JP2007062072A - Polyimide substrate and its manufacturing method - Google Patents

Polyimide substrate and its manufacturing method Download PDF

Info

Publication number
JP2007062072A
JP2007062072A JP2005249034A JP2005249034A JP2007062072A JP 2007062072 A JP2007062072 A JP 2007062072A JP 2005249034 A JP2005249034 A JP 2005249034A JP 2005249034 A JP2005249034 A JP 2005249034A JP 2007062072 A JP2007062072 A JP 2007062072A
Authority
JP
Japan
Prior art keywords
polyimide
glass transition
transition point
thermoplastic resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005249034A
Other languages
Japanese (ja)
Other versions
JP4458275B2 (en
Inventor
Shigehiro Hoshida
繁宏 星田
Takeshi Ogino
剛 荻野
Tadashi Amano
正 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005249034A priority Critical patent/JP4458275B2/en
Publication of JP2007062072A publication Critical patent/JP2007062072A/en
Application granted granted Critical
Publication of JP4458275B2 publication Critical patent/JP4458275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a reinforcing sheet utilized in a flexible printed wiring board sufficiently putting the characteristics of a heat-resistant polyimide, which has superior heat resistance, chemical resistance, dimensional stability, electrical characteristics, etc., to practical use. <P>SOLUTION: This polyimide substrate is constituted by providing polyimide layers with a glass transition point of 350°C or above on both sides of a thermoplastic resin layer with a glass transition point of 150°C or above or alternatively constituted by molding a thermoplastic resin with a glass transition point of 150°C or above and a polyimide resin with a glass transition point of 350°C or above into films and heating the polyimide films on both sides of the thermoplastic resin films at a temperature higher than the glass transition point of the thermoplastic resin to bond and laminate them under pressure. The manufacturing method of the polyimide substrate is also disclosed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子工業分野において普及しつつあるフレキシブルプリント配線板に利用される補強板として好適に用いられ、特に寸法安定性や耐熱性に優れたポリイミド基板及びその製造方法に関するものである。   The present invention relates to a polyimide substrate that is suitably used as a reinforcing plate used for a flexible printed wiring board that is becoming widespread in the field of electronic industry, and particularly relates to a polyimide substrate excellent in dimensional stability and heat resistance and a method for producing the same.

フレキシブルプリント配線板等に利用される補強板は、主として可撓性を有するフレキシブルプリント配線板の耐変形性を補強する、取り扱い性を向上させる、発生する熱を放熱させる等の目的で使用される。従来の補強板は、ガラス繊維にエポキシ樹脂を含浸させたいわゆるリジット板(ガラスエポキシ板)や、アルミ板、厚物ポリイミドフィルム等が利用されてきた。更に近年では、厚物ポリイミドフィルムが高コストであることから、薄物ポリイミドフィルムを接着剤で張り合わせ、厚くしたものが利用されている。   Reinforcing plates used for flexible printed wiring boards are mainly used for the purpose of reinforcing the deformation resistance of flexible printed wiring boards having flexibility, improving the handleability, and radiating generated heat. . As a conventional reinforcing plate, a so-called rigid plate (glass epoxy plate) in which glass fiber is impregnated with an epoxy resin, an aluminum plate, a thick polyimide film, and the like have been used. In recent years, since a thick polyimide film is expensive, a thin polyimide film laminated with an adhesive and thickened is used.

しかしながら、上記した各種材料はそれぞれ問題点を抱えており、利用目的に応じて使い分けなければならなかった。例えば、ガラスエポキシ板は、切り出し面から粉が出やすく、加工環境を汚す可能性があるため、微細配線加工のフレキシブル基板等には使用できない。また、アルミ板等の金属製のものに関しては、発熱を放熱する効果は高いが、加工性が劣るため使用しづらい。   However, the various materials described above have problems, and must be used properly according to the purpose of use. For example, a glass epoxy plate cannot easily be used as a flexible substrate for fine wiring processing because powder is likely to come out from the cut surface and may contaminate the processing environment. In addition, a metal plate such as an aluminum plate has a high effect of dissipating heat, but is difficult to use because of poor workability.

そこで、耐熱性、寸法安定性等の面から厚物ポリイミドフィルムが望ましいのだが、前述のように厚物ポリイミドフィルムは極めて値段が高く、低コスト化による市場の拡大の方向を妨げる要因となっている。   Therefore, thick polyimide films are desirable from the standpoints of heat resistance and dimensional stability, but as mentioned above, thick polyimide films are extremely expensive and hinder the direction of market expansion due to lower costs. Yes.

また、特開2003−231228号公報(特許文献1)には、ガラス転移点100℃以上の熱可塑性樹脂層とポリイミド層からなる補強板が提案されている。これは明細書中にポリイミド層はポリアミドイミド樹脂と明記されており、熱可塑性樹脂層の両側にポリアミドイミド樹脂のワニスを塗布する方法が示されている。しかしながら、この提案では両側にポリアミドイミド樹脂層を塗布により成形するため、製造方法が複雑で高コストであり、実用的ではない。   Japanese Unexamined Patent Publication No. 2003-231228 (Patent Document 1) proposes a reinforcing plate composed of a thermoplastic resin layer having a glass transition point of 100 ° C. or higher and a polyimide layer. In this specification, the polyimide layer is specified as a polyamide-imide resin, and a method of applying a polyamide-imide resin varnish on both sides of the thermoplastic resin layer is shown. However, in this proposal, since the polyamide-imide resin layer is formed on both sides by coating, the manufacturing method is complicated and expensive, which is not practical.

更に、特開2003−340996号公報(特許文献2)には、ガラス転移点100℃以上の熱可塑性樹脂層とポリイミドもしくはポリアミドイミド層からなる多層シートが提案されている。これは明細書中にポリイミドもしくはポリアミドイミド層がフィルム状であることが示され、熱可塑性樹脂層との間に有機溶剤を使用しない接着層を使用して張り合わせることが示されている。しかしながら、この場合は接着層が必須であり、特殊な接着層を設けるため、製造プロセスが複雑で、原材料費を含めて製造コストが高くなり、実用的ではなかった。   Furthermore, JP-A-2003-340996 (Patent Document 2) proposes a multilayer sheet comprising a thermoplastic resin layer having a glass transition point of 100 ° C. or higher and a polyimide or polyamideimide layer. This indicates that the polyimide or polyamideimide layer is in the form of a film in the specification, and it is shown that the adhesive layer which does not use an organic solvent is bonded to the thermoplastic resin layer. However, in this case, an adhesive layer is indispensable, and a special adhesive layer is provided. Therefore, the manufacturing process is complicated, and the manufacturing cost including raw material costs increases, which is not practical.

特開2003−231228号公報JP 2003-231228 A 特開2003−340996号公報JP 2003-340996 A

本発明は、上記事情に鑑みなされたもので、優れた耐熱性・耐薬品性・寸法安定性・電気的特性等を有する耐熱性ポリイミドの特性を十分に生かしたフレキシブルプリント配線板に利用される補強板となり得るポリイミド基板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is used for a flexible printed wiring board that fully utilizes the characteristics of heat-resistant polyimide having excellent heat resistance, chemical resistance, dimensional stability, electrical characteristics, and the like. It aims at providing the polyimide substrate which can become a reinforcement board, and its manufacturing method.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ガラス転移点が150℃以上である熱可塑性樹脂層の両側に、ガラス転移点が350℃以上であるポリイミド層を熱可塑性樹脂のガラス転移点以上の温度で加熱圧着して設けることにより、得られるポリイミド基板が、優れた耐熱性・耐薬品性・寸法安定性・電気的特性等を有する耐熱性ポリイミドの特性を十分に生かしたフレキシブルプリント配線板に利用される補強板となり得ることを見出し、本発明をなすに至った。   As a result of intensive investigations to achieve the above object, the present inventors have applied a polyimide layer having a glass transition point of 350 ° C. or higher on both sides of a thermoplastic resin layer having a glass transition point of 150 ° C. or higher. By heat-pressing at a temperature equal to or higher than the glass transition point of the plastic resin, the resulting polyimide substrate has sufficient heat-resistant polyimide characteristics that have excellent heat resistance, chemical resistance, dimensional stability, electrical characteristics, etc. As a result, the present inventors have found that the present invention can be used as a reinforcing plate used for flexible printed wiring boards.

従って、本発明は、下記に示すポリイミド基板及びその製造方法を提供する。
〔1〕 ガラス転移点が150℃以上である熱可塑性樹脂層の両側にそれぞれガラス転移点が350℃以上であるポリイミド層を有するポリイミド基板。
〔2〕 熱可塑性樹脂層が、ガラス転移点200℃以上であることを特徴とする〔1〕記載のポリイミド基板。
〔3〕 熱可塑性樹脂層が、ポリアミドイミド、ポリエーテルイミド、ポリエーテルサルフォン又はポリフェニレンサルファイドであることを特徴とする〔1〕又は〔2〕記載のポリイミド基板。
〔4〕 熱可塑性樹脂層と両側のポリイミド層の厚みが、それぞれポリイミド層/熱可塑性樹脂層/ポリイミド層=1.0/0.1〜1.0/1.0であることを特徴とする〔1〕〜〔3〕のいずれかに記載のポリイミド基板。
〔5〕 熱可塑性樹脂層と両側のポリイミド層の厚みが、それぞれポリイミド層/熱可塑性樹脂層/ポリイミド層=0.1〜1.0/1.0/0.1〜1.0であることを特徴とする〔1〕〜〔3〕のいずれかに記載のポリイミド基板。
〔6〕 全体の厚さが75μm〜500μmの範囲であることを特徴とする〔1〕〜〔5〕のいずれかに記載のポリイミド基板。
〔7〕 ガラス転移点が150℃以上である熱可塑性樹脂とガラス転移点が350℃以上であるポリイミドをそれぞれフィルム状に成形し、熱可塑性樹脂フィルムの両側にポリイミドフィルムを熱可塑性樹脂のガラス転移点以上の温度で加熱圧着して張り合わせることを特徴とするポリイミド基板の製造方法。
Accordingly, the present invention provides the following polyimide substrate and method for producing the same.
[1] A polyimide substrate having a polyimide layer having a glass transition point of 350 ° C. or higher on each side of a thermoplastic resin layer having a glass transition point of 150 ° C. or higher.
[2] The polyimide substrate according to [1], wherein the thermoplastic resin layer has a glass transition point of 200 ° C. or higher.
[3] The polyimide substrate according to [1] or [2], wherein the thermoplastic resin layer is polyamideimide, polyetherimide, polyethersulfone, or polyphenylene sulfide.
[4] The thicknesses of the thermoplastic resin layer and the polyimide layers on both sides are polyimide layer / thermoplastic resin layer / polyimide layer = 1.0 / 0.1 to 1.0 / 1.0, respectively. [1] A polyimide substrate according to any one of [3].
[5] The thicknesses of the thermoplastic resin layer and the polyimide layers on both sides are respectively polyimide layer / thermoplastic resin layer / polyimide layer = 0.1 to 1.0 / 1.0 / 0.1 to 1.0. The polyimide substrate according to any one of [1] to [3].
[6] The polyimide substrate according to any one of [1] to [5], wherein the entire thickness is in the range of 75 μm to 500 μm.
[7] A thermoplastic resin having a glass transition point of 150 ° C. or higher and a polyimide having a glass transition point of 350 ° C. or higher are formed into films, and the polyimide film is formed on both sides of the thermoplastic resin film. A method for producing a polyimide substrate, characterized by laminating by thermocompression bonding at a temperature equal to or higher than a point.

本発明によれば、電子工業分野において普及しつつあるフレキシブルプリント配線板に利用される補強板として好適に用いられ、特に寸法安定性や耐熱性に優れたポリイミド基板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can use suitably as a reinforcement board utilized for the flexible printed wiring board currently spreading in the electronic industry field | area, and can provide the polyimide substrate excellent in especially dimensional stability and heat resistance.

本発明のポリイミド基板は、ガラス転移点が150℃以上である熱可塑性樹脂層の両側に、ガラス転移点が350℃以上のポリイミド層を有するものである。   The polyimide substrate of this invention has a polyimide layer whose glass transition point is 350 degreeC or more on both sides of the thermoplastic resin layer whose glass transition point is 150 degreeC or more.

本発明で使用される熱可塑性樹脂は、ガラス転移点が150℃以上であることが必須であり、これはガラス転移点が150℃未満だと、補強板として使用する工程において軟化し、変形する等の問題が起こってしまう。更に好ましくはガラス転移点が200℃以上である。また、ガラス転移点が300℃以上だと熱可塑性樹脂ではあっても特殊な装置がないと層状には加工しにくいため、ガラス転移点は300℃未満であることが好ましい。   The thermoplastic resin used in the present invention must have a glass transition point of 150 ° C. or higher, and when the glass transition point is lower than 150 ° C., it softens and deforms in the process of using it as a reinforcing plate. Such problems will occur. More preferably, the glass transition point is 200 ° C. or higher. Further, if the glass transition point is 300 ° C. or higher, even if it is a thermoplastic resin, the glass transition point is preferably less than 300 ° C. because it is difficult to process into a layer without a special device.

ガラス転移点が150℃以上の熱可塑性樹脂としては、ポリアミドイミド、ポリエーテルエーテルケトン、ポリアリレート、ポリエーテルイミド、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリフェニレンエーテル、ポリカーボネート、液晶ポリマー等を挙げることができる。これらの中でも、更に好ましくは、ポリアミドイミド、ポリエーテルイミド、ポリエーテルサルフォン、ポリフェニレンサルファイドである。   Examples of the thermoplastic resin having a glass transition point of 150 ° C. or higher include polyamide imide, polyether ether ketone, polyarylate, polyether imide, polyether sulfone, polyphenylene sulfide, polyphenylene ether, polycarbonate, and liquid crystal polymer. . Among these, polyamide imide, polyether imide, polyether sulfone, and polyphenylene sulfide are more preferable.

これらの樹脂は、更にブレンドして使用することも可能である。また種々の特性改良を目的として、無機質、有機質又は金属等の粉末、繊維などを混合して使用することもできる。また導体の酸化を防ぐ目的で酸化防止剤等の添加剤、あるいは接着性の向上を目的としてシランカップリング剤を加えることも可能である。また、接着性の向上等を目的として異種のポリマーをブレンドすることも可能である。   These resins can be further blended and used. In addition, for the purpose of improving various properties, it is also possible to use a mixture of inorganic, organic or metal powders, fibers and the like. It is also possible to add an additive such as an antioxidant for the purpose of preventing the conductor from oxidizing, or a silane coupling agent for the purpose of improving the adhesiveness. It is also possible to blend different types of polymers for the purpose of improving adhesiveness.

本発明で使用されるポリイミドは、ガラス転移点が350℃以上であることが必須であり、ガラス転移点が350℃未満では補強板の最外層であるポリイミド層が実装工程等に使用する時に350℃以上のパーツに触れる可能性があり、この場合、変形してしまう問題が起きる。また、通常のポリイミドはガラス転移点が500℃未満であり、それ以上では劣化が始まるので、ガラス転移点としては500℃未満でよい。   The polyimide used in the present invention must have a glass transition point of 350 ° C. or higher. When the glass transition point is lower than 350 ° C., the polyimide layer that is the outermost layer of the reinforcing plate is used for a mounting process or the like. There is a possibility of touching parts above ℃, and in this case, the problem of deformation occurs. Moreover, since a normal polyimide has a glass transition point of less than 500 ° C., and deterioration starts at higher temperature, the glass transition point may be less than 500 ° C.

ポリイミドとしては、適当な酸無水物とジアミンから合成されるポリアミック酸をイミド化することにより作られたものでよい。例えば、下記に示すような一般に市販されているポイミドフィルムを使用することも可能であり、
鐘淵化学工業社製 商品名:アピカル
東レ・デュポン社製 商品名:カプトン
宇部興産社製 商品名:ユーピレックス
等を挙げることができる。
The polyimide may be made by imidizing a polyamic acid synthesized from a suitable acid anhydride and diamine. For example, it is also possible to use a commercially available poimide film as shown below,
Product name: Apical Toray DuPont, Inc. Product name: Kapton Ube Industries, Ltd. Product name: Upilex and the like can be mentioned.

なお、本発明のポリイミド層製造時に使用される酸無水物としては、テトラカルボン酸無水物並びにその誘導体等が挙げられる。なお、ここではテトラカルボン酸として例示するが、これらのエステル化物、酸無水物、酸塩化物も勿論使用できる。即ち、テトラカルボン酸としては、ピロメリット酸、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸、2,3,3’,4’−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,3’,4,4’−ジフェニルメタンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10−テトラカルボキシペリレン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸等が挙げられ、またトリメリット酸及びその誘導体等も挙げられる。
更に、反応性官能基を有する化合物で変成し、架橋構造やラダー構造を導入することもできる。
In addition, tetracarboxylic acid anhydride and its derivative are mentioned as an acid anhydride used at the time of manufacture of the polyimide layer of this invention. In addition, although illustrated as tetracarboxylic acid here, these esterified products, acid anhydrides, and acid chlorides can of course be used. That is, as the tetracarboxylic acid, pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3,3 ′, 4,4 '-Diphenylsulfone tetracarboxylic acid, 3,3', 4,4'-diphenyl ether tetracarboxylic acid, 2,3,3 ', 4'-benzophenone tetracarboxylic acid, 2,3,6,7-naphthalene tetracarboxylic acid 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-Dicarboxyphenyl) hexafluoropropane, 3,4,9,10-tetracarboxyperylene, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] Lopan, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane, butanetetracarboxylic acid, cyclopentanetetracarboxylic acid and the like, and trimellitic acid and its derivatives are also mentioned. It is done.
Furthermore, it can be modified with a compound having a reactive functional group to introduce a crosslinked structure or a ladder structure.

また、本発明のポリイミド層製造時に使用されるジアミンとしては、p−フェニレンジアミン、m−フェニレンジアミン、2’−メトキシ−4,4’−ジアミノベンズアニリド、4,4’−ジアミノジフェニルエ−テル、ジアミノトルエン、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、1,2−ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエード、ジアミノジフェニルスルフィド、2,2−ビス(p−アミノフェニル)プロパン、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,5−ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4’−(p−アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4’−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロプロパン、1,5−ビス(アニリノ)デカフルオロプロパン、1,7−ビス(アニリノ)テトラデカフルオロプロパン、2,2−ビス〔4−(p−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(2−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)−3,5−ジメチルフェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)−3,5−ジトリフルオロメチルフェニル〕ヘキサフルオロプロパン、p−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、4,4’−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ビフェニル、4,4’−ビス(4−アミノ−3−トリフルオロメチルフェノキシ)ビフェニル、4,4’−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’−ビス(4−アミノ−5−トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2−ビス〔4−(4−アミノ−3−トリフルオロメチルフェノキシ)フェニル〕ヘキサフルオロプロパン、ベンジジン、3,3’,5,5’−テトラメチルベンジジン、オクタフルオロベンジジン、3,3’−メトキシベンジジン、o−トリジン、m−トリジン、2,2’,5,5’,6,6’−ヘキサフルオロトリジン、4,4’’−ジアミノターフェニル、4,4’’’−ジアミノクォーターフェニル等のジアミン類、並びにこれらのジアミンとホスゲン等の反応によって得られるジイソシアネート類、更にジアミノシロキサン類等が挙げられる。   Examples of the diamine used in the production of the polyimide layer of the present invention include p-phenylenediamine, m-phenylenediamine, 2′-methoxy-4,4′-diaminobenzanilide, 4,4′-diaminodiphenyl ether. , Diaminotoluene, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis (anilino) ethane, diaminodiphenylsulfone, diaminobenzanilide, diaminobenzoate, diaminodiphenyl sulfide, 2,2-bis (p-aminophenyl) propane, 2 , 2-bis (p-aminophenyl) hexafluoropropane, 1 5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluoride, 1,4-bis (p-aminophenoxy) benzene, 4,4 ′-(p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4′-bis (3 -Aminophenoxyphenyl) diphenylsulfone, 1,3-bis (anilino) hexafluoropropane, 1,4-bis (anilino) octafluoropropane, 1,5-bis (anilino) decafluoropropane, 1,7-bis ( Anilino) tetradecafluoropropane, 2,2-bis [4- (p-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (3-aminophenoxy) phenyl] hexafluoropropane, 2,2 -Bis [4- (2-aminophenoxy) phenyl] hexaful Ropropane, 2,2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) -3,5-ditrifluoromethyl Phenyl] hexafluoropropane, p-bis (4-amino-2-trifluoromethylphenoxy) benzene, 4,4′-bis (4-amino-2-trifluoromethylphenoxy) biphenyl, 4,4′-bis ( 4-amino-3-trifluoromethylphenoxy) biphenyl, 4,4′-bis (4-amino-2-trifluoromethylphenoxy) diphenyl sulfone, 4,4′-bis (4-amino-5-trifluoromethyl) Phenoxy) diphenylsulfone, 2,2-bis [4- (4-amino-3-trifluoromethylphenoxy) phenyl] Hexafluoropropane, benzidine, 3,3 ′, 5,5′-tetramethylbenzidine, octafluorobenzidine, 3,3′-methoxybenzidine, o-tolidine, m-tolidine, 2,2 ′, 5,5 ′, Diamines such as 6,6′-hexafluorotolidine, 4,4 ″ -diaminoterphenyl, 4,4 ′ ″-diaminoquaterphenyl, and diisocyanates obtained by reaction of these diamines with phosgene, And diaminosiloxanes.

更に前記化合物等を用いて共重合あるいは得られたポリイミド系前駆体をブレンドして使用することも可能である。また種々の特性改良を目的として無機質、有機質又は金属等の粉末、繊維などを混合して使用することもできる。また導体の酸化を防ぐ目的で酸化防止剤等の添加剤、あるいは接着性の向上を目的としてシランカップリング剤を加えることも可能である。また、接着性の向上等を目的として異種のポリマーをブレンドすることも可能である。   Furthermore, it is also possible to blend and use a polyimide precursor copolymerized or obtained by using the above compound or the like. In addition, inorganic, organic or metal powders, fibers and the like can be mixed for the purpose of improving various properties. It is also possible to add an additive such as an antioxidant for the purpose of preventing the conductor from oxidizing, or a silane coupling agent for the purpose of improving the adhesiveness. It is also possible to blend different types of polymers for the purpose of improving adhesiveness.

また、本発明では、熱可塑性樹脂層と両側のポリイミド層の厚みが、それぞれポリイミド層/熱可塑性樹脂層/ポリイミド層=1.0/0.1〜1.0/1.0、特に1.0/0.3〜1.0/1.0の比率であることが好ましい。これはこの比率の範囲では全体に占めるポリイミド層の割合が大きいため、寸法安定性や取扱い性が厚物ポリイミドフィルムと同等であり、補強板としての設計の自由度が高い。また、逆に熱可塑性樹脂層と両側のポリイミド層の厚みがそれぞれポリイミド層/熱可塑性樹脂層/ポリイミド層=0.1〜1.0/1.0/0.1〜1.0、特に0.1〜0.6/1.0/0.1〜0.6の比率であることも好ましい。これは全体に占める熱可塑性樹脂層の比率が高いために結果的に高価なポリイミド層の使用量が押さえられ、コストが低下する。   In the present invention, the thicknesses of the thermoplastic resin layer and the polyimide layers on both sides are polyimide layer / thermoplastic resin layer / polyimide layer = 1.0 / 0.1 to 1.0 / 1.0, respectively. The ratio is preferably 0 / 0.3 to 1.0 / 1.0. Since the ratio of the polyimide layer occupying the whole is large within the range of this ratio, the dimensional stability and handleability are equivalent to those of the thick polyimide film, and the degree of freedom of design as a reinforcing plate is high. Conversely, the thicknesses of the thermoplastic resin layer and the polyimide layers on both sides are respectively polyimide layer / thermoplastic resin layer / polyimide layer = 0.1 to 1.0 / 1.0 / 0.1 to 1.0, particularly 0. It is also preferable that the ratio is 1 to 0.6 / 1.0 / 0.1 to 0.6. This is because the ratio of the thermoplastic resin layer in the whole is high, and as a result, the amount of the expensive polyimide layer used is suppressed and the cost is reduced.

本発明においては、ポリイミド層と熱可塑性樹脂層の全体の厚みが75μm〜500μm、特に125μm〜300μmであることが好ましい。厚みが75μm未満では補強板として利用することができないし、仮に薄物の補強板用途があったとしても、ポリイミド単一フィルムの方が安くなり、3層構造にするメリットがない。逆に厚みが500μmを超えるようだと補強板としての用途も限定されてしまう。   In the present invention, the total thickness of the polyimide layer and the thermoplastic resin layer is preferably 75 μm to 500 μm, particularly preferably 125 μm to 300 μm. If the thickness is less than 75 μm, it cannot be used as a reinforcing plate, and even if it is used for a thin reinforcing plate, a single polyimide film is cheaper and there is no merit of a three-layer structure. On the other hand, if the thickness exceeds 500 μm, the use as a reinforcing plate is also limited.

本発明では、熱可塑性樹脂層とポリイミド層の3層構造の作り方は特に限定されないが、例えば、ポリイミドと熱可塑性樹脂をそれぞれフィルム状に成形し、加熱圧着することが簡便な方法として挙げられる。加熱圧着の方法は既に知られている一般的な方法でよく、例えば、いわゆる単板プレス機で張り合わせる方法や、ロールではさみラミネートするロールラミネート方法や、ダブルベルトプレス法といわれる方法を用いることができる。   In the present invention, the method for producing a three-layer structure of a thermoplastic resin layer and a polyimide layer is not particularly limited. For example, a simple method is to form a polyimide and a thermoplastic resin into a film and then heat-press. The method of thermocompression bonding may be a known general method. For example, a method of bonding with a so-called single plate press, a roll laminating method for laminating with a roll, or a method called a double belt press method is used. Can do.

また、加熱圧着条件としては、張り合わせる装置により得られる剥離強度等の測定を行いながら調整すればよいが、一般的な加熱温度は用いられる熱可塑性樹脂層のガラス転移点以上の温度であればよく、好ましくは200℃以上、更に好ましくは250℃以上400℃以下である。また、加熱圧着の圧力は、面圧力で10〜100kgf/cm2、特に10〜60kgf/cm2、線圧力で2〜50kgf/cm、特に10〜40kgf/cmが好ましい。 The thermocompression bonding conditions may be adjusted while measuring the peel strength obtained by the laminating apparatus, but the general heating temperature is not less than the glass transition point of the thermoplastic resin layer used. It is preferably 200 ° C. or higher, more preferably 250 ° C. or higher and 400 ° C. or lower. Moreover, the pressure of thermocompression bonding is preferably 10 to 100 kgf / cm 2 , particularly 10 to 60 kgf / cm 2 in terms of surface pressure, and 2 to 50 kgf / cm and particularly 10 to 40 kgf / cm in terms of linear pressure.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
市販のポリフェニレンサルファイドフィルム:PPS(東レ製、商品名:トレリナ、厚み50μm)の両側に、市販のポリイミドフィルム(宇部興産製、商品名:ユーピレックスS、厚み50μm)を単板プレス機(ショージ社製)にて加熱温度330℃、圧力30kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Example 1]
Commercially available polyphenylene sulfide film: PPS (manufactured by Toray, trade name: Torelina, thickness 50 μm) on both sides, a commercially available polyimide film (Ube Industries, trade name: Upilex S, thickness 50 μm) is a single plate press (manufactured by Shoji) ) At a heating temperature of 330 ° C. and a pressure of 30 kgf / cm 2 . The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[実施例2]
中心のポリフェニレンサルファイドフィルムの厚みを25μm、両側のポリイミドフィルムの厚みを75μmにした以外は実施例1と同様に作製し、測定した。
[Example 2]
It was prepared and measured in the same manner as in Example 1 except that the thickness of the central polyphenylene sulfide film was 25 μm and the thickness of the polyimide films on both sides was 75 μm.

[実施例3]
市販のポリエステル系液晶ポリマーフィルム:LCP(住友化学製、商品名:エスペックス、厚み25μm)の両側に、市販のポリイミドフィルム(宇部興産製、商品名:ユーピレックスS、厚み75μm)を単板プレス機(ショージ社製)にて加熱温度250℃、圧力15kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Example 3]
Commercially available polyester-based liquid crystal polymer film: LCP (manufactured by Sumitomo Chemical Co., Ltd., trade name: ESPEX, thickness 25 μm) on both sides, a commercially available polyimide film (Ube Industries, trade name: Upilex S, thickness 75 μm) is a single plate press (Manufactured by Shoji Co., Ltd.) and bonded at a heating temperature of 250 ° C. and pressure of 15 kgf / cm 2 . The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[実施例4]
市販のポリカーボネート:PC(三菱エンジニアリングプラスチック製)を押し出し成形して25μm厚みのフィルム状にした。その両側に市販のポリイミドフィルム(宇部興産製、商品名:ユーピレックスS、厚み75μm)を単板プレス機(ショージ社製)にて加熱温度250℃、圧力15kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Example 4]
Commercial polycarbonate: PC (manufactured by Mitsubishi Engineering Plastics) was extruded to form a film having a thickness of 25 μm. On both sides, a commercially available polyimide film (manufactured by Ube Industries, trade name: Upilex S, thickness 75 μm) was laminated with a single plate press (manufactured by Shoji) at a heating temperature of 250 ° C. and a pressure of 15 kgf / cm 2 . The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[実施例5]
市販のポリエーテルイミドフィルム:PEI(三菱樹脂製、商品名:スペリオ、厚み25μm)の両側に、ポリイミドフィルム(宇部興産製、商品名:ユーピレックスS、厚み75μm)を単板プレス機(ショージ社製)にて加熱温度280℃、圧力30kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Example 5]
Commercially available polyetherimide film: Polyimide film (Ube Industries, trade name: Upilex S, thickness 75 μm) on both sides of PEI (Mitsubishi Resin, trade name: Superior, thickness 25 μm), single plate press (manufactured by Shoji) ) At a heating temperature of 280 ° C. and a pressure of 30 kgf / cm 2 . The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[実施例6]
市販のポリエーテルイミドフィルム(三菱樹脂製、商品名:スペリオ、厚み25μm)の両側に、ポリイミドフィルム(カネカ製、商品名:アピカルNPI、厚み75μm)を単板プレス機(ショージ社製)にて加熱温度280℃、圧力30kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Example 6]
A polyimide film (manufactured by Kaneka, product name: Apical NPI, thickness 75 μm) is placed on both sides of a commercially available polyetherimide film (Mitsubishi Resin, product name: Superior, thickness 25 μm) with a single plate press (manufactured by Shoji). Bonding was performed at a heating temperature of 280 ° C. and a pressure of 30 kgf / cm 2 . The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[実施例7]
市販のポリエーテルイミドフィルム(三菱樹脂製、商品名:スペリオ、厚み100μm)の両側に、ポリイミドフィルム(カネカ製、商品名:アピカルNPI、厚み50μm)を単板プレス機(ショージ社製)にて加熱温度280℃、圧力30kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Example 7]
A polyimide film (manufactured by Kaneka, product name: Apical NPI, thickness 50 μm) is placed on both sides of a commercially available polyetherimide film (Mitsubishi Resin, product name: Superior, thickness 100 μm) with a single plate press (manufactured by Shoji). Bonding was performed at a heating temperature of 280 ° C. and a pressure of 30 kgf / cm 2 . The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[実施例8]
市販のポリエーテルイミドフィルム(三菱樹脂製、商品名:スペリオ、厚み150μm)の両側に、ポリイミドフィルム(カネカ製、商品名:アピカルNPI、厚み50μm)をロールラミネート機(西村マシナリー製)にて加熱温度320℃、圧力20kgf/cmで張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Example 8]
A polyimide film (manufactured by Kaneka, product name: Apical NPI, thickness 50 μm) is heated on both sides of a commercially available polyetherimide film (Mitsubishi Resin, product name: Superior, thickness 150 μm) with a roll laminator (manufactured by Nishimura Machinery). Bonding was performed at a temperature of 320 ° C. and a pressure of 20 kgf / cm. The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[実施例9]
市販のポリエーテルイミドフィルム(三菱樹脂製、商品名:スペリオ、厚み150μm)の両側に、ポリイミドフィルム(カネカ製、商品名:アピカルNPI、厚み25μm)をロールラミネート機(西村マシナリー製)にて加熱温度320℃、圧力20kgf/cmで張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Example 9]
A polyimide film (manufactured by Kaneka, product name: Apical NPI, thickness 25 μm) is heated on both sides of a commercially available polyetherimide film (Mitsubishi Resin, product name: Superior, thickness 150 μm) with a roll laminator (manufactured by Nishimura Machinery). Bonding was performed at a temperature of 320 ° C. and a pressure of 20 kgf / cm. The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[比較例1]
ポリ塩化ビニル(信越化学製、商品名:信越PVC)をカレンダにてフィルム(厚み:25μm)に成形した。その両側にポリイミドフィルム(宇部興産製、商品名:ユーピレックスS、厚み75μm)を単板プレス機(ショージ社製)にて加熱温度220℃、圧力20kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Comparative Example 1]
Polyvinyl chloride (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: Shin-Etsu PVC) was formed into a film (thickness: 25 μm) with a calendar. A polyimide film (Ube Industries, trade name: Upilex S, thickness 75 μm) was bonded to both sides thereof at a heating temperature of 220 ° C. and a pressure of 20 kgf / cm 2 with a single plate press (manufactured by Shoji). The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[比較例2]
市販のポリスチレンフィルム(旭化成製、商品名:OPSフィルム、厚み25μm)の両側にポリイミドフィルム(宇部興産製、商品名:ユーピレックスS、厚み75μm)を単板プレス機(ショージ社製)にて加熱温度220℃、圧力20kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Comparative Example 2]
A polyimide film (Ube Industries, trade name: Upilex S, thickness 75 μm) is heated on both sides of a commercially available polystyrene film (product name: Asahi Kasei, trade name: OPS film, thickness 25 μm) with a single plate press (manufactured by Shoji). Bonding was performed at 220 ° C. and a pressure of 20 kgf / cm 2 . The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[比較例3]
市販のポリイミド樹脂:TPI(丸善石油化学製、商品名:PI−213)をキャスト法にてフィルム厚み50μmに成形した。そのフィルムを両側にして、中心には市販のポリフェニレンサルファイドフィルム:PPS(東レ製、商品名:トレリナ、厚み50μm)を単板プレス機(ショージ社製)にて加熱温度330℃、圧力30kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Comparative Example 3]
Commercially available polyimide resin: TPI (manufactured by Maruzen Petrochemical, trade name: PI-213) was formed into a film thickness of 50 μm by a casting method. With the film on both sides, a commercially available polyphenylene sulfide film: PPS (manufactured by Toray, trade name: Torelina, thickness 50 μm) is heated at 330 ° C. and pressure 30 kgf / cm with a single plate press (manufactured by Shoji). The two were laminated together. The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

[比較例4]
市販のポリアミドイミド樹脂:PAI(東洋紡製、商品名:バイロン)をキャスト法にてフィルム厚み50μmに成形した。そのフィルムを両側にして、中心には市販のポリフェニレンサルファイドフィルム:PPS(東レ製、商品名:トレリナ、厚み50μm)を単板プレス機(ショージ社製)にて加熱温度330℃、圧力30kgf/cm2で張り合わせた。得られたポリイミド基板のガラス転移点、加熱変形テスト1、加熱変形テスト2を下記方法により測定した。
[Comparative Example 4]
A commercially available polyamide-imide resin: PAI (manufactured by Toyobo, trade name: Byron) was formed into a film thickness of 50 μm by a casting method. With the film on both sides, a commercially available polyphenylene sulfide film: PPS (manufactured by Toray, trade name: Torelina, thickness 50 μm) is heated at 330 ° C. and pressure 30 kgf / cm with a single plate press (manufactured by Shoji). The two were laminated together. The glass transition point, heating deformation test 1 and heating deformation test 2 of the obtained polyimide substrate were measured by the following methods.

《ガラス点移転点の測定》
中心に使用したフィルムを熱分析計(レオメトリックサイエンス社製:分析装置名 RSA−III)を用いて測定して、ガラス点移転点を測定した。
<Measurement of glass point transfer point>
The film used at the center was measured using a thermal analyzer (manufactured by Rheometric Science Co., Ltd .: analyzer name RSA-III), and the glass point transfer point was measured.

《加熱変形テスト1》
得られたポリイミド基板を10cm×10cmの試験片にカットし、260℃,1分加熱処理して室温にて冷却し、カール状況を測定した。平らな机の上で4箇所の角部が机からどれだけ浮いているかを測定し、下記基準にて評価した。
4箇所の平均が10mm以上の場合 :×
4箇所の平均が3mm以上〜10mm未満の場合:○
4箇所の平均が3mm未満の場合 :◎
<< Heat deformation test 1 >>
The obtained polyimide substrate was cut into a 10 cm × 10 cm test piece, heated at 260 ° C. for 1 minute, cooled at room temperature, and the curl state was measured. The amount of the four corners floating from the desk was measured on a flat desk and evaluated according to the following criteria.
When the average of four locations is 10 mm or more: ×
When the average of 4 locations is 3 mm or more and less than 10 mm: ○
When the average of 4 locations is less than 3 mm: ◎

《加熱変形テスト2》
得られたポリイミド基板を10cm×10cmの試験片にカットし、350℃の熱板を10秒押し付けて押し付け箇所の変形を観察し、下記基準にて評価した。
変形有り:×
変形なし:○
<< Heat deformation test 2 >>
The obtained polyimide substrate was cut into a 10 cm × 10 cm test piece, a hot plate at 350 ° C. was pressed for 10 seconds, the deformation of the pressed portion was observed, and the following criteria were evaluated.
With deformation: ×
No deformation: ○

Figure 2007062072
Figure 2007062072

Figure 2007062072
Figure 2007062072

Claims (7)

ガラス転移点が150℃以上である熱可塑性樹脂層の両側にそれぞれガラス転移点が350℃以上であるポリイミド層を有するポリイミド基板。   A polyimide substrate having a polyimide layer having a glass transition point of 350 ° C. or higher on each side of a thermoplastic resin layer having a glass transition point of 150 ° C. or higher. 熱可塑性樹脂層が、ガラス転移点200℃以上であることを特徴とする請求項1記載のポリイミド基板。   The polyimide substrate according to claim 1, wherein the thermoplastic resin layer has a glass transition point of 200 ° C. or higher. 熱可塑性樹脂層が、ポリアミドイミド、ポリエーテルイミド、ポリエーテルサルフォン又はポリフェニレンサルファイドであることを特徴とする請求項1又は2記載のポリイミド基板。   The polyimide substrate according to claim 1 or 2, wherein the thermoplastic resin layer is polyamideimide, polyetherimide, polyethersulfone, or polyphenylene sulfide. 熱可塑性樹脂層と両側のポリイミド層の厚みが、それぞれポリイミド層/熱可塑性樹脂層/ポリイミド層=1.0/0.1〜1.0/1.0であることを特徴とする請求項1乃至3のいずれか1項に記載のポリイミド基板。   The thicknesses of the thermoplastic resin layer and the polyimide layers on both sides are polyimide layer / thermoplastic resin layer / polyimide layer = 1.0 / 0.1 to 1.0 / 1.0, respectively. 4. The polyimide substrate according to any one of items 1 to 3. 熱可塑性樹脂層と両側のポリイミド層の厚みが、それぞれポリイミド層/熱可塑性樹脂層/ポリイミド層=0.1〜1.0/1.0/0.1〜1.0であることを特徴とする請求項1乃至3のいずれか1項に記載のポリイミド基板。   The thicknesses of the thermoplastic resin layer and the polyimide layers on both sides are polyimide layer / thermoplastic resin layer / polyimide layer = 0.1 to 1.0 / 1.0 / 0.1 to 1.0, respectively. The polyimide substrate according to any one of claims 1 to 3. 全体の厚さが75μm〜500μmの範囲であることを特徴とする請求項1乃至5のいずれか1項に記載のポリイミド基板。   The polyimide substrate according to any one of claims 1 to 5, wherein the entire thickness is in the range of 75 µm to 500 µm. ガラス転移点が150℃以上である熱可塑性樹脂とガラス転移点が350℃以上であるポリイミドをそれぞれフィルム状に成形し、熱可塑性樹脂フィルムの両側にポリイミドフィルムを熱可塑性樹脂のガラス転移点以上の温度で加熱圧着して張り合わせることを特徴とするポリイミド基板の製造方法。
A thermoplastic resin having a glass transition point of 150 ° C. or higher and a polyimide having a glass transition point of 350 ° C. or higher are each formed into a film shape, and the polyimide film is formed on both sides of the thermoplastic resin film at a temperature equal to or higher than the glass transition point of the thermoplastic resin. A method for producing a polyimide substrate, characterized by being bonded by thermocompression bonding at a temperature.
JP2005249034A 2005-08-30 2005-08-30 Polyimide substrate and manufacturing method thereof Expired - Fee Related JP4458275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249034A JP4458275B2 (en) 2005-08-30 2005-08-30 Polyimide substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249034A JP4458275B2 (en) 2005-08-30 2005-08-30 Polyimide substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007062072A true JP2007062072A (en) 2007-03-15
JP4458275B2 JP4458275B2 (en) 2010-04-28

Family

ID=37924853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249034A Expired - Fee Related JP4458275B2 (en) 2005-08-30 2005-08-30 Polyimide substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4458275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006149A (en) * 2010-06-22 2012-01-12 Toyobo Co Ltd Polyimide board, metal-laminated polyimide board, and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006149A (en) * 2010-06-22 2012-01-12 Toyobo Co Ltd Polyimide board, metal-laminated polyimide board, and printed wiring board

Also Published As

Publication number Publication date
JP4458275B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JPWO2008004496A1 (en) Thermoplastic polyimide, laminated polyimide film using the same, and metal foil laminated polyimide film
TW200806467A (en) Flexible laminate having thermoplastic polyimide layer and method for manufacturing the same
JP5524475B2 (en) Two-layer double-sided flexible metal laminate and its manufacturing method
KR20180022827A (en) METHOD AND APPARATUS FOR MANUFACTURING SINGLE-SIDED METAL LAM
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2008006818A (en) Multilayer laminate substrate useful for electronic application
JP2002316386A (en) Copper-clad laminate and its production method
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP2005144816A (en) Flexible metal laminate
JP6713825B2 (en) Method for producing single-sided metal-clad laminate and method for producing double-sided metal-clad laminate
JP2783389B2 (en) Method of manufacturing flexible metal foil laminate
KR20050053500A (en) Preparation of flexible metal foil/polyimide laminate
JP4917745B2 (en) High frequency substrate and manufacturing method thereof
US20080268266A1 (en) Polyimide Metal Laminate and Suspension for Hard Disk Using Same
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP4458275B2 (en) Polyimide substrate and manufacturing method thereof
JP4692758B2 (en) Flexible laminate and method for manufacturing the same
JP4389338B2 (en) Manufacturing method of flexible metal foil laminate
KR101690058B1 (en) Thermoplastic polyimide adhesive film with excellent slip property and flexible laminated plate including the same
JP2007242851A (en) Multilayer board with built-in components
JP2006281517A (en) Manufacturing method of flexible copper clad laminated sheet
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
JP2008272958A (en) Method for producing single-sided metal clad laminate
JP2006116738A (en) Adhesive laminated film
JP2006245286A (en) Flexible printed circuit board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070621

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100120

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees