JP3565039B2 - Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine - Google Patents

Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine Download PDF

Info

Publication number
JP3565039B2
JP3565039B2 JP25271298A JP25271298A JP3565039B2 JP 3565039 B2 JP3565039 B2 JP 3565039B2 JP 25271298 A JP25271298 A JP 25271298A JP 25271298 A JP25271298 A JP 25271298A JP 3565039 B2 JP3565039 B2 JP 3565039B2
Authority
JP
Japan
Prior art keywords
valve
return spring
side return
opening
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25271298A
Other languages
Japanese (ja)
Other versions
JP2000091119A (en
Inventor
真樹 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25271298A priority Critical patent/JP3565039B2/en
Publication of JP2000091119A publication Critical patent/JP2000091119A/en
Application granted granted Critical
Publication of JP3565039B2 publication Critical patent/JP3565039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁駆動装置及び内燃機関における電磁駆動式動弁装置に関し、特に、動作の安定化を図る技術に関する。
【0002】
【従来の技術】
電磁駆動装置として、内燃機関の吸・排気弁等の弁の駆動を行う電磁駆動式動弁装置は、従来、弁のステムに設けられたアーマチュアと、該アーマチュアの両側面にそれぞれ対向配置され、当該アーマチュアに電磁吸引力を作用させる一対の電磁石、即ち、開弁用電磁石及び閉弁用電磁石と、前記アーマチュアを両電磁石側にそれぞれ付勢する一対の戻しばね、即ち、開弁側戻しばね及び閉弁側戻しばねと、を含んで構成される(特開平7−335437号公報参照)。
【0003】
このような電磁駆動式動弁装置においては、従来 開弁用電磁石及び閉弁用電磁石による電磁吸引力をアーマチュアに均等に作用させるため、開弁側戻しばね及び閉弁側戻しばねは、同一の仕様に設定されている。
【0004】
【発明が解決しようとする課題】
このように、開弁側戻しばね及び閉弁側戻しばねは、同一の仕様に設定されている従来の電磁駆動装置においては、初期設定時には、アーマチュアのばね振動の振動中心(中立点)が、略対向配置されている電磁石間の中央位置にあり、両電磁石による電磁吸引力は、アーマチュアに均等に作用して問題がない。
【0005】
しかしながら、ばねの経時劣化(ばね荷重のへたり)が進行するに連れて、前記の中立点がずれる。
通常の内燃機関の吸・排気弁の駆動を行う電磁駆動式動弁装置においては、閉弁時間と開弁時間との比は、略2:1であり、閉弁時に開弁側戻しばねが圧縮されている時間の方が、開弁時に閉弁側戻しばねが圧縮されている時間よりも長いため、開弁側戻しばねの経時劣化が閉弁側戻しばねの経時劣化よりも大きくなり、中立点が閉弁用電磁石側にずれ、結果として、アーマチュアに作用する開弁用電磁石による電磁吸引力が弱くなり、アーマチュアを安定して吸引保持できない場合が生じると共に、閉弁時にアーマチュアの閉弁用電磁石に対する着座速度が速くなる等、開・閉弁作用が安定して行われないという問題がある。
【0006】
そこで、本発明は以上のような従来の問題点に鑑み、アーマチュアの戻しばねの経時劣化の進行に対処した構成によって、安定した動作を継続可能とした電磁駆動装置及び内燃機関における電磁駆動式動弁装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1に係る発明は、
アーマチュアと、該アーマチュアの両側面にそれぞれ対向配置され、当該アーマチュアに電磁吸引力を作用させる一対の電磁石と、前記アーマチュアを両電磁石側にそれぞれ付勢する一対の戻しばねと、を含んで構成された電磁駆動装置において、
一方の戻しばねに対して他方の戻しばねの耐へたり性を高めるようにしたことを特徴とする。
【0008】
請求項2に係る発明は、
弁体に設けられたアーマチュアと、該アーマチュアの両側面にそれぞれ対向配置され、当該アーマチュアに電磁吸引力を作用させる開弁用電磁石及び閉弁用電磁石と、前記アーマチュアを両電磁石側にそれぞれ付勢する開弁側戻しばね及び閉弁側戻しばねと、を含んで構成された内燃機関における電磁駆動式動弁装置において、
前記閉弁側戻しばねの圧縮時に該閉弁側戻しばねに印加される最大応力よりも開弁側戻しばねの圧縮時に該開弁側戻しばねに印加される最大応力が小となるように設定したことを特徴とする。
【0009】
請求項3に係る発明は、
前記閉弁側戻しばねに印加される最大応力と開弁側戻しばねに印加される最大応力の比を、略閉弁時間と開弁時間の比に設定したことを特徴とする。
請求項4に係る発明は、
前記閉弁側戻しばねに印加される最大応力と開弁側戻しばねに印加される最大応力の比を、閉弁時間と開弁時間の比である略2対1の比に設定したことを特徴とする。
【0010】
請求項5に係る発明は、
前記最大応力の設定に代えて、閉弁側戻しばねの個数よりも開側戻しばねの個数を大とする設定にしたことを特徴とする。
請求項6に係る発明は、
前記最大応力の設定に代えて、閉弁側戻しばねのへたり強度よりも開側戻しばねのへたり強度を大とする設定にしたことを特徴とする。
【0011】
請求項7に係る発明は、
前記最大応力の設定に代えて、閉弁時間経過時の閉弁側戻しばねのへたり率と開弁時間経過時の開側戻しばねのへたり率とを略同一とする設定にしたことを特徴とする。
請求項8に係る発明は、
前記閉弁時間と開弁時間の比が略2対1の比であることを特徴とする。
【0012】
かかる本発明の作用について説明する。
請求項1に係る発明において、一対の戻しばねが同一の仕様に設定されている従来の電磁駆動装置においては、ばねの経時劣化(ばね荷重のへたり)が進行するに連れて、中立点がずれる。
請求項1に係る発明によると、一方の戻しばねに対して他方の戻しばねの耐へたり性を高めるようにした結果、耐へたり性が高められた戻しばねの経時劣化が抑えられ、中立点がずれるのを抑制できる。
【0013】
開弁側戻しばねと閉弁側戻しばねとが同一の仕様に設定されている従来の内燃機関における電磁駆動式動弁装置においては、ばねの経時劣化(ばね荷重のへたり)が進行するに連れて、中立点が閉弁用電磁石側にずれる。
これは、通常の内燃機関の吸・排気弁の駆動を行う電磁駆動式動弁装置の場合、閉弁時間と開弁時間との比が、例えば、略2:1であり、閉弁時に開弁側戻しばねが圧縮されている時間の方が、開弁時に閉弁側戻しばねが圧縮されている時間よりも長いためである。
【0014】
請求項2に係る発明によると、閉弁側戻しばねに印加される最大応力よりも開弁側戻しばねに印加される最大応力が小となるように設定した結果、開弁側戻しばねの経時劣化が抑えられ、中立点が閉弁用電磁石側にずれるのを抑制できる。特に、請求項3及び4に係る発明のように、閉弁側戻しばねに印加される最大応力と開弁側戻しばねに印加される最大応力の比を、略閉弁時間と開弁時間の比、例えば、略2対1の比(2:1)とすることにより、閉弁時に開弁側戻しばねが圧縮されている時間の方が、開弁時に閉弁側戻しばねが圧縮されている時間よりも長いことを考慮した設定にすることができ、より有効である。
【0015】
又、請求項5及び6に係る発明によると、閉弁側戻しばねの個数よりも開側戻しばねの個数を大とする設定、閉弁側戻しばねのへたり強度よりも開側戻しばねのへたり強度を大とする設定した結果、開弁側戻しばねの経時劣化が抑えられ、中立点が閉弁用電磁石側にずれるのを抑制できる。
更に、請求項7及び8に係る発明によると、閉弁時間経過時の閉弁側戻しばねのへたり率と開弁時間経過時の開側戻しばねのへたり率とを略同一とする設定にした結果、閉弁時間と開弁時間の相違に係わらず、両戻しばねのへたり率が略同一となるため、開弁側戻しばねの経時劣化(ばね荷重のへたり)が閉弁側戻しばねの経時劣化よりも進むのが抑えられ、中立点が閉弁用電磁石側にずれるのを抑制できる。
【0016】
【発明の効果】
請求項1に係る発明によれば、戻しばね荷重のへたりの経時変化に対するアーマチュアの中立点の変化を抑えることができ、電磁駆動装置の安定した作動を得ることができる。
請求項2〜8に係る発明によれば、通常の内燃機関の吸・排気弁の駆動を行う電磁駆動式動弁装置において、開弁側戻しばねの経時劣化(ばね荷重のへたり)が抑えられ、中立点が閉弁用電磁石側にずれるのを抑制できる結果、アーマチュアに作用する開弁用電磁石による電磁吸引力を初期設定時と同様に確保でき、アーマチュアを安定して吸引保持できると共に、閉弁時にアーマチュアの閉弁用電磁石に対する着座速度が速くなるのを抑制でき、開・閉弁作用を安定して行うことができる。
【0017】
特に、請求項2に係る発明によれば、戻しばねの圧縮時に該戻しばねに印加される最大応力の大小の設定によって、上記の作用をより効果的に奏することがてきる。
又、請求項3及び4に係る発明によれば、開弁時に閉弁側戻しばねが圧縮されている時間よりも長いことを考慮した設定にすることができ、より有効的である。
【0018】
請求項5に係る発明によれば、戻しばねの個数の設定により、上記の作用をより効果的に奏することがてきる。
請求項6に係る発明によれば、戻しばねのばね材の選定による戻しばねのへたり強度の設定により、上記の作用をより効果的に奏することがてきる。
請求項7及び8に係る発明によれば、戻しばねのばね材の選定により、閉弁時間経過時の閉弁側戻しばねのへたり率と開弁時間経過時の開側戻しばねのへたり率とを略同一とする設定により、上記の作用をより効果的に奏することがてきる。
【0019】
【発明の実施の形態】
以下、添付された図面を参照して本発明を詳述する。
図1は、本発明に係る電磁駆動装置並びに内燃機関における電磁駆動式動弁装置の一実施形態を示す縦断面図である。
即ち、この図において、シリンダヘッド1には図示しない燃焼室に臨んで開口する吸気ポート(排気ポート)が設けられ、該吸気ポート(排気ポート)を開閉する電磁駆動式動弁装置2が設けられている。
【0020】
かかる電磁駆動式動弁装置2は、シリンダヘッド1上に設けられる非磁性材料製のハウジング3と、例えば弁体4のステム5に一体に設けられてハウジング3内に移動可能に収納される長方形状のアーマチュア6と、このアーマチュア6を吸引して弁体4を閉弁作動せしめる電磁力を発生する閉弁用電磁石7と、アーマチュア6を吸引して弁体4を開弁作動せしめる電磁力を発生する開弁用電磁石8と、弁体4の閉弁方向に向けてアーマチュア6を付勢する閉弁側戻しばね9と、弁体4の開弁方向に向けてアーマチュア6を付勢する開弁側戻しばね10と、を含んで構成されている。
【0021】
前記閉弁用電磁石7は、ハウジング3内のアーマチュア6の上面に対向する位置でハウジング3内に固定配置されるものであり、アーマチュア6側に開放した略U字状の横断面形状を有すると共に、ステム5を同軸に囲繞する固定コア11内にコイル12を収納して構成される。
又、開弁用電磁石8は、ハウジング3内のアーマチュア6の下面に対向する位置でハウジング3内に固定配置されるものであり、アーマチュア6側に開放した略U字状の横断面形状を有すると共に、ステム5を同軸に囲繞する固定コア13内にコイル14を収納して構成される。
【0022】
尚、上記固定コア11及び13は、長方形状のアーマチュア6に対応して、その横断面形状が4つの角部にアール部を設けた略長方形状をなすように構成される。
一方、閉弁側戻しばね9は、アーマチュア6に上方に向けてのばね力を作用させるように、シリンダヘッド1上面の収納溝15内において、収納溝15底面とステム5下部の外周部に固定されたばね座16との間に介装される。
【0023】
又、開弁側戻しばね10は、アーマチュア6に下方に向けてのばね力を作用させるように、ハウジング3の上面に取り付けられた収納部17内において、収納部17内上面のばね座18とステム5上端部に固定されたばね座19との間に介装される。
従って、両戻しばね9,10は、両電磁石7,8が消磁状態にあるときに、アーマチュア6を両電磁石7,8間の中央部における平衡中立位置に保持し、この状態では、弁体4は閉弁位置と開弁位置の中間位置に位置する。
【0024】
かかる電磁駆動式動弁装置2の作動を図2の装置概念図及び図3のバルブリフト状態図を参照して説明すると、閉弁用電磁石7に通電することによって発生した電磁吸引力によりアーマチュア6が吸引されて、弁体4が閉弁作動される(図2(A)の全閉弁状態、図3▲1▼参照)。このとき、閉弁側戻しばね9は、アーマチュア6に上方に向けてのばね力を作用させており、その一方で開弁側戻しばね10は、圧縮状態となる。
【0025】
次に、開弁用電磁石8に通電することによって発生した電磁吸引力によりアーマチュア6が吸引されて、弁体4が開弁作動される(図2(C)の全開弁状態、図3▲2▼参照)。このとき、開弁側戻しばね10は、アーマチュア6に下方に向けてのばね力を作用させており、その一方で閉弁側戻しばね9は、圧縮状態となる。
【0026】
尚、上記の全閉弁状態から全開弁状態に移行するときには、図2(B)の中間リフト状態、即ち、上述したように、弁体4は閉弁位置と開弁位置の中間位置に位置した状態となる(図3▲3▼参照)。
図4は、他の実施形態の電磁駆動式動弁装置の縦断面図である。
即ち、この実施形態の動弁装置2は、開弁側戻しばねを2つ設けるようにしたものであり、一方の開弁側戻しばね10Aの内側に他方の開弁側戻しばね10Bを配して、両開弁側戻しばね10B、10Aを内外2重の配置状態とし、これら内外2重の配置状態の開弁側戻しばね10B,10Aを、アーマチュア6に下方に向けてのばね力を作用させるように、ハウジング3の上面に取り付けられた収納部17内において、収納部17内上面のばね座20とステム5上端部に固定されたばね座21との間に介装してある。
【0027】
ここで、本発明においては、以上の電磁駆動式動弁装置2において、次の(1)〜(7)のように設定して、閉弁側戻しばね9に対して開弁側戻しばね10の耐へたり性を向上する。
(1)閉弁側戻しばね9の圧縮時に該閉弁側戻しばね9に印加される最大応力σよりも開弁側戻しばね10の圧縮時に該開弁側戻しばね10に印加される最大応力σが小となる(σ>σ)ように設定する。
(2)(1)において、閉弁側戻しばね9に印加される最大応力σと開弁側戻しばね10に印加される最大応力σの比(σ:σ)を、略閉弁時間と開弁時間の比に設定する。
(3)(2)において、σ:σを、例えば閉弁時間と開弁時間の比である略2対1の比(2:1)とする。
(4)閉弁側戻しばね9の個数(例えば1つ)よりも開側戻しばね10A,10Bの個数(例えば2つ)を大とする設定にする(図4の実施形態参照)。
(5)両戻しばね9,10のばね材の選定によって、閉弁側戻しばね9のへたり強度よりも開側戻しばね10のへたり強度を大とする設定にする。
(6)両戻しばね9,10のばね材の選定によって、閉弁時間t経過時の閉弁側戻しばね9のへたり率と開弁時間t経過時の開側戻しばね10のへたり率とを略同一とする設定にした(図5参照)。
(7)(6)において、閉弁時間tと開弁時間tの比を略2対1の比に設定する。
【0028】
かかる構成によると、次のような作用・効果を奏する。
即ち、開弁側戻しばねと閉弁側戻しばねとが同一の仕様に設定されている従来の電磁駆動式弁装置においては、ばねの経時劣化(ばね荷重のへたり)が進行するに連れて、中立点が閉弁用電磁石側にずれる。
これは、通常の内燃機関の吸・排気弁の駆動を行う電磁駆動式動弁装置においては、閉弁時間と開弁時間との比が、略2:1であり、閉弁時に開弁側戻しばねが圧縮されている時間の方が、開弁時に閉弁側戻しばねが圧縮されている時間よりも長いためである。
【0029】
上記の(1)の設定によると、閉弁側戻しばね9に印加される最大応力σよりも開弁側戻しばね10に印加される最大応力σが小となる(σ>σ)ように設定した結果、開弁側戻しばね10の経時劣化(ばね荷重のへたり)が抑えられ、中立点が閉弁用電磁石7側にずれるのを抑制できる。
特に、(2)及び(3)の設定のように、σ:σを、略閉弁時間と開弁時間の比、例えば、略2対1の比(2:1)とすることにより、閉弁時に開弁側戻しばね10が圧縮されている時間の方が、開弁時に閉弁側戻しばね9が圧縮されている時間よりも長いことを考慮した設定にすることができ、より有効である。
【0030】
又、上記の(4)及び(5)の設定によると、閉弁側戻しばね9の個数(例えば1つ)よりも開側戻しばね10A,10Bの個数(例えば2つ)を大とする設定、閉弁側戻しばね9のへたり強度よりも開側戻しばね10のへたり強度を大とする設定した結果、開弁側戻しばね10,10A,10Bの経時劣化(ばね荷重のへたり)が抑えられ、中立点が閉弁用電磁石7側にずれるのを抑制できる。
【0031】
更に、上記の(6)及び(7)の設定によると、閉弁時間経過時の閉弁側戻しばね9のへたり率と開弁時間経過時の開側戻しばね10のへたり率とを略同一とする設定にした結果、閉弁時間と開弁時間の相違に係わらず、両戻しばね9,10のへたり率が略同一となるため、開弁側戻しばね10の経時劣化(ばね荷重のへたり)が閉弁側戻しばね9の経時劣化よりも進むのが抑えられ、中立点が閉弁用電磁石7側にずれるのを抑制できる。
【0032】
従って、以上のように、開弁側戻しばね10の経時劣化(ばね荷重のへたり)が抑えられ、中立点が閉弁用電磁石7側にずれるのを抑制できる結果、開弁用電磁石8によるアーマチュア6への電磁吸引力を初期設定時と同様に確保でき、アーマチュア6を安定して吸引保持できると共に、閉弁時にアーマチュア6の閉弁用電磁石7に対する着座速度が速くなるのを抑制でき、開・閉弁作用を安定して行うことができる。
【0033】
尚、上記の実施形態においては、電磁駆動式動弁装置の閉弁側戻しばねに対して開弁側戻しばねの耐へたり性を向上する発明について説明したが、本発明のうち請求項1に係る発明は、弁を駆動するのに限らない電磁駆動装置、即ち、アーマチュアと、該アーマチュアの両側面にそれぞれ対向配置され、当該アーマチュアに電磁吸引力を作用させる一対の電磁石と、前記アーマチュアを両電磁石側にそれぞれ付勢する一対の戻しばねと、を含んで構成された電磁駆動装置において、一方の戻しばねに対して他方の戻しばねの耐へたり性を高めるようにしたことを特徴とするものであり、戻しばね荷重のへたりの経時変化に対するアーマチュアの中立点の変化を抑えることができ、電磁駆動装置の安定した作動を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る電磁駆動装置並びに内燃機関における電磁駆動式動弁装置の一実施形態を示す縦断面図
【図2】同上の実施形態装置の概念図で、(A)は全閉弁状態、(B)は全開弁状態、(C)は中間リフト状態
【図3】バルブリフト状態図
【図4】他の実施形態の縦断面図
【図5】開弁側戻しばねと閉弁側戻しばねの時間経過に伴うへたり率を示す特性図
【符号の説明】
1 シリンダヘッド
2 電磁駆動式動弁装置
3 ハウジング
4 弁体
5 ステム
6 アーマチュア
7 閉弁用電磁石
8 開弁用電磁石
9 閉弁側戻しばね
10 開弁側戻しばね
10B、10A 開弁側戻しばね
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic drive device and an electromagnetic drive valve device in an internal combustion engine, and more particularly to a technique for stabilizing operation.
[0002]
[Prior art]
As an electromagnetic drive device, an electromagnetic drive valve device that drives a valve such as an intake / exhaust valve of an internal combustion engine is conventionally provided with an armature provided on a valve stem and opposed to both side surfaces of the armature, A pair of electromagnets for applying electromagnetic attraction to the armature, that is, a valve-opening electromagnet and a valve-closing electromagnet, and a pair of return springs for urging the armature toward both electromagnets, that is, a valve-opening side return spring and And a valve-closing-side return spring (see Japanese Patent Application Laid-Open No. 7-335437).
[0003]
In such an electromagnetically driven valve train, the valve-opening return spring and the valve-closing side return spring are the same in order to uniformly apply the electromagnetic attraction force of the conventional valve-opening electromagnet and valve-closing electromagnet to the armature. Set to specifications.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional electromagnetic drive device in which the valve-opening-side return spring and the valve-closing-side return spring are set to the same specification, at the time of initial setting, the vibration center (neutral point) of the armature spring vibration is: It is located at a central position between the electromagnets that are substantially opposed to each other, and the electromagnetic attraction force of both electromagnets acts evenly on the armature without any problem.
[0005]
However, the neutral point shifts as the deterioration with time of the spring (set of the spring load) progresses.
In an electromagnetically driven valve train that drives intake and exhaust valves of a normal internal combustion engine, the ratio between the valve closing time and the valve opening time is approximately 2: 1. Since the compression time is longer than the compression time of the valve-closing-side return spring when the valve is opened, the aging of the valve-opening-side return spring is greater than the aging of the valve-closing-side return spring. The neutral point shifts to the valve-closing electromagnet side, and as a result, the electromagnetic attraction force of the valve-opening electromagnet acting on the armature is weakened, and the armature may not be able to be stably attracted and held, and the armature may be closed when the valve is closed. There is a problem that the opening / closing action is not performed stably, for example, the seating speed for the working electromagnet increases.
[0006]
Accordingly, the present invention has been made in view of the above-described conventional problems, and has been provided with an electromagnetic drive device and an electromagnetically driven dynamic motor in an internal combustion engine capable of continuing stable operation by employing a configuration that addresses the progress of aging of the return spring of an armature. It is an object to provide a valve device.
[0007]
[Means for Solving the Problems]
Therefore, the invention according to claim 1 is
An armature, a pair of electromagnets respectively arranged on both side surfaces of the armature to apply electromagnetic attraction to the armature, and a pair of return springs for urging the armature toward both electromagnets. In the electromagnetic drive device
The present invention is characterized in that the set resistance of the other return spring is improved with respect to the one return spring.
[0008]
The invention according to claim 2 is
An armature provided on a valve body, a valve-opening electromagnet and a valve-closing electromagnet which are respectively arranged on both side surfaces of the armature to apply electromagnetic attraction to the armature, and bias the armature toward both electromagnets. And a valve-opening-side return spring and a valve-closing-side return spring.
The maximum stress applied to the valve-opening-side return spring when the valve-opening-side return spring is compressed is set to be smaller than the maximum stress applied to the valve-opening-side return spring when the valve-closing-side return spring is compressed. It is characterized by having done.
[0009]
The invention according to claim 3 is:
The ratio of the maximum stress applied to the valve-closing-side return spring to the maximum stress applied to the valve-opening-side return spring is set to be substantially the ratio between the valve closing time and the valve opening time.
The invention according to claim 4 is
The ratio between the maximum stress applied to the valve-closing-side return spring and the maximum stress applied to the valve-opening-side return spring is set to a ratio of approximately 2 to 1, which is a ratio between the valve closing time and the valve opening time. Features.
[0010]
The invention according to claim 5 is
Instead of setting the maximum stress, the number of open-side return springs is set to be greater than the number of valve-close-side return springs.
The invention according to claim 6 is
Instead of setting the maximum stress, a setting is made such that the setting strength of the open-side return spring is larger than the setting strength of the valve-closing-side return spring.
[0011]
The invention according to claim 7 is
In place of the setting of the maximum stress, the setting rate of the set-side return spring after the valve closing time elapses and the setting rate of the open-side return spring after the valve opening time elapses are set to be substantially the same. Features.
The invention according to claim 8 is
The ratio between the valve closing time and the valve opening time is approximately 2: 1.
[0012]
The operation of the present invention will be described.
In the invention according to the first aspect, in the conventional electromagnetic drive device in which the pair of return springs are set to the same specification, the neutral point increases as the deterioration with time of the spring (set of the spring load) progresses. Shift.
According to the first aspect of the present invention, the set resistance of the other return spring is increased with respect to the one return spring, so that the return spring having the improved set resistance is prevented from deteriorating with time, and the neutral state is improved. It is possible to suppress the point from shifting.
[0013]
In a conventional electromagnetically driven valve train in an internal combustion engine in which the valve-opening-side return spring and the valve-closing-side return spring are set to the same specifications, the deterioration of the spring with time (set of the spring load) proceeds. Accordingly, the neutral point is shifted to the valve closing electromagnet side.
This is because, in the case of an electromagnetically driven valve train that drives the intake and exhaust valves of a normal internal combustion engine, the ratio between the valve closing time and the valve opening time is, for example, approximately 2: 1. This is because the time during which the valve-side return spring is compressed is longer than the time during which the valve-side return spring is compressed when the valve is opened.
[0014]
According to the second aspect of the present invention, the maximum stress applied to the valve-opening-side return spring is set to be smaller than the maximum stress applied to the valve-closing-side return spring. Deterioration is suppressed, and the neutral point can be suppressed from shifting to the valve closing electromagnet side. In particular, as in the inventions according to claims 3 and 4, the ratio between the maximum stress applied to the valve-closing-side return spring and the maximum stress applied to the valve-opening-side return spring is set to be substantially equal to the valve closing time and the valve opening time. By setting the ratio, for example, a ratio of approximately 2: 1 (2: 1), the time during which the valve-opening-side return spring is compressed when the valve is closed is reduced when the valve-opening-side return spring is compressed when the valve is opened. The setting can be made to take into account that the time is longer than it is, which is more effective.
[0015]
According to the fifth and sixth aspects of the present invention, the number of the open-side return springs is set to be larger than the number of the valve-closed return springs. As a result of setting the set strength to a large value, deterioration over time of the valve-opening-side return spring is suppressed, and it is possible to prevent the neutral point from shifting to the valve-closing electromagnet side.
Furthermore, according to the seventh and eighth aspects of the present invention, the setting rate of the set-back return spring after the valve-closing time elapses and the setting rate of the open-side return spring after the valve-opening time elapse are set to be substantially the same. As a result, regardless of the difference between the valve closing time and the valve opening time, the set rates of both return springs are substantially the same. It is possible to prevent the return spring from deteriorating over time and to prevent the neutral point from being shifted to the valve closing electromagnet side.
[0016]
【The invention's effect】
According to the first aspect of the present invention, it is possible to suppress a change in the neutral point of the armature with respect to a change with time of the return spring load, and to obtain a stable operation of the electromagnetic driving device.
According to the second to eighth aspects of the present invention, in the electromagnetically driven valve train that drives the intake and exhaust valves of a normal internal combustion engine, deterioration over time (set of spring load) of the valve-opening-side return spring is suppressed. As a result, the neutral point can be suppressed from shifting to the valve closing electromagnet side.As a result, the electromagnetic attraction force by the valve opening electromagnet acting on the armature can be secured in the same manner as at the time of initial setting, and the armature can be stably held by suction, When the valve is closed, the seating speed of the armature with respect to the valve-closing electromagnet can be prevented from increasing, and the opening and closing operations can be stably performed.
[0017]
In particular, according to the second aspect of the present invention, the above effect can be more effectively achieved by setting the magnitude of the maximum stress applied to the return spring when the return spring is compressed.
Further, according to the third and fourth aspects of the present invention, the setting can be made in consideration of the fact that the time when the valve-closing-side return spring is compressed is longer when the valve is opened, which is more effective.
[0018]
According to the invention according to claim 5, the above operation can be more effectively achieved by setting the number of return springs.
According to the sixth aspect of the present invention, the above-described operation can be more effectively achieved by setting the set strength of the return spring by selecting the spring material of the return spring.
According to the seventh and eighth aspects of the present invention, by selecting the spring material of the return spring, the set ratio of the valve-side return spring after the valve closing time has elapsed and the set of the open-side return spring after the valve open time has elapsed. By setting the ratio to be substantially the same, the above-described operation can be more effectively achieved.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing an embodiment of an electromagnetic drive device and an electromagnetic drive valve device in an internal combustion engine according to the present invention.
That is, in this figure, a cylinder head 1 is provided with an intake port (exhaust port) that opens to a combustion chamber (not shown), and an electromagnetically driven valve train 2 that opens and closes the intake port (exhaust port). ing.
[0020]
Such an electromagnetically driven valve gear 2 includes a housing 3 made of a non-magnetic material provided on the cylinder head 1 and a rectangle which is provided integrally with, for example, the stem 5 of the valve body 4 and is movably housed in the housing 3. Armature 6, a valve-closing electromagnet 7 that generates an electromagnetic force for attracting the armature 6 and closing the valve body 4, and an electromagnetic force for attracting the armature 6 and opening the valve body 4. The generated valve-opening electromagnet 8, a valve-closing-side return spring 9 for urging the armature 6 in the valve closing direction of the valve body 4, and an opening for biasing the armature 6 in the valve opening direction of the valve body 4. And a valve-side return spring 10.
[0021]
The valve-closing electromagnet 7 is fixedly arranged in the housing 3 at a position facing the upper surface of the armature 6 in the housing 3 and has a substantially U-shaped cross-sectional shape opened to the armature 6 side. The coil 12 is housed in a fixed core 11 coaxially surrounding the stem 5.
The valve-opening electromagnet 8 is fixedly arranged in the housing 3 at a position facing the lower surface of the armature 6 in the housing 3 and has a substantially U-shaped cross-sectional shape opened to the armature 6 side. In addition, a coil 14 is housed in a fixed core 13 coaxially surrounding the stem 5.
[0022]
In addition, the fixed cores 11 and 13 are configured so as to correspond to the rectangular armature 6 and have a substantially rectangular cross-sectional shape having rounded corners at four corners.
On the other hand, the valve-closing-side return spring 9 is fixed to the bottom surface of the storage groove 15 and the outer periphery of the lower portion of the stem 5 in the storage groove 15 on the upper surface of the cylinder head 1 so as to apply an upward spring force to the armature 6. And the spring seat 16 provided.
[0023]
The valve-opening-side return spring 10 is provided in the housing 17 attached to the upper surface of the housing 3 so as to apply a downward spring force to the armature 6. It is interposed between a spring seat 19 fixed to the upper end of the stem 5.
Therefore, the return springs 9 and 10 hold the armature 6 at an equilibrium neutral position at the center between the electromagnets 7 and 8 when the electromagnets 7 and 8 are in the demagnetized state. Is located at an intermediate position between the valve closing position and the valve opening position.
[0024]
The operation of the electromagnetically driven valve gear 2 will be described with reference to the conceptual diagram of the device in FIG. 2 and the valve lift state diagram in FIG. 3. The armature 6 is generated by an electromagnetic attraction force generated by energizing the valve closing electromagnet 7. Is sucked, and the valve body 4 is operated to close the valve (a fully closed state in FIG. 2A, see FIG. 3A). At this time, the valve-closing-side return spring 9 is applying a spring force upward to the armature 6, while the valve-opening-side return spring 10 is in a compressed state.
[0025]
Next, the armature 6 is attracted by the electromagnetic attraction generated by energizing the valve-opening electromagnet 8, and the valve element 4 is opened (FIG. 2C, fully open state, FIG. 3B). See ▼). At this time, the valve-opening-side return spring 10 applies a downward spring force to the armature 6, while the valve-closing-side return spring 9 is in a compressed state.
[0026]
When shifting from the fully-closed state to the fully-opened state, the intermediate lift state shown in FIG. 2B, that is, as described above, the valve body 4 is located at the intermediate position between the valve-closed position and the valve-opened position. (See FIG. 3 (3)).
FIG. 4 is a longitudinal sectional view of an electromagnetically driven valve train of another embodiment.
That is, the valve gear 2 of this embodiment is provided with two valve-opening-side return springs, and the other valve-opening-side return spring 10B is arranged inside one valve-opening-side return spring 10A. The two return-opening springs 10B and 10A are arranged in a double inner and outer state, and the inner-outer and double-open return springs 10B and 10A act on the armature 6 with a downward spring force. To accommodate this, in the storage part 17 attached to the upper surface of the housing 3, it is interposed between the spring seat 20 on the upper surface of the storage part 17 and the spring seat 21 fixed to the upper end of the stem 5.
[0027]
Here, in the present invention, in the above-described electromagnetically driven valve train 2, the following settings (1) to (7) are set, and the valve-opening-side return spring 10 is set with respect to the valve-closing-side return spring 9. Improve the sag resistance.
(1) The maximum stress applied to the valve-opening return spring 10 when the valve-opening-side return spring 10 is compressed, compared to the maximum stress σ A applied to the valve-closing-side return spring 9 when the valve-closing-side return spring 9 is compressed. The stress σ B is set to be small (σ A > σ B ).
(2) In (1), the ratio (σ A : σ B ) between the maximum stress σ A applied to the valve-closing side return spring 9 and the maximum stress σ B applied to the valve-opening side return spring 10 is substantially closed. Set the ratio between the valve time and the valve open time.
(3) In (2), σ A : σ B is set to, for example, a ratio (2: 1) of approximately 2 to 1, which is a ratio between the valve closing time and the valve opening time.
(4) The number (for example, two) of the open-side return springs 10A and 10B is set to be larger than the number (for example, one) of the valve-closing-side return spring 9 (see the embodiment of FIG. 4).
(5) By setting the spring materials of the two return springs 9, 10, the setting of the setting strength of the open-side return spring 10 to be larger than the setting strength of the valve-closing-side return spring 9 is set.
(6) by the choice of spring material both return springs 9 and 10, the return opening side of the sag rate and opening time of the spring 9 returns the valve closing side during closing time t 2 elapsed t 1 after the elapse spring 10 to the The setting was made to be substantially the same as the set rate (see FIG. 5).
(7) In (6), sets the ratio of closing time t 2 and the valve opening time t 1 to a ratio of approximately 2: 1.
[0028]
According to such a configuration, the following operation and effect can be obtained.
That is, in a conventional electromagnetically driven valve device in which the valve-opening-side return spring and the valve-closing-side return spring are set to the same specifications, as the spring deteriorates with time (spring load sag), , The neutral point is shifted to the valve closing electromagnet side.
This is because, in an electromagnetically driven valve train that drives intake and exhaust valves of a normal internal combustion engine, the ratio between the valve closing time and the valve opening time is approximately 2: 1. This is because the time during which the return spring is compressed is longer than the time during which the valve-closing-side return spring is compressed when the valve is opened.
[0029]
According to the above setting (1), the maximum stress σ B applied to the valve-opening-side return spring 10 is smaller than the maximum stress σ A applied to the valve-closing-side return spring 9 (σ A > σ B). As a result, the deterioration with time of the valve-opening-side return spring 10 (set of the spring load) is suppressed, and the neutral point can be prevented from shifting to the valve-closing electromagnet 7 side.
In particular, as in the settings of (2) and (3), by setting σ A : σ B to a ratio between the substantially valve closing time and the valve opening time, for example, a ratio of approximately 2: 1 (2: 1). The setting can be made in consideration of that the time during which the valve-opening-side return spring 10 is compressed when the valve is closed is longer than the time during which the valve-closing-side return spring 9 is compressed when the valve is opened. It is valid.
[0030]
Further, according to the above settings (4) and (5), the number (for example, two) of the open-side return springs 10A and 10B is set to be larger than the number (for example, one) of the valve-closing-side return spring 9. As a result, the strength of the opening-side return spring 10 is set to be larger than the strength of the valve-closing-side return spring 9, so that the valve-opening-side return springs 10, 10A, and 10B deteriorate with time (spring load reduction). And the neutral point can be prevented from shifting to the valve-closing electromagnet 7 side.
[0031]
Further, according to the settings of (6) and (7), the set rate of the valve-side return spring 9 when the valve closing time has elapsed and the set rate of the open-side return spring 10 when the valve open time has elapsed are determined. As a result of setting to be substantially the same, the set rates of the two return springs 9 and 10 become substantially the same regardless of the difference between the valve closing time and the valve opening time. (Set of load) is suppressed from progressing over time with respect to the valve-closing-side return spring 9, and the neutral point can be suppressed from shifting to the valve-closing electromagnet 7 side.
[0032]
Accordingly, as described above, deterioration with time (set of spring load) of the valve-opening side return spring 10 can be suppressed, and the neutral point can be prevented from shifting to the valve-closing electromagnet 7 side. The electromagnetic attraction force to the armature 6 can be secured in the same manner as at the time of the initial setting, the armature 6 can be stably attracted and held, and the seating speed of the armature 6 with respect to the valve-closing electromagnet 7 when the valve is closed can be suppressed from increasing. The valve opening / closing action can be performed stably.
[0033]
In the above embodiment, the invention has been described in which the set resistance of the valve-opening-side return spring is improved with respect to the valve-closing-side return spring of the electromagnetically driven valve train. The invention according to the present invention is not limited to an electromagnetic drive device for driving a valve, i.e., an armature, a pair of electromagnets disposed opposite to each other on both side surfaces of the armature to apply an electromagnetic attraction to the armature, and the armature. And a pair of return springs biasing both electromagnets, respectively, wherein the set resistance of the other return spring is improved with respect to the one return spring. Therefore, it is possible to suppress a change in the neutral point of the armature with respect to a change in the return spring load with time, and to obtain a stable operation of the electromagnetic drive device.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of an electromagnetic drive device and an electromagnetic drive valve device in an internal combustion engine according to the present invention. FIG. Valve state, (B) fully open state, (C) intermediate lift state [Fig. 3] Valve lift state diagram [Fig. 4] Longitudinal sectional view of another embodiment [Fig. 5] Valve open side return spring and valve closing Characteristic diagram showing set rate with time of side return spring [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylinder head 2 Electromagnetic drive type valve train 3 Housing 4 Valve body 5 Stem 6 Armature 7 Valve closing electromagnet 8 Valve opening electromagnet 9 Valve closing side return spring 10 Valve opening side return spring 10B, 10A Valve opening side return spring

Claims (8)

アーマチュアと、該アーマチュアの両側面にそれぞれ対向配置され、当該アーマチュアに電磁吸引力を作用させる一対の電磁石と、前記アーマチュアを両電磁石側にそれぞれ付勢する一対の戻しばねと、を含んで構成された電磁駆動装置において、
一方の戻しばねに対して他方の戻しばねの耐へたり性を高めるようにしたことを特徴とする電磁駆動装置。
An armature, a pair of electromagnets respectively arranged on both side surfaces of the armature to apply electromagnetic attraction to the armature, and a pair of return springs for urging the armature toward both electromagnets. In the electromagnetic drive device
An electromagnetic drive device wherein the set resistance of one return spring is improved with respect to the other return spring.
弁体に設けられたアーマチュアと、該アーマチュアの両側面にそれぞれ対向配置され、当該アーマチュアに電磁吸引力を作用させる開弁用電磁石及び閉弁用電磁石と、前記アーマチュアを両電磁石側にそれぞれ付勢する開弁側戻しばね及び閉弁側戻しばねと、を含んで構成された内燃機関における電磁駆動式動弁装置において、
前記閉弁側戻しばねの圧縮時に該閉弁側戻しばねに印加される最大応力よりも開弁側戻しばねの圧縮時に該開弁側戻しばねに印加される最大応力が小となるように設定したことを特徴とする内燃機関における電磁駆動式動弁装置。
An armature provided on a valve body, a valve-opening electromagnet and a valve-closing electromagnet which are respectively arranged on both side surfaces of the armature to apply electromagnetic attraction to the armature, and bias the armature toward both electromagnets. And a valve-opening-side return spring and a valve-closing-side return spring.
The maximum stress applied to the valve-opening-side return spring when the valve-opening-side return spring is compressed is set to be smaller than the maximum stress applied to the valve-opening-side return spring when the valve-closing-side return spring is compressed. An electromagnetically driven valve train in an internal combustion engine.
前記閉弁側戻しばねに印加される最大応力と開弁側戻しばねに印加される最大応力の比を、略閉弁時間と開弁時間の比に設定したことを特徴とする請求項2記載の内燃機関における電磁駆動式動弁装置。The ratio of the maximum stress applied to the valve-closing-side return spring to the maximum stress applied to the valve-opening-side return spring is set to a substantially ratio between the valve closing time and the valve opening time. An electromagnetically driven valve train in an internal combustion engine. 前記閉弁側戻しばねに印加される最大応力と開弁側戻しばねに印加される最大応力の比を、閉弁時間と開弁時間の比である略2対1の比に設定したことを特徴とする請求項3記載の内燃機関における電磁駆動式動弁装置。The ratio of the maximum stress applied to the valve-closing-side return spring to the maximum stress applied to the valve-opening-side return spring is set to a ratio of approximately 2 to 1, which is a ratio between the valve closing time and the valve opening time. An electromagnetically driven valve train in an internal combustion engine according to claim 3. 前記最大応力の設定に代えて、閉弁側戻しばねの個数よりも開側戻しばねの個数を大とする設定にしたことを特徴とする請求項2記載の内燃機関における電磁駆動式動弁装置。3. An electromagnetically driven valve train in an internal combustion engine according to claim 2, wherein, instead of setting the maximum stress, the number of open side return springs is set to be larger than the number of valve close side return springs. . 前記最大応力の設定に代えて、閉弁側戻しばねのへたり強度よりも開側戻しばねのへたり強度を大とする設定にしたことを特徴とする請求項2記載の内燃機関における電磁駆動式動弁装置。3. The electromagnetic drive in an internal combustion engine according to claim 2, wherein, instead of setting the maximum stress, the set strength of the open-side return spring is set to be larger than the set strength of the valve-closed return spring. Type valve train. 前記最大応力の設定に代えて、閉弁時間経過時の閉弁側戻しばねのへたり率と開弁時間経過時の開側戻しばねのへたり率とを略同一とする設定にしたことを特徴とする請求項2記載の内燃機関における電磁駆動式動弁装置。Instead of the setting of the maximum stress, the setting rate of the set-side return spring after the valve closing time elapses and the setting rate of the open-side return spring after the valve opening time elapses are set to be substantially the same. An electromagnetically driven valve train in an internal combustion engine according to claim 2, wherein 前記閉弁時間と開弁時間の比が略2対1の比であることを特徴とする請求項7記載の内燃機関における電磁駆動式動弁装置。8. An electromagnetically driven valve train in an internal combustion engine according to claim 7, wherein the ratio between the valve closing time and the valve opening time is approximately 2: 1.
JP25271298A 1998-09-07 1998-09-07 Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine Expired - Fee Related JP3565039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25271298A JP3565039B2 (en) 1998-09-07 1998-09-07 Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25271298A JP3565039B2 (en) 1998-09-07 1998-09-07 Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000091119A JP2000091119A (en) 2000-03-31
JP3565039B2 true JP3565039B2 (en) 2004-09-15

Family

ID=17241210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25271298A Expired - Fee Related JP3565039B2 (en) 1998-09-07 1998-09-07 Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine

Country Status (1)

Country Link
JP (1) JP3565039B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261173A (en) * 2004-03-14 2005-09-22 Mutsuo Hirano Reciprocating linear driver
JP6316488B1 (en) * 2017-06-16 2018-04-25 株式会社和広エンジニアリング Fluid discharge device

Also Published As

Publication number Publication date
JP2000091119A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP2000170952A (en) Electromagnetic driving device
JP4258052B2 (en) Electromagnetic valve device for internal combustion engine
EP1789659B1 (en) Electromagnetically driven valve
JP3565039B2 (en) Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine
JP2006336525A (en) Electromagnetic actuation valve
JP2005176595A (en) Electromagnetic valve actuator system
US20050076866A1 (en) Electromechanical valve actuator
WO2006006309A1 (en) Electromagnetically driven valve
US7430996B2 (en) Electromagnetically driven valve
US20070290156A1 (en) Electromagnetically Driven Valve
JP2007309259A (en) Solenoid-driven valve
JP3572447B2 (en) Electromagnetic valve device for internal combustion engine
JPH1130114A (en) Solenoid valve drive device
JP2000073721A (en) Solenoid valve system for internal combustion engine
JP4124183B2 (en) Electromagnetically driven valve and control method thereof
JP2002309991A (en) Fuel injection device and control method for fuel injection valve
JP3743396B2 (en) Control device for electromagnetically driven valve
JP2008202427A (en) Solenoid valve
JP2000120416A (en) Valve system for internal combustion engine
JPH10141028A (en) Electromagnetic valve system for internal combustion engine
JP2000091118A (en) Electromagnetic driving device and its current flowing control method
JP3539241B2 (en) Valve train for internal combustion engine
JP3539239B2 (en) Electromagnetic valve gear
JP4147685B2 (en) Solenoid valve
JP2007046497A (en) Solenoid-driven valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees