JP2007059632A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2007059632A
JP2007059632A JP2005243337A JP2005243337A JP2007059632A JP 2007059632 A JP2007059632 A JP 2007059632A JP 2005243337 A JP2005243337 A JP 2005243337A JP 2005243337 A JP2005243337 A JP 2005243337A JP 2007059632 A JP2007059632 A JP 2007059632A
Authority
JP
Japan
Prior art keywords
region
trench
semiconductor region
semiconductor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005243337A
Other languages
Japanese (ja)
Other versions
JP4992211B2 (en
Inventor
Ryoji Takahashi
良治 高橋
Arata Shiomi
新 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2005243337A priority Critical patent/JP4992211B2/en
Publication of JP2007059632A publication Critical patent/JP2007059632A/en
Application granted granted Critical
Publication of JP4992211B2 publication Critical patent/JP4992211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having a good operating voltage and a sufficient avalanche resistance, and also to provide its manufacturing method. <P>SOLUTION: A mask is formed at least on the bottom face of a trench 25 formed in the semiconductor substrate 20 of the semiconductor device 10. By diffusing a conductive dopant opposite from that of a dopant diffused in a base region 22 on the side face of the trench 25 via an opening 25a of the trench 25, a channel region 23 is formed having a dopant concentration lower than that in the base region 22. The dopant concentration of only the channel region can be lowered regardless of that in the base region 22, the semiconductor device 10 having a good operating voltage, and a sufficient avalanche resistance can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、トレンチ構造を備える半導体素子とその製造方法に関し、特にトレンチ構造を備える絶縁ゲート型電界効果トランジスタとその製造方法に関する。   The present invention relates to a semiconductor device having a trench structure and a manufacturing method thereof, and more particularly to an insulated gate field effect transistor having a trench structure and a manufacturing method thereof.

従来、セルの高集積化、耐圧性向上、オン抵抗の低減等を図るため、トレンチ構造を備える半導体素子が利用されている。   2. Description of the Related Art Conventionally, a semiconductor element having a trench structure has been used in order to achieve high cell integration, improved breakdown voltage, reduced on-resistance, and the like.

例えばトレンチ構造を備える絶縁ゲート型トランジスタは、半導体基板の上面に形成されたトレンチ(溝)にゲート絶縁膜を介して、ゲート電極として機能する導体膜が埋設されたゲート構造を備える。そして、半導体基板の上面側に設けられた半導体領域をソース領域、下面側に設けられた半導体領域をドレイン領域とし、ソース領域とドレイン領域との間に形成されたベース領域とを備える。ベース領域のうち、ゲート絶縁膜と接する領域は、ゲート電極に電圧が印加された際、チャネルとして機能する。   For example, an insulated gate transistor having a trench structure has a gate structure in which a conductor film functioning as a gate electrode is buried in a trench (groove) formed on the upper surface of a semiconductor substrate via a gate insulating film. A semiconductor region provided on the upper surface side of the semiconductor substrate is a source region, a semiconductor region provided on the lower surface side is a drain region, and a base region formed between the source region and the drain region is provided. Of the base region, a region in contact with the gate insulating film functions as a channel when a voltage is applied to the gate electrode.

ところで、このような絶縁ゲート型トランジスタの動作電圧を下げるためには、ベース領域のチャネルが形成される領域の不純物濃度を低く形成することが好ましい。しかし、動作電圧を下げるためチャネルが形成される領域のみならずベース領域全体の不純物濃度を低下させると、アバランシェ耐量が低下し、好ましくない。   By the way, in order to lower the operating voltage of such an insulated gate transistor, it is preferable that the impurity concentration of the region where the channel of the base region is formed be low. However, if the impurity concentration not only in the region where the channel is formed but also in the entire base region is lowered in order to lower the operating voltage, the avalanche resistance is lowered, which is not preferable.

そこで、ゲート絶縁膜及びゲート電極を形成する前にトレンチ内に酸化膜を形成し、ベース領域内の不純物を酸化膜内に拡散させることにより、ベース領域のゲート絶縁膜近傍の領域の不純物濃度を低下させる技術が開発されている(例えば特許文献1)。
特開2000−228520号公報
Therefore, before forming the gate insulating film and the gate electrode, an oxide film is formed in the trench, and the impurities in the base region are diffused into the oxide film, so that the impurity concentration in the region near the gate insulating film in the base region is reduced. A technique for reducing the level has been developed (for example, Patent Document 1).
JP 2000-228520 A

ところで、特許文献1に開示された半導体素子の製造方法では、酸化膜がトレンチの底面及び側面に形成される。従って、トレンチ底面に形成されたドレイン領域の不純物までもが酸化膜に吸収され、ドレイン領域の不純物濃度が低下し、耐圧性等が初期設計からずれる問題が生ずる。   Incidentally, in the method of manufacturing a semiconductor element disclosed in Patent Document 1, an oxide film is formed on the bottom and side surfaces of the trench. Therefore, even the impurities in the drain region formed on the bottom surface of the trench are absorbed by the oxide film, the impurity concentration in the drain region is lowered, and the withstand voltage and the like are deviated from the initial design.

また、特許文献1に開示された半導体素子の製造方法では、ベース領域のソース電極と接する領域が抵抗性接触となるよう別工程で不純物を拡散させ、高不純物濃度の領域を形成する必要があるため、製造工程が増加する問題がある。更に、不純物の酸化膜への吸収にばらつきがあると閾値電圧にばらつきが生ずる、ベース領域に拡散された不純物を酸化膜へ拡散させるため、トレンチ側面から深さ方向の不純物濃度の制御が困難である等の問題もある。   In addition, in the method for manufacturing a semiconductor element disclosed in Patent Document 1, it is necessary to form a high impurity concentration region by diffusing impurities in a separate process so that a region in contact with the source electrode in the base region is in a resistive contact. Therefore, there is a problem that the manufacturing process increases. Furthermore, if there is variation in the absorption of impurities into the oxide film, the threshold voltage will vary, and the impurity diffused in the base region is diffused into the oxide film, making it difficult to control the impurity concentration in the depth direction from the trench side. There are some problems.

本発明は上記実情に鑑みてなされたものであって、良好な動作電圧及びアバランシェ耐量を備える半導体素子及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a semiconductor device having a good operating voltage and an avalanche resistance and a method for manufacturing the same.

上記目的を達成するため、本発明の第1の観点にかかる半導体素子の製造方法は、
第1導電型の第1半導体領域と、前記第1半導体領域の上面に形成された第2導電型の第2半導体領域とを備える半導体基体の一方の主面に、前記第2半導体領域から前記第1半導体領域まで延びるようにトレンチを形成するトレンチ形成工程と、
前記半導体基体の一方の主面及び前記トレンチの少なくとも底面を覆うようにマスクを形成するマスク形成工程と、
前記トレンチの開口部を介して前記トレンチの側面の前記マスクが形成されていない領域に、第1導電型の不純物を拡散させる不純物拡散工程と、
前記マスクを除去するマスク除去工程と、
前記トレンチの底面及び側面に絶縁膜を形成する絶縁膜形成工程と、
前記絶縁膜を介して前記トレンチを充填するようにゲート電極を形成するゲート電極形成工程と、から構成されることを特徴とする。
In order to achieve the above object, a method of manufacturing a semiconductor device according to the first aspect of the present invention includes:
One main surface of a semiconductor substrate including a first conductivity type first semiconductor region and a second conductivity type second semiconductor region formed on an upper surface of the first semiconductor region, the second semiconductor region to the main surface Forming a trench so as to extend to the first semiconductor region;
A mask forming step of forming a mask so as to cover one main surface of the semiconductor substrate and at least a bottom surface of the trench;
An impurity diffusion step of diffusing an impurity of a first conductivity type in a region where the mask on the side surface of the trench is not formed through the opening of the trench;
A mask removal step of removing the mask;
An insulating film forming step of forming an insulating film on the bottom and side surfaces of the trench;
A gate electrode forming step of forming a gate electrode so as to fill the trench through the insulating film.

前記マスク形成工程では、前記トレンチを介して露出する前記第1半導体領域を覆うように前記マスクを形成してもよい。   In the mask forming step, the mask may be formed so as to cover the first semiconductor region exposed through the trench.

前記トレンチ形成工程では、開口部をテーパ状に形成してもよい。   In the trench forming step, the opening may be formed in a tapered shape.

前記不純物拡散工程では、イオン注入法により不純物を拡散させてもよい。   In the impurity diffusion step, impurities may be diffused by an ion implantation method.

上記目的を達成するため、本発明の第2の観点にかかる半導体素子は、
第1導電型の第1半導体領域と、前記第1半導体領域の上面に形成された第2導電型の第2半導体領域と、前記第2半導体領域の表面領域に形成された第1導電型の第3半導体領域と、前記半導体基体の一方の主面に前記第3半導体領域から前記第1半導体領域まで延びるように形成されたトレンチと、を備える半導体基体と、
前記トレンチの表面に形成された絶縁膜と、
前記絶縁膜を介し、前記トレンチを充填するように形成されたゲート電極と、
を備え、
更に前記第2半導体領域の前記絶縁膜と接する領域に、前記第2半導体領域よりも不純物濃度が低く形成された第2導電型の第4半導体領域を備え、
前記第1半導体領域の不純物濃度は、前記絶縁膜と接する領域と、その他の領域とでほぼ同じであることを特徴とする。
In order to achieve the above object, a semiconductor element according to the second aspect of the present invention is:
A first conductivity type first semiconductor region; a second conductivity type second semiconductor region formed on an upper surface of the first semiconductor region; and a first conductivity type formed on a surface region of the second semiconductor region. A semiconductor substrate comprising: a third semiconductor region; and a trench formed on one main surface of the semiconductor substrate so as to extend from the third semiconductor region to the first semiconductor region;
An insulating film formed on the surface of the trench;
A gate electrode formed so as to fill the trench through the insulating film;
With
Further, the second semiconductor region includes a second semiconductor region of a second conductivity type formed in a region in contact with the insulating film and having a lower impurity concentration than the second semiconductor region,
The impurity concentration of the first semiconductor region is substantially the same in a region in contact with the insulating film and in other regions.

前記トレンチの開口部はテーパ状に形成されてもよい。   The opening of the trench may be formed in a tapered shape.

本発明によれば、トレンチの少なくとも底面にマスクを形成した上で、トレンチの開口部を介してベース領域の導電型とは逆導電型の不純物をトレンチ表面に注入することにより、良好な動作電圧及びアバランシェ耐量を備える半導体素子及びその製造方法を提供することができる。   According to the present invention, a mask is formed on at least the bottom surface of the trench, and an impurity having a conductivity type opposite to the conductivity type of the base region is implanted into the trench surface through the opening of the trench. And a semiconductor device provided with avalanche tolerance and its manufacturing method can be provided.

本発明の実施の形態に係る半導体素子及びその製造方法について図を用いて説明する。   A semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.

本発明の実施の形態に係る半導体素子10を図1に示す。本発明は半導体素子として絶縁ゲート型電界効果トランジスタを例に挙げて説明する。図1は、半導体素子10の部分断面図である。   A semiconductor device 10 according to an embodiment of the present invention is shown in FIG. The present invention will be described taking an insulated gate field effect transistor as an example of a semiconductor element. FIG. 1 is a partial cross-sectional view of the semiconductor element 10.

半導体素子10は、図1に示すように半導体基体20と、ゲート電極31と、ゲート絶縁膜32と、ソース電極33と、層間絶縁膜34と、ドレイン電極35と、を備える。   As shown in FIG. 1, the semiconductor element 10 includes a semiconductor substrate 20, a gate electrode 31, a gate insulating film 32, a source electrode 33, an interlayer insulating film 34, and a drain electrode 35.

半導体基体20は、図1に示すようにドレイン領域21と、ベース領域22と、チャネル領域23と、ソース領域24と、トレンチ25と、を備える。   As shown in FIG. 1, the semiconductor substrate 20 includes a drain region 21, a base region 22, a channel region 23, a source region 24, and a trench 25.

ドレイン領域21は、例えばリン又はアンチモン(ヒ素)等のN型(第1導電型)の不純物が拡散されたN型半導体領域から構成される。ドレイン領域21の下面に、ドレイン電極35が形成される。またドレイン領域21の不純物濃度は、ゲート絶縁膜32近傍の領域と、それ以外の領域とでほぼ同じに形成される。   The drain region 21 is composed of an N-type semiconductor region in which an N-type (first conductivity type) impurity such as phosphorus or antimony (arsenic) is diffused. A drain electrode 35 is formed on the lower surface of the drain region 21. Further, the impurity concentration of the drain region 21 is formed substantially the same in the region near the gate insulating film 32 and the other regions.

ベース領域22は、例えばボロン等のP型(第2導電型)の不純物が拡散されたP型半導体領域から構成され、ドレイン領域21上に形成される。ベース領域22の不純物濃度は、半導体素子10のアバランシェ耐量を良好に得るため、チャネル領域23の不純物濃度より高く形成される。またベース領域22上にはソース電極33が形成されており、ソース電極33とほぼ同じ電圧がベース領域22に印加される。   The base region 22 is composed of a P-type semiconductor region in which a P-type (second conductivity type) impurity such as boron is diffused, and is formed on the drain region 21. The impurity concentration of the base region 22 is formed higher than the impurity concentration of the channel region 23 in order to obtain a good avalanche resistance of the semiconductor element 10. A source electrode 33 is formed on the base region 22, and substantially the same voltage as the source electrode 33 is applied to the base region 22.

チャネル領域23は、例えばボロン等のP型(第2導電型)の不純物が拡散されたP型半導体領域から構成される。チャネル領域23は、ベース領域22と、ゲート絶縁膜32との間に形成され、チャネル領域23の上面にはソース領域24が形成され、チャネル領域の下面にはドレイン領域21が形成される。また、ゲート電極31に所定電圧が印加されると、チャネル領域23のゲート絶縁膜32近傍にチャネルが形成される。チャネル領域23の不純物濃度は、閾値電圧を低くし、半導体素子10の動作電圧を下げるため、ベース領域22と比較し所定程度低く形成される。   The channel region 23 is composed of a P-type semiconductor region in which a P-type (second conductivity type) impurity such as boron is diffused. The channel region 23 is formed between the base region 22 and the gate insulating film 32, the source region 24 is formed on the upper surface of the channel region 23, and the drain region 21 is formed on the lower surface of the channel region. Further, when a predetermined voltage is applied to the gate electrode 31, a channel is formed near the gate insulating film 32 in the channel region 23. The impurity concentration of the channel region 23 is formed to be lower than the base region 22 by a predetermined amount in order to lower the threshold voltage and lower the operating voltage of the semiconductor element 10.

ソース領域24は、例えばリン等のN型(第1導電型)の不純物が拡散されたN型半導体領域から構成され、ベース領域22及びチャネル領域23の上面に形成される。また、ソース領域24と接するようにソース電極33が形成される。   The source region 24 is composed of an N-type semiconductor region in which an N-type (first conductivity type) impurity such as phosphorus is diffused, and is formed on the upper surfaces of the base region 22 and the channel region 23. A source electrode 33 is formed so as to be in contact with the source region 24.

トレンチ25は、図1に示すように半導体基体20の上主面に形成される。トレンチ25の断面形状は図1に示すように略方形であり、ソース領域24からドレイン領域21まで延びるように形成される。また、トレンチ25の表面にはゲート絶縁膜32が形成されており、さらにゲート絶縁膜32を介してトレンチ25を充填するようにゲート電極31が形成される。   The trench 25 is formed in the upper main surface of the semiconductor substrate 20 as shown in FIG. The cross-sectional shape of the trench 25 is substantially square as shown in FIG. 1 and is formed to extend from the source region 24 to the drain region 21. A gate insulating film 32 is formed on the surface of the trench 25, and a gate electrode 31 is formed so as to fill the trench 25 via the gate insulating film 32.

ゲート電極31は、ボロン、リン等が拡散され導電性の付与されたポリシリコン等から形成され、ゲート絶縁膜32を介してトレンチ25を充填するように形成される。また、ゲート電極31の上面は半導体基体20の上主面とほぼ等しくなるように形成される。なお、ゲート電極31の上面は半導体基体20の上主面から多少下に位置するように形成することも可能である。   The gate electrode 31 is made of polysilicon or the like imparted with conductivity by diffusing boron, phosphorus or the like, and is formed so as to fill the trench 25 through the gate insulating film 32. Further, the upper surface of the gate electrode 31 is formed to be substantially equal to the upper main surface of the semiconductor substrate 20. The upper surface of the gate electrode 31 can be formed to be located slightly below the upper main surface of the semiconductor substrate 20.

ゲート絶縁膜32は、絶縁体、例えばシリコン酸化膜から構成され、トレンチ25の表面に形成される。ゲート絶縁膜32は、所定の閾値電圧を維持できる厚みに形成される。また、ゲート絶縁膜32は、ドレイン領域21の不純物濃度に影響を与えない厚みに形成される。   The gate insulating film 32 is made of an insulator, such as a silicon oxide film, and is formed on the surface of the trench 25. The gate insulating film 32 is formed to a thickness that can maintain a predetermined threshold voltage. The gate insulating film 32 is formed to a thickness that does not affect the impurity concentration of the drain region 21.

ソース電極33は、導電体、例えばアルミニウム(Al)等から形成される。また、ソース電極33は、ソースコンタクト孔34aを介してソース領域24と接し、且つ層間絶縁膜34を覆うように形成される。なお、ソース電極33は、ソース領域24だけでなくベース領域22を覆うように形成される。このようにソース電極33をベース領域22を覆うように形成することで、ベース領域22にソース領域24とほぼ同じ電圧を印加することができる。   The source electrode 33 is made of a conductor, such as aluminum (Al). The source electrode 33 is formed so as to be in contact with the source region 24 through the source contact hole 34 a and cover the interlayer insulating film 34. The source electrode 33 is formed so as to cover not only the source region 24 but also the base region 22. Thus, by forming the source electrode 33 so as to cover the base region 22, substantially the same voltage as that of the source region 24 can be applied to the base region 22.

層間絶縁膜34は、絶縁体、例えばNSG(nondoped silicate glass )、BPSG(boron phosphor silicate glass)等から構成され、ゲート電極31とソース電極33との間に形成され、両者を電気的に絶縁する。また、層間絶縁膜34のソース電極33に対応する領域には、ソースコンタクト孔34aが形成される。   The interlayer insulating film 34 is made of an insulator, for example, NSG (nondoped silicate glass), BPSG (boron phosphor silicate glass), etc., and is formed between the gate electrode 31 and the source electrode 33 to electrically insulate them. . A source contact hole 34 a is formed in a region corresponding to the source electrode 33 of the interlayer insulating film 34.

ドレイン電極35は、例えばアルミニウム(Al)等からなる金属多層膜等から構成され、半導体基体20の下主面に形成される。   The drain electrode 35 is made of, for example, a metal multilayer film made of aluminum (Al) or the like, and is formed on the lower main surface of the semiconductor substrate 20.

以上の構成を採る半導体素子10は、ゲート絶縁膜32と接する領域に不純物濃度の低いチャネル領域23を備えることによって、閾値電圧を低くすることができ、半導体素子10の動作電圧を下げることが可能となる。また、ベース領域22の不純物濃度が高く保たれるため、半導体素子10は良好なアバランシェ耐量を備える。   In the semiconductor element 10 having the above configuration, the threshold voltage can be lowered and the operating voltage of the semiconductor element 10 can be lowered by providing the channel region 23 with a low impurity concentration in the region in contact with the gate insulating film 32. It becomes. Moreover, since the impurity concentration of the base region 22 is kept high, the semiconductor element 10 has a good avalanche resistance.

次に、本発明の実施の形態に係る半導体素子10の製造方法を図を用いて説明する。なお、以下に記述する方法は一例であり、同様の結果物が得られるのであればこれに限られない。   Next, a method for manufacturing the semiconductor element 10 according to the embodiment of the present invention will be described with reference to the drawings. In addition, the method described below is an example, and if the same result is obtained, it will not be restricted to this.

まず、N型の半導体基板51を用意する。次に半導体基板上51の上主面に、熱拡散法、イオン注入法等によってP型の不純物を拡散させ、図2(a)に示すようにP型半導体領域52を形成する。   First, an N-type semiconductor substrate 51 is prepared. Next, P-type impurities are diffused on the upper main surface of the semiconductor substrate 51 by a thermal diffusion method, an ion implantation method, or the like to form a P-type semiconductor region 52 as shown in FIG.

次にフォトリソグラフィ等により、P型半導体領域52上にレジストパターンを形成し、続いてリアクティブイオンエッチング(Reactive Ion Etching;RIE)法等によって、図2(b)に示すように、P型半導体領域52からN型半導体基板51まで延びるようにトレンチ25を形成する。また、これによりドレイン領域21が形成される。   Next, a resist pattern is formed on the P-type semiconductor region 52 by photolithography or the like, and then, as shown in FIG. 2B by a reactive ion etching (RIE) method or the like, as shown in FIG. Trench 25 is formed to extend from region 52 to N-type semiconductor substrate 51. Thereby, the drain region 21 is formed.

次に、トレンチ25の開口部25aを除くP型半導体領域52上全体にマスク71を形成する。また、トレンチ25の少なくとも底面を覆うように、好ましくはトレンチ25を介して露出するドレイン領域25を覆うようにマスク72を形成する。なお、マスク71及びマスク72は不純物の拡散を良好に防止できるものであればいずれを用いても良く、レジスト、絶縁物等を用いることができる。   Next, a mask 71 is formed on the entire P-type semiconductor region 52 except for the opening 25 a of the trench 25. Further, a mask 72 is formed so as to cover at least the bottom surface of the trench 25 and preferably cover the drain region 25 exposed through the trench 25. Note that any of masks 71 and 72 may be used as long as impurity diffusion can be prevented satisfactorily, and a resist, an insulator, or the like can be used.

次に、図3(d)に示すように、トレンチ25の開口部25aを介して、トレンチ25の側面にP型半導体領域52とは逆導電型であるN型不純物、例えばリン、ヒ素等を所定の深さまでイオン注入する。これによりP型半導体領域53が形成される。 Next, as shown in FIG. 3D, N-type impurities having a conductivity type opposite to that of the P-type semiconductor region 52 such as phosphorus and arsenic are formed on the side surfaces of the trench 25 through the opening 25a of the trench 25. Ions are implanted to a predetermined depth. Thereby, a P type semiconductor region 53 is formed.

次に、P型半導体領域52上に形成されたマスク71及びトレンチ内に形成されたマスク72を除去する。   Next, the mask 71 formed on the P-type semiconductor region 52 and the mask 72 formed in the trench are removed.

次に、P型半導体領域52上にフォトリソグラフィ等により、ソース領域24が形成される領域に対応した開口部を備えるレジストパターン(図示せず)を形成する。続いて、開口部を介しN型不純物をイオン注入法等で拡散させ、ソース領域24を形成する。また、これによりベース領域22が形成される。   Next, a resist pattern (not shown) having an opening corresponding to the region where the source region 24 is formed is formed on the P-type semiconductor region 52 by photolithography or the like. Subsequently, an N-type impurity is diffused by an ion implantation method or the like through the opening to form the source region 24. As a result, the base region 22 is formed.

次に、例えば熱酸化法等により、トレンチ25の表面に所定の厚さを備えるゲート絶縁膜32を形成する。   Next, the gate insulating film 32 having a predetermined thickness is formed on the surface of the trench 25 by, eg, thermal oxidation.

次に、ゲート絶縁膜32が形成されたトレンチ25を充填するように、例えば減圧CVD(Chemical Vapor Deposition)法等によりポリシリコンを堆積させる。ポリシリコンは、トレンチ25を充填し、更にベース領域22の上面を覆うように形成した後、半導体基体20の上主面とほぼ同じ位置までエッチバックする。続いてポリシリコン中に例えばリン、ボロン等を拡散させ、導電性を付与する。これにより図4(e)に示すように、ゲート電極31が形成される。   Next, polysilicon is deposited by, for example, a low pressure CVD (Chemical Vapor Deposition) method so as to fill the trench 25 in which the gate insulating film 32 is formed. The polysilicon fills the trench 25 and further covers the upper surface of the base region 22 and then etches back to substantially the same position as the upper main surface of the semiconductor substrate 20. Subsequently, for example, phosphorus, boron or the like is diffused in the polysilicon to impart conductivity. As a result, the gate electrode 31 is formed as shown in FIG.

続いて、ゲート電極31上に例えば減圧CVD法等により層間絶縁膜34を形成し、フォトリソグラフィ等によってソースコンタクト孔34aに対応する領域に開口部を備えるレジストパターン(図示せず)を形成する。レジストパターンをマスクとし、エッチングを行うことによりソースコンタクト孔34aを形成する。   Subsequently, an interlayer insulating film 34 is formed on the gate electrode 31 by, for example, a low pressure CVD method, and a resist pattern (not shown) having an opening in a region corresponding to the source contact hole 34a is formed by photolithography or the like. The source contact hole 34a is formed by etching using the resist pattern as a mask.

次に、ソースコンタクト孔34aを充填し、更に層間絶縁膜34を覆うように、スパッタ等によって例えばアルミニウム(Al)を堆積させ、ソース電極33を形成する。
また、半導体基体20の下主面にスパッタ等によって、例えばアルミニウム(Al)を堆積させ、ドレイン電極35を形成する。
以上の工程から、半導体素子10が製造される。
Next, for example, aluminum (Al) is deposited by sputtering or the like so as to fill the source contact hole 34 a and further cover the interlayer insulating film 34, thereby forming the source electrode 33.
Further, for example, aluminum (Al) is deposited on the lower main surface of the semiconductor substrate 20 by sputtering or the like to form the drain electrode 35.
From the above steps, the semiconductor element 10 is manufactured.

本実施の形態の半導体素子の製造方法によれば、トレンチ25の少なくとも底面を覆うようにレジスト等からなるマスクを形成した上で、トレンチ25の側面に斜め方向からベース領域22とは逆導電型であるN型不純物を拡散させることによって、不純物濃度の低いチャネル領域23を容易に形成することができる。結果として、閾値電圧を低くすることができ、半導体素子10の動作電圧を低くすることができる。また、ベース領域22の不純物濃度は、チャネル領域23と比較して高く形成されるため、半導体素子10は良好なアバランシェ耐量を備える。   According to the method of manufacturing a semiconductor element of the present embodiment, a mask made of a resist or the like is formed so as to cover at least the bottom surface of the trench 25, and the conductivity type is opposite to the base region 22 from the oblique direction on the side surface of the trench 25. By diffusing the N-type impurity, the channel region 23 having a low impurity concentration can be easily formed. As a result, the threshold voltage can be lowered and the operating voltage of the semiconductor element 10 can be lowered. Further, since the impurity concentration of the base region 22 is higher than that of the channel region 23, the semiconductor element 10 has a good avalanche resistance.

また、本実施の形態の製造方法によれば、ドレイン領域21はマスク72によって覆われるため、チャネル領域23を形成する際に不純物濃度が増加することはない。また、従来技術のようにトレンチと接するN型半導体領域の不純物濃度が低下することがなく、半導体素子10の特性が初期設計からのずれが生ずることがない。また、本実施の形態の製造方法では、チャネル領域23のみの不純物濃度を低下させるため、従来技術と異なり、ソース電極33と接するベース領域22を高濃度に形成する工程が不要となる。また、イオン注入法によってチャネル領域23を形成するため、酸化膜への拡散の程度のばらつきによる閾値電圧のばらつきが生ずることもなく、更にトレンチ側面から深さ方向の不純物濃度を制御することも容易に行うことができる。   Further, according to the manufacturing method of the present embodiment, since the drain region 21 is covered with the mask 72, the impurity concentration does not increase when the channel region 23 is formed. Further, the impurity concentration of the N-type semiconductor region in contact with the trench does not decrease as in the prior art, and the characteristics of the semiconductor element 10 do not deviate from the initial design. Further, in the manufacturing method of the present embodiment, since the impurity concentration of only the channel region 23 is lowered, unlike the conventional technique, the step of forming the base region 22 in contact with the source electrode 33 at a high concentration becomes unnecessary. In addition, since the channel region 23 is formed by the ion implantation method, the threshold voltage does not vary due to the degree of diffusion to the oxide film, and the impurity concentration in the depth direction can be easily controlled from the side surface of the trench. Can be done.

本発明は上述した実施の形態に限られず様々な修正及び応用が可能である。
例えば、上述した実施の形態では、半導体素子10として絶縁ゲート型電界効果トランジスタを例に挙げて説明したがこれに限られず、絶縁ゲート型バイポーラトランジスタであってもよい。
The present invention is not limited to the above-described embodiments, and various modifications and applications are possible.
For example, in the above-described embodiment, the insulated gate field effect transistor has been described as an example of the semiconductor element 10, but the invention is not limited thereto, and an insulated gate bipolar transistor may be used.

また、上述した実施の形態では、溝及び第2の溝の開口部がテーパ状に形成されている場合を例に挙げて説明したが、テーパ状に形成されていなくともよい。しかし、ステップカバレージ(段差被覆性)を良好にするため開口部は面取りされていることが好ましい。   In the above-described embodiment, the case where the openings of the groove and the second groove are formed in a tapered shape has been described as an example. However, the opening may not be formed in a tapered shape. However, the opening is preferably chamfered in order to improve step coverage (step coverage).

また、上述した実施の形態ではN型を第1導電型、P型を第2導電型として説明したが、これを逆としても良い。   In the above-described embodiment, the N-type is described as the first conductivity type, and the P-type is described as the second conductivity type, but this may be reversed.

本発明の実施の形態に係る半導体素子の構成例を示す断面図である。It is sectional drawing which shows the structural example of the semiconductor element which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the semiconductor element which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the semiconductor element which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the semiconductor element which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 半導体素子
20 半導体基体
21 ドレイン領域
22 ベース領域
23 チャネル領域
24 ソース領域
25 トレンチ
31 ゲート電極
32 ゲート絶縁膜
33 ソース電極
34 層間絶縁膜
35 ドレイン電極
DESCRIPTION OF SYMBOLS 10 Semiconductor element 20 Semiconductor base | substrate 21 Drain region 22 Base region 23 Channel region 24 Source region 25 Trench 31 Gate electrode 32 Gate insulating film 33 Source electrode 34 Interlayer insulating film 35 Drain electrode

Claims (4)

第1導電型の第1半導体領域と、前記第1半導体領域の上面に形成された第2導電型の第2半導体領域とを備える半導体基体の一方の主面に、前記第2半導体領域から前記第1半導体領域まで延びるようにトレンチを形成するトレンチ形成工程と、
前記半導体基体の一方の主面及び前記トレンチの少なくとも底面を覆うようにマスクを形成するマスク形成工程と、
前記トレンチの開口部を介して前記トレンチの側面の前記マスクが形成されていない領域に、第1導電型の不純物を拡散させる不純物拡散工程と、
前記マスクを除去するマスク除去工程と、
前記トレンチの底面及び側面に絶縁膜を形成する絶縁膜形成工程と、
前記絶縁膜を介して前記トレンチを充填するようにゲート電極を形成するゲート電極形成工程と、から構成されることを特徴とする半導体素子の製造方法。
One main surface of a semiconductor substrate including a first semiconductor region of a first conductivity type and a second semiconductor region of a second conductivity type formed on an upper surface of the first semiconductor region, the second semiconductor region to the main surface Forming a trench so as to extend to the first semiconductor region;
A mask forming step of forming a mask so as to cover one main surface of the semiconductor substrate and at least a bottom surface of the trench;
An impurity diffusion step of diffusing an impurity of the first conductivity type in a region where the mask on the side surface of the trench is not formed through the opening of the trench;
A mask removal step of removing the mask;
An insulating film forming step of forming an insulating film on the bottom and side surfaces of the trench;
And a gate electrode forming step of forming a gate electrode so as to fill the trench through the insulating film.
前記マスク形成工程では、前記トレンチを介して露出する前記第1半導体領域を覆うように前記マスクを形成することを特徴とする請求項1に記載の半導体素子の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein, in the mask forming step, the mask is formed so as to cover the first semiconductor region exposed through the trench. 前記不純物拡散工程では、イオン注入法により不純物を拡散させることを特徴とする請求項1乃至3のいずれか1項に記載の半導体素子の製造方法。   4. The method of manufacturing a semiconductor device according to claim 1, wherein, in the impurity diffusion step, impurities are diffused by an ion implantation method. 5. 第1導電型の第1半導体領域と、前記第1半導体領域の上面に形成された第2導電型の第2半導体領域と、前記第2半導体領域の表面領域に形成された第1導電型の第3半導体領域と、を備える半導体基体と、
前記半導体基体の一方の主面に前記第3半導体領域から前記第1半導体領域まで延びるように形成されたトレンチと、
前記トレンチの表面に形成された絶縁膜と、
前記絶縁膜を介し、前記トレンチを充填するように形成されたゲート電極と、を備え、
更に前記第2半導体領域の前記絶縁膜と接する領域に、前記第2半導体領域よりも不純物濃度が低く形成された第2導電型の第4半導体領域を備え、
前記第1半導体領域の不純物濃度は、前記絶縁膜と接する領域と、その他の領域とでほぼ同じであることを特徴とする半導体素子。
A first conductivity type first semiconductor region; a second conductivity type second semiconductor region formed on an upper surface of the first semiconductor region; and a first conductivity type formed on a surface region of the second semiconductor region. A semiconductor substrate comprising: a third semiconductor region;
A trench formed on one main surface of the semiconductor substrate so as to extend from the third semiconductor region to the first semiconductor region;
An insulating film formed on the surface of the trench;
A gate electrode formed so as to fill the trench through the insulating film,
Further, the second semiconductor region includes a second semiconductor region of a second conductivity type formed in a region in contact with the insulating film and having a lower impurity concentration than the second semiconductor region,
An impurity concentration of the first semiconductor region is substantially the same in a region in contact with the insulating film and in other regions.
JP2005243337A 2005-08-24 2005-08-24 Manufacturing method of semiconductor device Expired - Fee Related JP4992211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005243337A JP4992211B2 (en) 2005-08-24 2005-08-24 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005243337A JP4992211B2 (en) 2005-08-24 2005-08-24 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2007059632A true JP2007059632A (en) 2007-03-08
JP4992211B2 JP4992211B2 (en) 2012-08-08

Family

ID=37922855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005243337A Expired - Fee Related JP4992211B2 (en) 2005-08-24 2005-08-24 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4992211B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288462A (en) * 2007-05-18 2008-11-27 Toshiba Corp Semiconductor device and its fabrication process
JP2013219161A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Semiconductor device and semiconductor device manufacturing method
US8927367B2 (en) 2012-02-27 2015-01-06 Samsung Electronics Co., Ltd. Semiconductor device including metal-oxide-semiconductor field effect transistors and methods of fabricating the same
US9954072B2 (en) 2012-10-18 2018-04-24 Mitsubishi Electric Corporation Silicon-carbide semiconductor device and manufacturing method thereof
JP2018125441A (en) * 2017-02-01 2018-08-09 株式会社豊田中央研究所 Nitride semiconductor device
JP2020043309A (en) * 2018-09-13 2020-03-19 トヨタ自動車株式会社 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291976A (en) * 1988-09-29 1990-03-30 Oki Electric Ind Co Ltd Manufacture of vertical and groove type mos fet
JPH11266015A (en) * 1998-03-18 1999-09-28 Denso Corp Manufacture of silicon carbide semiconductor device
JP2003008019A (en) * 2001-06-22 2003-01-10 Hitachi Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291976A (en) * 1988-09-29 1990-03-30 Oki Electric Ind Co Ltd Manufacture of vertical and groove type mos fet
JPH11266015A (en) * 1998-03-18 1999-09-28 Denso Corp Manufacture of silicon carbide semiconductor device
JP2003008019A (en) * 2001-06-22 2003-01-10 Hitachi Ltd Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288462A (en) * 2007-05-18 2008-11-27 Toshiba Corp Semiconductor device and its fabrication process
JP4564514B2 (en) * 2007-05-18 2010-10-20 株式会社東芝 Semiconductor device
US7919811B2 (en) 2007-05-18 2011-04-05 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing same
US8927367B2 (en) 2012-02-27 2015-01-06 Samsung Electronics Co., Ltd. Semiconductor device including metal-oxide-semiconductor field effect transistors and methods of fabricating the same
KR101862345B1 (en) * 2012-02-27 2018-07-05 삼성전자주식회사 Semiconductor device including metal-oxide-semiconductor field effect transistors and methods of fabricating the same
JP2013219161A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Semiconductor device and semiconductor device manufacturing method
US9954072B2 (en) 2012-10-18 2018-04-24 Mitsubishi Electric Corporation Silicon-carbide semiconductor device and manufacturing method thereof
JP2018125441A (en) * 2017-02-01 2018-08-09 株式会社豊田中央研究所 Nitride semiconductor device
JP2020043309A (en) * 2018-09-13 2020-03-19 トヨタ自動車株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP4992211B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
KR100400079B1 (en) Method for fabricating trench-gated power semiconductor device
JP5767430B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5298565B2 (en) Semiconductor device and manufacturing method thereof
JP2007110110A (en) Method of forming trench transistor and pertinent trench transistor
JP2008098593A (en) Semiconductor device and manufacturing method thereof
JP6170812B2 (en) Manufacturing method of semiconductor device
KR101832334B1 (en) Semiconductor device and method for fabricating the same
JP2009158681A (en) Silicon carbide semiconductor device and its manufacturing method
JP2005510088A (en) Trench metal oxide semiconductor field effect transistor device with polycrystalline silicon source contact structure
US20130221431A1 (en) Semiconductor device and method of manufacture thereof
JP5198760B2 (en) Semiconductor device and manufacturing method thereof
JP4992211B2 (en) Manufacturing method of semiconductor device
TW201943081A (en) Semiconductor device and method of manufacturing the same
JP2006229181A (en) Semiconductor device
US8133788B2 (en) Method of manufacturing semiconductor device
JP2009246225A (en) Semiconductor device
JP2008159916A (en) Semiconductor device
JP5616720B2 (en) Semiconductor device and manufacturing method thereof
KR20230098897A (en) Semiconductor structure and manufacturing method
JP2011171632A (en) Method of manufacturing semiconductor device
JP4839599B2 (en) Semiconductor device and manufacturing method thereof
WO2019109829A1 (en) Insulated-gate bipolar transistor, and manufacturing method thereof
CN113809162B (en) Power element
JP5388495B2 (en) Semiconductor device
JP2009146946A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4992211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees