JP2007068319A - 出力電圧検出回路、絶縁型スイッチング電源、および半導体装置 - Google Patents

出力電圧検出回路、絶縁型スイッチング電源、および半導体装置 Download PDF

Info

Publication number
JP2007068319A
JP2007068319A JP2005250399A JP2005250399A JP2007068319A JP 2007068319 A JP2007068319 A JP 2007068319A JP 2005250399 A JP2005250399 A JP 2005250399A JP 2005250399 A JP2005250399 A JP 2005250399A JP 2007068319 A JP2007068319 A JP 2007068319A
Authority
JP
Japan
Prior art keywords
voltage
circuit
auxiliary winding
detection circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005250399A
Other languages
English (en)
Other versions
JP4040056B2 (ja
Inventor
Yoshiaki Yatani
佳明 八谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005250399A priority Critical patent/JP4040056B2/ja
Priority to CN2006101109045A priority patent/CN1925295B/zh
Priority to US11/500,457 priority patent/US7426121B2/en
Publication of JP2007068319A publication Critical patent/JP2007068319A/ja
Application granted granted Critical
Publication of JP4040056B2 publication Critical patent/JP4040056B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

【課題】トランスに補助巻線を有する絶縁型スイッチング電源において、補助巻線に誘起される電圧から二次側出力電圧を精度よく検出することができる出力電圧検出回路を提供する。
【解決手段】補助巻線電圧波形加工回路10−1により、補助巻線7−3に誘起される電圧波形を加工し、ピーク電圧ホールド回路10−2によりその加工後の電圧ピーク値をホールドするとともに、二次側電流導通検出回路24により、二次側巻線7−2に電流が流れる期間を検出し、補正回路22がその期間中に、ピーク電圧ホールド回路10−2によりホールドされたピーク電圧を低下させる補正を行い、この補正後の電圧を制御回路9へフィードバックする。一方、制御回路9がリセット回路23を制御して、二次側巻線7−2に電流が流れはじめてから一定期間、ピーク電圧ホールド回路10−2によりホールドされたピーク電圧をリセットする。
【選択図】図1

Description

本発明は、絶縁型スイッチング電源において、トランスの補助巻線(バイアス巻線)に誘起される電圧から二次側出力電圧を検出する出力電圧検出回路、および出力電圧検出回路を具備する絶縁型スイッチング電源、および絶縁型スイッチング電源の制御回路と出力電圧検出回路を同一基板上に形成した半導体装置に関する。
従来より、トランスの補助巻線により出力側(2次側)の状態が制御回路へ帰還信号として伝達される絶縁型スイッチング電源として、補助巻線に誘起される電圧から二次側出力電圧を検出する出力電圧検出回路を具備するものが提案されている(例えば、非特許文献1参照。)。図8は従来の出力電圧検出回路を有する絶縁型スイッチング電源を示す。
図8において、整流回路2は交流電源1からの交流電圧を整流する。平滑コンデンサ3は、整流回路2からの整流電圧を平滑化する。この平滑化された電圧はトランス7の一次側巻線7−1に印加される。
レギュレータ4は、平滑コンデンサ3からの電圧を基にコンデンサ5を徐々に充電し、制御回路9の制御により、コンデンサ5の両端電圧が常に一定値になるように動作する。制御回路9は、コンデンサ5の両端電圧を電源電圧として動作し、制御回路9内で規定された起動電圧と停止電圧の範囲で、一次側巻線7−1に接続されたスイッチング素子8のオン・オフ制御を行う。
コンデンサ5の両端電圧が起動電圧に達し、制御回路9によるスイッチング素子8のオン・オフ制御が開始されると、一次側巻線7−1から二次側巻線7−2および補助巻線7−3への電力供給が開始される。このスイッチング電源はフライバック型であり、トランス7の一次側巻線7−1と二次側巻線7−2の極性は逆になっている。なお、コンデンサ16はノイズを除去するためのYコンデンサである。またスナバ回路6は、一次側巻線7−1のピーク電圧をクランプして、スイッチング素子8のオン/オフ切り替わり時の過渡状態で発生する高いスパイク電圧を防止する。
二次側巻線7−2に誘起された電圧はダイオード11、コンデンサ12、14、チョーク・コイル13により整流且つ平滑化され、負荷15には直流電力が供給される。この負荷15の両端電圧(2次側出力電圧)が、出力電圧検出回路34により検出される。
つまり、トランス7の補助巻線7−3は二次側巻線7−2と同じ極性であり、二次側巻線7−2に誘起される電圧に比例する電圧が誘起される。コンデンサ5はダイオード35を介して補助巻線7−3と接続されており、コンデンサ5の両端電圧は、補助巻線7−3に誘起される電圧に比例して変化する。例えば負荷15が重くなると、二次側巻線7−2の両端電圧ピーク値が低くなるため、補助巻線7−3の両端電圧ピーク値も低くなり、コンデンサ5の両端電圧も低くなる。逆に、負荷15が軽くなると、二次側巻線7−2の両端電圧ピーク値が高くなるため、補助巻線7−3の両端電圧ピーク値も高くなり、コンデンサ5の両端電圧も高くなる。そこで、従来の出力電圧検出回路34は、二次側出力電圧としてコンデンサ5の両端電圧を検出し、制御回路9へフィードバックしていた。
しかしながら、従来の出力電圧検出回路には、以下の問題があった。
まず、検出電圧が本来の検出電圧レベルより高くなるため、検出誤差が大きいという問題があった。この問題について、重負荷時と軽負荷時を例に、図9を用いて説明する。図9は、図8に示す従来の絶縁型スイッチング電源の軽負荷時と重負荷時における各点の電圧波形を示す。
図9において、DRAINはスイッチング素子8の高電位側の電圧、VA´は補助巻線7−3に誘起される電圧、VB´は補助巻線7−3に誘起された電圧をダイオード35とコンデンサ5により平滑化した電圧である。
従来の出力電圧検出回路34は、二次側出力電圧としてコンデンサ5の両端電圧VB´を検出するが、電圧VB´は補助巻線7−3に誘起される電圧VA´のピーク値に応じた値になるので、図9に示すように、本来の検出電圧ではなく、それよりも高い電圧(スナバ回路6によりクランプされた電圧)が検出され、検出誤差が大きくなる。
さらに従来の出力電圧検出回路では、補助巻線7−3に発生する電圧ではなく、補助巻線7−3に発生する電圧をダイオード35とコンデンサ5により鈍らせた波形を検出することになるため、検出電圧にダイオード35とコンデンサ5によるバラツキが発生し、検出精度バラツキが大きくなるという問題があった。
また従来の出力電圧検出回路では、検出電圧に2次側のダイオード11の順方向電圧バラツキ成分も影響するため、更に検出精度バラツキが大きくなるという問題があった。また、このダイオード11の順方向電圧バラツキをダイオード35の順方向電圧バラツキで極力キャンセルさせようとすると、低出力の電源にしか使用困難となるという問題があった。
以上のことから、従来の出力電圧検出回路を用いた絶縁型スイッチング電源は、電源特性であるロードレギュレーション特性が非常に悪くなり、高出力電源への応用が難しくなるという問題があった。
「インテリジェントパワーデバイス(IPD)アプリケーションノート スイッチング電源用」、第6版、松下電器産業株式会社 半導体社、2004年6月25日、p79
本発明は、上記問題点に鑑み、補助巻線に誘起される電圧波形を加工し、その加工後の電圧ピーク値をホールドするとともに、二次側巻線に電流が流れる期間を検出し、その期間中に、ホールドしたピーク電圧を低下させる補正を行い、この補正後の電圧を二次側出力電圧として絶縁型スイッチング電源の制御回路へフィードバックし、かつ二次側巻線に電流が流れはじめてから一定期間、ホールドしたピーク電圧をリセットすることにより、絶縁型スイッチング電源の二次側出力電圧を精度よく検出することができる出力電圧検出回路、および絶縁型スイッチング電源、および絶縁型スイッチング電源用の半導体装置を提供することを目的とする。
本発明の請求項1記載の出力電圧検出回路は、一次側巻線、二次側巻線、および補助巻線を有するトランスと、前記一次側巻線に接続されたスイッチング素子と、前記スイッチング素子のオン/オフ制御を行う制御回路とを具備し、前記補助巻線により出力側の状態が前記制御回路へ帰還信号として伝達される絶縁型スイッチング電源の出力電圧検出回路であって、前記補助巻線に接続され、前記二次側巻線に電流が流れている期間を検出する二次側電流導通検出回路と、前記補助巻線に接続され、前記補助巻線に発生する電圧の波形を加工する補助巻線電圧波形加工回路と、前記補助巻線電圧波形加工回路の出力段に接続され、前記補助巻線電圧波形加工回路の出力からピーク電圧をホールドするピーク電圧ホールド回路と、前記ピーク電圧ホールド回路の出力段に接続され、前記二次側電流導通検出回路により検出された期間中に、前記ピーク電圧ホールド回路でホールドされたピーク電圧を補正する補正回路と、前記二次側巻線に電流が流れ始めてから一定期間、前記補正回路の出力をリセットするリセット回路と、を備え、二次側の出力電圧として前記補正回路により補正された前記ピーク電圧ホールド回路の出力を前記制御回路へフィードバックすることを特徴とする。
また、本発明の請求項2記載の出力電圧検出回路は、請求項1記載の出力電圧検出回路であって、前記補助巻線電圧波形加工回路は、少なくともダイオードを含むことを特徴とする。
また、本発明の請求項3記載の出力電圧検出回路は、請求項2記載の出力電圧検出回路であって、前記補助巻線電圧波形加工回路は、前記補助巻線に発生する電圧の立ち上がり波形を鈍らせるためのコンデンサを含むことを特徴とする。
また、本発明の請求項4記載の出力電圧検出回路は、請求項1ないし3のいずれかに記載の出力電圧検出回路であって、前記ピーク電圧ホールド回路は、少なくともダイオードとコンデンサを有し、該コンデンサの両端電圧を出力することを特徴とする。
また、本発明の請求項5記載の出力電圧検出回路は、請求項4記載の出力電圧検出回路であって、前記補正回路は、予め規定された電流値で前記ピーク電圧ホールド回路のコンデンサを放電させて、前記ピーク電圧ホールド回路でホールドされたピーク電圧を補正することを特徴とする。
また、本発明の請求項6記載の出力電圧検出回路は、請求項4記載の出力電圧検出回路であって、前記補正回路は、前記補助巻線に流れる電流値で前記ピーク電圧ホールド回路のコンデンサを放電させて、前記ピーク電圧ホールド回路でホールドされたピーク電圧を補正することを特徴とする。
また、本発明の請求項7記載の絶縁型スイッチング電源は、請求項1ないし6のいずれかに記載の出力電圧検出回路を具備する絶縁型スイッチング電源であって、トランスの一次側巻線に印加される入力電圧を基に、前記一次側巻線に接続されるスイッチング素子のオン・オフ制御を行う制御回路と出力電圧検出回路の動作電圧を生成するレギュレータを備えることを特徴とする。
また、本発明の請求項8記載の絶縁型スイッチング電源は、請求項7記載の絶縁型スイッチング電源であって、動作電圧が一定値以上であるときには、前記レギュレータによる動作電圧の生成を停止し、前記トランスの補助巻線に誘起される電圧を基に動作電圧を生成することを特徴とする。
また、本発明の請求項9記載の半導体装置は、請求項7もしくは8のいずれかに記載の出力電圧検出回路と制御回路とレギュレータを同一基板上に形成したことを特徴とする。
本発明によれば、ピーク電圧ホールド回路の出力電圧を補正回路にて補正することにより、検出電圧を本来の検出電圧レベルに補正することが可能となり、出力電圧検出精度が向上する。よって、スイッチング電源の重要な電源特性であるロードレギュレーション特性を向上させることができる。さらに、補助巻線から出力電圧を精度よく検出できるので、スイッチング電源の出力側にフォトカプラとシャントレギュレータ等で構成されるフィードバック回路を設ける必要がなくなり、スイッチング電源の小型化を同時に実現することができる。
また、補助巻線電圧波形加工回路を、少なくともダイオードを有する構成とすることで、補助巻線に誘起される電圧の波形を、マイナス側に大きく振れない波形に加工することができ、スイッチング電源の安定動作を確保できる。
また、補助巻線電圧波形加工回路を、コンデンサを有する構成とすることで、リーケージインダクタンスによるリンギングを防止でき、出力電圧の検出精度をより向上させることができる。
また、補助巻線電圧波形加工回路による加工後の電圧のピーク値をホールドするためのコンデンサを、予め規定された電流値で、トランスの二次側に電流が流れる期間放電させることにより、補正回路による補正を確実なものとすることができる。
また、補助巻線電圧波形加工回路による加工後の電圧のピーク値をホールドするためのコンデンサを、補助巻線に流れる電流値で、トランスの二次側に電流が流れる期間放電させることにより、補正回路による補正をより確実なものとすることができる。
また、レギュレータを設けることにより、絶縁型スイッチング電源の制御回路の動作電圧を一定に保つことができ、制御回路によるスイッチング素子のオン・オフ制御を安定化できる。またトランスの補助巻線に誘起される電圧を基に動作電圧を生成することで、一次側の消費電力を抑制することができる。また、制御回路と出力電圧検出回路とレギュレータを同一基板上に形成することで、絶縁型スイッチング電源の小型化を実現できる。
(実施の形態1)
図1は本発明の実施の形態1における出力電圧検出回路を有する絶縁型スイッチング電源を示す。但し、図8に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。
また、図2は、図1に示す絶縁型スイッチング電源の軽負荷時と重負荷時における各点の電圧波形を示す。図2において、DRAINはスイッチング素子8の高電位側の電圧、VAは補助巻線電圧波形加工回路10−1の出力電圧、VBはピーク電圧ホールド回路10−2の出力電圧である。
図1において、出力電圧検出回路10は、補助巻線電圧波形加工回路10−1と、ピーク電圧ホールド回路10−2と、補正回路22と、リセット回路23と、二次側電流導通検出回路24を含む。
補助巻線電圧波形加工回路10−1は、補助巻線7−3に直列に接続される抵抗17と、補助巻線7−3に対し並列に接続される抵抗18とショットキーダイオード19からなり、補助巻線7−3に発生する電圧波形を加工して、図2に示すような波形となる電圧VAを出力する。つまり、ショットキーダイオード19により、補助巻線7−3に誘起される電圧の波形を、マイナス側に大きく振れない波形に加工して、後段のピーク電圧ホールド回路10−2へ出力する。
ピーク電圧ホールド回路10−2は、補助巻線電圧波形加工回路10−1の出力段に直列に接続されるダイオード20と、補助巻線電圧波形加工回路10−1に対し並列に接続されるコンデンサ21からなり、コンデンサ21により、補助巻線電圧波形加工回路10−1の出力電圧VAのピーク値をホールドする。
二次側電流導通検出回路24は、制御回路9からスイッチング素子8へ出力される信号と補助巻線7−3に誘起される電圧を基に、スイッチング素子8がオフしてから補助巻線7−3に誘起される電圧が立ち下がるまでの期間(二次側巻線7−2に電流が流れている二次側電流導通期間)を検出する。
補正回路22は、ピーク電圧ホールド回路10−2の出力段に接続され、図2に示すように、二次側電流導通検出回路24により検出された二次側電流導通期間中に、ピーク電圧ホールド回路10−2でホールドされた電圧を低下させる補正を行う。つまり、トランス7の二次側巻線7−2に電流が流れている期間中に、コンデンサ21を放電させる。出力電圧検出回路10は、この補正された電圧VBを二次側出力電圧として制御回路9へフィードバックする。
一方、制御回路9は、前回のピーク電圧ホールド回路10−2の出力電圧VBを一端リセットするために、リセット回路23を制御して、スイッチング素子8がオフしてから予め設定された一定期間、ピーク電圧ホールド回路10−2の出力をリセットする。具体的には、リセット回路23は図1に示すようにNchMOSFETからなり、制御回路9はスイッチング素子8のオフ直後から一定期間(リセット期間)、NchMOSFETをオン状態にし、図2に示すように、リセット期間中、電圧VBがグランド電位となるようにコンデンサ21を放電させる。このリセット期間後、ピーク電圧ホールド回路10−2による電圧VAのピーク値検出が開始される。
制御回路9は、補正された電圧VBを基にスイッチング素子8のオン/オフ制御(PWM制御、間欠制御等)を行い、負荷15の両端電圧を一定に制御する。なお、本実施の形態1における絶縁型スイッチング電源では、コンデンサ5の両端電圧は、制御回路9と補正回路22と二次側電流導通検出回路24の電源電圧となる。
本実施の形態1によれば、制御回路によるスイッチング素子のオン/オフ制御方式に関わらず、補助巻線による高精度な2次側出力電圧検出が可能となる。また、2次側出力電力の大小に関わらず、補助巻線による高精度な2次側出力電圧検出が可能となる。よって、良好なロードレギュレーション特性が得られる。さらに、一般的なフォトカプラ・シャントレギュレータで構成される帰還回路は不要となり、装置全体の小型化と低価格化を同時に実現できる。
なお、図1中に示す25で囲まれた部分を同一基板上に形成した1つの半導体パッケージ(半導体装置)で構成することで、半導体パッケージ内の半導体チップ数にかかわらず、スイッチング電源の小型化を実現することができる。
(実施の形態2)
図3は本発明の実施の形態2における出力電圧検出回路を有する絶縁型スイッチング電源を示す。但し、図1、8に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。
図3において、補正回路22は、コンデンサ5に接続された定電流源26と、ピーク電圧ホールド回路10−2内のコンデンサ21に接続されたNchMOSFET27と、NchMOSFET27とともにカレントミラー回路を形成するNchMOSFET28と、定電流源26とNchMOSFET28との間に接続され、二次側電流導通検出回路24の出力信号によりオン/オフするPchMOSFET29とからなる。
このように構成された補正回路22は、二次側電流導通期間中に、PchMOSFET29をオン状態にして、定電流源26とカレントミラー回路を導通させ、コンデンサ21を予め規定された定電流値で放電させることで、ピーク電圧ホールド回路10−2でホールドされた電圧VBを低下させる補正を行う。
(実施の形態3)
図4は本発明の実施の形態3における出力電圧検出回路を有する絶縁型スイッチング電源を示す。但し、図1、8に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。図4に示す出力電圧検出回路10は、補正回路22の回路構成が実施の形態2と異なる。
図4において、補正回路22は、補助巻線電圧波形加工回路10−1内の抵抗18に接続されたNchMOSFET30と、NchMOSFET30とともにカレントミラー回路を形成するNchMOSFET31と、ピーク電圧ホール回路10−2内のコンデンサ21とNchMOSFET31との間に接続され、二次側電流導通検出回路24の出力信号によりオン/オフするPchMOSFET29とからなる。
このように構成された補正回路22は、二次側電流導通期間中に、PchMOSFET29をオン状態にしてカレントミラー回路を導通させ、コンデンサ21を抵抗18に流れる電流に比例した電流で放電させることで、ピーク電圧ホールド回路10−2でホールドされた電圧VBを低下させる補正を行う。ここで、抵抗18に流れる電流は、トランス7の二次側巻線7−2に流れる電流に比例するため、より高精度の補正が可能となる。
(実施の形態4)
図5は本発明の実施の形態4における出力電圧検出回路を有する絶縁型スイッチング電源を示す。但し、図1、8に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。図5に示す出力電圧検出回路10は、補助巻線電圧波形加工回路10−1にコンデンサ32が追加されている点が実施の形態1と異なる。
また、図6は、図5に示す絶縁型スイッチング電源の軽負荷時と重負荷時における各点の電圧波形を示す。図6において、DRAINはスイッチング素子8の高電位側の電圧、VAは補助巻線電圧波形加工回路10−1の出力電圧、VBはピーク電圧ホールド回路10−2の出力電圧である。
前述した実施の形態1における出力電圧検出回路では、図2のVAに示すように、リセット期間において、トランス7のリーケージ(漏れ)インダクタンスに起因したリンギングが発生している。そのため、トランス7のリーケージインダクタンスバラツキが大きい場合、トランス7のリーケージインダクタンスによるリンギング波形がリセット期間を越えて発生し、ピーク電圧ホールド回路10−2の出力電圧VBがリンギングの影響を受けて、正確な出力電圧検出が行われない可能性がある。
そこで、図5に示すように、補助巻線電圧波形加工回路10−1の内部に、補助巻線7−3に誘起される電圧の立ち上がり波形を鈍らせるためのコンデンサ32を追加することで、図6に示すように、トランス7のリーケージインダクタンスによるリンギング成分を除去した波形に加工する。これにより、ピーク電圧ホールド回路10−2の出力電圧VBはリンギングの影響を受けないため、安定した出力電圧検出が実現できる。
(実施の形態5)
図7は本発明の実施の形態5における出力電圧検出回路を有する絶縁型スイッチング電源を示す。但し、図1、8に基づいて説明した部材と同一の部材には同一符号を付して、説明を省略する。当該スイッチング電源は、トランス7の補助巻線7−3と二次側電流導通検出回路24の接続点がダイオード33を介してコンデンサ5と接続している点が、前述した他の実施の形態と異なる。
前述した他の実施の形態では、レギュレータ4が、一次側巻線7−1に印加される電圧(入力電圧)を基にコンデンサ5の充電を行い、コンデンサ5の両端電圧が常に一定値VCCとなるように動作して、制御回路9と出力電圧検出回路10の動作中の電源電圧(動作電圧)を生成していた。これに対して、当該スイッチング電源では、トランス7の補助巻線7−3に誘起される電圧を基に、動作中のコンデンサ5への電力供給(充電)が行われる。具体的には、補助巻線7−3のピーク電圧(図7に示す回路では、コンデンサ5の両端電圧)にダイオード33の順方向電圧を加えた電圧が一定値VCC以上のときには、レギュレータ4による動作電圧の生成を停止し、補助巻線7−3からコンデンサ5への電力供給を行って、動作電圧を生成する。これにより、動作中の一次側で消費される電力が低減されるため、省エネも同時に実現できる。
以上のように、実施の形態1ないし5によれば、電磁誘導現象を利用した出力電圧検出回路を有する装置において、検出精度が向上し、制御の安定と装置の小型化を同時に実現することができる。さらに、低出力から高出力までの使用を可能にする。
本発明にかかる出力電圧検出回路は、電磁誘導現象を利用した装置において出力電圧を精度よく検出することができ、スイッチング電源に有益である。また、スイッチング電源を有する装置・機器全般に利用可能で、特に、小型化を必要とする装置・機器に有用である。
本発明の実施の形態1における出力電圧検出回路を有する絶縁型スイッチング電源を示す図 本発明の実施の形態1における出力電圧検出回路を有する絶縁型スイッチング電源の各点の電圧波形を示す図 本発明の実施の形態2における出力電圧検出回路を有する絶縁型スイッチング電源を示す図 本発明の実施の形態3における出力電圧検出回路を有する絶縁型スイッチング電源を示す図 本発明の実施の形態4における出力電圧検出回路を有する絶縁型スイッチング電源を示す図 本発明の実施の形態4における出力電圧検出回路を有する絶縁型スイッチング電源の各点の電圧波形を示す図 本発明の実施の形態5における出力電圧検出回路を有する絶縁型スイッチング電源を示す図 従来の出力電圧検出回路を有する絶縁型スイッチング電源を示す図 従来の出力電圧検出回路を有する絶縁型スイッチング電源の各点の電圧波形を示す図
符号の説明
1 交流電源
2 整流回路
3 平滑コンデンサ
4 レギュレータ
5 コンデンサ
6 スナバ回路
7 トランス
7−1 一次側巻線
7−2 二次側巻線
7−3 補助巻線
8 スイッチング素子
9 制御回路
10、34 出力電圧検出回路
10−1 補助巻線電圧波形加工回路
10−2 ピーク電圧ホールド回路
11 ダイオード
12、14 コンデンサ
13 チョーク・コイル
15 負荷
16 コンデンサ
17、18 抵抗
19 ショットキーダイオード
20 ダイオード
21 コンデンサ
22 補正回路
23 リセット回路
24 二次側電流導通検出回路
25 1つの半導体パッケージで構成される部分
26 定電流源
27、28、30、31 NchMOSFET
29 PchMOSFET
32 コンデンサ
33 ダイオード
35 ダイオード

Claims (9)

  1. 一次側巻線、二次側巻線、および補助巻線を有するトランスと、前記一次側巻線に接続されたスイッチング素子と、前記スイッチング素子のオン/オフ制御を行う制御回路とを具備し、前記補助巻線により出力側の状態が前記制御回路へ帰還信号として伝達される絶縁型スイッチング電源の出力電圧検出回路であって、
    前記補助巻線に接続され、前記二次側巻線に電流が流れている期間を検出する二次側電流導通検出回路と、
    前記補助巻線に接続され、前記補助巻線に発生する電圧の波形を加工する補助巻線電圧波形加工回路と、
    前記補助巻線電圧波形加工回路の出力段に接続され、前記補助巻線電圧波形加工回路の出力からピーク電圧をホールドするピーク電圧ホールド回路と、
    前記ピーク電圧ホールド回路の出力段に接続され、前記二次側電流導通検出回路により検出された期間中に、前記ピーク電圧ホールド回路でホールドされたピーク電圧を補正する補正回路と、
    前記二次側巻線に電流が流れ始めてから一定期間、前記補正回路の出力をリセットするリセット回路と、
    を備え、二次側の出力電圧として前記補正回路により補正された前記ピーク電圧ホールド回路の出力を前記制御回路へフィードバックする
    ことを特徴とする出力電圧検出回路。
  2. 前記補助巻線電圧波形加工回路は、少なくともダイオードを含むことを特徴とする請求項1記載の出力電圧検出回路。
  3. 前記補助巻線電圧波形加工回路は、前記補助巻線に発生する電圧の立ち上がり波形を鈍らせるためのコンデンサを含むことを特徴とする請求項2記載の出力電圧検出回路。
  4. 前記ピーク電圧ホールド回路は、少なくともダイオードとコンデンサを有し、該コンデンサの両端電圧を出力することを特徴とする請求項1ないし3のいずれかに記載の出力電圧検出回路。
  5. 前記補正回路は、予め規定された電流値で前記ピーク電圧ホールド回路のコンデンサを放電させて、前記ピーク電圧ホールド回路でホールドされたピーク電圧を補正することを特徴とする請求項4記載の出力電圧検出回路。
  6. 前記補正回路は、前記補助巻線に流れる電流値で前記ピーク電圧ホールド回路のコンデンサを放電させて、前記ピーク電圧ホールド回路でホールドされたピーク電圧を補正することを特徴とする請求項4記載の出力電圧検出回路。
  7. 請求項1ないし6のいずれかに記載の出力電圧検出回路を具備する絶縁型スイッチング電源であって、トランスの一次側巻線に印加される入力電圧を基に、前記一次側巻線に接続されるスイッチング素子のオン・オフ制御を行う制御回路と出力電圧検出回路の動作電圧を生成するレギュレータを備えることを特徴とする絶縁型スイッチング電源。
  8. 請求項7記載の絶縁型スイッチング電源であって、動作電圧が一定値以上であるときには、前記レギュレータによる動作電圧の生成を停止し、前記トランスの補助巻線に誘起される電圧を基に動作電圧を生成することを特徴とする絶縁型スイッチング電源。
  9. 請求項7もしくは8のいずれかに記載の出力電圧検出回路と制御回路とレギュレータを同一基板上に形成したことを特徴とする半導体装置。
JP2005250399A 2005-08-31 2005-08-31 出力電圧検出回路、絶縁型スイッチング電源、および半導体装置 Expired - Fee Related JP4040056B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005250399A JP4040056B2 (ja) 2005-08-31 2005-08-31 出力電圧検出回路、絶縁型スイッチング電源、および半導体装置
CN2006101109045A CN1925295B (zh) 2005-08-31 2006-07-31 输出电压检测电路、绝缘型开关电源及半导体器件
US11/500,457 US7426121B2 (en) 2005-08-31 2006-08-08 Output voltage detection circuit, isolated switching power supply, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250399A JP4040056B2 (ja) 2005-08-31 2005-08-31 出力電圧検出回路、絶縁型スイッチング電源、および半導体装置

Publications (2)

Publication Number Publication Date
JP2007068319A true JP2007068319A (ja) 2007-03-15
JP4040056B2 JP4040056B2 (ja) 2008-01-30

Family

ID=37803815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250399A Expired - Fee Related JP4040056B2 (ja) 2005-08-31 2005-08-31 出力電圧検出回路、絶縁型スイッチング電源、および半導体装置

Country Status (3)

Country Link
US (1) US7426121B2 (ja)
JP (1) JP4040056B2 (ja)
CN (1) CN1925295B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057214A (ja) * 2008-08-26 2010-03-11 Olympus Corp フライバック充電装置、発光装置、および撮像装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969447A (zh) * 2004-04-13 2007-05-23 皇家飞利浦电子股份有限公司 反驰式转换器
ITTO20070860A1 (it) * 2007-11-29 2009-05-30 St Microelectronics Srl Circuito e relativo metodo di auto-alimentazione per un convertitore di tensione
ITTO20070862A1 (it) * 2007-11-29 2009-05-30 St Microelectronics Srl Convertitore di tensione isolato con retroazione al primario e rete di snubber passiva, e relativo metodo di controllo
ITTO20070859A1 (it) * 2007-11-29 2009-05-30 St Microelectronics Srl Convertitore di tensione isolato con retroazione al primario, e relativo metodo di controllo della tensione di uscita
CN101465601B (zh) * 2007-12-21 2011-09-14 上海得倍电子技术有限公司 基于源端反馈的ac/dc转换电路及其输出电压检测电路
JP4952807B2 (ja) * 2010-02-10 2012-06-13 サンケン電気株式会社 アクティブスナバ回路及び電源回路
US8077484B2 (en) * 2010-04-29 2011-12-13 Power Integrations, Inc. Apparatus and method for detecting a change in output voltage of an isolated power converter
EP2907229A4 (en) * 2012-10-15 2017-07-05 Maxout Renewables, Inc. Isolated flyback converter
US9083252B2 (en) * 2012-10-23 2015-07-14 Texas Instruments Incorporated Primary-side regulation for isolated power supplies
CN103116062B (zh) * 2013-03-11 2015-07-08 矽力杰半导体技术(杭州)有限公司 一种电压峰值检测电路及检测方法
CN104297553B (zh) * 2014-10-28 2017-09-15 矽力杰半导体技术(杭州)有限公司 输出电压检测电路、控制电路和开关型变换器
DK178633B1 (en) * 2015-04-10 2016-09-26 Pr Electronics As Universal input voltage DC-DC converter employing low voltage capacitor power bank
WO2018046776A1 (es) * 2016-09-07 2018-03-15 Chaves Garcia Jordi Fuente de alimentación conmutada de 24-240 voltios
US10673323B2 (en) * 2016-10-27 2020-06-02 University Of Florida Research Foundation, Incorporated Loop noise balance technique for CM EMI noise reduction of the full bridge LLC resonant converter
CN107132404B (zh) * 2017-05-15 2019-11-05 矽力杰半导体技术(杭州)有限公司 检测方法、检测电路、控制器及开关电源
US10644607B2 (en) 2017-08-03 2020-05-05 Futurewei Technologies, Inc. Auxiliary power supply apparatus and method for isolated power converters
US11374500B2 (en) * 2017-11-17 2022-06-28 Rompower Technology Holdings, Llc Harvesting energy from parasitic elements of a power converter
JP7124661B2 (ja) * 2018-11-15 2022-08-24 富士通株式会社 電源装置及び通信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249444B1 (en) * 1999-11-01 2001-06-19 Astec International Limited Offset resonant ZVS forward converter
JP3624373B2 (ja) 2000-10-20 2005-03-02 富士通アクセス株式会社 突入電流防止回路
FR2815790B1 (fr) * 2000-10-24 2003-02-07 St Microelectronics Sa Convertisseur de tension a circuit de commande autooscillant
JP3548889B2 (ja) * 2001-06-07 2004-07-28 株式会社村田製作所 スイッチング電源装置およびそれを用いた電子装置
US6853568B2 (en) * 2003-05-20 2005-02-08 Delta Electronics, Inc. Isolated voltage regulator with one core structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057214A (ja) * 2008-08-26 2010-03-11 Olympus Corp フライバック充電装置、発光装置、および撮像装置

Also Published As

Publication number Publication date
CN1925295A (zh) 2007-03-07
US20070047269A1 (en) 2007-03-01
US7426121B2 (en) 2008-09-16
CN1925295B (zh) 2010-10-06
JP4040056B2 (ja) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4040056B2 (ja) 出力電圧検出回路、絶縁型スイッチング電源、および半導体装置
JP4693868B2 (ja) 力率補正回路
US9490714B1 (en) Switching power supply
TWI475786B (zh) System controller and method for power conversion system
JP6476997B2 (ja) 電源制御用半導体装置
JP2006094696A (ja) 力率補正回路及びその出力電圧制御方法
US9564813B2 (en) Switching power-supply device
TW201946351A (zh) 電源控制用半導體裝置以及開關電源裝置及其設計方法
US9083241B2 (en) Power factor correction circuit for providing protection against overvoltage
JP5117980B2 (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
JP4816908B2 (ja) 多出力スイッチング電源装置
JP5008425B2 (ja) 停電検出回路を備えた電源装置
US9502983B2 (en) Power supply device capable of varying switching frequency according to load condition
JP4283977B2 (ja) スイッチング電源装置及びスイッチング電源用半導体装置
JP2001016851A (ja) スイッチング電源装置
KR102219639B1 (ko) 클램핑 회로, 이를 포함하는 전력 공급 장치 및 전력 공급 장치의 구동 방법
JP2013021756A (ja) 電源装置
JP5495383B2 (ja) 絶縁型スイッチング電源
JP5403686B2 (ja) スイッチング電源装置および該装置の起動方法
JP2006333555A (ja) スイッチング電源装置、及びオーディオアンプシステム
KR102195565B1 (ko) 케이블 보상 회로 및 이를 포함하는 전력 공급 장치
JP2023021706A (ja) スイッチング電源及び同期整流制御回路
JPH0241654A (ja) リンギングチョークコンバータ電源装置
JP2008245387A (ja) スイッチング電源装置
JP2009290935A (ja) スイッチング電源制御回路

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees