JP2007069835A - Vessel - Google Patents

Vessel Download PDF

Info

Publication number
JP2007069835A
JP2007069835A JP2005261550A JP2005261550A JP2007069835A JP 2007069835 A JP2007069835 A JP 2007069835A JP 2005261550 A JP2005261550 A JP 2005261550A JP 2005261550 A JP2005261550 A JP 2005261550A JP 2007069835 A JP2007069835 A JP 2007069835A
Authority
JP
Japan
Prior art keywords
full load
ship
valve
bow
water line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005261550A
Other languages
Japanese (ja)
Other versions
JP5028000B2 (en
Inventor
Akihiko Fujii
昭彦 藤井
Koyu Kimura
校優 木村
Hiroshi Kohama
広志 小濱
Naoya Matsubara
直哉 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005261550A priority Critical patent/JP5028000B2/en
Publication of JP2007069835A publication Critical patent/JP2007069835A/en
Application granted granted Critical
Publication of JP5028000B2 publication Critical patent/JP5028000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vessel capable of reducing wave making resistance in sailing in ordinary water and an in-wave resistance increase in sailing in an ocean wave by making a vessel form with water level elevation near a stagnation point at a bow taken into account. <P>SOLUTION: In the bows of the vessels 1, 1A, a full load draft line valve 10 where at least a part of the valve 10 is submerged in sailing in ordinary water in a state of a full load draft df is provided so that a central position Zbc in the vertical direction of the full load draft line valve 10 is above the full load draft line df of the vessels 1, 1A, and a water cut member 20 having a wedge shaped horizontal cross section is provided between the upper part of the full load draft line valve 10 and a bow flare 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、満載状態における平水中航行時および波浪中航行時の推進性能を向上できる船舶に関する。   The present invention relates to a ship capable of improving propulsion performance during full-water navigation and wave navigation in a full state.

最近、大型タンカー、バルクキャリヤー、鉱石運搬船等の肥大船の推進性能を向上させるために、丸く太った船首部における波崩れに起因する破砕抵抗や、入射波を船舶の前方に反射したり船体運動によって造波することに起因する波浪中抵抗増加が注目されており、これらの抵抗を減少するため、様々な船首部形状や船首部付加物が提案されている。   Recently, in order to improve the propulsion performance of large ships such as large tankers, bulk carriers, ore carriers, crushing resistance due to wave collapse at the rounded bow and reflected waves to the front of the ship or by hull movement The increase in resistance in the waves caused by wave formation has attracted attention, and various bow shapes and bow appendages have been proposed to reduce these resistances.

この一つとして、満載状態での航行に際して平水中(静水中)と波浪中の両方において、砕破抵抗と波反射による抵抗を低減させるために、肥大船において、船体の船首フレアと船首バルブとの間の満載喫水線の部分の船首前面に、水平面から見て前方に鋭角的に突出する船首付加物を取り付けた肥大船の抵抗低減装置や波浪中推進性能向上手段付き大型肥型船が提案されている(例えば、特許文献1および特許文献2参照。)。   As one of these, in order to reduce the resistance to breakage and wave reflection both in the flat water (still water) and in the waves when sailing in full load, in a hypertrophic ship, the bow flare of the hull and the bow valve A large-sized fertilizer ship with a device for reducing drag and a means for improving the propulsion performance in waves has been proposed in which a bow appendage that protrudes acutely forward as viewed from the horizontal plane is attached to the front of the bow of the full waterline between (For example, see Patent Document 1 and Patent Document 2.)

しかしながら、この楔形状の船首付加物や波浪中推進性能向上手段においては、入射波および船体が自ら起こす波を左右にかき分けることはできるが、形状が単純な楔形状であるため、船首部の水面上昇に起因する船体自身が作る造波抵抗を充分に低減することができないという問題や斜めからの流れや入射波に対しては流れの剥離を起こしやすいという問題がある。   However, with this wedge-shaped bow appendage and means for improving propulsion performance in the waves, the incident wave and the wave generated by the ship itself can be divided into left and right, but the shape of the wedge is simple, so the water surface of the bow There is a problem that the wave-making resistance created by the hull itself due to the rise cannot be sufficiently reduced, and a problem that the flow is easily separated from an oblique flow or incident wave.

更に、実船に適用しようとする場合に、この楔状の船首付加物は、満載喫水線を含む上下の領域にわたって設けられるため、船の要目や構造強度等を計算するための基準となる船の代表長さ(水線長さ(L.W.L.)、垂線間長(Lpp)、全長(Lo)等)がこの楔状の船首付加物によって長くなってしまうため、これらの長さに基づいて行われる基本設計や構造設計に大きな影響を与えることになり、設計計算のやり直しや場合によっては大きな設計変更が生じるという問題がある。   In addition, when applying to an actual ship, this wedge-shaped bow appendage is provided over the upper and lower regions including the full load waterline, so that the ship's reference, the strength of structure, etc., used as a reference for calculating ship Since the representative length (water line length (LWL), length between perpendiculars (Lpp), total length (Lo), etc.) is increased by the wedge-shaped bow appendage, the length is based on these lengths. This greatly affects the basic design and structural design performed in this way, and there is a problem that design calculation is re-executed and, in some cases, a large design change occurs.

一方、本発明者らは、水槽実験や実船の航海の様子を観察した結果、平水中航行時の船首部の淀み点O付近を中心にした水面上昇分を考慮することが重要であり、この水面上昇分を考慮した船首部形状を採用することにより、平水中航行時の造波抵抗や波浪中航行時の波浪中抵抗増加を減少できるとの知見を得た。   On the other hand, as a result of observing the state of the aquarium experiment and the actual ship's voyage, the present inventors are important to consider the rise in the water surface around the stagnation point O of the bow at the time of sailing in flat water, It was found that by adopting the bow shape considering this rise in water surface, the resistance to wave formation during navigating in flat water and the increase in wave resistance during navigating in waves can be reduced.

つまり、図10に示すように、船舶の平水中の航走時は、船首部と水とは相対的に航走速度Vsを持っており、船舶側に固定した座標系で見た場合には、船首部に水が流速Vsで流入してくることになる。従って、船首部が丸く太ったブラントな肥大船では、船首部のセンターライン(C.L.)上の淀み点Oで水流速度Voがゼロとなるので、水の密度をρとし、重力加速度をgとすると、淀み点Oに於ける水頭h2と遠方の水頭hsとの関係は、ベルヌーイの定理により、ρ×g×h2+ρ×Vo2 /(2×g)=ρ×g×hs+ρ×Vs2 /(2×g)となり、淀み点Oに於ける水頭h2は、h2=Vs2 /(2×g)−Vo2 /(2×g)+hsとなる。ここで、Vo=0,hs=0とすると、h2=Vs2 /(2×g)となる。この水頭h2は、例えば、船速が15kt(ノット)の船舶では、Vs=7.72m/sとなり、3.0mとなる。 That is, as shown in FIG. 10, when the ship is sailing in flat water, the bow and the water have a relative traveling speed Vs, and when viewed in a coordinate system fixed on the ship side, Water flows into the bow at a flow velocity Vs. Therefore, in a blunt enlarged ship with a rounded and thick bow, the water flow velocity Vo becomes zero at the stagnation point O on the center line (CL) of the bow, so the density of water is ρ and the gravitational acceleration is g Then, the relationship between the water head h2 at the stagnation point O and the distant water head hs is ρ × g × h2 + ρ × Vo 2 / (2 × g) = ρ × g × hs + ρ × Vs 2 / by Bernoulli's theorem. (2 × g), and the water head h2 at the stagnation point O is h2 = Vs 2 / (2 × g) −Vo 2 / (2 × g) + hs. Here, when Vo = 0 and hs = 0, h2 = Vs 2 / (2 × g). For example, in the case of a ship having a boat speed of 15 kt (knots), the water head h2 is Vs = 7.72 m / s, which is 3.0 m.

従って、船首部の淀み点Oで水面が上昇する量を示す水頭h2は、Vs2 /(2×g)となり、船首部の先端では、航走時には、平水中であっても、この水頭h2(Z2のライン)付近まで水面が上昇することになる。言い換えれば、船首近傍の実際の水没部分は、満載喫水線dfよりも水頭h2分だけ高い位置Z2の近傍までとなる。 Accordingly, the head h2 indicating the amount of water rising at the stagnation point O of the bow is Vs 2 / (2 × g). The water surface rises to the vicinity of (Z2 line). In other words, the actual submerged portion in the vicinity of the bow reaches the vicinity of the position Z2 that is higher than the full load water line df by the water head h2.

また、一方で、従来のタンカーやバルクキャリヤー等の肥大船においては、平水中の造波抵抗を少なくするため、船首バルブ(バルバスバウ:Bulbous Bow )を船首に設けている。この船首バルブは、平水中の推進抵抗の成分である摩擦抵抗、圧力抵抗、造波抵抗、空気抵抗の内の造波抵抗を小さくするために、船体が造る波を打ち消すように船首下部に設けられる構造物である。   On the other hand, in a conventional large tanker or bulk carrier, a bow valve (Bulbous Bow) is provided at the bow in order to reduce wave resistance in plain water. This bow valve is installed at the bottom of the bow to counteract the waves created by the hull in order to reduce the frictional resistance, pressure resistance, wave resistance, and air resistance among the components of propulsion resistance in plain water. Structure.

この船首バルブは、船首で起こす波の位置をずらせて、それより後方で起こす波とうまく干渉させることにより、全体の造波抵抗を小さくするものである。また、低速肥大船では、船首近傍の水の流れを整えて渦抵抗を減少する効果もある。   This bow valve shifts the position of the wave generated at the bow and interferes well with the wave generated behind it, thereby reducing the overall wave resistance. In addition, the low-speed enlargement ship also has the effect of reducing the vortex resistance by adjusting the flow of water near the bow.

本発明者らは、この船首バルブの作用効果を念頭において、船首部の水面上昇に起因する局部的な造波や局部的な流れの乱れに対して、船首バルブに比較すれば著しく小さい、水面上昇分程度のスケールの満載喫水線バルブを、満載喫水線の近傍、特に、満載喫水線より上部に設けることにより、航行時の水面上昇によって水没する部分の船体が発生する波を、効果的に打ち消すことができるのではないかと考え、実験や数値計算等を行い、本発明に至った。
特開2003−327193号公報 特開平8−142974号公報
With the effect of the bow valve in mind, the present inventors have significantly reduced the water surface compared to the bow valve against local wave formation and local turbulence caused by the rise in the bow water surface. By installing a full load water line valve with a scale of about ascending scale in the vicinity of the full load water line, especially above the full load water line, it is possible to effectively cancel the waves generated by the hull of the submerged part due to the rise in the water surface during navigation. We thought that this could be done, and conducted experiments and numerical calculations to arrive at the present invention.
JP 2003-327193 A JP-A-8-142974

本発明は、上記の問題を解決するためになされたものであり、その目的は、船首部における淀み点近傍の水面上昇を考慮した船型とすることにより、平水中航行時の造波抵抗および波浪中航行時の波浪中抵抗増加を共に減少することができる船舶を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to create a hull form that takes into account the rise in the water surface near the stagnation point at the bow, thereby creating wave resistance and waves during navigating in flat water. An object of the present invention is to provide a ship capable of reducing both an increase in resistance in waves during middle navigation.

上記の目的を達成するための本発明の船舶は、船舶の船首部分において、満載喫水状態で平水中を航行する時に少なくとも一部が水没する満載喫水線バルブを、該満載喫水線バルブの上下方向の中心位置が船舶の満載喫水線より上になるように設けて構成される。   In order to achieve the above object, the ship of the present invention has a full-length waterline valve that is at least partially submerged when navigating in plain water in a full-fledged draft state at the bow portion of the ship. It is provided and configured so that its position is above the full waterline of the ship.

この構成により、平水中航行状態において、船首部の水面が上昇する部分で発生する造波抵抗をバルブ効果により減少することができ、また、波浪中航行状態においては、船首に入射して来る波を、バルブの整流効果により前方に反射せずに横方向に逸らすことができるので、入射波による抵抗増加を減少することができる。   This configuration can reduce the wave resistance generated by the valve effect in the portion where the water surface of the bow rises in the flat water navigation state, and the wave incident on the bow in the ocean navigation state. Can be deflected laterally without being reflected forward by the rectifying effect of the bulb, so that an increase in resistance due to incident waves can be reduced.

また、上記の船舶において、満載喫水線バルブの上下方向の下端位置が船舶の満載喫水線より上になるように設けて構成すると、満載喫水線バルブが満載喫水線よりも上方に設けられているため、満載喫水線の水線面形状はそのままであるので、船の要目や構造強度等を計算するための基準となる船の代表長さ(水線長さ(L.W.L.)、垂線間長(Lpp)、全長(Lo)等)に影響を及ぼさない。そのため、これらの長さに基づいて行われる基本設計や構造設計に大きな影響を与えず、設計計算のやり直しや大きな設計変更を回避できる。   Further, in the above-described ship, if the lower end position in the vertical direction of the full load water line valve is provided above the full load water line of the ship, the full load water line valve is provided above the full load water line. The shape of the waterline surface remains unchanged, so the ship's representative length (waterline length (LWL), vertical length ( Lpp), total length (Lo), etc.) are not affected. Therefore, the basic design and the structural design performed based on these lengths are not greatly affected, and it is possible to avoid re-design calculations and large design changes.

この満載喫水線バルブの位置や大きさに関しては、航行海域によって、航行中に遭遇する波の高さを統計的に予測できるので、この予測に基づいて設定される設計用の波の高さと平水中(静水中)の船首部の淀み点近傍での水面上昇量を考慮して決めることができる。   With regard to the position and size of this full load waterline valve, the wave height encountered during navigation can be statistically predicted by the navigation area, so the design wave height and flat water set based on this prediction It can be determined in consideration of the amount of rise in the water level near the stagnation point of the bow (still water).

また、所定の設定高さを、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭の0.5倍に設定し、満載喫水線バルブの上下方向の中心位置を、満載喫水線と該満載喫水線より所定の設定高さ分高い位置との間に設けたり、また、満載喫水線バルブのバルブ最大幅を、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭以下に、例えば、水頭の0.5倍から1倍に形成したり、満載喫水線バルブの先端位置を船首垂線F.P.と、満載喫水線より上の船首最先端部との間に設けたりして構成することが、好ましい。   Further, the predetermined set height is set to 0.5 times the water head calculated by (0.5 × Vs × Vs) / g, where Vs is the navigation speed of the ship and g is the acceleration of gravity. The center position in the vertical direction of the full load water line valve is set between the full load water line and a position that is higher than the full load water line by a predetermined set height, and the maximum valve width of the full load water line valve is set to Vs. When the gravitational acceleration is g, it is formed below the head calculated by (0.5 × Vs × Vs) / g, for example, 0.5 to 1 times the head, or the tip of the full load water line valve Position the bow perpendicular F. P. And a foremost portion of the bow above the full waterline.

この満載喫水線バルブの上下方向の中心位置を低くし過ぎると、水面上昇分に対する造波抵抗減少効果が低減し、また、満載喫水線バルブに対する上からの波の打ち込み量が大きくなり、波の打ち込みによるダメージを受け易くなる。また、高くし過ぎると、入射波の多くが満載喫水線バルブの下部に衝突するようになり、波による衝撃力が大きくなるので、好ましくない。   If the center position in the vertical direction of this full load waterline valve is made too low, the effect of reducing wave-making resistance against the rise in the water surface will be reduced, and the amount of wave shot from above on the full load waterline valve will increase. It becomes easy to receive damage. On the other hand, if the height is too high, many of the incident waves collide with the lower part of the full load water line valve, and the impact force by the waves becomes large, which is not preferable.

また、バルブ最大幅に関しては、バルブ最大幅を小さくし過ぎるとバルブ効果が減少してしまい、満載喫水線バルブの設置のためのコスト等とのバランスが取れなくなり、逆に、バルブ最大幅を大きくし過ぎると、波の打ち込みによるダメージを受け易くなり、また、バルブに作用する波による上下力が大きくなり、船体運動のピッチング(縦揺れ)やヒービング(上下揺れ)に対して満載喫水線バルブの影響が大きくなり過ぎ、好ましくない。   Also, regarding the maximum valve width, if the maximum valve width is made too small, the valve effect will decrease, making it impossible to balance the cost for installing the full-length waterline valve, and conversely, increasing the maximum valve width. After that, it becomes easy to be damaged by the wave driving, and the vertical force by the wave acting on the valve becomes large, and the influence of the full load waterline valve on the pitching (pitch) and heaving (vertical swing) of the hull movement is affected. It becomes too large and is not preferable.

従って、満載喫水線バルブの設計基準を上記の位置および大きさとすることにより、設計が容易となると共に、満載喫水線バルブを設けるための費用等と抵抗低減効果の大きさとのバランスからに見て、より好ましい範囲となる。なお、この満載喫水線バルブの位置と大きさや形状は、具体的には、水槽試験結果や数値計算結果等により、実船のそれぞれの海域や原型の船型などに適したものとされる。なお、通常は単体の船体に対して単体の満載喫水線バルブが設けられるが、単体の船体に対して複数の満載喫水線バルブを設けてもよい。例えば、左右に一対の小バルブを設ける等である。   Therefore, by setting the design standard of the full load water line valve to the above position and size, the design becomes easy, and in view of the balance between the cost for providing the full load water line valve and the magnitude of the resistance reduction effect, This is a preferred range. The position, size, and shape of the full load water line valve are specifically adapted to each sea area of the actual ship, the original hull form, and the like based on the results of the aquarium test and numerical calculation. Normally, a single full-length waterline valve is provided for a single hull, but a plurality of full-length waterline valves may be provided for a single hull. For example, a pair of small valves is provided on the left and right.

更に、上記の船舶において、満載喫水線バルブの上部と船首フレアとの間に水平断面が楔形状の波きり部材を設けて構成すると、この波きり部材も入射波を横方向に逸らすことができるので、満載喫水線バルブの上端よりも高くなるような大きな波が入射してきたときでも、この波きり部材により波を左右に分けて波浪中抵抗増加を減少することができる。また、この波きり部材により、満載喫水線バルブの上部への波の打ち込みを回避して、波の打ち込みによる満載喫水線バルブの損傷を防止できる。   Furthermore, in the above-described ship, if a wavy member having a horizontal cross section is provided between the upper part of the full load water line valve and the bow flare, this wavy member can also deflect the incident wave in the lateral direction. Even when a large wave that is higher than the upper end of the full load water line valve is incident, the wave cutting member can divide the wave into left and right to reduce the increase in resistance in the waves. In addition, the wave cutting member can avoid the wave driving to the upper part of the full load water line valve and prevent the full water line valve from being damaged by the wave driving.

この波きり部材の下部は、満載喫水線バルブの上部と接続していても良く、離間して設けられてもよい。なお、波きり部材と満載喫水線バルブの上部と接続して形成すると強度面で有利となる。   The lower part of this corrugated member may be connected to the upper part of the full load water line valve, or may be provided separately. In addition, it will become advantageous in terms of strength if it is formed by connecting the wave cutting member and the upper part of the full load water line valve.

また、波きり部材の形状に関しても、様々な形状が考えられるが、波きり部材の先端位置を、満載喫水線バルブの先端位置と満載喫水線より上の船首最先端部を結ぶ直線上、又は、該直線よりも後方に設けると、船首部の側面から見た形状が単純になり、入射してくる波の流れが円滑に流れるようになるのでより好ましい。   In addition, various shapes can be considered for the shape of the corrugated member, but the tip position of the corrugated member is a straight line connecting the tip position of the full load water line valve and the foremost portion of the bow above the full load water line, or Providing behind the straight line is more preferable because the shape seen from the side of the bow becomes simple and the wave of incident waves flows smoothly.

また、波きり部材の最大幅をバルブ最大幅以下に形成すると、波が上昇して来る際に、満載喫水線バルブの側面を回って上昇してきても波きり部材の下面を叩いたり、波きり部材の内側に入り込んだりすることが無くなるので、より好ましい。   In addition, if the maximum width of the corrugated member is less than the maximum valve width, when the wave rises, even if it rises around the side of the full load water line valve, it hits the lower surface of the corrugated member, It is more preferable because it does not enter the inside.

また、上記の船舶は、船体の方形係数Cbが0.80〜0.90で、航海速力Vsがフルード数Fn換算で0.12〜0.20の船舶である場合や垂線間長(Lpp)が150m〜350m等の大きな肥大船の場合に特に大きな効果を奏することができる。   Further, the above-mentioned ship is a ship having a hull square coefficient Cb of 0.80 to 0.90 and a voyage speed Vs of 0.12 to 0.20 in terms of Froude number Fn, or the length between perpendiculars (Lpp). In particular, a large effect can be obtained in the case of a large enlargement ship such as 150 m to 350 m.

この方形係数Cbは、船舶の排水容積をVとし、船の垂線間長をLpp、型幅をB、型喫水をdとした時に、Cb=V/(Lpp×B×d)となる無次元の値である。   This square coefficient Cb is a dimensionless which becomes Cb = V / (Lpp × B × d), where V is the drainage volume of the ship, Lpp is the length between the normals of the ship, B is the mold width, and d is the mold draft. Is the value of

このフルード数Fnは、船速Vsに関する無次元表示であり、船の垂線間長をLpp、重力加速度をgとした時に、Fn=Vs/(g×Lpp)1/2 となる無次元の値である。なお、航海速力Vsは、計画速力等と呼ばれることもあるので、ここでも、航海速力の中に計画速力を含むものとする。また、本発明は、低速肥大船で作用効果が大きいが、双胴船などにも適用できる。 This Froude number Fn is a dimensionless display relating to the ship speed Vs, and is a dimensionless value that satisfies Fn = Vs / (g × Lpp) 1/2 when the distance between the normals of the ship is Lpp and the gravitational acceleration is g. It is. Note that the nautical speed Vs is sometimes referred to as a planned speed or the like, and therefore the nautical speed is assumed to include the planned speed in this case as well. In addition, the present invention has a large effect on a low-speed enlargement ship, but can also be applied to a catamaran or the like.

本発明の船舶によれば、満載喫水状態で航行しているときの船首部における水面上昇による造波抵抗と、この水面上昇や入射波に対する整流効果や波きり効果を考慮して、満載喫水線バルブを設けた船型とすることにより、満載喫水における平水中航行時の造波抵抗の減少と波浪中航行時の波浪中抵抗増加を減少することができる。   According to the ship of the present invention, in consideration of the wave-making resistance due to the rise of the water surface at the bow when navigating in the full-draft draft state, the rectification effect and the wave effect on the rise of the water surface and the incident wave, By using the hull form provided with, it is possible to reduce a decrease in wave resistance when navigating in flat water in a full draft and an increase in resistance during wave navigation.

更に、満載喫水線バルブの上方に波きり部材を設けることにより、大きな波に対しても、波を左右に分けて波浪中抵抗増加を減少することができ、また、満載喫水線バルブへの波の打ち込みを緩和できる。   In addition, by installing a waving member above the full-load waterline valve, even in the case of a large wave, it is possible to divide the wave into left and right to reduce the increase in resistance in the waves, and to drive the wave into the full-load waterline valve. Can be relaxed.

以下図面を参照して本発明に係る船舶の実施の形態について説明する。
図1〜図4に示すように、本発明に係る第1の実施の形態の船舶1は、船舶1の満載喫水線dfより上に、満載喫水状態で平水中を航海速力Vsで航行する時に少なくとも一部が水没する満載喫水線バルブ10を船首部分に設けて構成される。
Hereinafter, embodiments of a ship according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 4, the ship 1 according to the first embodiment of the present invention is at least when navigating in plain water at a voyage speed Vs in a full draft state above the full draft line df of the ship 1. A full-length draft valve 10 that is partially submerged is provided at the bow.

図2に示すように、この満載喫水線バルブ10の上下方向の中心位置Zbcは、満載喫水線dfと満載喫水線dfより所定の設定高さh1分高い位置Z1(=df+h1)との間に設ける。即ち、df≦Zbc≦Z1とする。ここで、この所定の設定高さh1を、船舶の航海速力をVsとし、重力加速度をgとした時に、h2=(0.5×Vs×Vs)/gで計算される水頭h2の0.5倍に設定する。   As shown in FIG. 2, the center position Zbc in the vertical direction of the full load water line valve 10 is provided between the full load water line df and a position Z1 (= df + h1) higher than the full load water line df by a predetermined set height h1. That is, df ≦ Zbc ≦ Z1. Here, when the predetermined set height h1 is Vs as the navigation speed of the ship and g as the gravitational acceleration, 0. of the water head h2 calculated by h2 = (0.5 × Vs × Vs) / g. Set to 5 times.

更に、満載喫水線バルブ10の上下方向の下端位置Zbbが船舶1の満載喫水線dfより上になるように構成する。即ち、Zbb>dfとする。この構成により、船の要目や構造強度等を計算するための基準となる船の代表長さ(水線長さ(L.W.L.)、垂線間長(Lpp)、全長(Lo)等)は影響を受けないので、これらの代表長さに基づいて行われる基本設計や構造設計に殆ど影響が及ぼない。   Further, the lower end position Zbb in the vertical direction of the full load water line valve 10 is configured to be above the full load water line df of the ship 1. That is, Zbb> df. With this configuration, the ship's representative length (water line length (LWL), length between vertical lines (Lpp), total length (Lo), which serves as a reference for calculating ship outline, structural strength, etc. Etc.) is not affected, and therefore has little influence on the basic design and structural design performed based on these representative lengths.

また、この満載喫水線バルブ10のバルブ最大幅Bbは、小さくし過ぎるとバルブ効果が減少し、大きくし過ぎると波の打ち込みによるダメージやバルブに作用する波による船体運動への影響が大きくなり過ぎるので、好ましくは、船舶1の航海速力をVsとし、重力加速度をgとした時に、水頭h2以下に形成する。また、より好ましくは、水頭h2の0.5倍以上とする。即ち、0.5×h2≦Bb≦h2とする。   Further, if the maximum valve width Bb of the full load water line valve 10 is too small, the valve effect is reduced, and if it is too large, damage due to wave driving and the influence on the hull motion due to waves acting on the valve become too large. Preferably, when the speed of navigation of the ship 1 is Vs and the acceleration of gravity is g, it is formed below the head h2. More preferably, it is 0.5 times or more of the water head h2. That is, 0.5 × h2 ≦ Bb ≦ h2.

更に、この満載喫水線バルブ10の先端位置Xbは、船首垂線F.P.と、船首最先端部Xaとの間に設ける。即ち、図2でLb≦Laとする。この船首最先端部Xaは満載喫水線dfより上の部分において最も先端となる部位である。   Furthermore, the tip position Xb of this full-length waterline valve 10 is the vertical line F.V. P. And the foremost part Xa of the bow. In other words, Lb ≦ La in FIG. This bow most advanced portion Xa is the most distal portion in the portion above the full load water line df.

この満載喫水線バルブ10の形状に関しては、横断面形状は、通常は円形や円形に近い楕円形に形成されるが、その他の形状であってもよい。また、側断面形状は、通常は、楕円形の一部となるような形状に形成されるが、その他の形状であってもよい。この満載喫水線バルブ10の形状は滑らかな曲線で流線形状に形成されるのが流体力学的には好ましいが、工作性の面からは平面を含む多角形形状に形成するのが好ましいので、ここのケース毎に、それぞれのバランスを勘案して決める。   Regarding the shape of the full load water line valve 10, the cross-sectional shape is usually formed in a circular shape or an elliptical shape close to a circular shape, but may be in other shapes. Further, the side cross-sectional shape is usually formed in a shape that becomes a part of an ellipse, but may be other shapes. It is preferable in terms of fluid dynamics that the shape of the full load waterline valve 10 is formed in a streamline shape with a smooth curve, but in terms of workability, it is preferably formed in a polygonal shape including a plane. For each case, determine each balance.

この満載喫水線バルブ10により、平水中航行状態において、船首部の水面が上昇する部分で発生する造波抵抗をバルブ効果により減少することができ、また、波浪中航行状態においては、船首に入射して来る波を、満載喫水線バルブ10の整流効果により横方向に逸らすことができ、入射波による抵抗増加を減少することができる。   This full load water line valve 10 can reduce the wave resistance generated at the portion where the water surface of the bow rises in the flat water sailing state by the valve effect, and in the wave sailing state, it enters the bow. The incoming wave can be deflected laterally by the rectifying effect of the full load water line valve 10, and the increase in resistance due to the incident wave can be reduced.

次に、第2の実施の形態について説明する。図5〜図8に示すように、本発明に係る第2の実施の形態の船舶1Aは、第1の実施の形態と同様に、船舶1Aの満載喫水線dfより上に、満載喫水線バルブ10を船首部分に設けるが、更に、満載喫水線バルブ10の上部と船首フレア30との間に水平断面が楔形状の波きり部材20を設けて構成する。   Next, a second embodiment will be described. As shown in FIGS. 5-8, the ship 1A of 2nd Embodiment which concerns on this invention sets the full load water line valve | bulb 10 above the full load water line df of the ship 1A similarly to 1st Embodiment. Although it is provided at the bow portion, it is further configured by providing a corrugated member 20 having a wedge-shaped horizontal section between the upper part of the full-load waterline valve 10 and the bow flare 30.

この波きり部材20は、満載喫水線バルブ10の上で、かつ、上甲板の位置Z3より低い高さzにおける波きり部材20の先端位置Xw(z)(Zbc≦z≦Z3)を、満載喫水線バルブ10の先端位置Xbと満載喫水線dfより上の船首最先端部Xaを結ぶ直線L上、又は、この直線Lよりも後方に設ける(図6では、直線L上に設けている)と共に、かつ、波きり部材20の最大幅Bwmaxをバルブ最大幅Bb以下に形成する。即ち、Bw(z)≦Bwmax≦Bbとする。   The rippling member 20 is configured so that the tip position Xw (z) (Zbc ≦ z ≦ Z3) of the rippling member 20 on the full load water line valve 10 and at a height z lower than the position Z3 of the upper deck is expressed as a full load water line. Provided on the straight line L connecting the tip position Xb of the valve 10 and the foremost portion Xa of the bow above the full load water line df or behind the straight line L (provided on the straight line L in FIG. 6), and The maximum width Bwmax of the corrugated member 20 is formed to be equal to or less than the maximum valve width Bb. That is, Bw (z) ≦ Bwmax ≦ Bb.

この波きり部材20の形状は、通常は、図8に示すように、水平断面形状が、三角形の楔形状で形成するが、凸曲線や凹曲線を持つ先端鋭角の形状に形成してもよい。これに伴い、波きり部材20の側面部は、通常は、工作性のよい平板状に形成するが、凹曲面や凸曲面にしてもよい。この波きり部材20と船首フレア30との間は水密構造としても良く、単に表面が楔型形状を保持するだけで船首フレア30との間に水が入る構造であってもよい。また、対象とする入射波の波長や波高に寄っては、入射波の前方への反射をより少なくするために波きり部材20に通水孔を設けてもよい。   As shown in FIG. 8, the wavy member 20 is generally formed in a triangular wedge shape with a horizontal cross-sectional shape, but may be formed in a sharp tip shape having a convex curve or a concave curve. . Accordingly, the side surface portion of the corrugated member 20 is usually formed in a flat plate shape with good workability, but may be a concave curved surface or a convex curved surface. A watertight structure may be provided between the wave cutting member 20 and the bow flare 30, or a structure in which water enters between the bow flare 30 simply by maintaining a wedge-shaped surface. Further, depending on the wavelength and wave height of the target incident wave, a water passage hole may be provided in the corrugated member 20 in order to reduce the reflection of the incident wave forward.

この満載喫水線バルブ10の上方に設けた波きり部材20により、大きな波に対しても、波を左右に分けて波浪中抵抗増加を減少することができ、また、満載喫水線バルブ10への波の打ち込みを緩和できる。   The wave cutting member 20 provided above the full load water line valve 10 can reduce the increase in resistance in waves by dividing the wave into left and right even for large waves, and the wave to the full load water line valve 10 can be reduced. The driving can be eased.

従って、上記の構成の船舶1、1Aによれば、満載喫水線バルブ10のバルブ効果や波きり部材20の波きり効果により、満載喫水における平水中航行時の造波抵抗の減少と波浪中航行時の波浪中抵抗増加を減少することができ、満載喫水での航行状態において、優れた推進性能を発揮することができる。   Therefore, according to the ships 1 and 1A having the above-described configuration, due to the valve effect of the full load water line valve 10 and the wave cutting effect of the wave cutting member 20, the wave-making resistance is reduced when navigating in the flat water in the full water draft and the wave is traveling in the waves. The increase in resistance in waves can be reduced, and excellent propulsion performance can be exhibited in the navigation state with full draft.

この効果は、方形係数Cbが0.80〜0.90で、航海速力Vsがフルード数Fn換算で0.12〜0.20の肥大船である場合や垂線間長(Lpp)が150m〜350m等の大きな低速肥大船の場合に特に大きい。   This effect is obtained when the rectangular coefficient Cb is 0.80 to 0.90 and the voyage speed Vs is 0.12 to 0.20 in terms of Froude number Fn or the length between the perpendiculars (Lpp) is 150 m to 350 m. It is especially large in the case of large low-speed enlargement ships such as.

実施例として、船体の方形係数(Cb)が0.85のバルクキャリアの船型において、図5〜図8の実線Aで示すように、満載喫水線バルブ10と波きり部材20を設けて形成した船長(Lpp)が2.7mの模型船を用意した。   As an example, in a bulk carrier hull form having a hull square coefficient (Cb) of 0.85, a captain formed by providing a full-length waterline valve 10 and a corrugated member 20 as shown by a solid line A in FIGS. A model ship with (Lpp) of 2.7 m was prepared.

また、従来例として、同じバルクキャリアの船型において、船首部以外は実施例と同じ船型であるが、船首部には満載喫水線バルブ10と波きり部材20を設けない従来の船首部形状を採用した船長(Lpp)が同じ模型船を用意した。   In addition, as a conventional example, the same bulk carrier hull form is the same as the example except for the bow part, but a conventional bow part shape in which the full waterline valve 10 and the corrugated member 20 are not provided in the bow part is adopted. A model ship with the same captain (Lpp) was prepared.

これらの模型船に関して水槽で行った波浪中抵抗試験の結果を図9に示す。この図9では、横軸は、規則波のλ(波長)/L(船長)を示し、縦軸は、規則波における波浪中抵抗増加量Rawをρ×g×Hw2 ×(B2 /L)で無次元化した値である波浪中抵抗増加係数Cawを示す。ここで、波浪中抵抗増加量Rawは波浪中の抵抗から平水中の抵抗を差し引いた値であり、ρは水の密度を、gは重力加速度を、Hwは有義波高(両振幅)を、Bは船の型幅を、Lは垂線間長さをそれぞれ示す。 FIG. 9 shows the results of a wave resistance test conducted on these model ships in a water tank. In FIG. 9, the horizontal axis represents λ (wavelength) / L (captain) of a regular wave, and the vertical axis represents the increase in resistance Rau in waves in the regular wave by ρ × g × Hw 2 × (B 2 / L ) Shows a resistance increase coefficient Caw in waves, which is a dimensionless value. Here, the resistance increase amount Raw in the wave is a value obtained by subtracting the resistance in the water from the resistance in the wave, ρ is the density of water, g is the acceleration of gravity, Hw is the significant wave height (both amplitudes), B indicates the width of the ship, and L indicates the length between the perpendiculars.

この図9より、実施例(実線A)の波浪中抵抗増加係数Cawが、従来例(点線B)より小さくなっていることが分かる。   FIG. 9 shows that the wave resistance increase coefficient Caw of the example (solid line A) is smaller than that of the conventional example (dotted line B).

本発明に係る第1の実施の形態の船舶の船首部の満載喫水線より上部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the upper part from the full load water line of the bow part of the ship of 1st Embodiment which concerns on this invention. 図1の船舶の船首部の形状を示す部分側面図である。It is a partial side view which shows the shape of the bow part of the ship of FIG. 図1の船舶の船首部の形状を示す部分正面図である。It is a partial front view which shows the shape of the bow part of the ship of FIG. 図1の船舶の満載喫水上バルブの形状を示す、高さZbcの水平断面図(水線面図)である。FIG. 3 is a horizontal sectional view (waterline view) of a height Zbc showing the shape of the full-load draft valve of the ship of FIG. 1. 本発明に係る第2の実施の形態の船舶の船首部の満載喫水線より上部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the upper part from the full load water line of the bow part of the ship of 2nd Embodiment which concerns on this invention. 図5の船舶の船首部の形状を示す部分側面図である。It is a partial side view which shows the shape of the bow part of the ship of FIG. 図5の船舶の船首部の形状を示す部分正面図である。It is a partial front view which shows the shape of the bow part of the ship of FIG. 図5の船舶の満載喫水上バルブの形状と波きり部材の底部の形状を示す、高さzの水平断面図(水線面図)である。FIG. 6 is a horizontal sectional view (waterline view) of height z showing the shape of the full-load draft valve and the shape of the bottom portion of the corrugated member of the ship of FIG. 5. 実施例と従来例の波浪中中抵抗試験結果の比較を示す図である。It is a figure which shows the comparison of the resistance test result in the wave of an Example and a prior art example. 船首部における水面上昇を説明するための図である。It is a figure for demonstrating the water surface rise in a bow part.

符号の説明Explanation of symbols

1 船舶
1A 船舶(実施例)
1X 船舶(従来例)
10 満載喫水線バルブ
20 波きり部材
30 船首フレア
Bb 満載喫水線バルブの最大幅
Bw(z) 波きり部材の幅
Bwmax 波きり部材の最大幅
C.L. 船体中央線(センターライン)
df 満載喫水(構造喫水)
F.P. 船首垂線
Fn フルード数
g 重力加速度
h1 所定の設定高さ
h2 淀み点における水頭
hs 船首から遠方に離れた位置での水頭
L 満載喫水上バルブの先端部と満載喫水より上の船首最先端部を結ぶ直線
O 淀み点
Xa 満載喫水線より上の船首最先端部
Xb 満載喫水線バルブの先端部
Xw(z) 波きり部材の先端部
z 高さ
Z1 所定の設定高さの位置
Z2 淀み点の水面上昇位置(平水中)
Zbc 満載喫水線バルブの上下方向の中心位置
Zbu 満載喫水線バルブの上下方向の下端位置
Vs 航海速力
Vo 淀み点の流速
1 Ship 1A Ship (Example)
1X Ship (conventional example)
10 Full load water line valve 20 Wave cutting member 30 Bow flare Bb Maximum width of full load water line valve Bw (z) Width of wave cutting member Bwmax Maximum width of wave cutting member L. Hull Chuo Line (Center Line)
df Full draft (structural draft)
F. P. Bow vertical line Fn Froude number g Gravity acceleration h1 Predetermined set height h2 Head at the stagnation point hs Head far away from the bow L Connects the tip of the full-load draft valve and the most advanced portion of the bow above the full-scale draft Straight line O Stagnation point
Xa The tip of the bow above the full load water line Xb The tip of the full load water line valve Xw (z) The tip of the wave cutting member z Height Z1 The position of the predetermined set height Z2 The water level rising position of the stagnation point (flat water)
Zbc Center position in the vertical direction of the full load waterline valve Zbu Bottom position in the vertical direction of the full load waterline valve Vs Navigational speed Vo Flow rate at the stagnation point

Claims (8)

船舶の船首部分において、満載喫水状態で平水中を航行する時に少なくとも一部が水没する満載喫水線バルブを、該満載喫水線バルブの上下方向の中心位置が船舶の満載喫水線より上になるように設けたことを特徴とする船舶。   At the bow part of the ship, a full load water line valve that is at least partially submerged when navigating in flat water in the full water draft state is provided so that the center position in the vertical direction of the full load water line valve is above the full load water line of the ship. A ship characterized by that. 前記満載喫水線バルブの上下方向の下端位置が船舶の満載喫水線より上になるように設けたことを特徴とする請求項1記載の船舶。   The ship according to claim 1, wherein a lower end position in a vertical direction of the full load water line valve is provided to be higher than a full load water line of the ship. 所定の設定高さを、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭の0.5倍に設定し、前記満載喫水線バルブの上下方向の中心位置を、満載喫水線と該満載喫水線より前記所定の設定高さ分高い位置との間に設けたことを特徴とする請求項1又は2に記載の船舶。   The predetermined height is set to 0.5 times the head calculated by (0.5 x Vs x Vs) / g, where Vs is the navigational speed of the ship and g is the acceleration of gravity. The ship according to claim 1 or 2, wherein a central position in the vertical direction of the waterline valve is provided between a full load waterline and a position higher than the full load waterline by the predetermined set height. 前記満載喫水線バルブのバルブ最大幅を、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭以下に形成したことを特徴とする請求項1〜3のいずれか1項に記載の船舶。   The maximum width of the full load water line valve is formed below the water head calculated by (0.5 × Vs × Vs) / g, where Vs is the navigation speed of the ship and g is the acceleration of gravity. The ship according to any one of claims 1 to 3. 前記満載喫水線バルブの先端位置を船首垂線F.P.と、満載喫水線より上の船首最先端部との間に設けたことを特徴とする請求項1〜4のいずれか1項に記載の船舶。   The tip position of the full load water line valve is defined by the bow perpendicular F.R. P. The ship according to any one of claims 1 to 4, characterized in that the ship is provided between the foremost portion of the bow above the full load water line. 前記満載喫水線バルブの上部と船首フレアとの間に水平断面が楔形状の波きり部材を設けたことを特徴とする請求項1〜5のいずれか1項に記載の船舶。   The ship according to any one of claims 1 to 5, wherein a waving member having a wedge-shaped horizontal cross section is provided between an upper portion of the full load water line valve and a bow flare. 前記波きり部材の先端位置を、前記満載喫水線バルブの先端位置と満載喫水線より上の船首最先端部を結ぶ直線上、又は、該直線よりも後方に設けると共に、かつ、前記波きり部材の最大幅を前記バルブ最大幅以下に形成したことを特徴とする請求項1〜6のいずれか1項に記載の船舶。   The tip position of the corrugated member is provided on the straight line connecting the tip position of the full load water line valve and the foremost portion of the bow above the full load water line, or behind the straight line. The marine vessel according to any one of claims 1 to 6, wherein a large portion is formed below the maximum valve width. 船体の方形係数が0.80〜0.90で、航海速力がフルード数換算で0.12〜0.20の船舶であることを特徴とする請求項1〜7のいずれか1項に記載の船舶。
8. The ship according to claim 1, wherein the ship has a square coefficient of 0.80 to 0.90 and a navigation speed of 0.12 to 0.20 in terms of fluid number. Ship.
JP2005261550A 2005-09-09 2005-09-09 Ship Expired - Fee Related JP5028000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261550A JP5028000B2 (en) 2005-09-09 2005-09-09 Ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261550A JP5028000B2 (en) 2005-09-09 2005-09-09 Ship

Publications (2)

Publication Number Publication Date
JP2007069835A true JP2007069835A (en) 2007-03-22
JP5028000B2 JP5028000B2 (en) 2012-09-19

Family

ID=37931652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261550A Expired - Fee Related JP5028000B2 (en) 2005-09-09 2005-09-09 Ship

Country Status (1)

Country Link
JP (1) JP5028000B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095238A (en) * 2008-10-20 2010-04-30 National Maritime Research Institute Device of reducing increase of in-wave resistance for marine vessel
JP2015127185A (en) * 2013-12-27 2015-07-09 三菱重工業株式会社 Amphibian motor car

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845392U (en) * 1971-09-30 1973-06-13
JPS5726074A (en) * 1980-07-22 1982-02-12 Hakko Shiyouun Kk Ship with bulb at bow
JPS5843887A (en) * 1981-09-11 1983-03-14 Hitachi Zosen Corp Ice breaker
JPS5926386A (en) * 1982-08-04 1984-02-10 Ishikawajima Harima Heavy Ind Co Ltd Bow shape
JPS60252094A (en) * 1984-05-26 1985-12-12 Mitsubishi Heavy Ind Ltd Wave-break-reduction ship
JPS6412993A (en) * 1987-07-01 1989-01-17 Genzai Jukogyo Kk Bow wave reducer for ship
JPH0966885A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Stem part structure with valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845392U (en) * 1971-09-30 1973-06-13
JPS5726074A (en) * 1980-07-22 1982-02-12 Hakko Shiyouun Kk Ship with bulb at bow
JPS5843887A (en) * 1981-09-11 1983-03-14 Hitachi Zosen Corp Ice breaker
JPS5926386A (en) * 1982-08-04 1984-02-10 Ishikawajima Harima Heavy Ind Co Ltd Bow shape
JPS60252094A (en) * 1984-05-26 1985-12-12 Mitsubishi Heavy Ind Ltd Wave-break-reduction ship
JPS6412993A (en) * 1987-07-01 1989-01-17 Genzai Jukogyo Kk Bow wave reducer for ship
JPH0966885A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Stem part structure with valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095238A (en) * 2008-10-20 2010-04-30 National Maritime Research Institute Device of reducing increase of in-wave resistance for marine vessel
JP2015127185A (en) * 2013-12-27 2015-07-09 三菱重工業株式会社 Amphibian motor car

Also Published As

Publication number Publication date
JP5028000B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
RU2374120C2 (en) Design of front part in vessel of displacement type
JP5986856B2 (en) Commercial cargo ship
EP0866763B1 (en) Propeller configuration for sinusoidal waterline ships
JP4744329B2 (en) Ship
JP4889238B2 (en) Ship with bow fin
JP4414793B2 (en) Ship
JP5091518B2 (en) Ship
JP5638215B2 (en) Ship with low wind pressure resistance and its design method
JP5028000B2 (en) Ship
CN102770339A (en) Ship hull structure comprising wave resistance increase minimizing steps
JP2008247050A (en) Vessel drag reducing device and vessel
US5701835A (en) Production vessel with sinusoidal waterline hull
KR20110076946A (en) Hull form intended for vessels provided with an air cavity
JP4722072B2 (en) Ship
JP4216858B2 (en) Ship
JP2008149819A (en) Vessel
JP2006188125A (en) Enlarged ship
JP2007069834A (en) Vessel
WO1997024256A1 (en) Sinusoidal waterline hull configuration with skeg
JP6903851B2 (en) Ship
JP2006008091A (en) Vessel shape for small high speed vessel
JP4721501B2 (en) Ship
JPH07508946A (en) Displacement type ship with stabilized pitching
JP4654014B2 (en) Large low-speed enlargement ship
JP2012116401A (en) Ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5028000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees