JP3539241B2 - Valve train for internal combustion engine - Google Patents

Valve train for internal combustion engine Download PDF

Info

Publication number
JP3539241B2
JP3539241B2 JP33148198A JP33148198A JP3539241B2 JP 3539241 B2 JP3539241 B2 JP 3539241B2 JP 33148198 A JP33148198 A JP 33148198A JP 33148198 A JP33148198 A JP 33148198A JP 3539241 B2 JP3539241 B2 JP 3539241B2
Authority
JP
Japan
Prior art keywords
hydraulic oil
valve
passage
resistance
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33148198A
Other languages
Japanese (ja)
Other versions
JP2000161033A (en
Inventor
太郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33148198A priority Critical patent/JP3539241B2/en
Publication of JP2000161033A publication Critical patent/JP2000161033A/en
Application granted granted Critical
Publication of JP3539241B2 publication Critical patent/JP3539241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の動弁装置、とりわけ、吸,排気弁を電磁的に開閉するようにした動弁装置に関する。
【0002】
【従来の技術】
車両用エンジンの吸,排気弁を電磁的に開閉するようにした動弁装置は各種公知であるが、中でも特開平10−141028号公報に示されているように、アーマチュアのストロークエンドで該アーマチュアと電磁石との間にダンパ室を構成するようにして、アーマチュアによる該ダンパ室の空気の圧縮作用で電磁石へのアーマチュア着座時に緩衝効果を得るようにしたものや、特開平5−340223号公報に示されているように、電磁石にピストンと該ピストンの底部を押圧するばねとを設けると共に、ピストン配設部の底部の空間部に磁性粉末を収納して、電磁石へのアーマチュア着座時にピストンによるばねおよび磁性粉末の圧縮作用で緩衝効果を得るようにしたものが知られている。
【0003】
【発明が解決しようとする課題】
前記何れの装置にあっても、空気の圧縮作用、又はばねおよび磁性粉末の圧縮作用でアーマチュア着座時の緩衝を行わせるため、この緩衝作用時にアーマチュアの変位に伴ってアーマチュアに作用する圧縮反力が増加し、従って、電磁石にはこの圧縮反力に打ち勝つ電磁力が得られるように、比較的大きなキャッチング電流およびホールド電流を供給する必要があって、バッテリの消費電力が大きくなってしまう。
【0004】
そこで、本発明は電磁石のキャッチング電流およびホールド電流の増大化を伴うことなくアーマチュア着座時の緩衝効果が得られて、バッテリ消費電力を節減することができる内燃機関の動弁装置を提供するものである。
【0005】
【課題を解決するための手段】
請求項1の発明にあっては、吸,排気弁の各弁軸に連設されたアーマチュアと、該アーマチュアの上下面に対向して配設された2つの電磁石と、前記弁軸を開弁側と閉弁側とに付勢する2つのばね部材とを備え、吸,排気弁をこれら電磁石とばね部材との協働により電磁的に開閉するようにした内燃機関の動弁装置において、前記各電磁弁のコアに、アーマチュアが着座する吸着面から出没するピストンと、ピストン背部で作動油を貯留した作動油室と、作動油室に連なって設けられてピストンの押動で作動油室から流出する作動油の流通に抵抗を付与する抵抗通路と、を備えたショックアブソーバを設けつつ、各電磁石のコアに設けたショックアブソーバの作動油室を抵抗通路で連通したことを特徴としている。
【0007】
請求項2の発明にあっては、請求項1に記載の抵抗通路にダンピング力調整用のオリフィスを設け、かつ、該抵抗通路にオリフィスをバイパスするバイパス通路を設けると共に、該バイパス通路と抵抗通路との連接部の一方に、動弁装置の冷機時にオリフィスへの作動油の流通を遮断してバイパス通路を開放し、動弁装置の暖機完了後はバイパス通路を遮断してオリフィスへの作動油の流通を許容する切換弁を設けたことを特徴としている。
【0008】
請求項3の発明にあっては、請求項1に記載の抵抗通路に動弁装置の温度条件に応じてオリフィス径を可変制御するダンピング力調整用の可変オリフィスを設け、動弁装置の冷機時に相当する所定温度以下ではオリフィス径を最大に拡大するようにしたことを特徴としている。
【0009】
請求項4の発明にあっては、吸,排気弁の各弁軸に連設されたアーマチュアと、該アーマチュアの上下面に対向して配設された2つの電磁石と、前記弁軸を開弁側と閉弁側とに付勢する2つのばね部材とを備え、吸,排気弁をこれら電磁石とばね部材との協働により電磁的に開閉するようにした内燃機関の動弁装置において、前記各電磁弁のコアに、アーマチュアが着座する吸着面から出没するピストンと、ピストン背部で作動油を貯留した作動油室と、作動油室に連なって設けられてピストンの押動で作動油室から流出する作動油の流通に抵抗を付与する抵抗通路と、を備えたショックアブソーバを設けつつ、抵抗通路を外部に開放する一方、作動油室に作動油補給通路を設け、かつ、これら抵抗通路と作動油補給通路にそれぞれ開閉弁を設け、これら開閉弁の作動制御により動弁装置の冷機時に抵抗通路を開放状態に維持させる一方、作動油補給通路を遮断状態に維持させ、動弁装置の暖機完了後はこれら開閉弁を電磁石の励・消磁に応じて開・閉制御して作動油補給通路から作動油室への作動油補給と、作動油室から抵抗通路への作動油流出による緩衝作用とを行わせるようにしたことを特徴としている。
【0010】
【発明の効果】
請求項1に記載の発明によれば、アーマチュアが電磁石の電磁力によってコアの吸着面に着座する直前でショックアブソーバのピストンに当接して該ピストンを押動すると、このピストンの押動により作動油室の作動油が抵抗通路へ流出して該抵抗通路を流通することにより流通抵抗が発生し、前記アーマチュアを制動して着座時の衝撃を緩和してアーマチュア着座時の衝接音を低減し、音振性能を向上することができると共に、アーマチュアおよび電磁石のコアの摩耗を抑制することができる。
【0011】
また、前記アーマチュア着座時におけるショックアブソーバのピストンの押動作用には、作動油室から抵抗通路へ作動油が流通抵抗を受けて流通するだけで、アーマチュアの変位に比例的な反力増大が生じることがなく、しかも、アーマチュアがコアの吸着面に着座してピストンがフルストロークして停止するとアーマチュアへの反力が消失するため、電磁石へのキャッチング電流およびホールド電流を低下させることができて、バッテリ消費電力を節減することができる。
【0012】
さらに、上,下2つの電磁石に設けたショックアブソーバのそれぞれの作動油室を抵抗通路で連通してあるから、一方のショックアブソーバの緩衝作動時には該一方のショックアブソーバの作動油室から流出した作動油が、他方のショックアブソーバの作動油室に流入して該他方のショックアブソーバを伸張作動させて必ず緩衝態勢に整えるため、簡単な構造でエンジン高回転時の追従性を高めることができる。
【0013】
請求項2に記載の発明によれば、請求項1の発明の効果に加えて、作動油の粘性が大きくなる動弁装置の冷機時には、一方のショックアブソーバの緩衝作動時には該一方のショックアブソーバの作動油室から流出した作動油が抵抗通路に設けたダンピング力調整用のオリフィスを通らずに、該オリフィスをバイパスしたバイパス通路を通って他方のショックアブソーバの作動油室に流入するため、作動油の粘性増大による流通抵抗の増大化を抑制することができて、動弁装置の冷機時における初期化作動をスムーズに行わせることができると共に、初期化時のバッテリ消費電力を節減することができる。
【0014】
請求項3に記載の発明によれば、請求項1の発明の効果に加えて、作動油の粘性が大きくなる動弁装置の冷機時には、抵抗通路に設けたダンピング力調整用の可変オリフィスのオリフィス径を最大に拡大するため、作動油の粘性増大による流通抵抗の増大化を抑制することができて、動弁装置の冷機時における初期化作動をスムーズに行わせることができると共に、初期化時のバッテリ消費電力を節減することができる。
【0015】
また、動弁装置の暖機完了後は作動油の温度条件に応じて可変オリフィスのオリフィス径を変化させて、作動油の流通抵抗を調整できるため、作動油の温度変化に伴う微妙な粘性変化の影響を受けることなく適切な緩衝作用を行わせることができる。
【0016】
請求項4に記載の発明によれば、アーマチュアが電磁石の電磁力によってコアの吸着面に着座する直前でショックアブソーバのピストンに当接して該ピストンを押動すると、このピストンの押動により作動油室の作動油が抵抗通路へ流出して該抵抗通路を流通することにより流通抵抗が発生し、前記アーマチュアを制動して着座時の衝撃を緩和してアーマチュア着座時の衝接音を低減し、音振性能を向上することができると共に、アーマチュアおよび電磁石のコアの摩耗を抑制することができる。
また、作動油の粘性が大きくなる動弁装置の冷機時には、外部開放の抵抗通路および作動油室に設けた作動油補給通路の各開閉弁の作動制御により、該抵抗通路が開放状態に維持される一方、作動油補給通路が遮断状態に維持されて作動油室を空の状態にしておくことができるため、ピストンの押動によるアーマチュアへの反力を消失させることができて、動弁装置の冷機時における初期化作動をスムーズに行わせることができると共に、初期化時のバッテリ消費電力を節減することができる。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態を図面と共に詳述する。
【0018】
図1において、1は吸気弁又は排気弁等の弁体、2は該弁体1の動弁装置を示す。
【0019】
動弁装置2は前記弁体1の弁軸1aに連設した磁性金属材料からなるアーマチュア4と、コア5a,6aおよび励磁コイル5b,6bを備えて前記アーマチュア4の上下面に対向して配設した開弁側および閉弁側の2つの電磁石5,6と、前記弁軸1aを開弁側と閉弁側とに付勢する2つのばね部材としてのコイルスプリング7,8とを備えている。
【0020】
コイルスプリング7,8は電磁石5,6が消磁している状態では弁体1が中間リフト位置を保持するように所要の平衡したばね力に設定し、電磁石5,6はこれらコイルスプリング7,8のばね力の大きさに適応した大きさの電磁力が得られるように設定して、これら電磁石5,6の電磁力とコイルスプリング7,8のばね力との協働によって弁体1を開閉するようにしてある。
【0021】
アーマチュア4はその下面中心位置に固設したアーマチュア軸4aを備え、該アーマチュア軸4aの下端を前記弁軸1aの上端に嵌挿したコンタクト4bに当接して該弁軸1aに連設してある。
【0022】
アーマチュア4の上面中央には上側の可動側スプリングシート9に固設したばね軸9aの下端が当接し、開弁側のコイルスプリング7はハウジング3の上壁に固設した固定側スプリングシート10と該可動側スプリングシート9との間に弾装してある。
【0023】
閉弁側のコイルスプリング8はシリンダヘッド11に設けた凹部11a内に配置して、弁軸1aに固設した可動側スプリングシート12と凹部11aの底面に固設した固定側スプリングシート13との間に弾装してある。
【0024】
そして、前記開弁側および閉弁側の電磁石5,6にアーマチュア4の着座時の衝撃を緩和するショックアブソーバ20,21を設けてある。
【0025】
これらショックアブソーバ20,21は、図2にも示すように電磁石5,6のコア5a,6aに設けられてそれらのアーマチュア吸着面から出没するピストン22,23と、これらピストン22,23の背部で作動油を貯留した作動油室24,25と、これら作動油室24,25に連なって設けられてピストン22,23の押動で作動油室24,25から流出する作動油の流通に抵抗を付与する抵抗通路26とを備え、本実施形態ではこの抵抗通路26により前記両作動油室24,25を連通している。
【0026】
抵抗通路26にはダンピング力調整用のオリフィス27を設けてあると共に、チェックバルブ29を備えた作動油補給通路28を接続して、該作動油補給通路28から作動油を補給できるようにしてある。
【0027】
図1中、14はバルブシートを示す。
【0028】
以上の実施形態の構造によれば、開弁側電磁石5の励磁コイル5bと閉弁側電磁石6の励磁コイル6bとに、アーマチュア4を吸着するためのキャッチング電流および該アーマチュア4を着座保持するためのホールド電流をそれぞれ交互に供給して、該アーマチュア4のコア5aの吸着面への吸引,着座と、コア6aの吸着面への吸引,着座とを交互に繰り返すことによって弁体1が開閉される。
【0029】
ここで、前記コア5a,6aにアーマチュア4が着座する際、例えばアーマチュア4が図2に示すように閉弁側電磁石6のコア6aに着座する直前で、該アーマチュア4がショックアブソーバ21のピストン23に当接して該ピストン23を押圧すると、このピストン23の押動により作動油室25の作動油が抵抗通路26へ流出して該抵抗通路26を流通することにより流通抵抗が発生し、前記アーマチュア4を制動する。
【0030】
この結果、アーマチュア4のコア6aへの着座時の衝撃を緩和して該着座時の衝接音を低減する。
【0031】
アーマチュア4の開弁側電磁石5のコア5aへの着座の際にも、同様にショックアブソーバ20のピストン22の押動により作動油室24から作動油を抵抗通路26へ流出させ、流通抵抗を発生させることによりアーマチュア4を制動して、コア6aへの着座時の衝撃を緩和して衝接音を低減し、従って、アーマチュア4のコア5a,6aへの吸引,着座時の音振性能を向上することができると共に、アーマチュア4および電磁石5,6のコア5a,6aの摩耗を抑制することができる。
【0032】
また、前記アーマチュア4のコア5a,6aへの着座時におけるショックアブソーバ20,21のピストン22,23の押動作用には、作動油室24,25から抵抗通路26へ作動油が流通抵抗を受けて流通するだけで、アーマチュア4の変位に比例的な反力増大が生じることがなく、しかも、アーマチュア4がコア5a,6aの吸着面に着座してピストン22,23がフルストロークして停止するとアーマチュア4への反力が消失するため、前記電磁石5,6へのキャッチング電流およびホールド電流を低下させることができてバッテリ消費電力を節減することができる。
【0033】
ここで、特に本実施形態では前記上下のショックアブソーバ20,21の作動油室24,25を抵抗通路26で連通してあるから、一方のショックアブソーバ21の緩衝作動時には該一方のショックアブソーバ21の作動油室25から流出した作動油が、他方のショックアブソーバ20の作動油室24に流入して該他方のショックアブソーバ20を伸張作動(ピストン22の進出)させて必ず緩衝態勢に整えるため、簡単な構造によってエンジン高回転時の追従性を高めることができる。
【0034】
図3は本発明の第2実施形態を示すもので、本実施形態にあっては前記図2に示した第1実施形態における抵抗通路26にダンピング力調整用のオリフィス27をバイパスするバイパス通路30を設けると共に、該バイパス通路30と抵抗通路26との連設部の一方に、作動油の流通経路を前記オリフィス27と、バイパス通路30とに切換える切換弁としての3方電磁弁31を設けてある。
【0035】
この3方電磁弁31は、例えば図外のシリンダヘッドオイルギャラリの作動油の温度を検出する油温センサの検出信号にもとづいてエンジンコントロールユニットにより作動制御され、動弁装置2の冷機時に相当する所定温度以下ではオリフィス27への作動油の流通を遮断してバイパス通路30を開放し、作動油温が前記所定温度を越えて動弁装置2の暖機完了に相当する温度にまで昇温すると、バイパス通路30を遮断してオリフィス27ヘの作動油の流通を許容するように切換え作動する。
【0036】
従って、この第2実施形態の構造によれば、動弁装置2が暖機完了状態であれば3方電磁弁31によりバイパス通路30を遮断し、オリフィス27への作動油の流通が許容されているため、前記第1実施形態と同様の作用効果が得られる。
【0037】
他方、作動油の粘性が大きくなる動弁装置2の冷機時には、3方電磁弁31によりバイパス通路30を開放し、オリフィス27への作動油の流通を遮断するため、例えば一方のショックアブソーバ21の緩衝作動時には該一方のショックアブソーバ21の作動油室25から流出した作動油が抵抗通路26のオリフィス27を通らずに、該オリフィス27をバイパスしたバイパス通路30を通って他方のショックアブソーバ20の作動油室24に流入するため、作動油の粘性増大による流通抵抗の増大化を抑制することができる。
【0038】
従って、動弁装置2の冷機時における初期化作動をスムーズに行わせることができると共に、初期化時のバッテリ消費電力を節減することができる。
【0039】
図4は本発明の第3実施形態を示すもので、本実施形態にあっては前記図2に示した第1実施形態における抵抗通路26のオリフィス27に替えて、動弁装置2の温度条件に応じてオリフィス径を可変制御する可変オリフィス32を設けてダンピング力調整を行えるようにしてある。
【0040】
この可変オリフィス32は、例えばサーモワックス34を封入した感温部33を備え、該感温部33で作動油温度を感知してサーモワックス34の膨脹、収縮作用でオリフィス径を変化させ、動弁装置2の冷機時に相当する所定温度以下ではオリフィス径を最大に、例えば抵抗通路26の内径とほぼ同等にまで拡大するようにしてある。
【0041】
従って、この第3実施形態の構造によれば、作動油の粘性が大きくなる動弁装置2の冷機時には、抵抗通路26に設けた可変オリフィス32のオリフィス径が該抵抗通路26の内径とほぼ同等にまで拡大されているから、前記第2実施形態と同様に作動油の粘性増大による流通抵抗の増大化を抑制し、動弁装置2の冷機時における初期化作動をスムーズに行わせることができると共に、初期化時のバッテリ消費電力を節減することができる。
【0042】
他方、動弁装置2の暖機完了後は作動油の温度条件に応じて可変オリフィス32のオリフィス径を変化させて、作動油の流通抵抗を調整できるため、作動油の温度変化に伴う微妙な粘性変化の影響を受けることなく適切な緩衝作用を行わせることができる。
【0043】
図5は本発明の第4実施形態を示すもので、この図5では便宜的に閉弁側電磁石6のコア6aに設けられたショックアブソーバ21を略示的に示しているが、開弁側電磁石5側のショックアブソーバ20も以下に述べる構造と同様構造が採られる。
【0044】
即ち、作動油室25に連なる抵抗通路26にはダンピング力調整用のオリフィス27を設けてあって、該抵抗通路26は外部のオイルリザーバ等に開放してあり、また、該作動油室25には作動油補給通路28を設けて該作動油補給通路28から作動油室25に作動油を補給するようにしてある。
【0045】
抵抗通路26および作動油補給通路28には、前述したエンジンコントロールユニットにより開閉制御される開閉弁35,36を設けてある。
【0046】
抵抗通路26に設けた開閉弁35はエンジン停止すると開弁作動され、動弁装置2の冷機時には開弁状態が維持されるが、動弁装置2が暖機完了状態であれば、励磁コイル6bの消磁とほぼ同時に閉弁作動され、励磁コイル6bの励磁とほぼ同時に開弁作動される。
【0047】
他方、作動油補給通路28に設けた開閉弁36はエンジン停止すると閉弁作動され、動弁装置2の冷機時には閉弁状態が維持されるが、動弁装置2が暖機完了状態であれば、励磁コイル6bの消磁とほぼ同時に開弁作動されて所定圧の作動油を作動油室25に補給してピストン23を伸張させると共に、該作動油室25および開閉弁35で遮断状態にある抵抗通路26に作動油を充満させ、励磁コイル6bの励磁とほぼ同時に閉弁作動される。
【0048】
従って、この第4実施形態の構造によれば、動弁装置2の暖機完了状態では抵抗通路26に設けた開閉弁35および作動油補給通路28に設けた開閉弁36が、電磁石6の励磁コイル6aの励・消磁に応じて開・閉作動を繰り返し、作動油補給通路28から作動油室25への作動油補給と、作動油室25から抵抗通路26への作動油流出による緩衝作用とを行わせて、前記第1実施形態と同様にキャッチング電流およびホールド電流の増大化を伴うことなくアーマチュア着座時の音振性能を向上することができる。
【0049】
そして、エンジンを停止すると開閉弁36が閉弁作動されて作動油補給通路28を遮断する一方、開閉弁35が開弁作動されて抵抗通路26を開放させるため、エンジン停止直後の作動油室25内の作動油温が高く粘性が低い状態の時に該作動油室25内の作動油を抵抗通路26から外部へ流出させて該作動油室25内を空の状態にさせることができる。
【0050】
従って、作動油の粘性が大きくなる動弁装置2の冷機時に、エンジン始動に先立って動弁装置2を初期化作動させた場合、前記開閉弁35により抵抗通路26が開放状態に維持される一方、作動油補給通路28が遮断状態に維持されて作動油室25を空の状態にしておくことができるため、ピストン23の押動によるアーマチュア4への反力を消失させることができて、動弁装置2の冷機時における初期化作動をスムーズに行わせることができると共に、初期化時のバッテリ消費電力を節減することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す略示的断面説明図。
【図2】同実施形態の要部を示す略示的断面説明図。
【図3】本発明の第2実施形態の要部を示す略示的断面説明図。
【図4】本発明の第3実施形態の要部を示す略示的断面説明図。
【図5】本発明の第4実施形態におけるショックアブソーバを示す略示的説明図。
【符号の説明】
1 弁体(吸,排気弁)
1a 弁軸
2 動弁装置
4 アーマチュア
5 開弁側電磁石
5a コア
5b 励磁コイル
6 閉弁側電磁石
6a コア
6b 励磁コイル
7 開弁側ばね部材
8 閉弁側ばね部材
20,21 ショックアブソーバ
22,23 ピストン
24,25 作動油室
26 抵抗通路
27 オリフィス
28 作動油補給通路
30 バイパス通路
31 切換弁
32 可変オリフィス
35,36 開閉弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a valve train for an internal combustion engine, and more particularly, to a valve train that electromagnetically opens and closes intake and exhaust valves.
[0002]
[Prior art]
Various valve operating devices that open and close the intake and exhaust valves of a vehicle engine electromagnetically are known in the art. Among them, as disclosed in Japanese Patent Application Laid-Open No. H10-141028, the armature is provided at the stroke end of the armature. Japanese Patent Application Laid-Open No. HEI 5-340223 discloses a structure in which a damper chamber is formed between the electromagnet and the electromagnet so as to obtain a buffering effect when the armature is seated on the electromagnet by the action of compressing air in the damper chamber by the armature. As shown, a piston and a spring for pressing the bottom of the piston are provided on the electromagnet, and a magnetic powder is stored in a space at the bottom of the piston disposing portion, so that the spring by the piston is used when the armature is seated on the electromagnet. Further, there is known a magnetic powder in which a compression effect of a magnetic powder is used to obtain a buffer effect.
[0003]
[Problems to be solved by the invention]
In any of the above-described devices, a compression action of air or a compression action of a spring and magnetic powder causes the armature to be buffered when seated. Therefore, a compression reaction force acting on the armature with the displacement of the armature at the time of this buffering action. Therefore, it is necessary to supply a relatively large catching current and a hold current to the electromagnet so as to obtain an electromagnetic force that overcomes the compression reaction force, and the power consumption of the battery increases.
[0004]
Therefore, the present invention provides a valve operating device for an internal combustion engine that can obtain a buffering effect at the time of armature sitting without increasing the catching current and the holding current of the electromagnet and can save battery power consumption. is there.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, an armature connected to each of the valve shafts of the intake and exhaust valves, two electromagnets disposed opposite to the upper and lower surfaces of the armature, and opening the valve shaft. A valve operating device for an internal combustion engine, comprising: two spring members for biasing the intake side and the valve closing side, wherein the intake and exhaust valves are electromagnetically opened and closed by cooperation of the electromagnet and the spring member. A piston that protrudes and retracts from the suction surface on which the armature is seated in the core of each solenoid valve, a hydraulic oil chamber that stores hydraulic oil at the back of the piston, and a hydraulic oil chamber that is provided in connection with the hydraulic oil chamber and pushes the piston out of the hydraulic oil chamber A shock absorber provided with a resistance passage for providing resistance to the flow of the hydraulic oil flowing out is provided , and the hydraulic oil chamber of the shock absorber provided in the core of each electromagnet is communicated with the resistance passage .
[0007]
According to the second aspect of the present invention, the resistance passage according to the first aspect is provided with an orifice for adjusting a damping force, and the resistance passage is provided with a bypass passage that bypasses the orifice. When the valve train cools, the flow of hydraulic oil to the orifice is shut off to open the bypass passage, and after the valve train warms up, the bypass passage is shut off to activate the orifice. A switching valve that allows oil to flow is provided.
[0008]
In the invention of claim 3, the variable orifice for damping force adjustment for variably controlling the orifice size in response to temperature condition of the valve device resistance path according to claim 1 is provided, at the time of cold of the valve operating device It is characterized in that the orifice diameter is maximized below a corresponding predetermined temperature.
[0009]
According to the fourth aspect of the present invention, an armature connected to each of the intake and exhaust valve shafts, two electromagnets disposed opposite the upper and lower surfaces of the armature, and opening the valve shaft. A valve operating device for an internal combustion engine, comprising: two spring members for biasing the intake side and the valve closing side, wherein the intake and exhaust valves are electromagnetically opened and closed by cooperation of the electromagnet and the spring member. A piston that protrudes and retracts from the suction surface on which the armature is seated in the core of each solenoid valve, a hydraulic oil chamber that stores hydraulic oil at the back of the piston, and a hydraulic oil chamber that is provided in connection with the hydraulic oil chamber and pushes the piston out of the hydraulic oil chamber While providing a shock absorber provided with a resistance passage that provides resistance to the flow of hydraulic oil flowing out, while opening the resistance passage to the outside, a hydraulic oil supply passage is provided in the hydraulic oil chamber, and these resistance passages are provided. On-off valves for each hydraulic oil supply passage By controlling the operation of these on-off valves, the resistance passage is kept open when the valve operating device is cold, while the hydraulic oil supply passage is kept shut off. Opening / closing control in response to the excitation and demagnetization of the hydraulic fluid to supply hydraulic oil from the hydraulic oil supply passage to the hydraulic oil chamber and to buffer the hydraulic oil from flowing out of the hydraulic oil chamber to the resistance passage. It is characterized by.
[0010]
【The invention's effect】
According to the first aspect of the present invention, when the armature abuts on the piston of the shock absorber and pushes the piston by the electromagnetic force of the electromagnet immediately before the armature is seated on the suction surface of the core, the pushing of the piston causes the hydraulic oil to move. Hydraulic oil in the chamber flows into the resistance passage and flows through the resistance passage, thereby generating a flow resistance, braking the armature to reduce a shock at the time of sitting and reducing an impact sound at the time of armature sitting, Sound vibration performance can be improved, and wear of the armature and the core of the electromagnet can be suppressed.
[0011]
In addition, for the pushing operation of the piston of the shock absorber when the armature is seated, the reaction oil increases in proportion to the displacement of the armature only by the hydraulic oil flowing from the hydraulic oil chamber to the resistance passage due to the flow resistance. When the armature sits on the suction surface of the core and the piston stops at a full stroke, the reaction force to the armature disappears, so the catching current and hold current to the electromagnet can be reduced, Battery power consumption can be reduced.
[0012]
Further, since the respective hydraulic oil chambers of the shock absorbers provided in the upper and lower two electromagnets communicate with each other through the resistance passage, when the shock absorber of one of the shock absorbers performs the buffer operation, the operation oil flowing out of the hydraulic oil chamber of the one of the shock absorbers. The oil flows into the hydraulic oil chamber of the other shock absorber, and the other shock absorber is extended and operated to be always in a buffering state. Therefore, the followability at the time of high engine rotation can be enhanced with a simple structure.
[0013]
According to the second aspect of the present invention, in addition to the effect of the first aspect of the present invention, when the valve gear in which the viscosity of the hydraulic oil increases becomes cold, the shock absorbing operation of the one shock absorber is performed during the cold operation of the one shock absorber. The hydraulic oil flowing out of the hydraulic oil chamber flows into the hydraulic oil chamber of the other shock absorber through the bypass passage bypassing the orifice without passing through the orifice for adjusting the damping force provided in the resistance passage. Increase of the flow resistance due to the increase in viscosity of the valve gear can be suppressed, and the initialization operation at the time of cold operation of the valve train can be performed smoothly, and the battery power consumption at the time of initialization can be reduced. .
[0014]
According to the third aspect of the present invention, in addition to the effect of the first aspect of the invention, when the valve gear is cold in which the viscosity of the hydraulic oil increases, the orifice of the variable orifice for adjusting the damping force provided in the resistance passage is provided. In order to increase the diameter to the maximum, it is possible to suppress an increase in flow resistance due to an increase in the viscosity of the hydraulic oil. Battery power consumption can be saved.
[0015]
Also, after the valve gear is warmed up, the flow resistance of the hydraulic oil can be adjusted by changing the orifice diameter of the variable orifice according to the temperature conditions of the hydraulic oil. A suitable buffer action can be performed without being affected by the above.
[0016]
According to the fourth aspect of the present invention, when the armature abuts on the piston of the shock absorber and pushes the piston by the electromagnetic force of the electromagnet immediately before the armature is seated on the suction surface of the core, the pushing of the piston causes the hydraulic oil to move. Hydraulic oil in the chamber flows into the resistance passage and flows through the resistance passage, thereby generating a flow resistance, braking the armature to reduce a shock at the time of sitting and reducing an impact sound at the time of armature sitting, Sound vibration performance can be improved, and wear of the armature and the core of the electromagnet can be suppressed.
In addition, when the valve gear is cold in which the viscosity of the hydraulic oil increases, the resistance passage is maintained in an open state by controlling the operation of each open / close valve of the externally opened resistance passage and the hydraulic oil supply passage provided in the hydraulic oil chamber. On the other hand, since the hydraulic oil supply passage is maintained in the shut-off state and the hydraulic oil chamber can be kept empty, the reaction force to the armature due to the pushing of the piston can be eliminated, and the valve gear In addition, the initialization operation in the cold state can be smoothly performed, and the power consumption of the battery during the initialization can be reduced.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0018]
In FIG. 1, reference numeral 1 denotes a valve body such as an intake valve or an exhaust valve, and 2 denotes a valve operating device of the valve body 1.
[0019]
The valve gear 2 includes an armature 4 made of a magnetic metal material connected to the valve shaft 1a of the valve body 1, and cores 5a, 6a and exciting coils 5b, 6b. Two electromagnets 5 and 6 provided on the valve-opening side and the valve-closing side are provided, and coil springs 7 and 8 as two spring members for urging the valve shaft 1a toward the valve-opening side and the valve-closing side. I have.
[0020]
The coil springs 7 and 8 are set to have a required balanced spring force so that the valve body 1 holds the intermediate lift position when the electromagnets 5 and 6 are demagnetized. The electromagnetic force of the electromagnets 5 and 6 and the spring force of the coil springs 7 and 8 open and close the valve body 1 so that an electromagnetic force of a magnitude corresponding to the magnitude of the spring force is obtained. I have to do it.
[0021]
The armature 4 has an armature shaft 4a fixed at the center of the lower surface thereof, and the lower end of the armature shaft 4a is connected to the contact 4b inserted into the upper end of the valve shaft 1a to be connected to the valve shaft 1a. .
[0022]
The lower end of a spring shaft 9a fixed to the upper movable side spring seat 9 abuts the center of the upper surface of the armature 4, and the coil spring 7 on the valve-opening side is fixed to the fixed side spring seat 10 fixed to the upper wall of the housing 3. It is mounted between the movable spring seat 9 and the movable side.
[0023]
The coil spring 8 on the valve closing side is arranged in a concave portion 11a provided in the cylinder head 11, and includes a movable spring seat 12 fixed on the valve shaft 1a and a fixed spring seat 13 fixed on the bottom surface of the concave portion 11a. It is loaded in between.
[0024]
The electromagnets 5 and 6 on the valve-opening side and the valve-closing side are provided with shock absorbers 20 and 21 for reducing an impact when the armature 4 is seated.
[0025]
As shown in FIG. 2, these shock absorbers 20 and 21 are provided on the cores 5a and 6a of the electromagnets 5 and 6 and protrude and retract from their armature attracting surfaces. Hydraulic oil chambers 24 and 25 storing the hydraulic oil, and a resistance to the flow of the hydraulic oil flowing out of the hydraulic oil chambers 24 and 25 when the pistons 22 and 23 are pushed by being provided with the hydraulic oil chambers 24 and 25. In the present embodiment, the two working oil chambers 24 and 25 communicate with each other through the resistance passage 26.
[0026]
The resistance passage 26 is provided with an orifice 27 for adjusting a damping force, and is connected to a hydraulic oil supply passage 28 having a check valve 29 so that hydraulic oil can be supplied from the hydraulic oil supply passage 28. .
[0027]
In FIG. 1, reference numeral 14 denotes a valve seat.
[0028]
According to the structure of the above embodiment, a catching current for attracting the armature 4 and the armature 4 are seated and held by the exciting coil 5b of the valve-opening electromagnet 5 and the exciting coil 6b of the valve-closing electromagnet 6. Are alternately supplied, and the valve body 1 is opened and closed by alternately repeating the suction and seating of the armature 4 on the suction surface of the core 5a and the suction and seating of the core 6a on the suction surface. You.
[0029]
Here, when the armature 4 is seated on the cores 5a, 6a, for example, immediately before the armature 4 is seated on the core 6a of the valve-closing electromagnet 6 as shown in FIG. When the piston 23 is pressed against the armature, the hydraulic oil in the hydraulic oil chamber 25 flows out to the resistance passage 26 due to the pushing of the piston 23 and flows through the resistance passage 26 to generate a flow resistance. Braking 4
[0030]
As a result, the impact when the armature 4 is seated on the core 6a is reduced, and the impact sound at the time of seating is reduced.
[0031]
Similarly, when the valve-opening electromagnet 5 of the armature 4 is seated on the core 5a, the hydraulic oil flows out of the hydraulic oil chamber 24 to the resistance passage 26 by the pushing of the piston 22 of the shock absorber 20, thereby generating a flow resistance. As a result, the armature 4 is braked to reduce the impact noise when the armature 4 is seated on the core 6a, thereby reducing the contact noise. Therefore, the suction of the armature 4 to the cores 5a and 6a and the sound vibration performance when seated are improved. And wear of the armature 4 and the cores 5a and 6a of the electromagnets 5 and 6 can be suppressed.
[0032]
When the armature 4 is seated on the cores 5a, 6a, the pistons 22 and 23 of the shock absorbers 20 and 21 are pushed by the hydraulic oil from the hydraulic oil chambers 24 and 25 to the resistance passage 26 due to the flow resistance. When the armature 4 is seated on the suction surfaces of the cores 5a and 6a and the pistons 22 and 23 are full-stroke and stop, the armature 4 does not increase in reaction force proportional to the displacement of the armature 4. Since the reaction force to the armature 4 disappears, the catching current and the holding current to the electromagnets 5 and 6 can be reduced, and the power consumption of the battery can be reduced.
[0033]
In this embodiment, since the hydraulic oil chambers 24 and 25 of the upper and lower shock absorbers 20 and 21 are communicated with each other through the resistance passage 26 in the present embodiment, when one of the shock absorbers 21 is in a shock-absorbing operation, the other of the shock absorbers 21 is not operated. The operating oil flowing out of the operating oil chamber 25 flows into the operating oil chamber 24 of the other shock absorber 20, and the other shock absorber 20 is extended (the piston 22 advances) to be always in a buffering state. With such a simple structure, it is possible to enhance the followability at the time of high engine speed.
[0034]
FIG. 3 shows a second embodiment of the present invention. In this embodiment, a bypass passage 30 for bypassing an orifice 27 for adjusting a damping force is provided in the resistance passage 26 in the first embodiment shown in FIG. And a three-way solenoid valve 31 as a switching valve for switching the flow path of hydraulic oil between the orifice 27 and the bypass passage 30 at one of the connecting portions of the bypass passage 30 and the resistance passage 26. is there.
[0035]
The operation of the three-way solenoid valve 31 is controlled by an engine control unit based on, for example, a detection signal of an oil temperature sensor for detecting the temperature of hydraulic oil in a cylinder head oil gallery (not shown). When the temperature is equal to or lower than the predetermined temperature, the flow of the hydraulic oil to the orifice 27 is cut off to open the bypass passage 30, and when the temperature of the hydraulic oil exceeds the predetermined temperature and rises to a temperature corresponding to the completion of the warm-up of the valve gear 2, The switching operation is performed such that the bypass passage 30 is shut off and the flow of the hydraulic oil to the orifice 27 is permitted.
[0036]
Therefore, according to the structure of the second embodiment, when the valve train 2 is in the warm-up completed state, the bypass passage 30 is shut off by the three-way solenoid valve 31 and the flow of the hydraulic oil to the orifice 27 is allowed. Therefore, the same operation and effect as those of the first embodiment can be obtained.
[0037]
On the other hand, when the valve gear 2 is cold when the viscosity of the hydraulic oil increases, the three-way solenoid valve 31 opens the bypass passage 30 to cut off the flow of the hydraulic oil to the orifice 27. During the shock absorbing operation, the operating oil flowing out of the operating oil chamber 25 of the one shock absorber 21 does not pass through the orifice 27 of the resistance passage 26 but passes through the bypass passage 30 bypassing the orifice 27 to operate the other shock absorber 20. Since the fluid flows into the oil chamber 24, an increase in flow resistance due to an increase in the viscosity of the hydraulic oil can be suppressed.
[0038]
Therefore, it is possible to smoothly perform the initialization operation of the valve train 2 at the time of cold operation, and it is possible to reduce the power consumption of the battery at the time of initialization.
[0039]
FIG. 4 shows a third embodiment of the present invention. In this embodiment, instead of the orifice 27 of the resistance passage 26 in the first embodiment shown in FIG. The variable orifice 32 for variably controlling the orifice diameter according to the above is provided so that the damping force can be adjusted.
[0040]
The variable orifice 32 includes, for example, a temperature sensing part 33 in which a thermowax 34 is enclosed. The temperature sensing part 33 senses the operating oil temperature to change the orifice diameter by the expansion and contraction action of the thermowax 34, and the valve actuation is performed. When the temperature of the device 2 is equal to or lower than a predetermined temperature corresponding to the time of cooling, the diameter of the orifice is increased to a maximum, for example, approximately equal to the inner diameter of the resistance passage 26.
[0041]
Therefore, according to the structure of the third embodiment, at the time of cooling of the valve train 2 in which the viscosity of the hydraulic oil increases, the orifice diameter of the variable orifice 32 provided in the resistance passage 26 is substantially equal to the inner diameter of the resistance passage 26. As in the second embodiment, it is possible to suppress an increase in the flow resistance due to an increase in the viscosity of the hydraulic oil, and to smoothly perform the initialization operation of the valve train 2 during cold operation. At the same time, battery power consumption at the time of initialization can be reduced.
[0042]
On the other hand, after the valve gear 2 is completely warmed up, the flow resistance of the hydraulic oil can be adjusted by changing the orifice diameter of the variable orifice 32 according to the temperature condition of the hydraulic oil. An appropriate buffer action can be performed without being affected by a change in viscosity.
[0043]
FIG. 5 shows a fourth embodiment of the present invention. In FIG. 5, the shock absorber 21 provided on the core 6a of the valve-closing electromagnet 6 is schematically shown for convenience. The shock absorber 20 on the electromagnet 5 side has the same structure as the structure described below.
[0044]
That is, the resistance passage 26 connected to the hydraulic oil chamber 25 is provided with an orifice 27 for adjusting the damping force. The resistance passage 26 is open to an external oil reservoir or the like. The hydraulic oil supply passage 28 is provided to supply hydraulic oil to the hydraulic oil chamber 25 from the hydraulic oil supply passage 28.
[0045]
The resistance passage 26 and the hydraulic oil supply passage 28 are provided with on-off valves 35 and 36 that are opened and closed by the engine control unit described above.
[0046]
The on-off valve 35 provided in the resistance passage 26 is opened when the engine is stopped, and the valve-opening state is maintained when the valve operating device 2 is cold. And the valve is opened almost simultaneously with the excitation of the exciting coil 6b.
[0047]
On the other hand, the on-off valve 36 provided in the hydraulic oil supply passage 28 is closed when the engine stops, and the closed state is maintained when the valve train 2 is cold, but if the valve train 2 is in the warm-up completed state. The valve is opened almost simultaneously with the demagnetization of the exciting coil 6b to supply hydraulic oil of a predetermined pressure to the hydraulic oil chamber 25 to extend the piston 23, and the resistance which is shut off by the hydraulic oil chamber 25 and the on-off valve 35. The passage 26 is filled with hydraulic oil, and the valve is closed almost simultaneously with the excitation of the excitation coil 6b.
[0048]
Therefore, according to the structure of the fourth embodiment, the on-off valve 35 provided on the resistance passage 26 and the on-off valve 36 provided on the hydraulic oil supply passage 28 excite the electromagnet 6 when the valve train 2 has been completely warmed up. The opening and closing operations are repeated in response to the excitation and demagnetization of the coil 6a to supply the hydraulic oil from the hydraulic oil supply passage 28 to the hydraulic oil chamber 25, and to buffer the hydraulic oil from the hydraulic oil chamber 25 to the resistance passage 26 by the hydraulic oil flowing out. As a result, the sound vibration performance when the armature is seated can be improved without increasing the catching current and the hold current as in the first embodiment.
[0049]
When the engine is stopped, the on-off valve 36 is closed to shut off the hydraulic oil supply passage 28, while the on-off valve 35 is opened to open the resistance passage 26. When the temperature of the hydraulic oil inside is high and the viscosity is low, the hydraulic oil in the hydraulic oil chamber 25 can be made to flow out of the resistance passage 26 to the outside, and the hydraulic oil chamber 25 can be emptied.
[0050]
Therefore, when the valve gear 2 is initialized before the engine is started at the time of cooling of the valve gear 2 in which the viscosity of the hydraulic oil increases, the on-off valve 35 keeps the resistance passage 26 open. Since the hydraulic oil supply passage 28 is kept closed and the hydraulic oil chamber 25 can be kept empty, the reaction force to the armature 4 due to the pushing of the piston 23 can be eliminated, and The initialization operation when the valve device 2 is cold can be performed smoothly, and the power consumption of the battery at the time of initialization can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional explanatory view showing an embodiment of the present invention.
FIG. 2 is a schematic sectional explanatory view showing a main part of the embodiment.
FIG. 3 is a schematic sectional explanatory view showing a main part of a second embodiment of the present invention.
FIG. 4 is a schematic sectional explanatory view showing a main part of a third embodiment of the present invention.
FIG. 5 is a schematic explanatory view showing a shock absorber according to a fourth embodiment of the present invention.
[Explanation of symbols]
1 Valve body (intake and exhaust valves)
1a Valve shaft 2 Valve train 4 Armature 5 Valve opening side electromagnet 5a Core 5b Exciting coil 6 Valve closing side electromagnet 6a Core 6b Exciting coil 7 Valve opening side spring member 8 Valve closing side spring member 20, 21 Shock absorber 22, 23 Piston 24, 25 Hydraulic oil chamber 26 Resistance passage 27 Orifice 28 Hydraulic oil supply passage 30 Bypass passage 31 Switching valve 32 Variable orifice 35, 36 On-off valve

Claims (4)

吸,排気弁の各弁軸に連設されたアーマチュアと、該アーマチュアの上下面に対向して配設された2つの電磁石と、前記弁軸を開弁側と閉弁側とに付勢する2つのばね部材とを備え、吸,排気弁をこれら電磁石とばね部材との協働により電磁的に開閉するようにした内燃機関の動弁装置において、前記各電磁弁のコアに、アーマチュアが着座する吸着面から出没するピストンと、ピストン背部で作動油を貯留した作動油室と、作動油室に連なって設けられてピストンの押動で作動油室から流出する作動油の流通に抵抗を付与する抵抗通路と、を備えたショックアブソーバを設けつつ、各電磁石のコアに設けたショックアブソーバの作動油室を抵抗通路で連通したことを特徴とする内燃機関の動弁装置。Armatures connected to the respective valve shafts of the intake and exhaust valves, two electromagnets disposed opposite to the upper and lower surfaces of the armature, and biases the valve shafts toward the valve opening side and the valve closing side. In a valve operating device for an internal combustion engine, comprising two spring members, wherein intake and exhaust valves are electromagnetically opened and closed by cooperation of these electromagnets and spring members, an armature is seated on a core of each of the electromagnetic valves. Piston that protrudes and retracts from the adsorbing surface, a hydraulic oil chamber that stores hydraulic oil at the back of the piston, and resistance provided to the flow of hydraulic oil flowing out of the hydraulic oil chamber when the piston is pushed and provided with the hydraulic oil chamber. A valve train for an internal combustion engine, wherein a hydraulic oil chamber of a shock absorber provided in a core of each electromagnet is communicated by a resistance passage while providing a shock absorber having a resistance passage . 抵抗通路にダンピング力調整用のオリフィスを設け、かつ、該抵抗通路にオリフィスをバイパスするバイパス通路を設けると共に、該バイパス通路と抵抗通路との連接部の一方に、動弁装置の冷機時にオリフィスへの作動油の流通を遮断してバイパス通路を開放し、動弁装置の暖機完了後はバイパス通路を遮断してオリフィスへの作動油の流通を許容する切換弁を設けたことを特徴とする請求項1に記載の内燃機関の動弁装置。An orifice for damping force adjustment is provided in the resistance passage, and a bypass passage for bypassing the orifice is provided in the resistance passage. One of the connecting portions between the bypass passage and the resistance passage is connected to the orifice when the valve operating device is cold. And a switching valve for shutting off the bypass passage and opening the bypass passage to allow the passage of the hydraulic oil to the orifice after warming-up of the valve train is completed. The valve train for an internal combustion engine according to claim 1 . 抵抗通路に動弁装置の温度条件に応じてオリフィス径を可変制御するダンピング力調整用の可変オリフィスを設け、動弁装置の冷機時に相当する所定温度以下ではオリフィス径を最大に拡大するようにしたことを特徴とする請求項1に記載の内燃機関の動弁装置。A variable orifice for adjusting the damping force, which variably controls the diameter of the orifice according to the temperature condition of the valve train, is provided in the resistance passage so that the orifice diameter is expanded to a maximum below a predetermined temperature corresponding to when the valve train is cold. The valve train for an internal combustion engine according to claim 1 , wherein: 吸,排気弁の各弁軸に連設されたアーマチュアと、該アーマチュアの上下面に対向して配設された2つの電磁石と、前記弁軸を開弁側と閉弁側とに付勢する2つのばね部材とを備え、吸,排気弁をこれら電磁石とばね部材との協働により電磁的に開閉するようにした内燃機関の動弁装置において、前記各電磁弁のコアに、アーマチュアが着座する吸着面から出没するピストンと、ピストン背部で作動油を貯留した作動油室と、作動油室に連なって設けられてピストンの押動で作動油室から流出する作動油の流通に抵抗を付与する抵抗通路と、を備えたショックアブソーバを設けつつ、抵抗通路を外部に開放する一方、作動油室に作動油補給通路を設け、かつ、これら抵抗通路と作動油補給通路にそれぞれ開閉弁を設け、これら開閉弁の作動制御により動弁装置の冷機時に抵抗通路を開放状態に維持させる一方、作動油補給通路を遮断状態に維持させ、動弁装置の暖機完了後はこれら開閉弁を電磁石の励・消磁に応じて開・閉制御して作動油補給通路から作動油室への作動油補給と、作動油室から抵抗通路への作動油流出による緩衝作用とを行わせるようにしたことを特徴とする内燃機関の動弁装置。 Armatures connected to the respective valve shafts of the intake and exhaust valves, two electromagnets disposed opposite to the upper and lower surfaces of the armature, and biases the valve shafts toward the valve opening side and the valve closing side. In a valve operating device for an internal combustion engine, comprising two spring members, wherein intake and exhaust valves are electromagnetically opened and closed by cooperation of these electromagnets and spring members, an armature is seated on a core of each of the electromagnetic valves. Piston that protrudes and retracts from the adsorbing surface, a hydraulic oil chamber that stores hydraulic oil at the back of the piston, and resistance provided to the flow of hydraulic oil flowing out of the hydraulic oil chamber when the piston is pushed and provided with the hydraulic oil chamber. A resistance passage, and a shock absorber provided with the same, while opening the resistance passage to the outside, a hydraulic oil supply passage is provided in the hydraulic oil chamber, and an opening / closing valve is provided in each of the resistance passage and the hydraulic oil supply passage. , These on-off valves While the valve gear is cold, the resistance passage is kept open when the valve gear is cold, while the hydraulic oil supply passage is kept closed.After the valve gear is warmed up, these on-off valves are opened according to the excitation and demagnetization of the electromagnet. A dynamic operation of the internal combustion engine , wherein the closing control is performed to supply hydraulic oil from the hydraulic oil supply passage to the hydraulic oil chamber and to perform a buffering action due to hydraulic oil flowing out from the hydraulic oil chamber to the resistance passage. Valve device.
JP33148198A 1998-11-20 1998-11-20 Valve train for internal combustion engine Expired - Fee Related JP3539241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33148198A JP3539241B2 (en) 1998-11-20 1998-11-20 Valve train for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33148198A JP3539241B2 (en) 1998-11-20 1998-11-20 Valve train for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000161033A JP2000161033A (en) 2000-06-13
JP3539241B2 true JP3539241B2 (en) 2004-07-07

Family

ID=18244137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33148198A Expired - Fee Related JP3539241B2 (en) 1998-11-20 1998-11-20 Valve train for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3539241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249690A1 (en) * 2002-10-25 2004-05-06 Bayerische Motoren Werke Ag Electromagnetic valve driver for internal combustion engine has element movable relative to electromagnet in armature displacement direction, protruding past associated electromagnet in end position
DE10338639A1 (en) * 2003-08-22 2005-03-17 Bayerische Motoren Werke Ag Electromagnetic valve operating mechanism for internal combustion engine, comprises two electromagnets which have slidable brake elements

Also Published As

Publication number Publication date
JP2000161033A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
US8146547B2 (en) Variable valve actuator with a pneumatic booster
JP2730593B2 (en) Valve control device with solenoid valve for internal combustion engine
JP3831104B2 (en) Intake / exhaust valve electromagnetic drive
WO2007139838A2 (en) Variable valve actuator with latch at one end
JPH04232319A (en) Non-symmetrical double stabilizing fluid pressurre operation actuator mechanism
JP3539241B2 (en) Valve train for internal combustion engine
JP3619260B2 (en) Electromagnetic drive device for engine valve for internal combustion engine
US20040149944A1 (en) Electromechanical valve actuator
JP2004270687A (en) Hydraulic actuator for operating an engine cylinder valve
JP3792427B2 (en) Electromagnetic drive device for engine valve
US20040083995A1 (en) Device for controlling a cross-section of an opening in the combustion cylinder of an internal combustion engine
EP1199446A1 (en) Method and arrangement for operating valves in an internal combustion engine
JP4186256B2 (en) Solenoid valve integrated solenoid pump
US6062181A (en) Arrangement for an electromagnetic valve timing control
US7314026B2 (en) Electronic valve actuator having hydraulic displacement amplifier
US6817324B2 (en) Control unit of electromagnetically driven valve and control method thereof
JP3565039B2 (en) Electromagnetic drive device and electromagnetically driven valve train in internal combustion engine
JP2001234718A (en) Electromagnetic intake and exhaust device
JP3424306B2 (en) Variable valve train for internal combustion engine
JPH0893425A (en) Variable valve system for internal combustion engine
JPH1150824A (en) Driving device for solenoid valve
JPH0654085B2 (en) Valve drive controller for internal combustion engine
JPH0512590B2 (en)
JP2003239711A (en) Solenoid driven valve
JPH0658048B2 (en) Valve drive controller for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees