10 .
  • the valve spring 62 provides the closing force to the valve 20 and is retained on the valve stem 24 by a valve spring retainer 66 .
  • the armature spring 64 assists the armature assembly 30 in opening of the valve 20 by providing an opening force.
  • the armature spring 64 is retained on the connecting rod 90 by an armature spring retainer 68 .
  • the placement of the springs 62 and 64 below the armature plate 32 provides opposed spring forces to facilitate the desired movement of the armature plate 32 while improving the overall compactness of the actuator relative to prior art designs.
  • the combination of the opposing springs 62 , 64 located below the armature plate 32 also prevents the opposing spring forces from being carried by the connecting rod 90 , any bushings coupled to the connecting rod to facilitate pivoting, and the armature plate 32 .
  • the valve electromagnet 72 may include a valve electromagnet recess 82 as illustrated in FIGS. 1-5 , 7 , 11 , 13 , and 14
  • the armature electromagnet 74 may include a pivot recess 84 as illustrated in FIG. 1 .
  • the valve electromagnet recess 82 and the pivot recess 84 are in alignment with the recess 36 in the armature plate 32 to receive the connecting rod 90 at least partially within the envelope of the electromagnets 72 , 74 .
  • envelope of the armature magnet As used throughout the specification and in the claims the terms “envelope of the armature magnet,” “envelope of the valve electromagnet,” or “envelope of the electromagnets” generally refers to the outer perimeter of the electromagnet 72 , 74 without the recesses 82 and 84 .
  • the electromechanical valve actuators 10 With the connecting rod 90 movable at least partially within the envelope of the electromagnets 72 , 74 , the electromechanical valve actuators 10 may be located in closer proximity to each other and arranged on the engine 12 in a more compact fashion. As illustrated in FIG. 1 , the valve 20 may be located at least partially under the electromagnets 72 , 74 .
  • the hinge pin 42 may be substantially larger than the reinforcing pins 38 , to carry the applied load as the valve 20 is cycled between the open and closed positions.
  • the hinge pin 42 may rotate in bushings 43 to reduce friction.
  • the connecting rod 90 may also be pivotably coupled to the pivot pin 40 with bushings to reduce friction.
  • the location of the reinforcing pins 38 may vary if any reinforcing pins 38 are included that are not pivot pins 40 .
  • the compact electromechanical valve actuators 10 described above provide space savings and facilitate the use of more compact actuator placement patterns relative to each cylinder.
  • the connecting rod 90 being coupled at both ends 92 , 94 also allows the elimination of guide bushings typically used to traditionally guide an armature stem. Elimination of the guide bushing reduces friction and assembly cost. Reduction in friction is desirable because it allows operation of the electromechanical valve actuator 10 with less power consumption.
  • the present invention provides a lever electromechanical valve actuator 10 with compact packaging over the engine.
  • Compact packaging is provided for by using a connecting rod 90 that is at least partially located within the envelope of the electromagnets 72 , 74 and armature plate 32 .
  • the compact packaging is further facilitated by locating the spring assembly 60 between the electromechanical valve actuator 10 and the cylinder 16 .
  • the armature plate 32 provides a bi-directional force through the connecting rod 90 to move the valve between an open and closed position.
  • the compact actuator design allows the valve 20 to substantially be located under the armature plate 32 or valve electromagnet 72 as shown in FIG. 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A compact electromechanical valve actuator that allows the electromechanical valves to generally be situated in closer proximity to each other, thereby reducing overall packaging space requirements. The electromechanical valve actuator includes a connecting rod that is at least partially within the envelope of the electromagnets and armature plate. The armature plate also defines an armature envelope and the connecting rod is pivotably coupled to the armature plate with a pivot axis within the armature envelope.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application No. 60/510,988, filed Oct. 14, 2003, the entire disclosure of this application being considered part of the disclosure of this application and hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to electromechanical valve actuators and, more particularly, to compact electromechanical valve actuators.
  • As engine technology advances and manufacturers strive to increase engine power, improve fuel economy, decrease emissions, and provide more control over engines, manufacturers are developing electromechanical valve actuators (also known as electromagnetic valve actuators or EMVA) to replace camshafts for opening and closing engine valves. Electromechanical valve actuators allow selective opening and closing of the valves in response to various engine conditions.
  • Electromechanical valve actuators generally include two electromagnets formed from a lamination stack and an embedded power coil. A spring loaded lever armature located between the electromagnets is movable between the electromagnets as the power coils are selectively energized to create a magnetic force to attract the armature to the energized electromagnet. The surface of the electromagnets to which the armature is attracted when the power coil of an electromagnet is energized is generally referred to as a pole face. The armature is operationally coupled to the valve so that as the armature moves between pole faces in pole-face-to-pole-face operation, the valve is opened and closed.
  • One problem with traditional linear electromechanical valves is that each valve includes a relatively large set of electromagnets for opening and closing the valves, making it difficult to position all the electromechanical valve actuators on engines, especially on engines that have four or more valves per cylinder. Linear electromechanical valve actuators also generally draw a substantial amount of power from the alternator and with some engines having four or more valves per cylinder, the power drain on the alternator for the four or more electromechanical valve actuators is substantial. It is desirable to minimize power consumption of the electromechanical valve actuators in modern vehicles which have many competing power demands. In view of the drawbacks associated with linear electromechanical valve actuators, many manufacturers have recently been turning to lever electromechanical valve actuators, which due to their mechanical properties have substantial power savings. One problem with lever electromechanical valve actuators is still the package size required on the cylinder head. The package size is increased because the valve on lever electromechanical valve actuators is located well outside the envelope of the electromagnets, thereby increasing the package space required for each electromechanical valve actuator. An example of a prior art arrangement of lever electromechanical valve actuators 10′ over the cylinder 16 and location of the associated armature plate 32′ and valve 20 may be seen in FIG. 10. As shown in FIG. 10, electromechanical valve actuators on an engine having four valves 20 per cylinder 16 require significantly more space than camshafts, thereby presenting packaging concerns in engine compartments where space is limited. Therefore, there is a need for a compact lever electromechanical valve actuator with low power consumption.
  • SUMMARY OF THE INVENTION
  • The present invention relates to electromechanical valve actuators and, more particularly, to compact lever electromechanical valve actuators.
  • Compact electromechanical valve actuators allow the individual electromechanical valve actuators or pairs of electromechanical valve actuators to be situated in close proximity. The compact electromechanical valve actuator includes an armature plate having an armature envelope and a connecting rod pivotably coupled to the armature plate within the armature envelope. The electromechanical valve actuator further includes a spring assembly to which the armature plate applies a bi-directional force through the connecting rod to open and close the valve. The connecting rod is located at least partially within the envelope of the electromagnets and the envelope of the armature plate to reduce the amount of space required on the engine. The location of the connecting rod allows the lever electromechanical valve actuators to be located at least partially over the valve.
  • Further scope of applicability of the present invention will become apparent from the following detailed description, claims, and drawings. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description given here below, the appended claims, and the accompanying drawings in which:
  • FIG. 1 is a sectional view of the electromechanical valve actuator;
  • FIG. 2 is an enlarged sectional view of the armature plate;
  • FIG. 3 is a top sectional view;
  • FIG. 4 is a perspective view of the armature plate and connecting rod with the electromagnets shown in phantom lines;
  • FIG. 5 is a perspective view of an alternative armature plate and connecting rod with the electromagnets shown in phantom lines;
  • FIG. 6 is a top plan view of a second alternative armature plate showing the reinforcing pins with hidden lines;
  • FIG. 7 is a top plan view of the valve electromagnets for use in connection with the second alternative armature plate shown in FIG. 6;
  • FIG. 8 is an enlarged sectional view of the connecting rod coupled to the armature spring assembly with a wedge fastener;
  • FIG. 9 is an enlarged sectional view of an alternative embodiment with the connecting rod being coupled to the armature spring assembly with a pivot connection;
  • FIG. 10 is a prior art top plan view of the placement of lever electromechanical valve actuators on a cylinder head;
  • FIG. 11 is a top view of the armature plate of a second alternative embodiment;
  • FIG. 12 is a top view of the valve electromagnets of the second alternative embodiment;
  • FIG. 13 is a perspective view of the electromechanical valve actuator of the second alternative embodiment with the electromagnets shown in phantom lines;
  • FIG. 14 is a side sectional view of a third alternative embodiment; and
  • FIG. 15 is a top sectional view of the third alternative embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • A lever electromechanical valve actuator 10, typically mounted on an internal combustion engine 12 to open and close a valve 20 (e.g., the intake or exhaust valves), is illustrated in FIG. 1. As described in greater detail below, the lever electromechanical valve actuator 10 of the present invention provides greater freedom in placement on the engine 12 a more compact arrangement, and allows the lever electromechanical valve actuator 10 to be situated at least partially over the valve 20. The electromechanical valve actuator 10 generally includes an armature assembly 30 having an armature plate 32, an electromagnet assembly 70 having electromagnets 72, 74, a connecting rod 90 and a spring assembly 60. The armature plate 32 is alternatively attracted to the electromagnets 72, 74, thereby applying a bi-directional force to the spring assembly 60 through the connecting rod 90 to open and close the valve 20.
  • The valve 20 is similar to traditional valves and generally includes a valve head 22 with a valve stem 24 extending therefrom. The valve 20 has an open and a closed position wherein in the closed position the valve head 22 seals a valve port 14 to the corresponding cylinder 16. The spring assembly 60 includes springs 62 and 64 sized to bias the armature plate 32 into an intermediate position, shown in FIG. 2, while the electromagnets 74, 74 are not energized.
  • The electromagnet assembly 70 controls the movement of the armature assembly 30, and thereby the movement of the valve 20. The electromagnets 72, 74 include cores 76 which may be formed from laminated plates (not shown) to improve the magnetic efficiency of the electromagnets 72, 74. A coil 78 is situated within each core 76 and is selectively energized to attract the armature plate 32 to the electromagnets 72, 74. C- blocks 8, 9 generally secure the electromagnets 72, 74 in position and are separated by a spacer block 6 to form the gap 15 between the electromagnets 72, 74 in which the armature plate 32 is located. The c- blocks 8, 9 may be formed without the need for a spacer, as shown in FIGS. 14 and 15. Also, the valve c-block 8, illustrated in FIG. 15, may support a bushing 43 to help reduce friction and increase longevity of the electromechanical valve actuator 10. The armature c-block 9 is typically a mirror image of the valve c-block 8, although other sizes, shapes, and configurations may be used. Of course, the spacer block 6 or a two part spacer block (not shown) may support a guide bushing to reduce friction. The c- blocks 8, 9 may be elongated and configured to hold a pair of electromechanical valve actuators 10 in line with each other (not shown). The c- blocks 8, 9 may also be formed as a double c-block, having an “E-configuration” (not shown) to hold a pair of adjacent electromechanical valve actuators 10. Of course, the c- blocks 8, 9 may also be configured to hold any number of electromechanical valve actuators 10, such as holding as many electromechanical valves actuators as there are valves 20 per cylinder 16. The c- blocks 8, 9 and spacer block 6 may be directly coupled to the engine 12 as illustrated in FIG. 1 or a housing (not shown) may secure them. In the illustrated embodiment, the housing generally fits over the electromechanical valve actuators 10 similar to a valve cover to protect the electromechanical valve actuators 10 from dirt and debris while retaining lubrication. The housing may cover individual electromechanical valve actuators 10, multiple electromechanical valve actuators 10, such as a pair or all electromechanical valve actuators over a particular cylinder 16 or all electromechanical valve actuators on a bank of cylinders. A base plate 17 may be installed on the engine 12 as shown in FIGS. 1 and 2.
  • The armature assembly 30 includes the armature plate 32 and the connecting rod 90. The armature plate 32 pivots about an armature pivot axis 44, near a pivot end 49 of the armature plate 32, to open and close the valve 20. The connecting rod 90 is coupled to the armature plate 32 near a lever end 48, opposite the armature pivot axis 44, and in a manner that transmits forces from the armature plate 32 to the connecting rod 90 in both the opening and closing directions. The armature plate 32 further includes a hinge pin 42 and at least one reinforcing pin 38. While the armature plate 32 may pivot relative to the hinge pin 42 it is generally desirable for the hinge pin 42 to be secured to the armature plate 32 so that the hinge pin 42 pivots with the plate 32 about the armature pivot axis 44 defined by center of the hinge pin 42 as illustrated in FIGS. 4, 5, and 15. The pivoting of the hinge pin 42 relative to the c- blocks 8, 9 and with the armature plate 32, as the armature plate 32 moves the valve 20 between the open and closed positions, has various benefits. First, the hinge pin 42 provides an economical and easy to assemble pivot without precise welding or machining of the armature plate to the hinge pin 42 or to a holder for the hinge pin 42. Second, the hinge rod aligns and secures the laminated plates 34 without precise machining of the armature plate and without welding the individual plates 34 together. Third, the hinge pin 42 may extend beyond the envelope of the armature plate 32 to allow attachment of a rotary position sensor 56, as illustrated in FIG. 3, for precise yet economical sensing of the rotational location of the armature plate 32. Fourth, by limiting the length of the hinge pin 42 upon which relative rotation occurs, friction losses from rotation can be minimized. Fifth, the hinge pin 42 also acts as a stiffening member to the armature plate 32. In the illustrated embodiment, the hinge pin 42 is secured to the armature plate 32 with an interference fit, but other techniques, such as coining the ends of the hinge pin 42 or welding the hinge pin 42 to the armature plate 32 may be used.
  • The armature plate 32 also includes a reinforcing pin 38 disposed laterally from the hinge pin 42. As illustrated in FIGS. 1-5, the reinforcing pin 38 may act as a pivot pin 40. More specifically, the connecting rod 90 may be pivotably coupled to the reinforcing pin 38 making that reinforcing pin 38 the pivot pin 40. The pivot pin 40 stiffens the armature plate 32 to prevent flex of the armature plate 32 as well as distributes forces from the connecting rod 90 longitudinally across the laminated plates 34. More specifically, the reinforcing pin 38 prevents shearing of the laminated plates 34 as the armature plate 32 applies force to the connecting rod 90. Use of a pivot pin 40 that also acts as a reinforcing pin 38 helps improve magnetic efficiency of the armature plate 32 by minimizing potential disruptors to the magnetic flux through the armature plate 32 near the lever end 48. The lever end 48 has the highest magnetic attraction and becomes saturated with magnetic flux, under some conditions. In the illustrated embodiment, the reinforcing pin 38 is secured to the armature plate 32 with an interference fit by being forcibly inserted into aligned holes in the laminated plates 34, but may be secured to the armature plate 32 by any known method, including coining the ends of the reinforcing pin 38 or welding the reinforcing pin 38 in place. A stiffer armature plate 32 minimizes flexing as the armature plate pivots and thereby provides more efficient operation. The additional stiffening of the armature plate 32 also allows placement of the connecting rod 90 anywhere along the lever end 48 of the armature plate 32, as illustrated in FIGS. 4 and 5.
  • To further improve magnetic efficiency and package size, the longitudinal extent 52 of the armature plate 32 may be 1.2 times greater than the lateral extent 50 of the armature plate 32, as illustrated in FIG. 11. The armature plate 32 may also include a protruding portion 54 (FIG. 6) designed to improve the mechanical advantages of the lever electromechanical valve actuator 10. The electromagnets 72, 74 may also include a protruding portion 55, as illustrated on the valve electromagnets 74 in FIG. 7. To further improve magnetic efficiency, packaging and durability, as well as minimize the moving mass of the armature plate 32, the armature plate 32 may be formed with surfaces that are not parallel, as illustrated in FIG. 14. In FIG. 14, the armature plate 32 tapers from the pivot end 49 to the lever end 48.
  • To provide a more compact electromechanical valve actuator 10, the armature plate 32 includes a recess 36. The recess 36 receives the connecting rod 90 so that at least a portion of the connecting rod 90 is located within the envelope of the armature plate 32. As used throughout the specification and in the claims, the term “envelope of the armature plate” or “armature plate envelope” generally refers to the outer perimeter of the armature plate 32 without any recesses, such as the illustrated recess 36. Therefore, any point within the outer perimeter of the armature plate 32 irrespective of the recess 36 is located within the envelope of the armature plate 32 The envelope of the armature plate 32 generally does not include any welded protrusions that do not function to magnetically attract the armature plate 32 to the electromagnets 72, 74. The recess 36 is designed to provide the space necessary for the connecting rod 90 to pivot freely about pivot pin 40. A compact electromechanical valve actuator 10 facilitates packaging flexibility, such as allowing the electromechanical valve actuators 10 to be placed in close proximity to one another on the engine 12. As shown in FIGS. 11-14, the recess 36 may be located anywhere within the envelope of the armature so long as the connecting rod 90 may drive the valve 20 without interfering with the power coils 78. By locating the connecting rod 90 at least partially within the envelope of the armature plate, the electromechanical valve actuator 10 may be located at least partially over the valve 20 as illustrated in FIG. 3. Even when the connecting rod 90 is pivotably coupled to the armature plate 32 closer to the lateral center, as illustrated in FIG. 13, the recess 36 may still extend from the lever end 48 to beyond the pivot pin 40. The recess 36 extending to the lever end 48 facilitates manufacturing and shipping of the armature assembly 30 by allowing the connecting rod 90, specifically the shaft 96 to be rotated and to be generally aligned with the armature plate 32 for shipping. Aligning the connecting rod 90 with the armature plate 32 during shipping shrinks the size required for each armature assembly 30, and minimizes potential damage to the armature assembly during shipment.
  • The connecting rod 90 may be made in almost any size and shape so long as it transfers bi-directional force from the armature assembly 30 to the spring assembly 60. The connecting rod 90 is illustrated in FIGS. 1 and 8 as having a pivot pin passage on an armature end 92 and a wedge 100 secured to the valve end 94 with a shaft 96 therebetween. The wedge 100 is similar to wedges used in valve spring retainers for camshafts for ease of manufacture and low cost. The connecting rod 90 pivots about the pivot pin 40 and the design of the spring assembly 60 including the wedge 100 allows some pivoting relative to the valve stem 24 during the arcuate movement of the lever end 48 of the armature plate 32. In FIG. 8, the connecting rod 90 extends toward the valve 20 and during opening of the valve 20, the connecting rod 90 is axially displaced to contact the valve stem 24. The wedge 100 is mechanically trapped between the connecting rod 90 and the armature spring retainer 68 by the force applied by the armature spring 64. More specifically, the wedge 100 includes two keepers which are assembled into a groove (not shown) on the connecting rod 90 and the force applied by the armature spring 64 to the armature spring retainer 68 keeps the wedge 100 secured within the groove on the connecting rod 90, so that the connecting rod 90 may apply bi-directional force to the spring assembly 60. Alternatively, the wedge 100 may be press fit, welded, or otherwise secured on the connecting rod 90. The slightly rounded ends of the valve stem 24 and connecting rod 90 allow a limited range of pivotal movement relative to each other as the armature plate 32 pivots. The valve spring 62 is also retained by a valve spring retainer 66.
  • The connecting rod 90 may include other variations where the connecting rod extends toward the valve stem 24 and pushes directly on the armature spring retainer 68, valve spring retainer 66, or valve stem 24 to provide bi-directional force to the spring assembly 60 without using the wedge. In an alternative embodiment, shown in FIG. 9, the connecting rod 90 may be coupled to the armature spring retainer 68 with a retainer pin 69 in place of the wedge 100 allowing the connecting rod 90 to freely pivot at both ends 92 and 94.
  • The spring assembly 60 is located between the electromagnet assembly 70 and the cylinder 16 as illustrated in FIG. 1. The spring assembly 60 includes the valve spring 62 and the armature spring 64, each of which are, as illustrated, preferably located below the armature plate 32 for a more compact valve actuator 10. The valve spring 62 provides the closing force to the valve 20 and is retained on the valve stem 24 by a valve spring retainer 66. The armature spring 64 assists the armature assembly 30 in opening of the valve 20 by providing an opening force. The armature spring 64 is retained on the connecting rod 90 by an armature spring retainer 68. The placement of the springs 62 and 64 below the armature plate 32 provides opposed spring forces to facilitate the desired movement of the armature plate 32 while improving the overall compactness of the actuator relative to prior art designs. The combination of the opposing springs 62, 64 located below the armature plate 32 also prevents the opposing spring forces from being carried by the connecting rod 90, any bushings coupled to the connecting rod to facilitate pivoting, and the armature plate 32.
  • The valve electromagnet 72 may include a valve electromagnet recess 82 as illustrated in FIGS. 1-5, 7, 11, 13, and 14, and the armature electromagnet 74 may include a pivot recess 84 as illustrated in FIG. 1. The valve electromagnet recess 82 and the pivot recess 84 are in alignment with the recess 36 in the armature plate 32 to receive the connecting rod 90 at least partially within the envelope of the electromagnets 72, 74. As used throughout the specification and in the claims the terms “envelope of the armature magnet,” “envelope of the valve electromagnet,” or “envelope of the electromagnets” generally refers to the outer perimeter of the electromagnet 72, 74 without the recesses 82 and 84. With the connecting rod 90 movable at least partially within the envelope of the electromagnets 72, 74, the electromechanical valve actuators 10 may be located in closer proximity to each other and arranged on the engine 12 in a more compact fashion. As illustrated in FIG. 1, the valve 20 may be located at least partially under the electromagnets 72, 74.
  • As illustrated in FIGS. 14 and 15, the hinge pin 42 may be substantially larger than the reinforcing pins 38, to carry the applied load as the valve 20 is cycled between the open and closed positions. The hinge pin 42 may rotate in bushings 43 to reduce friction. Although not illustrated, the connecting rod 90 may also be pivotably coupled to the pivot pin 40 with bushings to reduce friction. As further illustrated in FIG. 15, the location of the reinforcing pins 38 may vary if any reinforcing pins 38 are included that are not pivot pins 40.
  • The compact electromechanical valve actuators 10 described above provide space savings and facilitate the use of more compact actuator placement patterns relative to each cylinder. The connecting rod 90 being coupled at both ends 92, 94 also allows the elimination of guide bushings typically used to traditionally guide an armature stem. Elimination of the guide bushing reduces friction and assembly cost. Reduction in friction is desirable because it allows operation of the electromechanical valve actuator 10 with less power consumption.
  • The present invention provides a lever electromechanical valve actuator 10 with compact packaging over the engine. Compact packaging is provided for by using a connecting rod 90 that is at least partially located within the envelope of the electromagnets 72, 74 and armature plate 32. The compact packaging is further facilitated by locating the spring assembly 60 between the electromechanical valve actuator 10 and the cylinder 16. The armature plate 32 provides a bi-directional force through the connecting rod 90 to move the valve between an open and closed position. The compact actuator design allows the valve 20 to substantially be located under the armature plate 32 or valve electromagnet 72 as shown in FIG. 3.
  • The foregoing discussion discloses and describes an exemplary embodiment of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.

Claims (50)

1. An electromechanical valve actuator comprising:
an armature plate defining an armature envelope; and
a connecting rod pivotably coupled to said armature plate and having a pivot axis located within the armature envelope.
2. The electromechanical valve actuator of claim 1 further including a valve electromagnet and an armature electromagnet, and wherein said armature plate is located between said electromagnets, said valve electromagnet defining a valve electromagnet recess for receiving at least a portion of said connecting rod.
3. The electromechanical valve actuator of claim 2 wherein said armature plate includes an open and closed position, and wherein said valve electromagnet defines a valve envelope, said connecting rod including a pivot head and a shaft, said shaft being substantially received within said valve envelope as said armature plate moves between said open and closed positions.
4. The electromechanical valve actuator of claim 2 wherein said connecting rod includes an armature end and said armature electromagnet includes a pivot recess for receiving a portion of said armature end when said armature plate is in said closed position.
5. The electromechanical valve actuator of claim 1 wherein said armature plate includes a reinforcing pin and wherein said connecting rod is pivotably coupled to said reinforcing pin.
6. The electromechanical valve actuator of claim 5 wherein said armature plate has a plate lateral extent and wherein said armature plate further includes a hinge pin laterally displaced from said reinforcing pin.
7. The electromechanical valve actuator of claim 6 further including a rotary position sensor and wherein said hinge pin extends beyond said armature envelope, said rotary position sensor being coupled to said hinge pin.
8. The electromechanical valve actuator of claim 1 wherein said connecting rod is formed from a substantially non-magnetic material.
9. The electromechanical valve actuator of claim 1 wherein said armature plate includes a plate longitudinal extent and a plate lateral extent and wherein said longitudinal extent is at least 1.2 times greater than the lateral extent.
10. The electromechanical valve actuator of claim 1 further including a valve and a valve electromagnet, said valve being located substantially under said valve electromagnet.
11. The electromechanical valve actuator of claim 10 wherein said valve includes a valve stem and said connecting rod includes an armature end, said armature end being pivotably coupled to said armature plate and having an arcuate movement as said valve is moved between an open and closed position.
12. The electromechanical valve actuator of claim 11 wherein said valve stem and said connecting rod are substantially aligned for a portion of said arcuate movement.
13. The electromechanical valve actuator of claim 10 further including a spring assembly substantially located under said valve electromagnet.
14. The electromechanical valve actuator of claim 1 further including a spring assembly and wherein said connecting rod is configured to apply bidirectional force to said spring assembly.
15. The electromechanical valve actuator of claim 14 wherein said connecting rod is coupled to said spring assembly with a wedge.
16. The electromechanical valve actuator of claim 14 wherein said connecting rod is supported for movement by said armature plate and said spring assembly without a guide bushing.
17. The electromechanical valve actuator of claim 14 wherein said connecting rod is coupled to said spring assembly with a pivot pin.
18. The electromechanical valve actuator of claim 17 further including a valve having a valve stem and wherein said connecting rod pivots relative to said valve stem.
19. The electromechanical valve actuator of claim 1 further including a second armature plate and a second connecting rod wherein each of said armature plates includes a pivot pin and a hinge pin and wherein said pivot pins and hinge pins are arranged in a parallel relationship and wherein said connecting rod is in closer proximity to the hinge pin of said second armature plate than the second connecting rod is to the hinge pin of said armature plate.
20. The electromechanical valve actuator of claim 1 wherein said armature plate has a protruding portion, said protruding portion including a reinforcing pin.
21. The electromechanical valve actuator of claim 20 wherein said connecting rod is pivotably coupled to said reinforcing pin.
22. The electromechanical valve actuator of claim 20 further including a second armature plate having a second protruding portion, said armature plates being arranged with said protruding portions being substantially aligned.
23. The electromechanical valve actuator of claim 20 further including a second armature plate having a second protruding portion and wherein said second protruding portion faces said armature plate and said protruding portion faces said second armature plate.
24. The electromechanical valve actuator of claim 20 further including a second armature plate and wherein each of said armature plates includes a pivot axis and wherein said pivot axes are displaced so that said reinforcing pins are approximately aligned.
25. The electromechanical valve actuator of claim 1 further including a valve electromagnet having a core and a power coil, said power coil being looped and defining a center portion therebetween, and wherein said valve electromagnet defines a valve electromagnet recess in said center portion for receiving said connecting rod.
26. The electromechanical valve actuator of claim 1 wherein said armature plate includes sheets of ferromagnetic material.
27. The electromechanical valve actuator of claim 1 wherein said armature plate defines a recess, said connecting rod pivotable within said recess, and wherein said connecting rod may be aligned with said armature plate.
28. The electromechanical valve actuator of claim 1 further including an armature c-block and a valve c-block, said valve c-block securing a valve electromagnet and said armature c-block securing an armature electromagnet, said electromagnets defining a gap wherein said armature plate is located within said gap.
29. The electromechanical valve actuator of claim 28 wherein said armature plate includes a hinge pin substantially secured between said armature c-block and said valve c-block.
30. The electromechanical valve actuator of claim 29 wherein each of said armature c-block and said valve c-block include a recess for receiving said hinge pin.
31. The electromechanical valve actuator of claim 30 further including a bushing located between said c-blocks and said hinge pin.
32. The electromechanical valve actuator of claim 1 further including a valve electromagnet and an armature electromagnet and wherein said armature plate includes an armature surface facing said armature electromagnet and a valve surface facing said valve electromagnet, and wherein said valve surface and said armature surface are not parallel.
33. The electromechanical valve actuator of claim 1 wherein said armature plate includes a pivot end and a lever end and wherein said armature plate tapers from said pivot end to said lever end.
34. An electromechanical valve actuator comprising:
an armature plate including a reinforcing pin;
a connecting rod pivotably coupled to said reinforcing pin;
35. The electromechanical valve actuator of claim 34 wherein said armature plate includes sheets of ferromagnetic material.
36. The electromechanical valve actuator of claim 34 wherein said armature plate defines an armature envelope and said connecting rod includes a pivot axis, said pivot axis being located within said armature envelope.
37. The electromechanical valve actuator of claim 34 wherein said connecting rod is formed from a nonmagnetic material.
38. The electromechanical valve actuator of claim 34 further including a spring assembly and wherein said connecting rod is configured to apply bidirectional force to said spring assembly.
39. The electromechanical valve actuator of claim 34 further including a valve electromagnet and an armature electromagnet and wherein said armature plate includes an armature surface facing said armature electromagnet and a valve surface facing said valve electromagnet, and wherein said valve surface and said armature surface are not parallel.
40. The electromechanical valve actuator of claim 34 wherein said armature plate includes a pivot end and a lever end and wherein said armature plate tapers from said pivot end to said lever end.
41. An electromechanical valve actuator comprising a valve electromagnet having an outer valve electromagnet perimeter and a valve, said outer valve electromagnet perimeter being extended toward said valve and wherein said valve is substantially within said extended outer valve electromagnet perimeter.
42. The electromechanical valve actuator of claim 41 further including an armature plate defining an armature envelope and a connecting rod pivotably coupled to said armature plate.
43. The electromechanical valve actuator of claim 42 wherein said connecting rod has a pivot axis located within the armature envelope.
44. The electromechanical valve actuator of claim 42 wherein valve electromagnet includes a valve electromagnet recess for receiving at least a portion of said connecting rod.
45. The electromechanical valve actuator of claim 42 wherein said armature plate further includes a reinforcing pin and wherein said connecting rod is pivotably coupled to said reinforcing pin.
46. The electromechanical valve actuator of claim 45 wherein said connecting rod is formed from a nonmagnetic material.
47. The electromechanical valve actuator of claim 41 wherein said valve electromagnet includes a core and a power coil, said power coil being looped and defining a center portion therebetween, and wherein said valve electromagnet defines a valve electromagnet recess in said center portion for receiving said connecting rod.
48. The electromechanical valve actuator of claim 47 further including an armature electromagnet having a pivot recess.
49. The electromechanical valve actuator of claim 41 further including an armature plate having an armature surface facing said armature electromagnet and a valve surface facing said valve electromagnet, and wherein said valve surface and said armature surface are not parallel.
50. The electromechanical valve actuator of claim 41 further including an armature plate having a pivot end and a lever end and wherein said armature plate tapers from said pivot end to said lever end.
US10/947,632 2003-10-14 2004-09-22 Electromechanical valve actuator Abandoned US20050076866A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/947,632 US20050076866A1 (en) 2003-10-14 2004-09-22 Electromechanical valve actuator
GB0421478A GB2407209A (en) 2003-10-14 2004-09-28 Compact pivoting electromagnetic valve actuator
FR0410754A FR2860912A1 (en) 2003-10-14 2004-10-12 ELECTROMECHANICAL VALVE ACTUATOR
DE102004050013A DE102004050013B4 (en) 2003-10-14 2004-10-13 Electromechanical valve release

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51098803P 2003-10-14 2003-10-14
US10/947,632 US20050076866A1 (en) 2003-10-14 2004-09-22 Electromechanical valve actuator

Publications (1)

Publication Number Publication Date
US20050076866A1 true US20050076866A1 (en) 2005-04-14

Family

ID=34381385

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/947,632 Abandoned US20050076866A1 (en) 2003-10-14 2004-09-22 Electromechanical valve actuator

Country Status (3)

Country Link
US (1) US20050076866A1 (en)
FR (1) FR2860912A1 (en)
GB (1) GB2407209A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060260571A1 (en) * 2005-02-08 2006-11-23 Yutaka Sugie Electromagnetically driven valve
US20070029515A1 (en) * 2005-08-08 2007-02-08 Masahiko Asano Electromagnetically driven valve
US7305943B2 (en) * 2005-02-23 2007-12-11 Visteon Global Technologies, Inc. Electromagnet assembly for electromechanical valve actuators
US20070290156A1 (en) * 2004-11-29 2007-12-20 Masahiko Asano Electromagnetically Driven Valve
WO2008099272A1 (en) * 2007-02-16 2008-08-21 Toyota Jidosha Kabushiki Kaisha Electromagnetically driven valve
US20100038572A1 (en) * 2006-09-26 2010-02-18 Fluid Automation Systems S.A. Poppet valve
US20100059003A1 (en) * 2006-09-13 2010-03-11 Honda Motor Co., Ltd. Engine electromagnetic valve operating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040162A (en) 2005-08-02 2007-02-15 Toyota Motor Corp Electromagnetic driving valve

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1767058A (en) * 1930-06-24 Poration
US2125949A (en) * 1934-11-08 1938-08-09 Smoot Engineering Corp Regulator
US2239267A (en) * 1939-03-13 1941-04-22 M L Jeffrey Corp Electromagnet
US2436354A (en) * 1943-10-11 1948-02-17 Morgan Maree Jr A Electromagnet with armature
US2877390A (en) * 1953-04-02 1959-03-10 Trombetta Panfilo Electromagnet
US3102553A (en) * 1959-02-16 1963-09-03 Gen Dynamics Corp Apparatus for controlling pressure energy
US3524155A (en) * 1968-01-02 1970-08-11 Honeywell Inc Slotted-pole solenoid
US3557107A (en) * 1967-05-01 1971-01-19 Shulton Inc Phenylpiperazinylalkyl alkoxy anthranilates
US3609609A (en) * 1968-03-05 1971-09-28 Gen Electric Information Syste High-speed electromagnet
US3791408A (en) * 1972-05-31 1974-02-12 Yuken Kogyo Co Ltd Electromagnetic pressure-telecontrolling valve
US3882833A (en) * 1972-07-12 1975-05-13 British Leyland Austin Morris Internal combustion engines
US3959759A (en) * 1974-02-02 1976-05-25 Elmeg Elektro-Mechanik Gmbh Contact drive for electro-magnetic relays
US4022174A (en) * 1974-03-19 1977-05-10 Holec, N.V. Electromagnetically actuated pumps
US4269388A (en) * 1977-01-12 1981-05-26 Lucas Industries Limited Valve operating mechanism
US4312494A (en) * 1979-07-03 1982-01-26 Nissan Motor Co., Ltd. Valve device using an on-off functioning type electromagnetic actuator
US4515343A (en) * 1983-03-28 1985-05-07 Fev Forschungsgesellschaft fur Energietechnik und ver Brennungsmotoren mbH Arrangement for electromagnetically operated actuators
US4577174A (en) * 1984-03-31 1986-03-18 Square D Starkstrom Gmbh Electromagnet for electric switching device
US4634303A (en) * 1985-08-26 1987-01-06 Dataproducts, Inc. Actuator for dot matrix printhead
US4682574A (en) * 1985-04-12 1987-07-28 Peter Kreuter Electromagnetically-actuated positioning system
US4719882A (en) * 1985-04-12 1988-01-19 Peter Kreuter Electromagnetic-positioning system for gas exchange valves
US4762095A (en) * 1986-05-16 1988-08-09 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Device for actuating a fuel-exchange poppet valve of a reciprocating internal-combustion engine
US4779582A (en) * 1987-08-12 1988-10-25 General Motors Corporation Bistable electromechanical valve actuator
US4794890A (en) * 1987-03-03 1989-01-03 Magnavox Government And Industrial Electronics Company Electromagnetic valve actuator
US4802448A (en) * 1987-02-17 1989-02-07 Daimler-Benz Aktiengesellschaft Cup tappet with hydraulic play compensation device
US4829947A (en) * 1987-08-12 1989-05-16 General Motors Corporation Variable lift operation of bistable electromechanical poppet valve actuator
US4831973A (en) * 1988-02-08 1989-05-23 Magnavox Government And Industrial Electronics Company Repulsion actuated potential energy driven valve mechanism
US5016790A (en) * 1985-08-23 1991-05-21 Ecolab Inc. Apparatus and method for dispensing a detergent solution
US5099884A (en) * 1991-05-24 1992-03-31 Ntn Technical Center (U.S.A.), Inc. Electrorheological fluid plate valve
US5131624A (en) * 1989-06-27 1992-07-21 Fev Motorentechnik Gmbh & Co. Kg Electromagnetically operating setting device
US5139224A (en) * 1991-09-26 1992-08-18 Siemens Automotive L.P. Solenoid armature bounce eliminator
US5216987A (en) * 1992-06-01 1993-06-08 Caterpillar Inc. Method and apparatus for optimizing breathing utilizing unit valve actuation
US5290112A (en) * 1989-12-18 1994-03-01 Mannesmann Aktiengesellschaft Matrix print head, in particular serial matrix pin print head
US5548263A (en) * 1992-10-05 1996-08-20 Aura Systems, Inc. Electromagnetically actuated valve
US5611303A (en) * 1995-01-11 1997-03-18 Toyota Jidosha Kabushiki Kaisha Valve operating apparatus of internal combustion engine
US5617067A (en) * 1995-12-07 1997-04-01 Eaton Corporation Electromagnetic actuator having a low aspect ratio stator
US5636601A (en) * 1994-06-15 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Energization control method, and electromagnetic control system in electromagnetic driving device
US5651528A (en) * 1994-05-09 1997-07-29 Balzers Aktiengesellschaft Vacuum valve
US5704314A (en) * 1996-02-24 1998-01-06 Daimler-Benz Ag Electromagnetic operating arrangement for intake and exhaust valves of internal combustion engines
US5704319A (en) * 1994-08-06 1998-01-06 Ina Walzlager Schaeffler Kg Hydraulic clearance compensation element for valve control units of internal-combustion engines
US5762035A (en) * 1996-03-16 1998-06-09 Fev Motorentechnik Gmbh & Co. Kg Electromagnetic cylinder valve actuator having a valve lash adjuster
US5772179A (en) * 1994-11-09 1998-06-30 Aura Systems, Inc. Hinged armature electromagnetically actuated valve
US5785016A (en) * 1996-04-19 1998-07-28 Daimler-Benz Ag Electromagnetic operating mechanism for gas exchange valves of internal combustion engines
US5878704A (en) * 1997-01-04 1999-03-09 Fev Motorentechnik Gmbh & Co. Kg Electromagnetic actuator, including sound muffling means, for operating a cylinder valve
US5887553A (en) * 1996-11-15 1999-03-30 Daimler-Benz Ag Device for electromagnetic actuation of a gas exchange valve
US5927237A (en) * 1996-08-08 1999-07-27 Honda Giken Kogyo Kabushiki Kaisha Valve operating system in internal combustion engine
US5961097A (en) * 1996-12-17 1999-10-05 Caterpillar Inc. Electromagnetically actuated valve with thermal compensation
US5960753A (en) * 1995-05-17 1999-10-05 Sturman; Oded E. Hydraulic actuator for an internal combustion engine
US6032925A (en) * 1997-08-08 2000-03-07 Toyota Jidosha Kabushiki Kaisha Gel cushioned solenoid valve device
US6037851A (en) * 1998-02-04 2000-03-14 Temic Telefunken Microelectronic Gmbh Electromagnetic actuator
US6049264A (en) * 1997-12-09 2000-04-11 Siemens Automotive Corporation Electromagnetic actuator with composite core assembly
US6047673A (en) * 1998-04-07 2000-04-11 Fev Motorentecnik Gmbh Electromagnetic actuator for a cylinder valve including an integrated valve lash adjuster
US6070853A (en) * 1997-06-06 2000-06-06 Daimlerchrysler Ag Arrangement for adjusting an electromagnetic valve actuator
US6076490A (en) * 1997-07-31 2000-06-20 Fev Motorentechnik Gmbh & Co.Kg Electromagnetic assembly with gas springs for operating a cylinder valve of an internal-combustion engine
US6085704A (en) * 1997-05-13 2000-07-11 Unisia Jecs Corporation Electromagnetically operating actuator for intake and/or exhaust valves
US6089197A (en) * 1998-06-16 2000-07-18 Fev Motorentechnik Gmbh Electromagnetic actuator for an engine valve, including an integrated valve slack adjuster
US6101992A (en) * 1997-02-28 2000-08-15 Fev Motorentechnik Gmbh & Co. Kg Fluid-braked electromagnetic actuator
US6116570A (en) * 1998-03-30 2000-09-12 Siemens Automotive Corporation Electromagnetic actuator with internal oil system and improved hydraulic lash adjuster
US6234122B1 (en) * 1998-11-16 2001-05-22 Daimlerchrysler Ag Method for driving an electromagnetic actuator for operating a gas change valve
US6237550B1 (en) * 1998-12-17 2001-05-29 Honda Giken Kogyo Kabushiki Kaisha Solenoid-operated valve for internal combustion engine
US20010006047A1 (en) * 1999-12-09 2001-07-05 Hitoshi Oyama Valve-open-close mechanism
US6262498B1 (en) * 1997-03-24 2001-07-17 Heinz Leiber Electromagnetic drive mechanism
US6260522B1 (en) * 1997-11-13 2001-07-17 Daimlerchrysler Ag Device for actuating a gas exchange valve having an electromagnetic actuator
US6267351B1 (en) * 1998-10-27 2001-07-31 Aura Systems, Inc. Electromagnetic valve actuator with mechanical end position clamp or latch
US6279524B1 (en) * 1999-02-09 2001-08-28 Fev Motorentechnik Gmbh Electromagnetic actuator having a pneumatic dampening element
US6289858B1 (en) * 1998-10-28 2001-09-18 Fev Motorentechnik Gmbh Coupling device for connecting an electromagnetic actuator with a component driven thereby
US6302370B1 (en) * 1998-08-26 2001-10-16 Diesel Engine Retarders, Inc. Valve seating control device with variable area orifice
US6305336B1 (en) * 1999-05-07 2001-10-23 Unisia Jecs Corporation Electromagnetic driving device of engine valve for internal combustion engine
US6308667B1 (en) * 2000-04-27 2001-10-30 Visteon Global Technologies, Inc. Actuator for engine valve with tooth and socket armature and core for providing position output and/or improved force profile
US6340007B2 (en) * 1999-12-23 2002-01-22 MAGNETI MARELLI S.p.A. Method for estimating the end-of-stroke positions of moving members of electromagnetic actuators for the actuation of intake and exhaust valves in internal combustion engines
US20020017132A1 (en) * 1998-09-12 2002-02-14 The Secretary Of State For Defence Micro-machining
US6352059B2 (en) * 2000-02-05 2002-03-05 Daimlerchrysler Ag Device for operating a gas exchange valve of an internal combustion engine
US6354253B1 (en) * 1998-11-20 2002-03-12 Toyota Jidosha Kabushiki Kaisha Solenoid valve device
US6359435B1 (en) * 1999-03-25 2002-03-19 Siemens Automotive Corporation Method for determining magnetic characteristics of an electronically controlled solenoid
US6378558B1 (en) * 1998-05-08 2002-04-30 Carl Schenck Valve on the basis of electrorheological and/or magnetorheological fluids
US20020057154A1 (en) * 2000-10-28 2002-05-16 Volker Keck Electromagnetic actuator for operating a final control element
US6390037B2 (en) * 2000-03-24 2002-05-21 MAGNETI MARELLI S.p.A. Method for regulation of currents during phases of stoppage in electromagnetic actuators, for actuation of intake and exhaust valves in internal-combustion engines
US6390038B1 (en) * 2000-05-16 2002-05-21 MAGNETI MARELLI S.p.A. Method for protection against overheating of electromagnetic actuators for actuation of intake and exhaust valves in internal-combustion engines
US6394416B2 (en) * 1998-08-20 2002-05-28 Daimlerchrysler Ag Device for operating a gas exchange valve
US6397798B1 (en) * 1998-10-15 2002-06-04 Sagem Sa Method and device for electromagnetic valve actuating
US6418892B1 (en) * 1999-04-23 2002-07-16 Sagem Sa Adjustable device for valve control and method for adjusting same
US6427650B1 (en) * 1999-09-23 2002-08-06 MAGNETI MARELLI S.p.A. Electromagnetic actuator for the control of the valves of an internal combustion engine
US6427649B1 (en) * 1999-09-30 2002-08-06 MAGNETI MARELLI S.p.A. Electromagnetic actuator of an improved type for controlling the valves of an internal-combustion engine
US6453855B1 (en) * 1999-11-05 2002-09-24 MAGNETI MARELLI S.p.A. Method for the control of electromagnetic actuators for the actuation of intake and exhaust valves in internal combustion engines
US6502804B1 (en) * 1997-07-05 2003-01-07 Daimlerchrysler Ag Device for operating a gas shuttle valve by means of an electromagnetic actuator
US6516758B1 (en) * 1998-11-16 2003-02-11 Heinz Leiber Electromagnetic drive
US6526928B2 (en) * 1999-05-14 2003-03-04 Siemens Aktiengesellschaft Electromagnetic multiple actuator
US20030056743A1 (en) * 2001-09-20 2003-03-27 Magneti Marelli Powertrain S.P.A. Electromagnetic system to control the valves of an engine
US6546904B2 (en) * 2000-03-09 2003-04-15 Magnetic Marelli S.P.A. Electromagnetic actuator for the actuation of the valves of an internal combustion engine with recovery of mechanical play
US6561144B1 (en) * 1998-11-04 2003-05-13 Mikuni Corporation Valve driving device
US6571823B2 (en) * 2000-05-04 2003-06-03 MAGNETI MARELLI S.p.A. Method and device for estimating the position of an actuator body in an electromagnetic actuator to control a valve of an engine
US6591204B2 (en) * 2000-05-04 2003-07-08 MAGNETI MARELLI S.p.A. Method and device for estimating magnetic flux in an electromagnetic actuator for controlling an engine valve
US20030140875A1 (en) * 2001-12-14 2003-07-31 Magneti Marelli Powertrain S.P.A. Method for estimating the position and speed of an actuator body in an electromagnetic actuator for controlling the valve of an engine
US20030160197A1 (en) * 2002-02-06 2003-08-28 Yuichi Kodama Solenoid-operated valve
US20030177989A1 (en) * 2002-02-21 2003-09-25 Baker Mark S. Electromagnetic valve actuator for an internal combustion engine
US20040011309A1 (en) * 2002-05-11 2004-01-22 Gaisberg-Helfenberg Alexander Von Internal combustion engine and method for the operation thereof
US6683775B2 (en) * 2000-11-21 2004-01-27 Magneti Marelli Powertrain S.P.A. Control method for an electromagnetic actuator for the control of an engine valve
US6688264B2 (en) * 2001-09-20 2004-02-10 Magneti Marelli Powertrain S.P.A. Method of piloting electromagnetic actuators for the control of a plurality of valves of an engine
US6718918B2 (en) * 2001-04-25 2004-04-13 Daimlerchrysler Ag Device for actuating a gas exchange valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628860B4 (en) * 1996-07-17 2008-07-31 Bayerische Motoren Werke Aktiengesellschaft Electromagnetic actuator for an internal combustion engine globe valve
WO1998042960A1 (en) * 1997-03-24 1998-10-01 Lsp Innovative Automotive Systems Gmbh Electromagnetic drive mechanism
DE19712062A1 (en) * 1997-03-24 1998-10-01 Braunewell Markus Electromagnetic control device
US20040149944A1 (en) * 2003-01-28 2004-08-05 Hopper Mark L. Electromechanical valve actuator

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1767058A (en) * 1930-06-24 Poration
US2125949A (en) * 1934-11-08 1938-08-09 Smoot Engineering Corp Regulator
US2239267A (en) * 1939-03-13 1941-04-22 M L Jeffrey Corp Electromagnet
US2436354A (en) * 1943-10-11 1948-02-17 Morgan Maree Jr A Electromagnet with armature
US2877390A (en) * 1953-04-02 1959-03-10 Trombetta Panfilo Electromagnet
US3102553A (en) * 1959-02-16 1963-09-03 Gen Dynamics Corp Apparatus for controlling pressure energy
US3557107A (en) * 1967-05-01 1971-01-19 Shulton Inc Phenylpiperazinylalkyl alkoxy anthranilates
US3524155A (en) * 1968-01-02 1970-08-11 Honeywell Inc Slotted-pole solenoid
US3609609A (en) * 1968-03-05 1971-09-28 Gen Electric Information Syste High-speed electromagnet
US3791408A (en) * 1972-05-31 1974-02-12 Yuken Kogyo Co Ltd Electromagnetic pressure-telecontrolling valve
US3882833A (en) * 1972-07-12 1975-05-13 British Leyland Austin Morris Internal combustion engines
US3959759A (en) * 1974-02-02 1976-05-25 Elmeg Elektro-Mechanik Gmbh Contact drive for electro-magnetic relays
US4022174A (en) * 1974-03-19 1977-05-10 Holec, N.V. Electromagnetically actuated pumps
US4269388A (en) * 1977-01-12 1981-05-26 Lucas Industries Limited Valve operating mechanism
US4312494A (en) * 1979-07-03 1982-01-26 Nissan Motor Co., Ltd. Valve device using an on-off functioning type electromagnetic actuator
US4515343A (en) * 1983-03-28 1985-05-07 Fev Forschungsgesellschaft fur Energietechnik und ver Brennungsmotoren mbH Arrangement for electromagnetically operated actuators
US4577174A (en) * 1984-03-31 1986-03-18 Square D Starkstrom Gmbh Electromagnet for electric switching device
US4719882A (en) * 1985-04-12 1988-01-19 Peter Kreuter Electromagnetic-positioning system for gas exchange valves
US4682574A (en) * 1985-04-12 1987-07-28 Peter Kreuter Electromagnetically-actuated positioning system
US5016790A (en) * 1985-08-23 1991-05-21 Ecolab Inc. Apparatus and method for dispensing a detergent solution
US4634303A (en) * 1985-08-26 1987-01-06 Dataproducts, Inc. Actuator for dot matrix printhead
US4762095A (en) * 1986-05-16 1988-08-09 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Device for actuating a fuel-exchange poppet valve of a reciprocating internal-combustion engine
US4802448A (en) * 1987-02-17 1989-02-07 Daimler-Benz Aktiengesellschaft Cup tappet with hydraulic play compensation device
US4794890A (en) * 1987-03-03 1989-01-03 Magnavox Government And Industrial Electronics Company Electromagnetic valve actuator
US4779582A (en) * 1987-08-12 1988-10-25 General Motors Corporation Bistable electromechanical valve actuator
US4829947A (en) * 1987-08-12 1989-05-16 General Motors Corporation Variable lift operation of bistable electromechanical poppet valve actuator
US4831973A (en) * 1988-02-08 1989-05-23 Magnavox Government And Industrial Electronics Company Repulsion actuated potential energy driven valve mechanism
US5131624A (en) * 1989-06-27 1992-07-21 Fev Motorentechnik Gmbh & Co. Kg Electromagnetically operating setting device
US5290112A (en) * 1989-12-18 1994-03-01 Mannesmann Aktiengesellschaft Matrix print head, in particular serial matrix pin print head
US5099884A (en) * 1991-05-24 1992-03-31 Ntn Technical Center (U.S.A.), Inc. Electrorheological fluid plate valve
US5139224A (en) * 1991-09-26 1992-08-18 Siemens Automotive L.P. Solenoid armature bounce eliminator
US5216987A (en) * 1992-06-01 1993-06-08 Caterpillar Inc. Method and apparatus for optimizing breathing utilizing unit valve actuation
US5548263A (en) * 1992-10-05 1996-08-20 Aura Systems, Inc. Electromagnetically actuated valve
US5651528A (en) * 1994-05-09 1997-07-29 Balzers Aktiengesellschaft Vacuum valve
US5636601A (en) * 1994-06-15 1997-06-10 Honda Giken Kogyo Kabushiki Kaisha Energization control method, and electromagnetic control system in electromagnetic driving device
US5704319A (en) * 1994-08-06 1998-01-06 Ina Walzlager Schaeffler Kg Hydraulic clearance compensation element for valve control units of internal-combustion engines
US5772179A (en) * 1994-11-09 1998-06-30 Aura Systems, Inc. Hinged armature electromagnetically actuated valve
US5611303A (en) * 1995-01-11 1997-03-18 Toyota Jidosha Kabushiki Kaisha Valve operating apparatus of internal combustion engine
US5960753A (en) * 1995-05-17 1999-10-05 Sturman; Oded E. Hydraulic actuator for an internal combustion engine
US5617067A (en) * 1995-12-07 1997-04-01 Eaton Corporation Electromagnetic actuator having a low aspect ratio stator
US5704314A (en) * 1996-02-24 1998-01-06 Daimler-Benz Ag Electromagnetic operating arrangement for intake and exhaust valves of internal combustion engines
US5762035A (en) * 1996-03-16 1998-06-09 Fev Motorentechnik Gmbh & Co. Kg Electromagnetic cylinder valve actuator having a valve lash adjuster
US5785016A (en) * 1996-04-19 1998-07-28 Daimler-Benz Ag Electromagnetic operating mechanism for gas exchange valves of internal combustion engines
US5927237A (en) * 1996-08-08 1999-07-27 Honda Giken Kogyo Kabushiki Kaisha Valve operating system in internal combustion engine
US5887553A (en) * 1996-11-15 1999-03-30 Daimler-Benz Ag Device for electromagnetic actuation of a gas exchange valve
US5961097A (en) * 1996-12-17 1999-10-05 Caterpillar Inc. Electromagnetically actuated valve with thermal compensation
US5878704A (en) * 1997-01-04 1999-03-09 Fev Motorentechnik Gmbh & Co. Kg Electromagnetic actuator, including sound muffling means, for operating a cylinder valve
US6101992A (en) * 1997-02-28 2000-08-15 Fev Motorentechnik Gmbh & Co. Kg Fluid-braked electromagnetic actuator
US6262498B1 (en) * 1997-03-24 2001-07-17 Heinz Leiber Electromagnetic drive mechanism
US6085704A (en) * 1997-05-13 2000-07-11 Unisia Jecs Corporation Electromagnetically operating actuator for intake and/or exhaust valves
US6070853A (en) * 1997-06-06 2000-06-06 Daimlerchrysler Ag Arrangement for adjusting an electromagnetic valve actuator
US6502804B1 (en) * 1997-07-05 2003-01-07 Daimlerchrysler Ag Device for operating a gas shuttle valve by means of an electromagnetic actuator
US6076490A (en) * 1997-07-31 2000-06-20 Fev Motorentechnik Gmbh & Co.Kg Electromagnetic assembly with gas springs for operating a cylinder valve of an internal-combustion engine
US6032925A (en) * 1997-08-08 2000-03-07 Toyota Jidosha Kabushiki Kaisha Gel cushioned solenoid valve device
US6260522B1 (en) * 1997-11-13 2001-07-17 Daimlerchrysler Ag Device for actuating a gas exchange valve having an electromagnetic actuator
US6049264A (en) * 1997-12-09 2000-04-11 Siemens Automotive Corporation Electromagnetic actuator with composite core assembly
US6037851A (en) * 1998-02-04 2000-03-14 Temic Telefunken Microelectronic Gmbh Electromagnetic actuator
US6116570A (en) * 1998-03-30 2000-09-12 Siemens Automotive Corporation Electromagnetic actuator with internal oil system and improved hydraulic lash adjuster
US6047673A (en) * 1998-04-07 2000-04-11 Fev Motorentecnik Gmbh Electromagnetic actuator for a cylinder valve including an integrated valve lash adjuster
US6378558B1 (en) * 1998-05-08 2002-04-30 Carl Schenck Valve on the basis of electrorheological and/or magnetorheological fluids
US6089197A (en) * 1998-06-16 2000-07-18 Fev Motorentechnik Gmbh Electromagnetic actuator for an engine valve, including an integrated valve slack adjuster
US6394416B2 (en) * 1998-08-20 2002-05-28 Daimlerchrysler Ag Device for operating a gas exchange valve
US6302370B1 (en) * 1998-08-26 2001-10-16 Diesel Engine Retarders, Inc. Valve seating control device with variable area orifice
US20020017132A1 (en) * 1998-09-12 2002-02-14 The Secretary Of State For Defence Micro-machining
US6397798B1 (en) * 1998-10-15 2002-06-04 Sagem Sa Method and device for electromagnetic valve actuating
US6267351B1 (en) * 1998-10-27 2001-07-31 Aura Systems, Inc. Electromagnetic valve actuator with mechanical end position clamp or latch
US6289858B1 (en) * 1998-10-28 2001-09-18 Fev Motorentechnik Gmbh Coupling device for connecting an electromagnetic actuator with a component driven thereby
US20030168030A1 (en) * 1998-11-04 2003-09-11 Tetsuo Muraji Valve driving apparatus
US6561144B1 (en) * 1998-11-04 2003-05-13 Mikuni Corporation Valve driving device
US6516758B1 (en) * 1998-11-16 2003-02-11 Heinz Leiber Electromagnetic drive
US6234122B1 (en) * 1998-11-16 2001-05-22 Daimlerchrysler Ag Method for driving an electromagnetic actuator for operating a gas change valve
US6354253B1 (en) * 1998-11-20 2002-03-12 Toyota Jidosha Kabushiki Kaisha Solenoid valve device
US6237550B1 (en) * 1998-12-17 2001-05-29 Honda Giken Kogyo Kabushiki Kaisha Solenoid-operated valve for internal combustion engine
US6279524B1 (en) * 1999-02-09 2001-08-28 Fev Motorentechnik Gmbh Electromagnetic actuator having a pneumatic dampening element
US6359435B1 (en) * 1999-03-25 2002-03-19 Siemens Automotive Corporation Method for determining magnetic characteristics of an electronically controlled solenoid
US6418892B1 (en) * 1999-04-23 2002-07-16 Sagem Sa Adjustable device for valve control and method for adjusting same
US6305336B1 (en) * 1999-05-07 2001-10-23 Unisia Jecs Corporation Electromagnetic driving device of engine valve for internal combustion engine
US6526928B2 (en) * 1999-05-14 2003-03-04 Siemens Aktiengesellschaft Electromagnetic multiple actuator
US6427650B1 (en) * 1999-09-23 2002-08-06 MAGNETI MARELLI S.p.A. Electromagnetic actuator for the control of the valves of an internal combustion engine
US6427649B1 (en) * 1999-09-30 2002-08-06 MAGNETI MARELLI S.p.A. Electromagnetic actuator of an improved type for controlling the valves of an internal-combustion engine
US6453855B1 (en) * 1999-11-05 2002-09-24 MAGNETI MARELLI S.p.A. Method for the control of electromagnetic actuators for the actuation of intake and exhaust valves in internal combustion engines
US20010006047A1 (en) * 1999-12-09 2001-07-05 Hitoshi Oyama Valve-open-close mechanism
US6340007B2 (en) * 1999-12-23 2002-01-22 MAGNETI MARELLI S.p.A. Method for estimating the end-of-stroke positions of moving members of electromagnetic actuators for the actuation of intake and exhaust valves in internal combustion engines
US6352059B2 (en) * 2000-02-05 2002-03-05 Daimlerchrysler Ag Device for operating a gas exchange valve of an internal combustion engine
US6546904B2 (en) * 2000-03-09 2003-04-15 Magnetic Marelli S.P.A. Electromagnetic actuator for the actuation of the valves of an internal combustion engine with recovery of mechanical play
US6390037B2 (en) * 2000-03-24 2002-05-21 MAGNETI MARELLI S.p.A. Method for regulation of currents during phases of stoppage in electromagnetic actuators, for actuation of intake and exhaust valves in internal-combustion engines
US6308667B1 (en) * 2000-04-27 2001-10-30 Visteon Global Technologies, Inc. Actuator for engine valve with tooth and socket armature and core for providing position output and/or improved force profile
US6571823B2 (en) * 2000-05-04 2003-06-03 MAGNETI MARELLI S.p.A. Method and device for estimating the position of an actuator body in an electromagnetic actuator to control a valve of an engine
US6591204B2 (en) * 2000-05-04 2003-07-08 MAGNETI MARELLI S.p.A. Method and device for estimating magnetic flux in an electromagnetic actuator for controlling an engine valve
US6390038B1 (en) * 2000-05-16 2002-05-21 MAGNETI MARELLI S.p.A. Method for protection against overheating of electromagnetic actuators for actuation of intake and exhaust valves in internal-combustion engines
US20020057154A1 (en) * 2000-10-28 2002-05-16 Volker Keck Electromagnetic actuator for operating a final control element
US6683775B2 (en) * 2000-11-21 2004-01-27 Magneti Marelli Powertrain S.P.A. Control method for an electromagnetic actuator for the control of an engine valve
US6718918B2 (en) * 2001-04-25 2004-04-13 Daimlerchrysler Ag Device for actuating a gas exchange valve
US20030056743A1 (en) * 2001-09-20 2003-03-27 Magneti Marelli Powertrain S.P.A. Electromagnetic system to control the valves of an engine
US6688264B2 (en) * 2001-09-20 2004-02-10 Magneti Marelli Powertrain S.P.A. Method of piloting electromagnetic actuators for the control of a plurality of valves of an engine
US20030140875A1 (en) * 2001-12-14 2003-07-31 Magneti Marelli Powertrain S.P.A. Method for estimating the position and speed of an actuator body in an electromagnetic actuator for controlling the valve of an engine
US20030160197A1 (en) * 2002-02-06 2003-08-28 Yuichi Kodama Solenoid-operated valve
US20030177989A1 (en) * 2002-02-21 2003-09-25 Baker Mark S. Electromagnetic valve actuator for an internal combustion engine
US20040011309A1 (en) * 2002-05-11 2004-01-22 Gaisberg-Helfenberg Alexander Von Internal combustion engine and method for the operation thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070290156A1 (en) * 2004-11-29 2007-12-20 Masahiko Asano Electromagnetically Driven Valve
US20060260571A1 (en) * 2005-02-08 2006-11-23 Yutaka Sugie Electromagnetically driven valve
US7305943B2 (en) * 2005-02-23 2007-12-11 Visteon Global Technologies, Inc. Electromagnet assembly for electromechanical valve actuators
US7418931B2 (en) * 2005-08-02 2008-09-02 Toyota Jidosha Kabushiki Kaisha Electromagnetically driven valve
US20070029515A1 (en) * 2005-08-08 2007-02-08 Masahiko Asano Electromagnetically driven valve
US20100059003A1 (en) * 2006-09-13 2010-03-11 Honda Motor Co., Ltd. Engine electromagnetic valve operating device
US20100038572A1 (en) * 2006-09-26 2010-02-18 Fluid Automation Systems S.A. Poppet valve
WO2008099272A1 (en) * 2007-02-16 2008-08-21 Toyota Jidosha Kabushiki Kaisha Electromagnetically driven valve

Also Published As

Publication number Publication date
FR2860912A1 (en) 2005-04-15
GB2407209A (en) 2005-04-20
GB0421478D0 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
US6049264A (en) Electromagnetic actuator with composite core assembly
US20050076866A1 (en) Electromechanical valve actuator
EP1789659B1 (en) Electromagnetically driven valve
JP4155243B2 (en) Solenoid valve
US7387094B2 (en) Electromagnetically driven valve
JP2001303915A (en) Valve system for internal combustion engine
US7305943B2 (en) Electromagnet assembly for electromechanical valve actuators
US20070221873A1 (en) Electromagnetically Driven Valve
EP1748159A1 (en) Electromagnetically driven valve
US20060185633A1 (en) Electromechanical valve actuator
JP3572447B2 (en) Electromagnetic valve device for internal combustion engine
JP4706781B2 (en) Solenoid valve
US7913655B2 (en) Electromagnetically-driven valve
JP4124183B2 (en) Electromagnetically driven valve and control method thereof
JP3565039B2 (en) Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine
US7152558B2 (en) Electromechanical valve actuator assembly
JP3591341B2 (en) Electromagnetic valve gear
US7089894B2 (en) Electromechanical valve actuator assembly
JP2008202427A (en) Solenoid valve
JP4008132B2 (en) Electromagnetically driven intake / exhaust valve device
JP2007071187A (en) Solenoid-driven valve
JP4140596B2 (en) Electromagnetically driven valve and internal combustion engine
JP2006104981A (en) Solenoid driving valve and internal combustion engine
JPH08135417A (en) Electromagnetic driving type valve device of internal combustion engine
EP1985815A2 (en) Electromagnetically driven valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: VISTEON GLOBAL TECHNOLOGIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOPPER, MARK L.;NORTON, JOHN D.;SWALES, SHAWN H.;REEL/FRAME:015826/0064

Effective date: 20040921

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JPMORGAN CHASE BANK, TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:VISTEON GLOBAL TECHNOLOGIES, INC.;REEL/FRAME:022368/0001

Effective date: 20060814

Owner name: JPMORGAN CHASE BANK,TEXAS

Free format text: SECURITY INTEREST;ASSIGNOR:VISTEON GLOBAL TECHNOLOGIES, INC.;REEL/FRAME:022368/0001

Effective date: 20060814